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Abstract Stiff behavior of more general finite

element (FE) beam formulations in some problems

can be misinterpreted as locking based on comparison

with simplified analytical and/or less general FE beam

formulations. This paper demonstrates that, in more

general beam formulations, higher stiffness can be

attributed to geometric nonlinearities as result of

cross-section deformations, not properly captured by

analytical or less general FE beam formulations.

Limitations of the ad hoc approaches used in

conventional FE beam formulations to account for

beam cross-section deformations are identified, their

inconsistency with theory of continuum mechanics is

explained, and their appropriateness is evaluated in

view of a more general approach. Effect of using

different constitutive models on the stiff behavior of

beams is investigated, and it is demonstrated that the

stiff behavior resulting from the geometric stiffening

due to the coupling between the cross-section defor-

mations and beam vibrations in more general beam

formulations cannot always be interpreted as locking.

Relationship between geometric stiffening, cross-

section deformation, locking, and constitutive model

in more general FE beam formulation is explained.

Several numerical examples are used to perform static,

dynamic, and thermal analyses; and the results

obtained are compared with FE commercial software.

These results demonstrate limitations of beam formu-

lations used in commercial FE software, shed light on

problems of using simplified analytical solutions for

verification, highlight concerns of using conventional

FE approaches for soft robots and materials, and

caution against misinterpretation of the stiff behavior

as locking when using more general beam

formulations.

Keywords Cross-section deformation � Geometric

stiffening � Locking � Coupled deformation modes �
Absolute nodal coordinate formulation

1 Introduction

Beam vibration solutions obtained using more general

finite element (FE) formulations may exhibit a stiff
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behavior that can be misinterpreted as locking. Such a

misinterpretation in some problems such as axial-

deformation problems can be made when more

general solutions are compared to solutions obtained

using analytical methods that employ simplifying

assumptions or with solutions obtained using less

general FE formulations. For example, rigid cross-

section assumption is made in classical beam formu-

lations, as in case of Euler–Bernoulli beam theory,

which neglects shear deformation and assumes rigid

cross section remains normal to beam neutral axis. In

Timoshenko beam theory, on the other hand, rigid

cross section is allowed to rotate as result of the shear.

Therefore, in classical beam vibration problems,

analytical solutions based on simplified approaches

do not consider beam cross-section deformation

[1–10].

In more general FE beam formulations such as

absolute nodal coordinate formulation (ANCF), there

is a relation between geometric stiffening, cross-

section deformation, locking, and constitutive model.

Geometric stiffening can be due to kinematic coupling

between different modes of displacements. Coupling

between cross-section deformation and axial and

bending deformations is one example. Another exam-

ple is axial/bending deformation coupling which was

considered in field of rotor dynamics. These coupled

deformation modes can cause numerical and conver-

gence problems in case of stiff and thin structures

using plane strain constitutive models [11]. However,

linearization and ignoring these coupled deformation

modes lead to wrong results in case of large deforma-

tion and soft materials. Locking is a phenomenon that

can be addressed using different approaches. Detailed

discussion on locking and locking alleviation tech-

niques in conventional and ANCF elements can be

found in [12]. However, it was demonstrated that

modifying constitutive model for three-dimensional

ANCF beam element based on continuum mechanics

approach can improve its performance [13]. In this

case, three-dimensional ANCF beam element does not

suffer from shear locking using this modification.

In a realistic motion scenario, beam stretch or

bending leads to a change in cross-section dimensions.

Such a change, resulting from the coupling between

cross-section deformations and the stretch and bend-

ing, produces geometric stiffening that has direct

influence on the vibration amplitude, a phenomenon

that has been recognized for decades, particularly in

the area of rotor dynamics [14]. Ignoring such coupled

deformation modes does not only lead to inaccurate

results in case of large deformation and very flexible

structures [11] but can also in addition to ignoring

axial/bending deformation coupling, as shown in

Fig. 1, falsely lead to unstable solutions which are

not supported by experimental observations of actual

motion scenarios [15–24]. The results presented in

Fig. 1 also shed light on problems associated with

using linearization techniques in stability analysis of

highly nonlinear mechanical and aerospace systems.

The eigenvalue analysis based on linearized equations

can lead to misleading stability information. In some

studies, reported in the literature, the focus has been on

geometric stiffening that results from the coupling

between axial and bending deformations. It was

demonstrated that linearization of rotor blade equa-

tions that leads to ignoring axial/bending coupling

produces wrong unstable solution.

In order to clearly define scope of this investigation,

a simple cantilever beam subjected to an axial force at

its free end is considered. Figure 2 shows a compar-

ison between predicted axial deformation using non-

linear ANCF finite elements and FE commercial

software ANSYS. Results of this figure show that

plane strain assumption under-predicts a solution that

does not agree well with ANSYS solution, while the

plane stress assumption leads to a solution in a good

agreement with ANSYS solution. This stiff behavior

of ANCF plane-strain solution can be misinterpreted

as locking due to poor element performance. The stiff

Fig. 1 Tip point deflection of the rotating beam (

Nonlinear ANCF Linear)
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behavior of more general FE formulations, however,

cannot always be interpreted as locking, demonstrat-

ing the need for better understanding effect of

geometric stiffening and choice of constitutive models

when more general formulations are used. This fact is

clear from the overly stiff plane-strain results pre-

sented in Fig. 2. This overly stiff behavior is not

attributed to locking, but to representation of geomet-

ric stiffening based on the constitutive model used, as

will be further discussed in this investigation.

This paper addresses these fundamental problems

and demonstrates that more general formulations

account for deformations that are not captured by the

analytical or the less general FE formulations. The

limitations of the ad hoc approaches used in the FE

literature and commercial software to account for the

cross-section deformations are identified, issues asso-

ciated with their inconsistency with theory of contin-

uum mechanics are highlighted, and their

appropriateness is evaluated by comparing with a

more general approach. The derivation of the elastic

forces using general continuum mechanics (GCM)

approach, presented in this paper, is used to shed light

on assumptions used in ad hoc approaches. Effects of

using different constitutive models and geometric

stiffening due to the coupling between the cross-

section deformations and beam vibrations are studied

with the goal of demonstrating that stiff behavior of

more general beam formulations cannot always be

interpreted as locking if convergence of the solution is

achieved. Fundamental differences between classical

beam approaches that assume rigid cross section, and

more general beam formulations, such as the absolute

nodal coordinate formulation (ANCF), that account

for cross-section deformation are highlighted. A

detailed comparative study is performed using static,

dynamic, and thermal analyses to address fundamental

issues related to the cross-section deformation, geo-

metric stiffening, and locking. The obtained results are

compared with results of different FE software such as

ANSYS and LS-DYNA.

The paper is organized as follows. In Sect. 2, a

simple example is used to define the problem

addressed in this investigation and show the limita-

tions of some beam formulations used to obtain

reference solutions for the purpose of result verifica-

tions. Section 3 reviews some widely used ad hoc

approaches used in FE formulations implemented in

commercial FE software to account for cross-section

deformations and identifies their limitations, which are

evaluated in view of a more general formulation in

Sect. 4. Geometric stiffening terms that couple differ-

ent displacement modes are derived in Sect. 5 and are

used to discuss limitations of the ad hoc approaches.

Section 6 discusses the main difference between

plane-stress and plane-strain constitutive models.

Section 7 presents numerical examples used for the

comparative study of this paper and demonstrates

limitations of conventional FE formulations in anal-

ysis of soft materials. Summary and conclusions

drawn from this investigation are provided in Sect. 8.

2 Problem definition

In this section, a simple beam example is used to

demonstrate limitations of beam formulations, some

of which are used to obtain reference solutions for the

purpose of result verifications. The analysis presented

in this section sheds light on problems associated with

using analytical solutions or solutions obtained using

less general FE formulations to verify numerical

results obtained using more general formulations that

capture deformation modes not captured by less

general approaches.

2.1 Beam formulations

In order to explain the differences between different

beam element formulations, a cantilever beam

Fig. 2 Tip point axial deformation of a cantilever beam

subjected to an axial force ( ANCF/Plane stress,

ANCF/Plane strain, ANSYS/BEAM188)
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subjected to an axial force F ¼ 108 N at its free end is

considered, as shown in Fig. 3. The cantilever beam

has a length 1 m, height 0.3 m, and thickness 0.3 m.

The material density is q ¼ 2700 kg=m3, while the

modulus of elasticity is E ¼ 70� 109 N=m2. The

Poisson ratio is varied from 0 to 0.499 to examine

effect of cross-section deformation on the solution.

The slenderness ratio is calculated using the equation

GAl2=EI, where G is modulus of rigidity and EI is

flexural rigidity. This ratio was found to be between

44.6 and 66.7 based on the value of Poisson ratio. This

ratio is greater than 30 as recommended for ANSYS

BEAM188 element. Table 1 shows axial deformation

predicted using different models for different Poisson

ratio values when using 50 elements. Analytical

solution of the axial tip deformation based on the data

of the example is d ¼ Fl=EA ¼ 0:015873 m. The

results presented in the table show that the solution

predicted using the ANSYS BEAM188 element that

assumes a rigid cross section is the same as the

analytical solution. The deformation increases by

scaling the cross section as a function of the axial

elongation in ANSYS. However, the element volume

is preserved to be the same after deformation as will be

discussed in Sect. 3. Furthermore, the axial deforma-

tion predicted by ANSYS and LS-DYNA beam

elements remains the same regardless of the value of

Poisson ratio, demonstrating that the solution does not

depend on Poisson ratio and some beam element

formulations implemented in these two software do

not account for the coupling between axial and cross-

section deformations.

2.2 Coupling between axial and cross-section

deformations

The axial deformation becomes dependent on Poisson

ratio in commercial FE software if a more general

model is developed using solid (brick) elements, as

demonstrated by the results presented in Table 1. The

table also shows that the results obtained using the

ANCF shear-deformable beam element depend on

Poisson ratio because such elements automatically

account for cross-section deformations. While

changes in the results due to varying value of Poisson

ratio are small in this example, such a Poisson effect

cannot be ignored, particularly in applications in

which cross-section deformation is large. It is worth

mentioning that solutions obtained using commercial

FE software as well as simplified analytical beam

formulations are used as reference solutions for

verification purposes. Because these reference solu-

tions do not consider cross-section deformations and

do not account for Poisson effect, it is more appropri-

ate to use reference solutions obtained using more

general formulations that were found to give solutions

in agreement with experimental results [21, 25, 26].

2.3 Geometric stiffening and numerical locking

The results presented in Table 1 show that when plane-

strain assumptions are used, ANCF shear-deformable

beam element exhibits overly stiff behavior which can

be misinterpreted as numerical locking. Such a

misinterpretation can be misleading in the evaluation

of the FE performance. This misinterpretation is

despite the fact that elements based on more general

formulations may converge to a correct solution, and

such elements can have good convergence character-

istics and do not suffer from locking problems.

3 Ad hoc approaches for cross-section

deformations

In conventional FE beam formulations, three transla-

tional coordinates and three finite or infinitesimal

rotational coordinates are used to describe, respec-

tively, position of beam centerline and orientation of
Fig. 3 Cantilever beam subjected to an axial tip force
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its cross section, with assumption that the cross section

does not deform [5–10]. While most beam element

formulations implemented in commercial FE software

employ the assumption that the cross section remains

rigid, an ad hoc approach is used in some software to

allow for cross-section deformations. The resulting

displacement field in some of these formulations,

however, still lacks consistency with the principles of

continuum mechanics and computational geometry

methods, such as B-spline and NURBS (Non-Uniform

Rational B-Spline) [27]. In this section, the ad hoc

approaches implemented in some FE commercial

software are reviewed in order to be able to explain

limitations of these approaches.

3.1 Warping effect

Examples of displacement fields used in beam formu-

lations implemented in commercial software are beam

elements BEAM188 and BEAM189 implemented and

recommended in software ANSYS for most beam

structures. These elements, which are based on

Timoshenko beam theory and capture shear effect,

are suitable for modeling beam structures that are

slender to moderately thick. The displacement field of

the two-node BEAM188 element can be linear with

one integration point, quadratic with two integration

points, or cubic with three integration points. Element

BEAM189, on the other hand, is a quadratic element,

and it has three nodes. Each node in both elements has

six degrees of freedom, three translations in x; y, and z

directions, and three rotations about axes along these

directions. ANSYS provides the option to increase

degrees of freedom at a node from six to seven by

including warping effect through setting the value of

the parameter KEYOPT (1) to one. These elements are

developed based on a first-order shear-deformation

Timoshenko theory. Therefore, shear-stress variation

is not allowed by these beam elements, and for this

reason, solid elements are recommended if such a

shear variation is to be considered. Poisson-ratio effect

is neglected in calculation of transverse shear distri-

bution [28]. Elements BEAM188 and BEAM189 do

not account for the cross-section folding or distortion

after deformation since the cross section is subjected

to constant transverse shear strain. The cross section is

allowed to deform in ANSYS only if the geometric

nonlinearity (NLGEOM) option is considered [28].

3.2 Element Beam188

To use assumption of rigid cross section when using

ANSYS BEAM188 element, parameter KEYOPT (2)

is set to one. To allow for cross-section deformation as

function of the axial elongation, parameter KEYOPT

(2) is set to zero. This scaling option is applied only if

geometric nonlinearity (NLGEOM) option is consid-

ered. However, the element volume is preserved, and

this model is recommended for elastoplastic applica-

tions [28]. To ensure conservation of mass and keep

constant volume for a homogenous cube subjected to

an axial elongation in ANSYS, y and z transverse

strains are reduced by half the axial strain, regardless

of the value of Poisson ratio. In this case, the increase

in volume due to axial strain is compensated by a

decrease in the volume in the transverse directions to

keep constant volume. This change is not physically

possible for most materials that have Poisson ratio

around 0.3 and also not consistent with theory of

continuum mechanics that assumes that strain com-

ponents are not related, particularly in case of general

loading. These materials experience some increase in

Table 1 Tip point axial deformation for different Poisson ratio

Type m ¼ 0 m ¼ 0:1 m ¼ 0:2 m ¼ 0:3 m ¼ 0:4 m ¼ 0:495

ANSYS/BEAM188/Rigid 0.015873

ANSYS/BEAM188/Scaling 0.0162619

ANSYS/SOLID186 0.015873 0.015858 0.015812 0.015729 0.0155998 0.015399

LS-DYNA/Belytschko–Schwer beam 0.016

ANCF/Plane stress 0.015474 0.01546 0.01545 0.0154 0.01535 0.01529

ANCF/Plane strain 0.015474 0.01531 0.01482 0.01398 0.01278 0.01135

Analytical 0.015873
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the volume due to the axial elongation. The results

presented in Table 1 demonstrate the limitations of this

ad hoc approach that ignores effect of Poisson ratio.

Another BEAM188 ad hoc approach is to use general

beam cross section (GENB), which does not require

providing cross-section dimensions or material prop-

erties as input data because this method utilizes data

obtained experimentally or from another analysis to

define the relationship between generalized stress and

strain. ANSYS BEAM188 element is used in the

verification study presented in this paper. This

element, which is recommended for large strain,

nonlinear, linear, and large rotation applications, has

the nodal coordinates e ¼ u v w hx hy hz½ �T ,
where u; v, and w are the translations in the x; y, and z

directions, respectively, and hx; hy, and hz are the

rotations along axes in x; y, and z directions, respec-

tively. The displacement field of the linear BEAM188

element, which does capture cross-section deforma-

tions, is defined as

u ¼ 1

2
uI 1� sð Þ þ uJ 1þ sð Þð Þ; v ¼ 1

2
vI 1� sð Þ þ vJ 1þ sð Þð Þ;

w ¼ 1

2
wI 1� sð Þ þ wJ 1þ sð Þð Þ; hx ¼

1

2
hxI 1� sð Þ þ hxJ 1þ sð Þð Þ;

hy ¼
1

2
hyI 1� sð Þ þ hyJ 1þ sð Þ
� �

; hz ¼
1

2
hzI 1� sð Þ þ hzJ 1þ sð Þð Þ

9
>>>>>>=

>>>>>>;

ð1Þ

where I and J represent the node number and s is

measured along the axial direction of the beam

centerline along which the integration points are

defined. It is clear that beam cross-section deformation

is not represented in the displacement field of this

element, and cross-section deformation can be scaled

as a function of the axial strain as previously

discussed. The cross section of element BEAM188 is

divided into subsections, and each subsection has nine

nodes and four integration points. If the beam exhibits

inelastic behavior along the section, constitutive

computations are performed at each section integra-

tion point. Otherwise, the section pre-calculated

properties at integration points along beam centerline

are used [28, 29].

3.3 Solid element

Use of conventional solid elements to model beams

can be considered as an ad hoc approach to the cross-

section deformation. SOLID185 and SOLID186 are

commonly used in the commercial ANSYS software.

SOLID185 element has eight nodes, while SOLID186

element has twenty nodes. Each node has three

degrees of freedom that are three translations in the

x; y, and z directions. The displacement field is

quadratic in the case of SOLID186 element, which is

used in this investigation in verification studies

presented in the numerical example section. The solid

elements, which have more degrees of freedom than

the beam elements, are recommended for thick three-

dimensional solid structures. Poisson ratio effect is

accounted for when using solid elements whose

constitutive models are based on general continuum

mechanics approach [8, 28, 29].

3.4 Belytschko–Schwer beam element

Belytschko–Schwer beam element, implemented in

the FE commercial software LS-DYNA, is used with

the corotational approach. This element can be used

for the transient analysis of space frames that are

subjected to large displacements and small strains

[10, 30]. In this formulation, the deformation is

defined using the element coordinates

d ¼ dIJ hxJI hyI hyJ hzI hzJ½ �T , where sub-

scripts I and J refer to node number defined at the

beam ends, dIJ is the elongation, hxJI is the torsional

deformation, and hyI ; hyJ ; hzI , and hzJ are rotational

deformations that define element bending. All rotation

variables of this element are defined in local coordi-

nate system. The displacement field of this element is

defined such that the axial displacement depends

linearly on element longitudinal coordinate x, while

transverse displacement is cubic in x. The displace-

ment field of this element is

dmx ¼ 1� nð ÞdxI þ ndxJ ;

dmy ¼ n� 2n2 þ n3
� �

lhzI þ �n2 þ n3
� �

lhzJ ;

dmz ¼ �nþ 2n2 � n3
� �

lhyI þ n2 � n3
� �

lhyJ ;

hx ¼ nhxJI

9
>>>>>>=

>>>>>>;

ð2Þ

where n ¼ x=l, x is measured with respect to node I,

and the superscript m refers to centerline displace-

ment. In case of Euler–Bernoulli beam, the displace-

ment is defined as
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dx ¼ dmx � y odmy

.
ox

� �
� z odmz

�
ox

� �
þ H y; zð Þ ohx=oxð Þ

dy ¼ dmy � zhx; dz ¼ dmz � yhx

9
=

;

ð3Þ

where H y; zð Þ represents warping function. For this

element, rigid beam cross section is assumed to be

normal to beam centerline during deformation and

shear effect is neglected. The strain–displacement

relationships used for this element are e11 ¼ odx=ox,

e12 ¼ odx=oyð Þ þ ody
�
ox

� �� ��
2, and e13 ¼ odx=ozð Þð

þ odz=oxð ÞÞ=2. The strain vector is written as

e ¼ e11 2e12 2e13½ �T , and matrix of strain–dis-

placement relationships is given by

B ¼ 1

l

1 0 z 6n� 4ð Þ y 4� 6nð Þ z 6n� 2ð Þ y 2� 6nð Þ
0 oH=oyð Þ � z 0 0 0 0

0 oH=ozð Þ � y 0 0 0 0

2

64

3

75

ð4Þ

It is clear that this element does not account for effect

of Poisson ratio, as demonstrated by the results

presented in Table 1 [10, 30]. Using the strain–

displacement relationships and the stress vector

r ¼ r11 r12 r13½ �T , nodal forces can be computed

using the equation f¼
R

V

BTr dV .

4 Evaluation of ad hoc approaches

As discussed in the preceding section, the ad hoc

approaches account for deformation of the cross

section by enforcing a predefined relationship between

transverse and axial strain components or by supple-

menting FE displacement field with an additional

function. Supplementing the displacement field by an

additional function that is not original base function of

the assumed displacement field when the polynomial

coefficients are replaced by the FE nodal coordinates

is an ad hoc technique that is not rooted in original

element geometry. Introducing predefined relation-

ship between strains, on the other hand, is not

consistent with theory of continuum mechanics that

assumes that all strain components are independent

and can change arbitrarily depending on the load

applied to the beam.

The fact that all strain components are independent

is one of the main principles used in developing ANCF

finite elements [25, 26, 31–56]. Being able to replace

independent assumed polynomial coefficients by gra-

dients coordinates proves that ANCF gradient coordi-

nates and the strains evaluated using the gradients are

independent. The planar fully parameterized ANCF

shear-deformable beam element can be used to

evaluate assumptions of ad hoc approaches used in

the FE literature and software. The global position

vector r of an arbitrary point on this ANCF beam

element can be written as r x; tð Þ ¼ S xð Þe tð Þ, where S

is element shape-function matrix, x ¼ x y½ �T is

vector of element spatial coordinates, and e is vector

of element nodal coordinates, which can be defined,

using position vector r and position vector gradients

rx ¼ or=ox and ry ¼ or=oy, as

e ¼ r1T r1Tx r1Ty r2T r2Tx r2Ty
� �T

, where the

superscript refers to node number. Element shape-

function matrix S xð Þ can be written as

S xð Þ ¼ s1I s2I s3I s4I s5I s6I½ �, where I is

2� 2 identity matrix and shape functions

si; i ¼ 1; 2; . . .; 6, are defined as [57, 58]

s1 ¼ 1� 3n2 þ 2n3; s2 ¼ l n� 2n2 þ n3
� �

; s3 ¼ lg 1� nð Þ
s4 ¼ 3n2 � 2n3; s5 ¼ lð�n2 þ n3Þ; s6 ¼ lng

)

ð5Þ

where n ¼ x=l, g ¼ y=l, and l is the length of the

element. The cross section of this element does not

remain perpendicular to the neutral axis during beam

deformation. Using element kinematics, global posi-

tion vector r of an arbitrary point P, as shown in Fig. 4,

can be written as r ¼ rc þ Dr ¼ rc þ yry, where rc is

the position vector of point Pc located on the beam

centerline at y ¼ 0 and Dr ¼ yry is a vector along the

beam cross section. For this ANCF element, gradient

Fig. 4 Global position vector on ANCF beam element
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vector ry, whose norm defines the change in cross-

section dimensions, is linearly interpolated. That is,

ry ¼ 1� nð Þr1y þ nr2y , demonstrating the fact that if a

geometrically consistent approach is used starting

with assumed interpolating polynomials, deformation

of the cross section is an integral part of the original

assumed displacement field, and there is no need to

supplement FE displacement field with additional

functions such asH y; zð Þ, as previously discussed. The
ad hoc approach in which an independent function is

used to supplement FE displacement field can lead to

neglect of coupling between different deformation

modes.

To examine assumptions of the other ad hoc

approach in which a relationship between transverse

and axial strains is arbitrarily enforced, ignoring the

fact that the strain components are independent, the

results obtained using the ANCF beam elements for

the transverse strain e22 ¼ rTy ry � 1
� �.

2 and the

axial strain e11 ¼ rTx rx � 1
� ��

2 are obtained for the

cantilever example, previously considered in this

paper. These strain results are used to develop

numerical representation for transverse strain e22 as

function of axial strain e11 as e22 nð Þ ¼ a nð Þe11 nð Þ to

see if there is certain ratio or trend in simple examples

that can justify using predefined relationship between

strain components to capture cross-section deforma-

tions. The scalar multiplier a nð Þ is plotted in Fig. 5 as

function of n. The results presented in this figure are

obtained using beam model that accounts for effect of

the transverse strain on the longitudinal strain due to

geometric stiffening. Such a beam model is different

from models developed using cross-section scaling ad

hoc approach used in commercial FE software.

As will be demonstrated in the following sections,

cross-section deformation is source of geometric

nonlinearities that can have a significant effect on

stress forces. These geometric nonlinearities, as in

case of the rotating blade problem, introduce geomet-

ric stiffening that influences amplitude of beam

deformations. Geometric stiffening, which depends

on the constitutive model used, may contribute to an

overly stiff behavior. In case of converged FE

solution, interpretation of source of higher stiffness

as locking, which is associated with poor element

performance, needs to be examined.

5 Geometric nonlinearity and stiffening

In commercial FE software, four types of geometric

and material nonlinearities can be considered: large

strain, large rotation, stress stiffening, and spin

softening [29]. Consequently, when using commercial

FE software, element type and geometric nonlinearity

need to be carefully selected based on the application

and scope of the study. ANCF finite elements, on the

other hand, automatically account for geometric

nonlinearities and can describe accurately rigid-body

motion including spinning at high rates without the

need for using incremental co-rotation formulations.

In this section, geometric nonlinearities are discussed

and the terms that contribute to geometric stiffening

are identified using ANCF finite elements.

5.1 Basic equations

Equation of motion of ANCF shear-deformable beam

element can be written as M€e ¼ Qe þ Qs. In this

equation, M ¼
R
V qSTS Joj jdV is the constant and

symmetric element mass matrix, Qe and Qs are,

respectively, vectors of applied and stress (elastic)

forces, q is element mass density, V is the volume

defined in the straight configuration, Joj j is determi-

nant of matrix of position gradient vectors

Fig. 5 The relationship between the strain components for

different Poisson ratio m ( m ¼ 0, m ¼ 0:1,
m ¼ 0:2, m ¼ 0:3, m ¼ 0:4, –x– m ¼ 0:495)
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Jo ¼ oX=ox, X ¼ X1 X2 X3½ �T¼ Seo defines

stress-free reference configuration, x ¼
x1 x2 x3½ �T is vector of FE spatial coordinates,

and eo is vector of element nodal coordinates in initial

reference configuration [58].

5.2 Geometric nonlinearity and cross-section

deformations

Elastic forces of the ANCF beam elements can be

formulated using a general continuum mechanics

(GCM) approach that accounts for all nonlinear terms.

In this case, strains of the planar shear-deformable

ANCF beam element previously considered in this

study can be written as

e11 ¼
1

2
rTcxrcx � 1
� �

þ yrTcxryx þ eqx

e22 ¼
1

2
rTy ry � 1

� �
; e12 ¼

1

2
rTcxry þ yrTyxry

� �

9
>=

>;

ð6Þ

where e11 and e22 are, respectively, axial and trans-

verse normal strains, while e12 is shear strain. Strain

e11 at beam centerline in axial direction x and strain e22
due to cross-section stretch in transverse direction y

are defined, respectively, as 1=2ð Þ rTcxrcx � 1
� �

and

1=2ð Þ rTy ry � 1
� �

. The first term 1=2ð ÞrTcxry in shear

strain e12 can be used to define shear angle at element

centerline; this term may assume a nonzero value even

in case of zero stretch of the cross section. The second

term yrTcxryx in normal strain e11 defines the moment

that produces beam bending, while third term eqx ¼
1=2ð Þy2rTyxryx in e11 represents higher-order strain

components that result from cross-section deforma-

tions. It is clear that term eqx ¼ 1=2ð Þy2rTyxryx depends
on gradient vector ry which is an integral part of the

formulation of ANCF displacement field and has

influence on other strain components. Furthermore,

second term 1=2ð ÞyrTyxry in shear strain e12 is due to

cross-section deformation. It can be shown that if ry
remains unit vector, case of zero cross-section defor-

mation, term 1=2ð ÞyrTyxry is identically equal to zero.

Terms that result from cross-section deformations

couple different displacement modes, which con-

tribute to geometric stiffening that cannot be properly

captured using ad hoc approaches.

5.3 Stress force formulation

Using Eq. 6 and ANCF planar beam element kine-

matics, one can show that the strains can be written in

terms of the nodal coordinates as

e11 ¼
1

2
eTSae � 1
� �

þ yeTSbde þ 1

2
y2eTSsdae

e22 ¼
1

2
eTSte � 1
� �

; e12 ¼
1

2
eTSse þ yeTSsdse
� �

9
>=

>;

ð7Þ

In this equation, Sa ¼ oSc=oxð ÞT oSc=oxð Þ,
Sc ¼ S x; y ¼ 0ð Þ, St ¼ oS=oyð ÞT oS=oyð Þ, and Ss ¼
oSc=oxð ÞT oS=oyð Þ, while the functions associated

with the cross section deformations are

Sbd ¼ oSc=oxð ÞT oS=oyoxð Þ, Ssda ¼ oS=oyoxð ÞT oS=ð
oyoxÞ, and Ssds ¼ oS=oyoxð ÞT oS=oyð Þ. Using the

strains of the preceding equations, the virtual work

of the elastic forces based on the GCM approach is

written in terms of the Green–Lagrange strain tensor e
and the second Piola–Kirchhoff stress tensor r as

dWs ¼ �
R
V r : de Joj jdV ¼ QT

s de, where Qs ¼
�
R
V oe=ð oeÞT Ee Joj jdV , and E is the elastic coeffi-

cient matrix. The definition of the stress (elastic)

forces and the geometric stiffening terms depends on

the constitutive model used as will be demonstrated in

this paper using cases of plane-stress and plane-strain

constitutive models. The plane-strain constitutive

model leads to stiffer behavior, which may be wrongly

interpreted as locking.

5.4 Geometric stiffening terms

Using integral expression for vector Qs, one can show

that this nonlinear vector can be written in terms of

nonlinear stiffness matrices in case of plane-strain

assumptions as

Qs ¼ � kþ 2lð ÞK1 þ kK2 þ 2lK3ð Þe
¼ Qs1 þ Qs2 þ Qs3 ð8Þ

where k and l are Lame’s constants defined as k ¼
Em= 1þ mð Þ 1� 2mð Þ½ � and l ¼ E= 2 1þ mð Þ½ �, E is mod-

ulus of elasticity, m is Poisson ratio,

Qs1 ¼ � kþ 2lð ÞK1e, Qs2 ¼ �kK2e, Qs3 ¼
�2lK3e; and nonlinear stiffness matrixes

K1; K2; andK3 are defined as
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K1 ¼
Z

V

1

2
Sa1 þ ySbd1 þ

1

2
y2Ssda1

	 

e11 þ

1

2
St1e22

	 

Joj jdV

K2 ¼
Z

V

1

2
St1e11 þ

1

2
Sa1 þ ySbd1 þ

1

2
y2Ssda1

	 

e22

	 

Joj jdV

K3 ¼
1

2

Z

V

Ss1 þ ySsds1ð Þe12ð Þ Joj jdV

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

ð9Þ

where Sa1 ¼ Sa þ ST
a , Sbd1 ¼ Sbd þ ST

bd,

Ssda1 ¼ Ssda þ ST
sda, St1 ¼ St þ ST

t , Ss1 ¼ Ss þ ST
s ,

and Ssds1 ¼ Ssds þ ST
sds. The stiffness matrices in the

preceding equation have coupling terms between the

element coordinates that cannot be captured using ad

hoc approaches. This stiffness coupling produces

geometric stiffening that can be important in large-

deformation applications. Linearization approaches

that neglect geometric stiffening terms, as in case of

rotor blade benchmark example, can lead to wrong

solutions and misleading information on system

stability. This issue is particularly important in large-

deformation analysis and in analysis of soft robots and

materials [59].

6 Constitutive models

In order to examine the effect of the constitutive

models and have proper interpretation of stiff beam

behavior, the two cases of plane-strain and plane-

stress constitutive models are considered. In case of

linear elastic model, stresses can be written in terms of

strains using constitutive equation r ¼ Ee. The matrix

of elastic coefficient E in case of plane strain is

E ¼
kþ 2l k 0

k kþ 2l 0

0 0 2l

2

4

3

5 ð10Þ

In this case, e13 ¼ e23 ¼ e33 ¼ 0, and the stresses are

given by

r11 ¼ kþ 2lð Þe11 þ ke22; r22 ¼ kþ 2lð Þe22 þ ke11;

r33 ¼ k e11 þ e22ð Þ; r12 ¼ 2le12

)

ð11Þ

In case of plane-strain assumption, the deformation or

strain is restricted in the thickness direction, and the

strain is zero in the Z direction. Consequently, there is

a stress in the thickness direction. The plane-strain

assumption is often applied in case of thick structures.

On the other hand, the matrix E in case of plane-

stress assumption can be written as

E ¼ E
1
�
1� m2ð Þ m

�
1� m2ð Þ 0

m
�
1� m2ð Þ 1

�
1� m2ð Þ 0

0 0 1= 1þ mð Þ

2

4

3

5

ð12Þ

In this case, r13 ¼ r23 ¼ r33 ¼ 0, and the strains are

given by

e11 ¼ r11 � mr22ð Þ=E; e22 ¼ r22 � mr11ð Þ=E;
e33 ¼ �m r11 þ r22ð Þ=E; e12 ¼ 1þ mð Þ=Eð Þr12

)

ð13Þ

The plane stress assumes that the stress along the Z

direction is zero, but the strain in the thickness

direction is not zero because of Poisson effect, and the

deformation in Z direction is not restricted. The plane-

stress assumption is recommended for thin structures.

Figure 6 shows a cantilever beam that has restric-

tions on the outer surfaces to prevent cross-section

expansion in the transverse directions. A cross-section

stretch due to Poisson effect is prevented because of

the outer-surface constraint. Consequently, the devel-

oped residual normal transverse stress r33 contributes
to the axial strain according to the equation

e11 ¼ r11 � m r22 þ r33ð Þð Þ=E. In this case, plane-

strain assumption is more appropriate because

Fig. 6 Cantilever beam subjected to an axial tip force and

displacement constraints
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deformation in the thickness direction is restricted,

while the stress in the thickness direction is not zero.

On the other hand, the strain in the thickness direction

e33 is nonzero in case of plane-stress assumption, and

there is no stress in the thickness direction. Using

assumption of plane stress in this example leads to

inaccurate results because axial strain does not

account for the developed residual normal stress r33
that cannot be ignored in this case. In general, the

plane stress is recommended in most cases if the beam

thickness does not exceed the beam length. However,

if there are constraints on the outer surfaces to prevent

the transverse deformation as shown in Fig. 6, then the

plane strain is recommended. The numerical examples

presented in the following section will demonstrate the

difference between results obtained using the two

constitutive models. These results explain the stiff

behavior exhibited in some plane-strain models and

demonstrate that such a stiff behavior should not

always be interpreted as locking [12, 60–65].

7 Numerical examples

Several numerical examples are used in this section to

study effect of using different constitutive models.

Static, dynamic, and thermal analyses are performed

to discuss effect of constitutive models on beam

stiffness. The results obtained using general-purpose

MBS software SIGMA/SAMS (Systematic Integra-

tion of Geometric Modeling and Analysis for the

Simulation of Articulated Mechanical Systems) are

compared with results of commercial FE software

ANSYS and LS-DYNA.

7.1 Static analysis

The first example is a cantilever beam connected to a

frame using fully-clamped joint, as shown in Fig. 3.

The clamped joint eliminates all rigid-body and

deformation degrees of freedom at the end connected

to the frame. The material and geometric properties of

the cantilever beam are the same as the properties

provided in Sect. 2.1 with the exception that Poisson

ratio is selected to be 0.3. Table 2 compares numerical

solutions obtained using SIGMA/SAMS, ANSYS, and

LS-DYNA software. BEAM188 is used in ANSYS,

while Belytschko–Schwer beam with full cross-sec-

tion integration is used in LS-DYNA. Using the

assumption of cross-section scaling in ANSYS leads

to results that are close to LS-DYNA, and these results

are higher than the analytical solution. This is despite

the fact that in case of rigid cross section, all energy is

consumed by the axial deformation, while in case of

deformable cross section, part of energy is consumed

in the cross-section deformation. This is not achieved

in case of cross-section scaling in ANSYS as shown in

Table 2 because the element volume is preserved as

discussed before. The results presented in Table 2

show that there is no significant difference between the

solution in case of zero Poisson ratio and ANCF plane-

stress solution. Poisson effect is not captured by the

analytical solution or the less general beam elements

in commercial FE software as previously discussed.

Furthermore, when the strain split method (SSM) is

used for locking alleviation [12, 65], the same results

are obtained for plane-strain and plane-stress consti-

tutive models. The results presented in Table 2

demonstrate that the stiff behavior of the plane-strain

model cannot be interpreted as locking, but to the

choice of the constitutive model.

Table 2 Axial deformation of the cantilever beam subjected to an axial tip force

Type 5 elements 10 elements 20 elements 50 elements

ANCF/Plane strain 0.0136687 0.013852429 0.013936282 0.013980346

ANCF/Plane stress 0.01506538 0.015257183 0.015348306 0.015400819

ANCF/Zero Poisson ratio 0.015141531 0.015325914 0.015418095 0.015474461

LS-DYNA/Belytschko–Schwer beam 0.016 0.016 0.016 0.016

ANSYS/BEAM188/Rigid 0.015873 0.015873 0.015873 0.015873

ANSYS/BEAM188/Scaling 0.0162619 0.0162619 0.0162619 0.0162619

Analytical 0.015873
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The second example considered in this section is

the same as the first example, but the outer surfaces are

constrained to prevent the transverse deformations as

shown in Fig. 6. In this case, three-dimensional

elements are used in ANSYS and LS-DYNA to apply

constraints on the outer surfaces. These constraints

cannot be applied to the beam elements in commercial

FE software because Poisson effect is not considered.

While the option of general beam cross section

(GENB) can be used in ANSYS BEAM188 to

represent cross-section deformation, this element

formulation requires relation between the stress and

strain that has to be determined using another method.

For this reason, ANSYS element SOLID186 that has

twenty nodes is used, while fully integrated quadratic

8-node solid element with nodal rotations is used in

LS-DYNA. In case of ANCF model, position vector

gradient ry of each node is constrained to be

ry ¼ 0 1½ �T .
Table 3 shows calculated static axial deformation of

the cantilever beam with transverse deformation

constraints using different software. ANCF plane-

strain solution is approximately the same as ANSYS

and LS-DYNA solutions for this model. ANCF plane-

stress solution is different from ANSYS and LS-

DYNA solutions due to assumption of zero stress in

the thickness direction as previously discussed.

Clearly, the plane-strain assumption is more consistent

with constraints imposed on the transverse deforma-

tion. The results also show that use of zero Poisson

ratio leads to the same results as those obtained in the

first example. Therefore, the constitutive model

should be properly selected to obtain accurate results

and avoid misinterpretation of stiff behaviors as

locking.

7.2 Vibration problems

Effect of choice of the constitutive model on a

cantilever beam made of soft material is examined

in this section. Dimensions of the beam are the same as

dimensions of the model previously used in this

section. However, soft material with modulus of

elasticity E ¼ 1:2� 106N/m2, mass density

q ¼ 1500 kg=m3, and Poisson ratio m ¼ 0:3 is used

[66]. The beam is subjected to an axial tip force

F ¼ 1000 cos 5ptð Þ, and effect of gravity is neglected.
Twelve ANCF beam elements are used in this

example, and the results are compared with solutions

obtained using BEAM188 in ANSYS and

Belytschko–Schwer beam in LS-DYNA. Figure 7

compares axial deformation predicted using different

software in case of beam that does not have any cross-

section deformation constraints. It is shown that

ANCF plane-stress solution agrees well with ANSYS

and LS-DYNA solutions, while plane-strain

Table 3 Axial deformation

of the cantilever beam

subjected to an axial tip

force and transverse

displacement constraints

Type 5 elements 10 elements 20 elements 50 elements

ANCF/Plane strain 0.011314191 0.011451667 0.011520405 0.011562188

ANCF/Plane stress 0.013806984 0.013974984 0.014059004 0.014110425

ANCF/Zero Poisson ratio 0.015141531 0.015325914 0.015418095 0.015474461

LS-DYNA/Quadratic solid 0.01192

ANSYS/SOLID186 0.0117914

Fig. 7 Tip point axial deformation of the cantilever beam

subjected to a harmonic axial force ( ANCF/Plane stress,

ANCF/Plane strain, ANSYS/BEAM188,

LS-DYNA/Belytschko–Schwer beam)
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assumption leads to different results. In case of

constraining outer surfaces, as shown in Fig. 6,

element SOLID186 is used in ANSYS, while fully

integrated quadratic 8-node solid element is used in

LS-DYNA. Figure 8 shows that ANCF plane-strain

axial deformation solution is close to ANSYS and LS-

DYNA solutions, while plane-stress solution is dif-

ferent from ANSYS and LS-DYNA.

A second example of a cantilever beam falling

under gravity effect, as shown in Fig. 9, is considered.

The dimensions and material properties of the can-

tilever beam are the same as the previous example.

The tip transverse deformation using different formu-

lations is presented in Fig. 10, which shows that plane-

strain solution has lower amplitudes compared to

ANSYS and LS-DYNA solutions. The plane-stress

solution agrees well with LS-DYNA solution and

slightly differs from solution of ANSYS BEAM188

element, which is based on Timoshenko beam theory

that accounts for the shear effect. This effect is

significant in this example because the beam slender-

ness ratio is greater than 50. The implementation of the

Belytschko–Schwer beam in LS-DYNA is based on

the corotational approach, and it gives results close to

Euler–Bernoulli beam. Because ANCF beam cross-

section stretch is allowed, part of the energy con-

tributes to the cross-section deformation. Poisson

effect is considered in ANCF beam element, while it

is ignored in axial beam element problems in

commercial FE software, as previously discussed. It

should be mentioned that the analytical vertical tip

deflection in case of cantilever beam subjected to a

vertical tip force is affected by Poisson ratio in case of

BEAM188 because formulation of this element is

based on Timoshenko beam theory. In this case, the

vertical tip displacement according to Timoshenko is

given by dy ¼ F=6EIð Þ 4þ 5mð Þ w2l
�
4

� �
þ 2l3

� �
[2].

However, this does not mean that cross-section

Fig. 8 Tip point axial deformation of the cantilever beam

subjected to a harmonic axial tip force and displacement

constraints ( ANCF/Plane stress, ANCF/Plane

strain, ANSYS/SOLID186, LS-DYNA/Quad-

ratic Solid)

Fig. 9 Cantilever beam under the gravity effect

Fig. 10 Tip point vertical deformation of the cantilever beam

under the gravity effect ( ANCF/Plane stress

ANCF/Plane strain, ANSYS/BEAM188, LS-

DYNA/Belytschko–Schwer beam)
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deformation is considered; Timoshenko theory con-

siders cross-section rotation due to shear, while the

analytical solution of the vertical tip deformation

using Belytschko–Schwer beam gives results close to

Euler–Bernoulli beam solution calculated by

dy ¼ FL3
�
3EI. These results are not affected by

changing Poisson ratio.

7.3 Dynamic problems

While solutions of ANCF and FE conventional

formulations can have a good agreement in case of

structural small-deformation problems, there can be

differences between these solutions in case of large

displacements. Recent investigations have addressed

this issue in case of soft materials that have large

deformations [25, 26]. To investigate this issue, two

pendulum beams made of stiff and soft materials are

considered. The pendulum is connected at one end to

the ground by a revolute joint, while the other end is

free as shown in Fig. 11. The beam, initially horizontal

with zero initial velocity, falls under gravity effect.

The beam is assumed to have length 1.2 m, height

0.25298 m, and width 0.00632 m. In the first case

considered, stiff material, with modulus of elasticity

E ¼ 2� 1011N
�
m2, mass density q ¼ 7800 kg=m3,

and Poisson ratio m ¼ 0:3, is used. Figure 12, which

compares the vertical tip displacement predicted using

ANCF (12 elements), ANSYS (BEAM188), and LS-

DYNA (Belytschko–Schwer beam) models, shows

that the ANCF plane stress, ANCF plane strain,

ANSYS (BEAM188), and LS-DYNA (Belytschko–

Schwer beam) solutions are in a good agreement.

These results demonstrate that ANCF and FE con-

ventional formulations agree well in case of small

deformation.

In order to examine effect of the constitutive

models and use of the FE software in the case of soft

materials, model parameters are changed to

E ¼ 0:7� 106N
�
m2, q ¼ 5540kg

�
m3, and m ¼ 0:3

[57]. Figure 13 shows a good agreement between the

Fig. 13 Tip point vertical displacement of the soft free-falling

planar pendulum ( ANCF/Plane stress ANCF/

Plane strain, ANSYS/BEAM188, LS-DYNA/

Belytschko–Schwer beam, ANCF/GCM/SSM)Fig. 11 Free-falling planar pendulum

Fig. 12 Tip point vertical displacement of the stiff free-falling

planar pendulum ( ANCF/Plane stress ANCF/

Plane strain, ANSYS/BEAM188, LS-DYNA/

Belytschko–Schwer beam)
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plane stress solution and solution obtained using the

GCM/SSM, recently introduced for locking allevia-

tion based on modification of the constitutive model.

These results demonstrate that proper choice of the

constitutive model can alleviate need for using locking

alleviation techniques in some applications. Figure 13

and the results presented in Fig. 14 confirm concerns

regarding using conventional FE methods and soft-

ware in analysis of soft material large deformations.

Figure 15, which depicts pendulum shape at different

time points for plane-strain and plane-stress cases,

shows that the beam behaves more flexible in plane-

stress case.

7.4 Mechanism system

The planar slider crank mechanism shown in Fig. 16

consists of four bodies: ground, crankshaft, connecting

rod, and slider block. The ground is connected to the

crankshaft by a revolute joint at point O and to the

slider by a prismatic joint. The crankshaft is connected

to the connecting rod by a revolute joint at point A, and

the connecting rod is connected to the slider block by a

revolute joint at point B. The bodies are assumed in the

horizontal position in the initial configuration. The

slider block has zero mass, and effect of gravity is

neglected for all bodies. The crankshaft has length

0.152 m, cross-sectional area 7:854� 10�5m2, sec-

ond moment of area 4:909� 10�10m4, and mass

density q ¼ 2770kg
�
m3. The connecting rod length is

0.304 m, while its cross-section area and mass density

are the same as the crankshaft. The modulus of

elasticity of the connecting rod is selected to be

E ¼ 0:5� 108N
�
m2. All bodies are assumed rigid

except the connecting rod, which is considered flexible

and modeled using eight planar ANCF elements. The

driving moment applied to the crankshaft is defined as

follows:

M tð Þ ¼ 0:01 1� e� t=0:167ð Þ� �
t\0:7s

0 t� 0:7s

�
ð14Þ

This mechanism example is also solved using the

floating frame of reference (FFR) formulation. Fig-

ure 17, which shows the connecting rod midpoint

transverse deformation using different formulations,

demonstrates effect of using different constitutive

models. The plane-stress solution agrees with FFR and

ANCF solutions that assume zero Poisson ratio, while

the plane-strain solution differs from other solutions.

Fig. 14 Tip point position of the soft free-falling planar

pendulum ( ANCF/Plane stress ANCF/Plane

strain, ANSYS/BEAM188, LS-DYNA/Be-

lytschko–Schwer beam)

Fig. 15 Free-falling planar pendulum at different time points

( ANCF/Plane stress ANCF/Plane strain)

Fig. 16 Slider crank mechanism with flexible connecting rod
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7.5 Thermal analysis

Thermal analysis is performed in this section to

investigate effect of using assumptions of rigid and

deformable beam cross sections. A cantilever beam

with length 1 m and square 0:3� 0:3m2 cross section

is used. The beam is made of soft material with

modulus of elasticity E ¼ 1:2� 106 N=m2, Poisson

ratio m ¼ 0:3, and mass density q ¼ 1500 kg
�
m3.

Constant thermal load is applied to the beam; and

coefficient of thermal expansion is assumed

aH ¼ 0:0001 1=�Cð Þ. The beam is subjected to tem-

perature change DH ¼ 200�C. Due to thermal effect,

vector of element nodal coordinates is changed to

account for thermal expansion aHDH. New vector of

element nodal coordinates for one ANCF element that

accounts for thermal expansion can be written as

follows [67]:

e1oþH¼ 0 0 1þaHDH 0 0 1þaHDH½ �T

e2oþH¼ l 1þaHDHð Þ 0 1þaHDH 0 0 1þaHDH½ �T

ð15Þ

Furthermore, 1000 N axial force is applied to the tip of

the cantilever beam, while effect of gravity is

neglected. The problem is solved using ANCF (12

elements), ANSYS (BEAM188), and LS-DYNA (Be-

lytschko–Schwer beam) by applying thermal load at a

preprocessor step, and the new deformed shape is

subjected to the axial tip force. Figure 18 shows

ANCF, ANSYS, and LS-DYNA solutions of the tip

point axial deformation. The results show a noticeable

difference between ANCF plane-strain and conven-

tional FE solutions, while plane-stress solution and

zero Poisson ratio solution agree well with ANSYS

and LS-DYNA solutions. This slight difference

between plane-stress and FE software solutions can

be attributed to assumption of rigid cross section in

conventional FE models; this assumption is relaxed in

ANCF model. The ANSYS and LS-DYNA results

remain the same by changing length of the beam due to

the thermal expansion to 1.02 m and using cross-

section dimensions 0:3� 0:3m2. Figure 19 shows the

difference between the undeformed and deformed

configurations using ANCF elements, and conven-

tional beam elements of ANSYS and LS-DYNA. The

results of this figure explain the concerns regarding

use of FE commercial software beam elements that

consider rigid cross section that is not sensitive to

thermal load. It was found that using ANSYS cross-

section scaling method based on the axial elongation

has no significant effect on the results in this case. To

further investigate this issue, the problem is solved

using ANSYS SOLID186 element which accounts for

cross-section expansion due to thermal load. Also,

ANSYS BEAM188 and LS-DYNA Belytschko–Sch-

wer beam that employ ad hoc approaches to account

for cross-section deformations are also considered

with cross-section dimensions of both beam elements

Fig. 17 Midpoint transverse deformation of the connecting rod

( ANCF/Plane stress ANCF/Plane strain,

ANCF/Zero Poisson ratio, FFR)

Fig. 18 Tip point axial deformation of the cantilever beam in

the case of thermal expansion ( ANCF/Plane stress

ANCF/Plane strain, ANCF/Zero Poisson ratio,

ANSYS/BEAM188, LS-DYNA/Belytschko–

Schwer beam)
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changed manually to 0:306� 0:306m2 and length

changed to 1.02 m to account for thermal expansion

effect. Figure 20 shows that ANCF plane-stress solu-

tion agrees with ANSYS and LS-DYNA beam solu-

tions that employ ad hoc approaches. The results of

this figure also show that solid elements account for

thermal load cross-section expansion without the need

for an ad hoc approach. However, solid elements are

not suited, in general, for solving beam bending

problems, and for this reason, having accurate and

general beam formulations is necessary.

7.6 Rotating planar beam

Geometric stiffening resulting from coupling between

different modes of displacements can influence the

solutions in different ways. Coupling between cross-

section deformation and axial and bending deforma-

tions is one example. Another example is axial/

bending deformation coupling which has been an issue

in field of rotor dynamics. The geometric stiffening

effect, as result of axial/bending deformation cou-

pling, has been investigated using rotating beam

problems, which demonstrated that linearization of

equations of motion can lead to misleading stability

results, as demonstrated by the results presented in

Fig. 1. While in some conventional beam formula-

tions, measures must be taken to ensure properly

accounting for effect of geometric stiffening, no such

measures are required using ANCF elements that

employ GCM approach for formulation of stress

forces. Figure 21 shows a planar beam rotating about

the vertical Z-axis with an angular velocity X. The
beam, assumed initially horizontal, has length 10 m,

cross-section area 4� 10�4 m2, second moment of

area 2� 10�7 m4, mass density 3000 kg/m3, modulus

of elasticity 7� 1010 Pa, and Poisson ratio 0.3 [22].

Effect of gravity is neglected, initial velocity is zero,

and angular rotation profile is defined by the equation

Fig. 20 Tip point axial deformation of the cantilever beam in

the case of thermal expansion and cross-section adjustment

( ANCF/Plane stress ANCF/Plane strain,

ANSYS/BEAM188, ANSYS/SOLID186, LS-

DYNA/Belytschko–Schwer beam) Fig. 21 Rotating beam

Fig. 19 Effect of the thermal expansion on the straight beam

using different formulations: a ANCF and b BEAM188 and

Belytschko–Schwer beam
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where T ¼ 15 s, X ¼ 6 rad/s, and after t ¼ T , the

angular velocity remains constant. The simulation

time is assumed 20 s. Sixteen ANCF elements are

used in the analysis of this example, which has been a

benchmark example in many investigations, most of

which assume zero Poisson ratio [20–24]. Nonethe-

less, all previous investigations demonstrated that

linearization that does not account for geometric

stiffening leads to unstable solution which is not

supported by experimental observations. Figure 22

shows that the tip point deflection predicted using all

models oscillates in the steady state around the zero

value with a small amplitude. The zero Poisson ratio

solution does not account for geometric stiffening

resulting from deformation of the cross section, but it

properly accounts for geometric stiffening resulting

from axial/bending deformation coupling, which is

more significant in this problem. Plane-stress and

plane-strain solutions, on the other hand, account for

both types of coupling.

7.7 Nonlinear constitutive model

In this investigation, linear Hookean model was used

to study effect of using different linear constitutive

models such as plane stress and plane strain. However,

there are nonlinear constitutive models that can be

used with soft materials such as compressible Neo-

Hookean and the incompressible Mooney–Rivlin. The

results of linear and nonlinear constitutive models

were found to be in good agreement in case of small

deformations, while differences were observed in case

of large deformation [68]. Figures 23 and 24 compare

between the tip point vertical displacement and

midpoint transverse deformation of the soft pendulum

discussed in Sect. 7.3 using linear Hookean and

nonlinear compressible Neo-Hookean. It is shown

that there is a slight difference between results of

Fig. 22 Tip point transverse deflection of the rotating

beam ( ANCF/Plane stress, ANCF/Plane strain,

ANCF/Zero Poisson ratio)

Fig. 23 Tip point vertical displacement of the soft free-falling

planar pendulum ( ANCF/Hookean ANCF/Neo-

Hookean, ANSYS/BEAM188, LS-DYNA/Be-

lytschko–Schwer beam)

Fig. 24 Midpoint transverse deformation of the soft free-falling

planar pendulum ( ANCF/Hookean ANCF/Neo-

Hookean)
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linear and nonlinear constitutive models. These results

are still different from ANSYS and LS-DYNA results

in case of soft material as previously discussed.

8 Conclusions

The stiff behavior of more general FE beam formu-

lations can be wrongly interpreted as locking in some

problems such as axial problems based on comparing

with the results obtained using analytical and/or less

general FE beam formulations that employ simplify-

ing assumptions. The analysis and results obtained in

this paper demonstrate that more general FE beam

formulations can lead to higher stiffness attributed to

geometric nonlinearities resulting from cross-section

deformations. Such modes of deformation are not

properly captured by analytical or less general FE

beam formulations. Furthermore, the high stiffness

exhibited by solutions based on formulations that

account for these deformation modes may not, in

general, be interpreted as locking. Limitations of ad

hoc approaches used in conventional FE beam

formulations implemented in commercial FE software

to account for beam cross-section deformations are

discussed, and their inconsistency with theory of

continuum mechanics is highlighted. Relation

between geometric stiffening, cross-section deforma-

tion, locking, and constitutive model in more general

FE beam formulations is explained. It is shown that

use of different constitutive models, such as plane

stress and plane strain, can lead to different degrees of

stiffness for the same element, a result that needs to be

considered for proper evaluation of FE performance.

Several numerical examples are used to perform static,

dynamic, and thermal analyses; and results obtained

are compared with FE commercial software such as

ANSYS and LS-DYNA. Limitations of ad hoc

approaches implemented in commercial software to

account for deformation of the cross section are

discussed. Such ad hoc approaches are not rooted in

Bezier or computational geometry methods. Numer-

ical results obtained in this paper shed light on

problems of using simplified analytical solutions for

verification of solutions and provide justifications for

concerns raised regarding use of conventional FE

approaches in analysis of soft robots and materials.

While the analysis and conclusions of the paper

with regard to geometric stiffening, interpretation of

locking, and coupling between different modes were

based on a planar analysis, three-dimensional analysis

can be performed in future investigation to have an

understanding of effect of geometric stiffening and to

properly interpret locking effect. In a three-dimen-

sional analysis, more cross-section deformation

modes must be considered [69]. Furthermore, more

studies are needed to understand warping effect and its

coupling with axial and bending deformations of

beams. For such studies, higher-order interpolation of

cross-section deformation may be necessary to accu-

rately represent a more general cross-section

deformed shape. Linear interpolation of the gradient

vectors allows for only capturing cross-section stretch.

Future investigations will also shed light on whether

simplified beam models that assume constant cross

section can be used for purpose of reliable result

verification and whether coupled deformation modes

which are not captured using these simplified models

can yield accurate results in more general vibration

and impact problems [1–10, 70–73].
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