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Abstract Stiff behavior of more general finite
element (FE) beam formulations in some problems
can be misinterpreted as locking based on comparison
with simplified analytical and/or less general FE beam
formulations. This paper demonstrates that, in more
general beam formulations, higher stiffness can be
attributed to geometric nonlinearities as result of
cross-section deformations, not properly captured by
analytical or less general FE beam formulations.
Limitations of the ad hoc approaches used in
conventional FE beam formulations to account for
beam cross-section deformations are identified, their
inconsistency with theory of continuum mechanics is
explained, and their appropriateness is evaluated in
view of a more general approach. Effect of using
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different constitutive models on the stiff behavior of
beams is investigated, and it is demonstrated that the
stiff behavior resulting from the geometric stiffening
due to the coupling between the cross-section defor-
mations and beam vibrations in more general beam
formulations cannot always be interpreted as locking.
Relationship between geometric stiffening, cross-
section deformation, locking, and constitutive model
in more general FE beam formulation is explained.
Several numerical examples are used to perform static,
dynamic, and thermal analyses; and the results
obtained are compared with FE commercial software.
These results demonstrate limitations of beam formu-
lations used in commercial FE software, shed light on
problems of using simplified analytical solutions for
verification, highlight concerns of using conventional
FE approaches for soft robots and materials, and
caution against misinterpretation of the stiff behavior
as locking when wusing more general beam
formulations.

Keywords Cross-section deformation - Geometric

stiffening - Locking - Coupled deformation modes -
Absolute nodal coordinate formulation

1 Introduction

Beam vibration solutions obtained using more general
finite element (FE) formulations may exhibit a stiff
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behavior that can be misinterpreted as locking. Such a
misinterpretation in some problems such as axial-
deformation problems can be made when more
general solutions are compared to solutions obtained
using analytical methods that employ simplifying
assumptions or with solutions obtained using less
general FE formulations. For example, rigid cross-
section assumption is made in classical beam formu-
lations, as in case of Euler—Bernoulli beam theory,
which neglects shear deformation and assumes rigid
cross section remains normal to beam neutral axis. In
Timoshenko beam theory, on the other hand, rigid
cross section is allowed to rotate as result of the shear.
Therefore, in classical beam vibration problems,
analytical solutions based on simplified approaches
do not consider beam cross-section deformation
[1-10].

In more general FE beam formulations such as
absolute nodal coordinate formulation (ANCF), there
is a relation between geometric stiffening, cross-
section deformation, locking, and constitutive model.
Geometric stiffening can be due to kinematic coupling
between different modes of displacements. Coupling
between cross-section deformation and axial and
bending deformations is one example. Another exam-
ple is axial/bending deformation coupling which was
considered in field of rotor dynamics. These coupled
deformation modes can cause numerical and conver-
gence problems in case of stiff and thin structures
using plane strain constitutive models [11]. However,
linearization and ignoring these coupled deformation
modes lead to wrong results in case of large deforma-
tion and soft materials. Locking is a phenomenon that
can be addressed using different approaches. Detailed
discussion on locking and locking alleviation tech-
niques in conventional and ANCF elements can be
found in [12]. However, it was demonstrated that
modifying constitutive model for three-dimensional
ANCF beam element based on continuum mechanics
approach can improve its performance [13]. In this
case, three-dimensional ANCF beam element does not
suffer from shear locking using this modification.

In a realistic motion scenario, beam stretch or
bending leads to a change in cross-section dimensions.
Such a change, resulting from the coupling between
cross-section deformations and the stretch and bend-
ing, produces geometric stiffening that has direct
influence on the vibration amplitude, a phenomenon
that has been recognized for decades, particularly in
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the area of rotor dynamics [14]. Ignoring such coupled
deformation modes does not only lead to inaccurate
results in case of large deformation and very flexible
structures [11] but can also in addition to ignoring
axial/bending deformation coupling, as shown in
Fig. 1, falsely lead to unstable solutions which are
not supported by experimental observations of actual
motion scenarios [15-24]. The results presented in
Fig. 1 also shed light on problems associated with
using linearization techniques in stability analysis of
highly nonlinear mechanical and aerospace systems.
The eigenvalue analysis based on linearized equations
can lead to misleading stability information. In some
studies, reported in the literature, the focus has been on
geometric stiffening that results from the coupling
between axial and bending deformations. It was
demonstrated that linearization of rotor blade equa-
tions that leads to ignoring axial/bending coupling
produces wrong unstable solution.

In order to clearly define scope of this investigation,
a simple cantilever beam subjected to an axial force at
its free end is considered. Figure 2 shows a compar-
ison between predicted axial deformation using non-
linear ANCF finite elements and FE commercial
software ANSYS. Results of this figure show that
plane strain assumption under-predicts a solution that
does not agree well with ANSYS solution, while the
plane stress assumption leads to a solution in a good
agreement with ANSYS solution. This stiff behavior
of ANCEF plane-strain solution can be misinterpreted
as locking due to poor element performance. The stiff
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Fig. 1 Tip point deflection of the rotating beam (—A—
Nonlinear ANCF —_ll— Linear)
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Fig. 2 Tip point axial deformation of a cantilever beam
subjected to an axial force (—A— ANCF/Plane stress, —[ll—
ANCF/Plane strain, —@— ANSYS/BEAMI188)

behavior of more general FE formulations, however,
cannot always be interpreted as locking, demonstrat-
ing the need for better understanding effect of
geometric stiffening and choice of constitutive models
when more general formulations are used. This fact is
clear from the overly stiff plane-strain results pre-
sented in Fig. 2. This overly stiff behavior is not
attributed to locking, but to representation of geomet-
ric stiffening based on the constitutive model used, as
will be further discussed in this investigation.

This paper addresses these fundamental problems
and demonstrates that more general formulations
account for deformations that are not captured by the
analytical or the less general FE formulations. The
limitations of the ad hoc approaches used in the FE
literature and commercial software to account for the
cross-section deformations are identified, issues asso-
ciated with their inconsistency with theory of contin-
uum mechanics are highlighted, and their
appropriateness is evaluated by comparing with a
more general approach. The derivation of the elastic
forces using general continuum mechanics (GCM)
approach, presented in this paper, is used to shed light
on assumptions used in ad hoc approaches. Effects of
using different constitutive models and geometric
stiffening due to the coupling between the cross-
section deformations and beam vibrations are studied
with the goal of demonstrating that stiff behavior of
more general beam formulations cannot always be
interpreted as locking if convergence of the solution is
achieved. Fundamental differences between classical

beam approaches that assume rigid cross section, and
more general beam formulations, such as the absolute
nodal coordinate formulation (ANCF), that account
for cross-section deformation are highlighted. A
detailed comparative study is performed using static,
dynamic, and thermal analyses to address fundamental
issues related to the cross-section deformation, geo-
metric stiffening, and locking. The obtained results are
compared with results of different FE software such as
ANSYS and LS-DYNA.

The paper is organized as follows. In Sect. 2, a
simple example is used to define the problem
addressed in this investigation and show the limita-
tions of some beam formulations used to obtain
reference solutions for the purpose of result verifica-
tions. Section 3 reviews some widely used ad hoc
approaches used in FE formulations implemented in
commercial FE software to account for cross-section
deformations and identifies their limitations, which are
evaluated in view of a more general formulation in
Sect. 4. Geometric stiffening terms that couple differ-
ent displacement modes are derived in Sect. 5 and are
used to discuss limitations of the ad hoc approaches.
Section 6 discusses the main difference between
plane-stress and plane-strain constitutive models.
Section 7 presents numerical examples used for the
comparative study of this paper and demonstrates
limitations of conventional FE formulations in anal-
ysis of soft materials. Summary and conclusions
drawn from this investigation are provided in Sect. 8.

2 Problem definition

In this section, a simple beam example is used to
demonstrate limitations of beam formulations, some
of which are used to obtain reference solutions for the
purpose of result verifications. The analysis presented
in this section sheds light on problems associated with
using analytical solutions or solutions obtained using
less general FE formulations to verify numerical
results obtained using more general formulations that
capture deformation modes not captured by less
general approaches.

2.1 Beam formulations

In order to explain the differences between different
beam element formulations, a cantilever beam
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subjected to an axial force F = 108 N at its free end is
considered, as shown in Fig. 3. The cantilever beam
has a length 1 m, height 0.3 m, and thickness 0.3 m.
The material density is p = 2700kg/m?, while the
modulus of elasticity is E = 70 x 10°N/m?. The
Poisson ratio is varied from 0 to 0.499 to examine
effect of cross-section deformation on the solution.
The slenderness ratio is calculated using the equation
GAP? /EI, where G is modulus of rigidity and EI is
flexural rigidity. This ratio was found to be between
44.6 and 66.7 based on the value of Poisson ratio. This
ratio is greater than 30 as recommended for ANSYS
BEAM188 element. Table 1 shows axial deformation
predicted using different models for different Poisson
ratio values when using 50 elements. Analytical
solution of the axial tip deformation based on the data
of the example is 0 = FI/EA = 0.015873 m. The
results presented in the table show that the solution
predicted using the ANSYS BEAMI188 element that
assumes a rigid cross section is the same as the
analytical solution. The deformation increases by
scaling the cross section as a function of the axial
elongation in ANSYS. However, the element volume
is preserved to be the same after deformation as will be
discussed in Sect. 3. Furthermore, the axial deforma-
tion predicted by ANSYS and LS-DYNA beam
elements remains the same regardless of the value of
Poisson ratio, demonstrating that the solution does not
depend on Poisson ratio and some beam element
formulations implemented in these two software do

F

Fig. 3 Cantilever beam subjected to an axial tip force
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not account for the coupling between axial and cross-
section deformations.

2.2 Coupling between axial and cross-section
deformations

The axial deformation becomes dependent on Poisson
ratio in commercial FE software if a more general
model is developed using solid (brick) elements, as
demonstrated by the results presented in Table 1. The
table also shows that the results obtained using the
ANCF shear-deformable beam element depend on
Poisson ratio because such elements automatically
account for cross-section deformations. While
changes in the results due to varying value of Poisson
ratio are small in this example, such a Poisson effect
cannot be ignored, particularly in applications in
which cross-section deformation is large. It is worth
mentioning that solutions obtained using commercial
FE software as well as simplified analytical beam
formulations are used as reference solutions for
verification purposes. Because these reference solu-
tions do not consider cross-section deformations and
do not account for Poisson effect, it is more appropri-
ate to use reference solutions obtained using more
general formulations that were found to give solutions
in agreement with experimental results [21, 25, 26].

2.3 Geometric stiffening and numerical locking

The results presented in Table 1 show that when plane-
strain assumptions are used, ANCF shear-deformable
beam element exhibits overly stiff behavior which can
be misinterpreted as numerical locking. Such a
misinterpretation can be misleading in the evaluation
of the FE performance. This misinterpretation is
despite the fact that elements based on more general
formulations may converge to a correct solution, and
such elements can have good convergence character-
istics and do not suffer from locking problems.

3 Ad hoc approaches for cross-section
deformations

In conventional FE beam formulations, three transla-
tional coordinates and three finite or infinitesimal
rotational coordinates are used to describe, respec-
tively, position of beam centerline and orientation of
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Table 1 Tip point axial deformation for different Poisson ratio

Type v=20 v=0.1 v=02 v=03 v=04 v = 0.495
ANSYS/BEAM188/Rigid 0.015873

ANSYS/BEAM188/Scaling 0.0162619

ANSYS/SOLID186 0.015873 0.015858 0.015812 0.015729 0.0155998 0.015399
LS-DYNA/Belytschko—Schwer beam 0.016

ANCEF/Plane stress 0.015474 0.01546 0.01545 0.0154 0.01535 0.01529
ANCF/Plane strain 0.015474 0.01531 0.01482 0.01398 0.01278 0.01135
Analytical 0.015873

its cross section, with assumption that the cross section
does not deform [5-10]. While most beam element
formulations implemented in commercial FE software
employ the assumption that the cross section remains
rigid, an ad hoc approach is used in some software to
allow for cross-section deformations. The resulting
displacement field in some of these formulations,
however, still lacks consistency with the principles of
continuum mechanics and computational geometry
methods, such as B-spline and NURBS (Non-Uniform
Rational B-Spline) [27]. In this section, the ad hoc
approaches implemented in some FE commercial
software are reviewed in order to be able to explain
limitations of these approaches.

3.1 Warping effect

Examples of displacement fields used in beam formu-
lations implemented in commercial software are beam
elements BEAM188 and BEAM189 implemented and
recommended in software ANSYS for most beam
structures. These elements, which are based on
Timoshenko beam theory and capture shear effect,
are suitable for modeling beam structures that are
slender to moderately thick. The displacement field of
the two-node BEAM188 element can be linear with
one integration point, quadratic with two integration
points, or cubic with three integration points. Element
BEAM189, on the other hand, is a quadratic element,
and it has three nodes. Each node in both elements has
six degrees of freedom, three translations in x, y, and z
directions, and three rotations about axes along these
directions. ANSYS provides the option to increase
degrees of freedom at a node from six to seven by
including warping effect through setting the value of
the parameter KEYOPT (1) to one. These elements are

developed based on a first-order shear-deformation
Timoshenko theory. Therefore, shear-stress variation
is not allowed by these beam elements, and for this
reason, solid elements are recommended if such a
shear variation is to be considered. Poisson-ratio effect
is neglected in calculation of transverse shear distri-
bution [28]. Elements BEAM188 and BEAM189 do
not account for the cross-section folding or distortion
after deformation since the cross section is subjected
to constant transverse shear strain. The cross section is
allowed to deform in ANSYS only if the geometric
nonlinearity (NLGEOM) option is considered [28].

3.2 Element Beam188

To use assumption of rigid cross section when using
ANSYS BEAM188 element, parameter KEYOPT (2)
is set to one. To allow for cross-section deformation as
function of the axial elongation, parameter KEYOPT
(2) is set to zero. This scaling option is applied only if
geometric nonlinearity (NLGEOM) option is consid-
ered. However, the element volume is preserved, and
this model is recommended for elastoplastic applica-
tions [28]. To ensure conservation of mass and keep
constant volume for a homogenous cube subjected to
an axial elongation in ANSYS, y and z transverse
strains are reduced by half the axial strain, regardless
of the value of Poisson ratio. In this case, the increase
in volume due to axial strain is compensated by a
decrease in the volume in the transverse directions to
keep constant volume. This change is not physically
possible for most materials that have Poisson ratio
around 0.3 and also not consistent with theory of
continuum mechanics that assumes that strain com-
ponents are not related, particularly in case of general
loading. These materials experience some increase in
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the volume due to the axial elongation. The results
presented in Table 1 demonstrate the limitations of this
ad hoc approach that ignores effect of Poisson ratio.
Another BEAM188 ad hoc approach is to use general
beam cross section (GENB), which does not require
providing cross-section dimensions or material prop-
erties as input data because this method utilizes data
obtained experimentally or from another analysis to
define the relationship between generalized stress and
strain. ANSYS BEAMI88 element is used in the
verification study presented in this paper. This
element, which is recommended for large strain,
nonlinear, linear, and large rotation applications, has

the nodal coordinates e = [ v w 0, 0, 0.]",
where u, v, and w are the translations in the x, y, and z
directions, respectively, and 0,,0,, and 0, are the
rotations along axes in x,y, and z directions, respec-
tively. The displacement field of the linear BEAM188
element, which does capture cross-section deforma-
tions, is defined as

(w(1=s)+u;(1+5), v==w(1—=s)+v(1+5)),

N —
N —

:%(0)-1(1 —5) +0y(1+5)),

(wi(1=s)+wy(l+5)), 6

0, =5 (01— 9) + 0,(1+9). 0= (0u(1 —5) + 0(1 +5)

(1)

where I and J represent the node number and s is
measured along the axial direction of the beam
centerline along which the integration points are
defined. It is clear that beam cross-section deformation
is not represented in the displacement field of this
element, and cross-section deformation can be scaled
as a function of the axial strain as previously
discussed. The cross section of element BEAM188 is
divided into subsections, and each subsection has nine
nodes and four integration points. If the beam exhibits
inelastic behavior along the section, constitutive
computations are performed at each section integra-
tion point. Otherwise, the section pre-calculated
properties at integration points along beam centerline
are used [28, 29].

W= =

1
2

3.3 Solid element
Use of conventional solid elements to model beams

can be considered as an ad hoc approach to the cross-
section deformation. SOLID185 and SOLID186 are
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commonly used in the commercial ANSYS software.
SOLID185 element has eight nodes, while SOLID186
element has twenty nodes. Each node has three
degrees of freedom that are three translations in the
x,y, and z directions. The displacement field is
quadratic in the case of SOLID186 element, which is
used in this investigation in verification studies
presented in the numerical example section. The solid
elements, which have more degrees of freedom than
the beam elements, are recommended for thick three-
dimensional solid structures. Poisson ratio effect is
accounted for when using solid elements whose
constitutive models are based on general continuum
mechanics approach [8, 28, 29].

3.4 Belytschko—Schwer beam element

Belytschko—Schwer beam element, implemented in
the FE commercial software LS-DYNA, is used with
the corotational approach. This element can be used
for the transient analysis of space frames that are
subjected to large displacements and small strains
[10, 30]. In this formulation, the deformation is
defined using the element coordinates
d= [(31] (‘)x]] 0)1 gy] Qzl QZJ]T, where sub-
scripts / and J refer to node number defined at the
beam ends, d;; is the elongation, 6,y; is the torsional
deformation, and 0,;, 0,;,0,, and 0 are rotational
deformations that define element bending. All rotation
variables of this element are defined in local coordi-
nate system. The displacement field of this element is
defined such that the axial displacement depends
linearly on element longitudinal coordinate x, while
transverse displacement is cubic in x. The displace-
ment field of this element is

d" = (1 = &)dy + Edyy,

A" = (£ =28+ &0y + (=& + &)10,,
dl' = (=& 428 = E)lby + (8 = E)1b,,
Oy = COunr

where ¢ = x/I, x is measured with respect to node I,
and the superscript m refers to centerline displace-
ment. In case of Euler—Bernoulli beam, the displace-
ment is defined as
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dy=d" — y(ad;" / ax) — 2(3d" /ox) + H(y, 2) (00, /ox)
dy=d" 20, d, =d" —y0,
(3)

where H(y,z) represents warping function. For this
element, rigid beam cross section is assumed to be
normal to beam centerline during deformation and
shear effect is neglected. The strain—displacement
relationships used for this element are ¢;; = 0d,/0x,
&l = ((6dx/6y) + (6dy/6x))/2, and g3 = ((adx/aZ)
+(0d;/0x))/2. The strain vector is written as
e=len 2ep 2313]T, and matrix of strain—dis-
placement relationships is given by

ik 0 A66—4) y(4-68) (6-2) y2-60)
B= 0 (0H/oy) -z 0 0 0 0
0 (0H/d2) —y 0 0 0 0

(4)

It is clear that this element does not account for effect
of Poisson ratio, as demonstrated by the results
presented in Table 1 [10, 30]. Using the strain—
displacement relationships and the stress vector
c= [0 on 0'13]T, nodal forces can be computed

using the equation f= [B’edV.
4

4 Evaluation of ad hoc approaches

As discussed in the preceding section, the ad hoc
approaches account for deformation of the cross
section by enforcing a predefined relationship between
transverse and axial strain components or by supple-
menting FE displacement field with an additional
function. Supplementing the displacement field by an
additional function that is not original base function of
the assumed displacement field when the polynomial
coefficients are replaced by the FE nodal coordinates
is an ad hoc technique that is not rooted in original
element geometry. Introducing predefined relation-
ship between strains, on the other hand, is not
consistent with theory of continuum mechanics that
assumes that all strain components are independent
and can change arbitrarily depending on the load
applied to the beam.

The fact that all strain components are independent
is one of the main principles used in developing ANCF
finite elements [25, 26, 31-56]. Being able to replace

independent assumed polynomial coefficients by gra-
dients coordinates proves that ANCF gradient coordi-
nates and the strains evaluated using the gradients are
independent. The planar fully parameterized ANCF
shear-deformable beam element can be used to
evaluate assumptions of ad hoc approaches used in
the FE literature and software. The global position
vector r of an arbitrary point on this ANCF beam
element can be written as r(x, 1) = S(x)e(t), where S
is element shape-function matrix, x = [x y]” is
vector of element spatial coordinates, and e is vector
of element nodal coordinates, which can be defined,
using position vector r and position vector gradients
r, = Or/0x and r, = Or/0y, as
e=[r'"" " " 7 o7 r%T]T, where the
superscript refers to node number. Element shape-
function matrix S(x) can be written as
S(x) =[s1I s s3I sqI ssI s6I], where T is
2 x 2 identity matrix and shape functions
si, 1=1,2,...,6, are defined as [57, 58]

s1=1-38428, 5=1(6-28+8), ss=In(1-¢)
50 =38-28, ss=1(-8+&), s = 1&n

(5)

where ¢ =x/I, n=y/l, and [ is the length of the
element. The cross section of this element does not
remain perpendicular to the neutral axis during beam
deformation. Using element kinematics, global posi-
tion vector r of an arbitrary point P, as shown in Fig. 4,
can be written as r = r. + Ar = r. + yr,, where r, is
the position vector of point P, located on the beam
centerline at y = 0 and Ar = yr, is a vector along the
beam cross section. For this ANCF element, gradient

Node 1 Beam centerline

Node 2

Fig. 4 Global position vector on ANCF beam element
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vector r,, whose norm defines the change in cross-
section dimensions, is linearly interpolated. That is,
r,=(1- é)r}{ + 51'3, demonstrating the fact that if a
geometrically consistent approach is used starting
with assumed interpolating polynomials, deformation
of the cross section is an integral part of the original
assumed displacement field, and there is no need to
supplement FE displacement field with additional
functions such as H(y, z), as previously discussed. The
ad hoc approach in which an independent function is
used to supplement FE displacement field can lead to
neglect of coupling between different deformation
modes.

To examine assumptions of the other ad hoc
approach in which a relationship between transverse
and axial strains is arbitrarily enforced, ignoring the
fact that the strain components are independent, the
results obtained using the ANCF beam elements for

the transverse strain &, = (rfry — 1) / 2 and the

axial strain ¢;; = (rlr, — 1) /2 are obtained for the
cantilever example, previously considered in this
paper. These strain results are used to develop
numerical representation for transverse strain &y, as
function of axial strain &1 as &3 (&) = a(&)er(€) to
see if there is certain ratio or trend in simple examples
that can justify using predefined relationship between
strain components to capture cross-section deforma-
tions. The scalar multiplier (&) is plotted in Fig. 5 as
function of ¢. The results presented in this figure are
obtained using beam model that accounts for effect of
the transverse strain on the longitudinal strain due to
geometric stiffening. Such a beam model is different
from models developed using cross-section scaling ad
hoc approach used in commercial FE software.

As will be demonstrated in the following sections,
cross-section deformation is source of geometric
nonlinearities that can have a significant effect on
stress forces. These geometric nonlinearities, as in
case of the rotating blade problem, introduce geomet-
ric stiffening that influences amplitude of beam
deformations. Geometric stiffening, which depends
on the constitutive model used, may contribute to an
overly stiff behavior. In case of converged FE
solution, interpretation of source of higher stiffness
as locking, which is associated with poor element
performance, needs to be examined.
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5 Geometric nonlinearity and stiffening

In commercial FE software, four types of geometric
and material nonlinearities can be considered: large
strain, large rotation, stress stiffening, and spin
softening [29]. Consequently, when using commercial
FE software, element type and geometric nonlinearity
need to be carefully selected based on the application
and scope of the study. ANCF finite elements, on the
other hand, automatically account for geometric
nonlinearities and can describe accurately rigid-body
motion including spinning at high rates without the
need for using incremental co-rotation formulations.
In this section, geometric nonlinearities are discussed
and the terms that contribute to geometric stiffening
are identified using ANCEF finite elements.

5.1 Basic equations

Equation of motion of ANCF shear-deformable beam
element can be written as M€= Q, + Q,. In this
equation, M = [, pS"S|J,|dV is the constant and
symmetric element mass matrix, Q, and Q, are,
respectively, vectors of applied and stress (elastic)
forces, p is element mass density, V is the volume
defined in the straight configuration, |J,| is determi-
nant of matrix of position gradient vectors
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J, = 0X/0x,
stress-free

X=[X X, X;]'=Se,
reference

defines
configuration, X =
[x1 x2 X3]T is vector of FE spatial coordinates,
and e, is vector of element nodal coordinates in initial

reference configuration [58].

5.2 Geometric nonlinearity and cross-section
deformations

Elastic forces of the ANCF beam elements can be
formulated using a general continuum mechanics
(GCM) approach that accounts for all nonlinear terms.
In this case, strains of the planar shear-deformable
ANCF beam element previously considered in this
study can be written as

1
e =3 (rlree = 1) + yrlry, + &
1
2

1
€ = (r}T,ry - 1), e =5 (rCTxry —|—yr)T,Xry)

(6)

where &) and &, are, respectively, axial and trans-
verse normal strains, while &1, is shear strain. Strain
&11 at beam centerline in axial direction x and strain &,
due to cross-section stretch in transverse direction y
are defined, respectively, as (1/2)(rfr., —1) and
(1/2) (ryTry - 1). The first term (1/2)r! r, in shear
strain ¢;» can be used to define shear angle at element
centerline; this term may assume a nonzero value even
in case of zero stretch of the cross section. The second
term yr! ry, in normal strain ¢;; defines the moment
that produces beam bending, while third term &#* =
(1/ 2)y2r)T,Xryx in & represents higher-order strain
components that result from cross-section deforma-
tions. It is clear that term £#* = (1/2)y’r] r,, depends
on gradient vector r, which is an integral part of the
formulation of ANCF displacement field and has
influence on other strain components. Furthermore,
second term (1/ 2)yryTxry in shear strain ¢, is due to
cross-section deformation. It can be shown that if r,
remains unit vector, case of zero cross-section defor-
mation, term (1/2)yr ry is identically equal to zero.
Terms that result from cross-section deformations
couple different displacement modes, which con-
tribute to geometric stiffening that cannot be properly
captured using ad hoc approaches.

5.3 Stress force formulation

Using Eq. 6 and ANCF planar beam element kine-
matics, one can show that the strains can be written in
terms of the nodal coordinates as

1 1
(e"S.e — 1) + ye'Spse + EyzeTSSdae

e = B
1 1
&2 =3 (e'Se—1), &= 3 (e"S,e + ye' S,y e)
(7)
In this equation, S, = (0S./dx)"(3S./ox),

S. =S(x,y =0), S, = (8S/dy)" (3S/dy), and S, =
(0S./0x)" (0S/dy), while the functions associated
with the cross section deformations are
Sk = (0S./dx)" (38/0ydx), Sy, = (8S/3ydx)" (8S/
Oydx), and Sy = (0S/0ydx)" (0S/dy). Using the
strains of the preceding equations, the virtual work
of the elastic forces based on the GCM approach is
written in terms of the Green—Lagrange strain tensor &
and the second Piola—Kirchhoff stress tensor ¢ as
W, = —[,6: 0glJ,|dV = Q'de, where Q, =
— [, (0g/ de)" E€|J,|dV, and E is the elastic coeffi-
cient matrix. The definition of the stress (elastic)
forces and the geometric stiffening terms depends on
the constitutive model used as will be demonstrated in
this paper using cases of plane-stress and plane-strain
constitutive models. The plane-strain constitutive
model leads to stiffer behavior, which may be wrongly
interpreted as locking.

5.4 Geometric stiffening terms

Using integral expression for vector Q,, one can show
that this nonlinear vector can be written in terms of
nonlinear stiffness matrices in case of plane-strain
assumptions as

Q, = —((4 + 2K, + 2Ky + 2pK;)e
=Q, +Qpu + Qg (8)

where 4 and u are Lame’s constants defined as 4 =
Ev/[(1 4+v)(1 —2v)] and u = E/[2(1 + v)], E is mod-

ulus of elasticity, v is Poisson ratio,
Q.Yl = 7(/1 + 2:“)Klea QS2 = 7)LK26, Qs3 =
—2uKse; and nonlinear  stiffness  matrixes

Ky, K>, and K3 are defined as
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1 1 1
K, :/ =Sa1 + ¥Spat + =Y Ssaar &1 + 5 Snea | [ToldV
2 2 2
i
1 1 1,
K :/ 5511811 + Esul + ¥Spa1 +5y Ssdar ) €2 | [JoldV
v
1
K; = 5/ ((Ss1 + ¥Ssas1)e12) [JoldV
i
9)
where Sa1 =S, +S., Spa1 = Spa + Shys

Sedat = Ssaa + 8Ly San =8 +8/, Sy =S,+8],
and Sggs1 = Seas + SSTdS. The stiffness matrices in the
preceding equation have coupling terms between the
element coordinates that cannot be captured using ad
hoc approaches. This stiffness coupling produces
geometric stiffening that can be important in large-
deformation applications. Linearization approaches
that neglect geometric stiffening terms, as in case of
rotor blade benchmark example, can lead to wrong
solutions and misleading information on system
stability. This issue is particularly important in large-
deformation analysis and in analysis of soft robots and
materials [59].

6 Constitutive models

In order to examine the effect of the constitutive
models and have proper interpretation of stiff beam
behavior, the two cases of plane-strain and plane-
stress constitutive models are considered. In case of
linear elastic model, stresses can be written in terms of
strains using constitutive equation ¢ = Eg. The matrix
of elastic coefficient E in case of plane strain is

A+2u A 0

E = A A+2pn 0 (10)
0 0 2u

In this case, &3 = &3 = £33 = 0, and the stresses are
given by

o = (A4+2pen + e, on = (A+2u)en + e, }

o33 = Alen +éxn), 012 =2uen

(11)

In case of plane-strain assumption, the deformation or
strain is restricted in the thickness direction, and the
strain is zero in the Z direction. Consequently, there is
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a stress in the thickness direction. The plane-strain
assumption is often applied in case of thick structures.

On the other hand, the matrix E in case of plane-
stress assumption can be written as

/(1=

E=E v/(l —?)
0 0

(12)

In this case, o135 = 023 = 033 = 0, and the strains are
given by

& = (02 —voy)/E,
e = ((1+v)/E)oi»

e = (011 —von)/E,
&3 = —v(o11 + on)/E,

(13)

The plane stress assumes that the stress along the Z
direction is zero, but the strain in the thickness
direction is not zero because of Poisson effect, and the
deformation in Z direction is not restricted. The plane-
stress assumption is recommended for thin structures.

Figure 6 shows a cantilever beam that has restric-
tions on the outer surfaces to prevent cross-section
expansion in the transverse directions. A cross-section
stretch due to Poisson effect is prevented because of
the outer-surface constraint. Consequently, the devel-
oped residual normal transverse stress 033 contributes
to the axial strain according to the equation
¢11 = (011 — v(022 + 033))/E. In this case, plane-
strain assumption is more appropriate because

Constraint

F

Fig. 6 Cantilever beam subjected to an axial tip force and
displacement constraints



Cross-section deformation, geometric stiffening, and locking

deformation in the thickness direction is restricted,
while the stress in the thickness direction is not zero.
On the other hand, the strain in the thickness direction
€33 1S nonzero in case of plane-stress assumption, and
there is no stress in the thickness direction. Using
assumption of plane stress in this example leads to
inaccurate results because axial strain does not
account for the developed residual normal stress g33
that cannot be ignored in this case. In general, the
plane stress is recommended in most cases if the beam
thickness does not exceed the beam length. However,
if there are constraints on the outer surfaces to prevent
the transverse deformation as shown in Fig. 6, then the
plane strain is recommended. The numerical examples
presented in the following section will demonstrate the
difference between results obtained using the two
constitutive models. These results explain the stiff
behavior exhibited in some plane-strain models and
demonstrate that such a stiff behavior should not
always be interpreted as locking [12, 60-65].

7 Numerical examples

Several numerical examples are used in this section to
study effect of using different constitutive models.
Static, dynamic, and thermal analyses are performed
to discuss effect of constitutive models on beam
stiffness. The results obtained using general-purpose
MBS software SIGMA/SAMS (Systematic Integra-
tion of Geometric Modeling and Analysis for the
Simulation of Articulated Mechanical Systems) are
compared with results of commercial FE software
ANSYS and LS-DYNA.

7.1 Static analysis

The first example is a cantilever beam connected to a
frame using fully-clamped joint, as shown in Fig. 3.
The clamped joint eliminates all rigid-body and
deformation degrees of freedom at the end connected
to the frame. The material and geometric properties of
the cantilever beam are the same as the properties
provided in Sect. 2.1 with the exception that Poisson
ratio is selected to be 0.3. Table 2 compares numerical
solutions obtained using SIGMA/SAMS, ANSYS, and
LS-DYNA software. BEAM188 is used in ANSYS,
while Belytschko—Schwer beam with full cross-sec-
tion integration is used in LS-DYNA. Using the
assumption of cross-section scaling in ANSYS leads
to results that are close to LS-DYNA, and these results
are higher than the analytical solution. This is despite
the fact that in case of rigid cross section, all energy is
consumed by the axial deformation, while in case of
deformable cross section, part of energy is consumed
in the cross-section deformation. This is not achieved
in case of cross-section scaling in ANSYS as shown in
Table 2 because the element volume is preserved as
discussed before. The results presented in Table 2
show that there is no significant difference between the
solution in case of zero Poisson ratio and ANCF plane-
stress solution. Poisson effect is not captured by the
analytical solution or the less general beam elements
in commercial FE software as previously discussed.
Furthermore, when the strain split method (SSM) is
used for locking alleviation [12, 65], the same results
are obtained for plane-strain and plane-stress consti-
tutive models. The results presented in Table 2
demonstrate that the stiff behavior of the plane-strain
model cannot be interpreted as locking, but to the
choice of the constitutive model.

Table 2 Axial deformation of the cantilever beam subjected to an axial tip force

10 elements 20 elements 50 elements

Type 5 elements
ANCEF/Plane strain 0.0136687
ANCF/Plane stress 0.01506538
ANCF/Zero Poisson ratio 0.015141531
LS-DYNA/Belytschko—Schwer beam 0.016
ANSYS/BEAM188/Rigid 0.015873
ANSYS/BEAM188/Scaling 0.0162619
Analytical

0.013852429 0.013936282 0.013980346

0.015257183 0.015348306 0.015400819

0.015325914 0.015418095 0.015474461

0.016 0.016 0.016

0.015873 0.015873 0.015873

0.0162619 0.0162619 0.0162619
0.015873

@ Springer



A. E. Eldeeb et al.

The second example considered in this section is
the same as the first example, but the outer surfaces are
constrained to prevent the transverse deformations as
shown in Fig. 6. In this case, three-dimensional
elements are used in ANSYS and LS-DYNA to apply
constraints on the outer surfaces. These constraints
cannot be applied to the beam elements in commercial
FE software because Poisson effect is not considered.
While the option of general beam cross section
(GENB) can be used in ANSYS BEAMI88 to
represent cross-section deformation, this element
formulation requires relation between the stress and
strain that has to be determined using another method.
For this reason, ANSYS element SOLID186 that has
twenty nodes is used, while fully integrated quadratic
8-node solid element with nodal rotations is used in
LS-DYNA. In case of ANCF model, position vector
gradient r, of each node is constrained to be
r,=[0 1]".

Table 3 shows calculated static axial deformation of
the cantilever beam with transverse deformation
constraints using different software. ANCF plane-
strain solution is approximately the same as ANSYS
and LS-DYNA solutions for this model. ANCF plane-
stress solution is different from ANSYS and LS-
DYNA solutions due to assumption of zero stress in
the thickness direction as previously discussed.
Clearly, the plane-strain assumption is more consistent
with constraints imposed on the transverse deforma-
tion. The results also show that use of zero Poisson
ratio leads to the same results as those obtained in the
first example. Therefore, the constitutive model
should be properly selected to obtain accurate results
and avoid misinterpretation of stiff behaviors as
locking.

7.2 Vibration problems

Effect of choice of the constitutive model on a
cantilever beam made of soft material is examined
in this section. Dimensions of the beam are the same as
dimensions of the model previously used in this
section. However, soft material with modulus of
elasticity ~E = 1.2 x 10°N/m?, mass density
p = 1500kg/m3, and Poisson ratio v = 0.3 is used
[66]. The beam is subjected to an axial tip force
F = 1000 cos(57t), and effect of gravity is neglected.
Twelve ANCF beam elements are used in this
example, and the results are compared with solutions
obtained wusing BEAMI88 in ANSYS and
Belytschko—Schwer beam in LS-DYNA. Figure 7
compares axial deformation predicted using different
software in case of beam that does not have any cross-
section deformation constraints. It is shown that
ANCEF plane-stress solution agrees well with ANSYS
and LS-DYNA solutions, while plane-strain

0.025 T T T T

Axial deformation (m)

-0.025 i . . .
0 0.2 0.4 0.6 0.8 1

Time (s)

Fig. 7 Tip point axial deformation of the cantilever beam
subjected to a harmonic axial force (—A— ANCF/Plane stress,
—M— ANCF/Plane strain, —@— ANSYS/BEAMI8S,
——%—— LS-DYNA/Belytschko—Schwer beam)

Table 3 Axial deformation
of the cantilever beam
subjected to an axial tip
force and transverse
displacement constraints
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Type 5 elements 10 elements 20 elements 50 elements
ANCF/Plane strain 0.011314191 0.011451667 0.011520405 0.011562188
ANCF/Plane stress 0.013806984 0.013974984 0.014059004 0.014110425
ANCEF/Zero Poisson ratio 0.015141531 0.015325914 0.015418095 0.015474461
LS-DYNA/Quadratic solid 0.01192

ANSYS/SOLID186 0.0117914
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0.015 T T T T

Axial deformation (m)

0.2 0.4 0.6 0.8 1
Time (s)

Fig. 8 Tip point axial deformation of the cantilever beam
subjected to a harmonic axial tip force and displacement
constraints (—A— ANCF/Plane stress, —ll— ANCF/Plane
strain, —@— ANSYS/SOLID186, — —%—— LS-DYNA/Quad-
ratic Solid)

assumption leads to different results. In case of
constraining outer surfaces, as shown in Fig. 6,
element SOLID186 is used in ANSYS, while fully
integrated quadratic 8-node solid element is used in
LS-DYNA. Figure 8 shows that ANCF plane-strain
axial deformation solution is close to ANSYS and LS-
DYNA solutions, while plane-stress solution is dif-
ferent from ANSYS and LS-DYNA.

A second example of a cantilever beam falling
under gravity effect, as shown in Fig. 9, is considered.
The dimensions and material properties of the can-
tilever beam are the same as the previous example.
The tip transverse deformation using different formu-
lations is presented in Fig. 10, which shows that plane-
strain solution has lower amplitudes compared to
ANSYS and LS-DYNA solutions. The plane-stress
solution agrees well with LS-DYNA solution and
slightly differs from solution of ANSYS BEAM188
element, which is based on Timoshenko beam theory
that accounts for the shear effect. This effect is
significant in this example because the beam slender-
ness ratio is greater than 50. The implementation of the
Belytschko—Schwer beam in LS-DYNA is based on
the corotational approach, and it gives results close to
Euler—Bernoulli beam. Because ANCF beam cross-
section stretch is allowed, part of the energy con-
tributes to the cross-section deformation. Poisson
effect is considered in ANCF beam element, while it

Gravity force

Fig. 9 Cantilever beam under the gravity effect

Transverse deformation (m)

Time (s)

Fig. 10 Tip point vertical deformation of the cantilever beam
under the gravity effect (—A— ANCF/Plane stress —H—
ANCF/Plane strain, —@— ANSYS/BEAM188, — —yk—— LS-
DYNA/Belytschko—Schwer beam)

is ignored in axial beam element problems in
commercial FE software, as previously discussed. It
should be mentioned that the analytical vertical tip
deflection in case of cantilever beam subjected to a
vertical tip force is affected by Poisson ratio in case of
BEAMI188 because formulation of this element is
based on Timoshenko beam theory. In this case, the
vertical tip displacement according to Timoshenko is
given by &, = (F/6EI)[(4 + 5v)(w?l/4) + 2] [2].
However, this does not mean that cross-section
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deformation is considered; Timoshenko theory con-
siders cross-section rotation due to shear, while the
analytical solution of the vertical tip deformation
using Belytschko—Schwer beam gives results close to
Euler-Bernoulli beam solution calculated by
d, = FL? / 3El. These results are not affected by
changing Poisson ratio.

7.3 Dynamic problems

While solutions of ANCF and FE conventional
formulations can have a good agreement in case of
structural small-deformation problems, there can be
differences between these solutions in case of large
displacements. Recent investigations have addressed
this issue in case of soft materials that have large
deformations [25, 26]. To investigate this issue, two
pendulum beams made of stiff and soft materials are
considered. The pendulum is connected at one end to
the ground by a revolute joint, while the other end is
free as shown in Fig. 11. The beam, initially horizontal
with zero initial velocity, falls under gravity effect.
The beam is assumed to have length 1.2 m, height
0.25298 m, and width 0.00632 m. In the first case
considered, stiff material, with modulus of elasticity
E =2 x10"N/m?, mass density p =7800kg/m’,
and Poisson ratio v = 0.3, is used. Figure 12, which
compares the vertical tip displacement predicted using
ANCEF (12 elements), ANSYS (BEAM188), and LS-
DYNA (Belytschko—Schwer beam) models, shows
that the ANCF plane stress, ANCF plane strain,

Gravity force

Fig. 11 Free-falling planar pendulum
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Vertical displacement (m)

14 L L L L L
0 0.2 04 0.6 0.8 1 1.2

Time (s)

Fig. 12 Tip point vertical displacement of the stiff free-falling
planar pendulum (—A— ANCF/Plane stress —ll— ANCF/
Plane strain, —@— ANSYS/BEAM188, — —3— - LS-DYNA/
Belytschko—Schwer beam)

ANSYS (BEAM188), and LS-DYNA (Belytschko—
Schwer beam) solutions are in a good agreement.
These results demonstrate that ANCF and FE con-
ventional formulations agree well in case of small
deformation.

In order to examine effect of the constitutive
models and use of the FE software in the case of soft
materials, model parameters are changed to
E=0.7 x 10°N/m?, p = 5540kg/m? and v=0.3
[57]. Figure 13 shows a good agreement between the

Vertical displacement (m)

16 L s L s L
0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

Fig. 13 Tip point vertical displacement of the soft free-falling
planar pendulum (—A— ANCF/Plane stress —ll— ANCF/
Plane strain, — @— ANSYS/BEAMI188, — ——— LS-DYNA/
Belytschko—Schwer beam, — @ ANCF/GCM/SSM)
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0.2

Fig. 14 Tip point position of the soft free-falling planar
pendulum (—A— ANCF/Plane stress —Jll— ANCF/Plane
strain, —@— ANSYS/BEAMI88, — —y—— LS-DYNA/Be-
lytschko—Schwer beam)

0.2 T T T T T

04t

Y (m)

-0.6

X (m)

Fig. 15 Free-falling planar pendulum at different time points
(—A— ANCF/Plane stress —[ll— ANCF/Plane strain)

plane stress solution and solution obtained using the
GCM/SSM, recently introduced for locking allevia-
tion based on modification of the constitutive model.
These results demonstrate that proper choice of the
constitutive model can alleviate need for using locking
alleviation techniques in some applications. Figure 13
and the results presented in Fig. 14 confirm concerns
regarding using conventional FE methods and soft-
ware in analysis of soft material large deformations.
Figure 15, which depicts pendulum shape at different
time points for plane-strain and plane-stress cases,
shows that the beam behaves more flexible in plane-
stress case.

7.4 Mechanism system

The planar slider crank mechanism shown in Fig. 16
consists of four bodies: ground, crankshaft, connecting
rod, and slider block. The ground is connected to the
crankshaft by a revolute joint at point O and to the
slider by a prismatic joint. The crankshaft is connected
to the connecting rod by a revolute joint at point A, and
the connecting rod is connected to the slider block by a
revolute joint at point B. The bodies are assumed in the
horizontal position in the initial configuration. The
slider block has zero mass, and effect of gravity is
neglected for all bodies. The crankshaft has length
0.152 m, cross-sectional area 7.854 x 10~>m?, sec-
ond moment of area 4.909 x 10~'°m*
density p = 2770kg / m?>. The connecting rod length is

, and mass

0.304 m, while its cross-section area and mass density
are the same as the crankshaft. The modulus of
elasticity of the connecting rod is selected to be
E=05x IOBN/mz. All bodies are assumed rigid
except the connecting rod, which is considered flexible
and modeled using eight planar ANCF elements. The
driving moment applied to the crankshaft is defined as
follows:

(14)

0.01(1 — e~ W/0167) 1 <0.7s
M =
®) { 0 t>0.7s

This mechanism example is also solved using the
floating frame of reference (FFR) formulation. Fig-
ure 17, which shows the connecting rod midpoint
transverse deformation using different formulations,
demonstrates effect of using different constitutive
models. The plane-stress solution agrees with FFR and
ANCEF solutions that assume zero Poisson ratio, while
the plane-strain solution differs from other solutions.

Crank

Flexible connecting rod

Fig. 16 Slider crank mechanism with flexible connecting rod
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%1073

Transverse deformation (m)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time (s)

Fig. 17 Midpoint transverse deformation of the connecting rod
(— A— ANCF/Plane stress —ll— ANCF/Plane strain, —@—
ANCEF/Zero Poisson ratio, — —y— — FFR)

7.5 Thermal analysis

Thermal analysis is performed in this section to
investigate effect of using assumptions of rigid and
deformable beam cross sections. A cantilever beam
with length 1 m and square 0.3 x 0.3 m? cross section
is used. The beam is made of soft material with
modulus of elasticity £ = 1.2 x 10 N/m?, Poisson
ratio v= 0.3, and mass density p = 1500kg/m3.
Constant thermal load is applied to the beam; and
coefficient of thermal expansion is assumed
o = 0.0001 (1/°C). The beam is subjected to tem-
perature change A® = 200°C. Due to thermal effect,
vector of element nodal coordinates is changed to
account for thermal expansion agA®. New vector of
element nodal coordinates for one ANCF element that
accounts for thermal expansion can be written as
follows [67]:

e.o=[00 1+2A® 0 0 1+0pAB]"
e, o=l(1+29A0) 0 1+29A® 0 0 1+2AB]"
(15)

Furthermore, 1000 N axial force is applied to the tip of
the cantilever beam, while effect of gravity is
neglected. The problem is solved using ANCF (12
elements), ANSYS (BEAM188), and LS-DYNA (Be-
lytschko—Schwer beam) by applying thermal load at a
preprocessor step, and the new deformed shape is
subjected to the axial tip force. Figure 18 shows
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Fig. 18 Tip point axial deformation of the cantilever beam in
the case of thermal expansion (—A— ANCF/Plane stress
—l— ANCF/Plane strain, ANCEF/Zero Poisson ratio,
—@— ANSYS/BEAMIS8S8, — —%— - LS-DYNA/Belytschko—
Schwer beam)

ANCF, ANSYS, and LS-DYNA solutions of the tip
point axial deformation. The results show a noticeable
difference between ANCF plane-strain and conven-
tional FE solutions, while plane-stress solution and
zero Poisson ratio solution agree well with ANSYS
and LS-DYNA solutions. This slight difference
between plane-stress and FE software solutions can
be attributed to assumption of rigid cross section in
conventional FE models; this assumption is relaxed in
ANCF model. The ANSYS and LS-DYNA results
remain the same by changing length of the beam due to
the thermal expansion to 1.02 m and using cross-
section dimensions 0.3 x 0.3 m?. Figure 19 shows the
difference between the undeformed and deformed
configurations using ANCF elements, and conven-
tional beam elements of ANSYS and LS-DYNA. The
results of this figure explain the concerns regarding
use of FE commercial software beam elements that
consider rigid cross section that is not sensitive to
thermal load. It was found that using ANSYS cross-
section scaling method based on the axial elongation
has no significant effect on the results in this case. To
further investigate this issue, the problem is solved
using ANSYS SOLID186 element which accounts for
cross-section expansion due to thermal load. Also,
ANSYS BEAM188 and LS-DYNA Belytschko—Sch-
wer beam that employ ad hoc approaches to account
for cross-section deformations are also considered
with cross-section dimensions of both beam elements
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Current configuration
Initial configuration

(a)

Initial configuration

I

\

Current configuration

(b)

Fig. 19 Effect of the thermal expansion on the straight beam
using different formulations: a ANCF and b BEAM188 and
Belytschko—Schwer beam

changed manually to 0.306 x 0.306m?> and length
changed to 1.02 m to account for thermal expansion
effect. Figure 20 shows that ANCF plane-stress solu-
tion agrees with ANSYS and LS-DYNA beam solu-
tions that employ ad hoc approaches. The results of
this figure also show that solid elements account for
thermal load cross-section expansion without the need
for an ad hoc approach. However, solid elements are
not suited, in general, for solving beam bending

0.02 T T T T T

0.018
0.016 [

0.014

0.012

=4
o
T

0.008

Axial deformation (m

0.006

0.004

0.002

4 S
0 0.05 0.1 0.15 0.2 0.25 0.3

Fig. 20 Tip point axial deformation of the cantilever beam in
the case of thermal expansion and cross-section adjustment
(—A— ANCF/Plane stress —ll— ANCF/Plane strain, — @—
ANSYS/BEAMI188, — 4 ANSYS/SOLID186, - —3—— LS-
DYNA/Belytschko—Schwer beam)

problems, and for this reason, having accurate and
general beam formulations is necessary.

7.6 Rotating planar beam

Geometric stiffening resulting from coupling between
different modes of displacements can influence the
solutions in different ways. Coupling between cross-
section deformation and axial and bending deforma-
tions is one example. Another example is axial/
bending deformation coupling which has been an issue
in field of rotor dynamics. The geometric stiffening
effect, as result of axial/bending deformation cou-
pling, has been investigated using rotating beam
problems, which demonstrated that linearization of
equations of motion can lead to misleading stability
results, as demonstrated by the results presented in
Fig. 1. While in some conventional beam formula-
tions, measures must be taken to ensure properly
accounting for effect of geometric stiffening, no such
measures are required using ANCF elements that
employ GCM approach for formulation of stress
forces. Figure 21 shows a planar beam rotating about
the vertical Z-axis with an angular velocity Q. The
beam, assumed initially horizontal, has length 10 m,
cross-section area 4 x 10~*m?, second moment of
area 2 x 10~7 m*, mass density 3000 kg/m’, modulus
of elasticity 7 x 10'°Pa, and Poisson ratio 0.3 [22].
Effect of gravity is neglected, initial velocity is zero,
and angular rotation profile is defined by the equation

Fig. 21 Rotating beam
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o | HE G ) )
Q<l_g>7 1>T
(16)

where T = 15s, Q = 6 rad/s, and after t = T, the
angular velocity remains constant. The simulation
time is assumed 20 s. Sixteen ANCF elements are
used in the analysis of this example, which has been a
benchmark example in many investigations, most of
which assume zero Poisson ratio [20-24]. Nonethe-
less, all previous investigations demonstrated that
linearization that does not account for geometric
stiffening leads to unstable solution which is not
supported by experimental observations. Figure 22
shows that the tip point deflection predicted using all
models oscillates in the steady state around the zero
value with a small amplitude. The zero Poisson ratio
solution does not account for geometric stiffening
resulting from deformation of the cross section, but it
properly accounts for geometric stiffening resulting
from axial/bending deformation coupling, which is
more significant in this problem. Plane-stress and
plane-strain solutions, on the other hand, account for
both types of coupling.

7.7 Nonlinear constitutive model

In this investigation, linear Hookean model was used
to study effect of using different linear constitutive

0.1 T T T

Tip deflection (m)

'06 L _ 1 1
0 5 10 15 20

Time (s)

Fig. 22 Tip point transverse deflection of the rotating
beam (—A— ANCF/Plane stress, —ll— ANCF/Plane strain,
— ——@—-—— ANCF/Zero Poisson ratio)
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Fig. 23 Tip point vertical displacement of the soft free-falling
planar pendulum (— A— ANCF/Hookean —ll— ANCF/Neo-
Hookean, — @— ANSYS/BEAM188, LS-DYNA/Be-
lytschko—Schwer beam)
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Fig. 24 Midpoint transverse deformation of the soft free-falling
planar pendulum (— A— ANCF/Hookean —[ll— ANCF/Neo-
Hookean)

models such as plane stress and plane strain. However,
there are nonlinear constitutive models that can be
used with soft materials such as compressible Neo-
Hookean and the incompressible Mooney—Rivlin. The
results of linear and nonlinear constitutive models
were found to be in good agreement in case of small
deformations, while differences were observed in case
of large deformation [68]. Figures 23 and 24 compare
between the tip point vertical displacement and
midpoint transverse deformation of the soft pendulum
discussed in Sect. 7.3 using linear Hookean and
nonlinear compressible Neo-Hookean. It is shown
that there is a slight difference between results of



Cross-section deformation, geometric stiffening, and locking

linear and nonlinear constitutive models. These results
are still different from ANSYS and LS-DYNA results
in case of soft material as previously discussed.

8 Conclusions

The stiff behavior of more general FE beam formu-
lations can be wrongly interpreted as locking in some
problems such as axial problems based on comparing
with the results obtained using analytical and/or less
general FE beam formulations that employ simplify-
ing assumptions. The analysis and results obtained in
this paper demonstrate that more general FE beam
formulations can lead to higher stiffness attributed to
geometric nonlinearities resulting from cross-section
deformations. Such modes of deformation are not
properly captured by analytical or less general FE
beam formulations. Furthermore, the high stiffness
exhibited by solutions based on formulations that
account for these deformation modes may not, in
general, be interpreted as locking. Limitations of ad
hoc approaches used in conventional FE beam
formulations implemented in commercial FE software
to account for beam cross-section deformations are
discussed, and their inconsistency with theory of
continuum mechanics is highlighted. Relation
between geometric stiffening, cross-section deforma-
tion, locking, and constitutive model in more general
FE beam formulations is explained. It is shown that
use of different constitutive models, such as plane
stress and plane strain, can lead to different degrees of
stiffness for the same element, a result that needs to be
considered for proper evaluation of FE performance.
Several numerical examples are used to perform static,
dynamic, and thermal analyses; and results obtained
are compared with FE commercial software such as
ANSYS and LS-DYNA. Limitations of ad hoc
approaches implemented in commercial software to
account for deformation of the cross section are
discussed. Such ad hoc approaches are not rooted in
Bezier or computational geometry methods. Numer-
ical results obtained in this paper shed light on
problems of using simplified analytical solutions for
verification of solutions and provide justifications for
concerns raised regarding use of conventional FE
approaches in analysis of soft robots and materials.
While the analysis and conclusions of the paper
with regard to geometric stiffening, interpretation of

locking, and coupling between different modes were
based on a planar analysis, three-dimensional analysis
can be performed in future investigation to have an
understanding of effect of geometric stiffening and to
properly interpret locking effect. In a three-dimen-
sional analysis, more cross-section deformation
modes must be considered [69]. Furthermore, more
studies are needed to understand warping effect and its
coupling with axial and bending deformations of
beams. For such studies, higher-order interpolation of
cross-section deformation may be necessary to accu-
rately represent a more general cross-section
deformed shape. Linear interpolation of the gradient
vectors allows for only capturing cross-section stretch.
Future investigations will also shed light on whether
simplified beam models that assume constant cross
section can be used for purpose of reliable result
verification and whether coupled deformation modes
which are not captured using these simplified models
can yield accurate results in more general vibration
and impact problems [1-10, 70-73].
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