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Abstract Motion-trajectory (MT) curves are used to

introduce Frenet oscillations. Time-varying orienta-

tion of the motion plane that contains the absolute

velocity and acceleration vectors is defined in terms of

three Frenet–Euler angles; the curvature, vertical-

development, and bank angles, referred to as the

Frenet angles for brevity. The Frenet bank angle and

the associated Frenet super-elevation of the motion

plane, which measure deviation of the centrifugal

inertia force from the horizontal plane, can be used to

shed light on definition of the balance speed used in

practice. The concept of the pre-super-elevated oscu-

lating (PSEO) plane is introduced and Rodrigues’

formula is employed to develop an orthogonal rotation

matrix that provides a geometric interpretation of the

PSEO plane. A new inverse-dynamics problem that

utilizes experimentally or simulation recorded motion

trajectories (RMT) is used to define the Frenet inertia

forces and demonstrate their equivalence to the

Cartesian form of the inertia forces. New expressions

for the curvature vector in terms of the velocity and

acceleration, limit on the magnitude of the tangential

acceleration for a given forward velocity, condition

required for the centrifugal force to remain horizontal,

and condition of curvature singular points are derived.

The Frenet bank angle can be used to prove existence

of the normal vectors at the curvature singular points.

It is shown that the inertia force can assume different

forms, depending on the curve parameter used. The

results of a simple analytical curve demonstrate Frenet

oscillations and importance of distinguishing between

the highway-ramp and railroad track bank angles and

super-elevations, which are time-invariant, and the

Frenet bank angle and super-elevation, which are

motion-dependent.

Keywords Frenet oscillations � Frenet–Euler
angles � Motion trajectories � Curvature singularity �
Centrifugal inertia forces � Recorded motion

trajectories

1 Introduction

Linear and nonlinear vibrations are motion character-

istics of a wide class of physics and engineering

systems [1–7]. For this reason, understanding and

controlling these vibrations have been the subject of

many investigations [8–12]. Nonetheless, in the per-

formance evaluation of physics and engineering

systems, the actual forces that produce the oscillations

during the system functional operations are not a priori

known. Therefore, experimentally- and computer-

simulation-recorded motion trajectories (MT) will

become increasingly important for understanding the
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motion of complex systems and for providing inter-

pretation of the actual forces that produce this motion.

Sophisticated equipment and sensors in modern vehi-

cles and machines and advanced computer-simulation

technology allow obtaining accurate recorded-motion

trajectories (RMT) using sensor measurements or

credible and detailed virtual-prototyping computer

models.

The analysis of the RMT curves, therefore, can

contribute to better understanding and proper inter-

pretation of the forces that produce the actual motion.

Such an analysis lies at the intersection of two

important fields; nonlinear dynamics and computa-

tional mechanics. The qualitative nonlinear-dynamics

techniques can be used effectively in analysis of large

amount of data obtained using computational algo-

rithms. Furthermore, techniques of differential and

computational geometry are needed to properly inter-

pret the RMT-curve geometries [13–18]. This is

particularly important because forces such as the

inertia forces can have different interpretation depend-

ing on the generalized coordinates used [19–24].

D’Alembert–Lagrange principle leads to different

definitions and interpretations of the inertia forces

depending on the coordinates used to formulate the

dynamic equations of motion.

To better understand RMT data, physics-based

interpretation of the geometry is required. To this end,

Frenet–Euler angles, called Frenet angles for brevity,

are used to describe arbitrary curve geometries and are

explicitly defined in terms of curve derivatives which

can be determined from recorded coordinates, veloc-

ities, and accelerations. As discussed in this paper, any

curvilinear motion, regardless of the geometry of the

highway road or railroad track, leads to centrifugal

forces that do not appear in the classical Newton–

Euler equations in their Cartesian form. Balancing

these forces can be crucial in ensuring stability and

safe operation of vehicle systems. Understanding

direction of the inertia forces and extracting useful

information from RMT data require using new con-

cepts and definitions such as the Frenet super-

elevation and Frenet bank angle, which vary with

time and define orientation of the osculating motion

plane that contains the velocity and acceleration

vectors.

To demonstrate the need for the analysis of the

RMT-curve geometry, the method used to define the

vehicle operating speeds during curve negotiations is

considered. To ensure a safe operation of highway and

railroad vehicles during curve negotiations, a super-

elevation is used to define a balance speed at which the

vehicle must operate. The goal is to create a lateral

gravity force that balances the lateral component of

the centrifugal inertia force [24–26]. This lateral force

balance is based on the assumption that the vehicle

strictly traces a circular curve that lies in a plane

parallel to the horizontal plane. Figure 1 shows such a

curve, denoted as curve C, which has normal vector nC

that defines the direction of the centrifugal force under

the above-mentioned condition. Such a condition of

circular curve, however, cannot be met in realistic

motion scenarios because of a lateral vehicle motion.

If the vehicle traces another curve D, with normal nD

different from nC, the centrifugal force does not lie in a

plane parallel to the horizontal plane and the assump-

tion used in defining the balance speed is violated.

Such curve examples demonstrate value of the RMT

curve analysis in identifying root causes of accidents

and derailments.

This paper is focused on addressing the important

issue of the RMT curve analysis, and developing

mechanics-based interpretation of the curve geometry.

The specific contributions and organization of the

paper are summarized as follows:

1. The paper generalizes concept of Frenet angles

for describing arbitrary curve geometry by build-

ing on previous recent investigations [25, 26]. In

Sects. 2 and 3, the Frenet angles, which are the

curvature, vertical-development, and bank angles,

are expressed in terms of derivatives of the curve

defined in its parametric form to give them a

Fig. 1 Frenet oscillations [26]
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geometric interpretation. It is shown that the

curvature vector that defines the direction of the

centrifugal force can be written as a linear

combination of two orthogonal unit vectors that

define the normal and bi-normal vectors before

performing the Frenet bank rotation. To this end,

the pre-super-elevated osculating (PSEO) plane is

introduced. Rodrigues’ formula is used to obtain

the rotation matrix required to perform the

orthogonal transformation that explains the

PSEO-plane orientation.

2. The condition required for the centrifugal force to

remain in a plane parallel to the horizontal plane

and the condition of curvature singularities are

discussed in Sect. 4. It is shown that a curve can be

Frenet vertically elevated but not Frenet super-

elevated. Because the curve curvature is defined to

be the magnitude of the curvature vector, the

existence of the normal vector at the curvature

singular point is an issue that can be addressed

using the Frenet angles. A proof of the existence of

the normal vector at the curvature singular points

is provided.

3. A new inverse problem based on experimentally

or simulation recorded motion trajectories

(RMT) is defined. The Frenet inertia forces

are defined, and their equivalence to the Carte-

sian form is demonstrated in Sect. 5. The curve

geometric description is used to define the

tangential and normal inertia-force components

which lie in the osculating plane. In the special

case of constant forward velocity, new expres-

sions for the curvature vector in terms of the

velocity and acceleration are presented and the

limit on the magnitude of the tangential accel-

eration for a given forward velocity is derived.

Discussion on the assumption of horizontal

centrifugal force used to define the balance

speed is also provided in Sect. 5.

4. The forms of the equations of motion used in the

inverse problem based on the RMT curves are

developed. It is shown that the inertia force can

assume different forms, depending on the curve

parameter used. As demonstrated in Sect. 6, if the

arc length parameter is not used as the curve

parameter, the inverse-problem equation can

include a quadratic-velocity inertia force vector,

shedding light on the importance of proper

interpretation of the inertia forces when different

coordinates are used.

5. A new procedure is introduced in Sect. 7 to

explain the steps required to extract the geometry

and force variables from the RMT curves. It is

shown that the RMT curves can be used to obtain

different forms of the equations of motion and the

forces that appear in these equations. The cen-

trifugal force in its totality can be determined, and

the lateral and vertical components often used to

study railroad vehicle derailments are readily

available from the information extracted from the

RMT curves.

6. Regardless of the geometry and orientation of the

highway roads and railroad tracks, lateral vehicle

displacements can result in tracing motion curves

with large curvature and sharp radius of curvature

that can be smaller than the minimum track radius

of curvature mandated by federal regulations. To

better explain the problem, an analytical curve is

used to demonstrate the concept of the Frenet

oscillations in Sect. 8. The time-varying oscilla-

tions of the Frenet osculating plane, due to the

change in the Frenet bank angle, define the

direction of the centrifugal forces; shedding light

on the limitations of the method used in practice to

define the balance speed based on the assumption

of a horizontal centrifugal force, an assumption

often violated. The results presented in Sect. 8

also explain importance of distinguishing between

the track bank angle and super-elevation, and the

Frenet bank angle and super-elevation of the

osculating (motion) plane, respectively. While

tangent tracks are designed with zero track super-

elevation, motion-dependent Frenet super-eleva-

tion cannot be avoided on tangent tracks because

of the hunting oscillations [24].

Section 9 provides more discussion on the Frenet bank

angle and the curvature singularity and explains

relationship between the analysis presented in this

investigation and previous studies. Summary and

conclusions drawn from this study are provided in

Sect. 10. While an analytical curve is used in Sect. 7,

future investigations will be concerned with develop-

ing more detailed railroad vehicle models to explain

the importance of distinguishing between the oscilla-

tory Frenet angles and the time-invariant Euler angles

used in the description of the railroad track geometry.
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2 General curve geometry

Without any loss of generality, the relationship

between the Cartesian form and the Frenet form of

the inertia forces can be explained using the spatial

curve written in its parametric form as

r ¼ x y xð Þ z xð Þ½ �T . The curve is defined using

the parameter x, which is assumed different from the

curve arc length s. Basic geometry equations that are

repeatedly used in this paper are summarized in

Sect. 2.1.

2.1 Tangent and curvature vectors

The tangent vector is defined as

rx ¼ or=ox ¼ 1 y0 z0½ �T , where y0 ¼ oy=ox and

z0 ¼ oz=ox. The norm of this vector is

rxj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2þ z0ð Þ2
q

. Therefore, the unit tangent

to the curve is defined as

rs ¼ or=os ¼ 1 y0 z0½ �T
�

rxj j ð1Þ

Furthermore, one has the differential relationship ds ¼
rxj jdx; or alternatively os=ox ¼ rxj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2þ z0ð Þ2
q

. It follows that o 1= rxj jð Þ=ox ¼

� y0y00 þ z0z00ð Þ
.

rxj j3.
The curvature vector is

rss ¼ o2r
�

os2 ¼ o 1 y0 z0½ �T
�

rxj j
� ��

ox
� �

ox=osð Þ,
which can be written using the equation ox=os ¼
1= rxj j as rss ¼ 1= rxj jð Þ o 1 y0 z0½ �T

�

rxj j
� ��

ox
� �

.

This equation yields

rss ¼
1

rxj j4
� y0y00 þ z0z00ð Þ

1

y0

z0

2
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3

7

5
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� �
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5
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¼ 1

rxj j4

� y0y00 þ z0z00ð Þ
y00 þ z0 y00z0 � y0z00ð Þ
z00 þ y0 z00y0 � z0y00ð Þ

2

6

4

3

7

5

¼ 1

rxj j2

�ac

y00 � acy0

z00 � acz0

2

6

4

3

7

5

ð2Þ

where ac ¼ y0y00 þ z0z00ð Þ
.

rxj j2. The curvature j,

magnitude of the curvature vector, is defined as

j ¼ j xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

acð Þ2þ y00 � acy0ð Þ2þ z00 � acz0ð Þ2
q

�

rxj j2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y00ð Þ2þ z00ð Þ2
� �

� acð Þ2 rxj j2
r

�

rxj j2

ð3Þ

This equation for the curvature can be written as

j ¼ j xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y00ð Þ2þ z00ð Þ2� acð Þ2 rxj j2
q

�

rxj j2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y00ð Þ2þ z00ð Þ2
� �

rxj j2� y0y00 þ z0z00ð Þ2
r

�

rxj j3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y00ð Þ2 1þ z0ð Þ2
� �

þ z00ð Þ2 1þ y0ð Þ2
� �

� 2y0z0y00z00
r

�

rxj j3

ð4Þ

Using this equation, the radius of curvature of the

curve at an arbitrary point x can be written as

R ¼ R xð Þ ¼ 1=j xð Þ. The unit tangent vector rs and

the unit normal vector n ¼ rss=j define the osculating

(motion) plane which is the plane of the velocity and

acceleration vectors that enter into the definition of the

inertia forces.

To define the torsion, the bi-normal vector must be

determined and differentiated with respect to the arc

length. The bi-normal vector can be determined as the

cross product of the unit tangent and normal vectors.

The definition of the torsion in terms of Euler angles

was provided in [25]. The curve torsion, however,

does not play a role in the development presented in

this paper.

2.2 Geometric interpretation

One can also show that the curvature vector rss can be

written as a linear combination of two orthogonal

vectors n1 and n2 as

rss ¼ jhn1 þ jvn2

¼ jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

�y0

1

0

2

4

3

5

þ jv

rxj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

�z0

�y0z0

1þ y0ð Þ2

2

4

3

5 ð5Þ

where
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jh ¼ y00
�

rxj j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

;

jv ¼ z00 1þ y0ð Þ2
� �

� z0y0y00
� �

�

rxj j3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

	 


;

n1 ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

	 


�y0 1 0½ �T ;

n2 ¼ 1

�

rxj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

	 


�z0 �y0z0 1þ y0ð Þ2
� �T

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

ð6Þ

It is worth mentioning that the vectors n1 and n2 are

functions of the first derivatives only and do not

depend on the second derivatives of the curve. Using

the definitions of the preceding equation, and the

orthogonality of the unit vectors n1 and n2, the curve

curvature can be written as

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jhð Þ2þ jvð Þ2
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y00ð Þ2 rxj j2þ z00 1þ y0ð Þ2
� �

� z0y0y00
� �2

r

rxj j3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q ð7Þ

It can be shown that this expression of the curvature is

the same as the expression previously obtained in this

section. The two curvature expressions demonstrate

that the curvature can assume different forms in terms

of the first and second derivatives of the curve

coordinates. The analysis presented in this section

can also be used to write the normal vector as

n ¼ jh=jð Þn1 þ jv=jð Þn2 ð8Þ

This equation will be used in the following section to

introduce the Frenet angles.

2.3 Curvature singular points

In the classical differential geometry, a point on a

curve is called a singular point if rxj j ¼ 0 or equiv-

alently rsj j ¼ 0. Based on the analysis presented in this

section, a curvature singular point is defined as a point

at which y00 ¼ z00 ¼ 0. At curvature singular points,

ac ¼ y0y00 þ z0z00ð Þ
.

rxj j2 ¼ 0, and jh ¼ jv ¼ j ¼ 0. It

will be shown that at the curvature singular points of

RMT curves, the tangential acceleration €s is equal to

zero, that is €s ¼ 0. It is worth mentioning that the

condition y00 ¼ z00 ¼ 0 is derived with the assumption

that x is the curve parameter. If another curve

parameter is selected, this condition can assume a

different form. It is also worth mentioning that zero

curvature does not imply that the derivative of the

curvature is zero, that is, j ¼ 0 does not always imply

that j0 ¼ 0. At the curvature singular points, the unit

vector normal to curve cannot be determined by

dividing the curvature vector rss by the curvature j. In
the numerical implementation, the curvature singular-

ities can be alleviated using extrapolations or by

selecting a time step that does not coincide exactly

with the curvature singular points. However, by using

the Frenet angles, a proof of existence of the unit

normal n can be provided since the Frenet bank angle

always exists regardless of the magnitude of the curve

curvature.

3 Frenet bank, vertical-development,

and curvature angles

In this section, the Frenet angles are introduced using

the general curve geometry described in the preceding

section. This serves to provide geometric interpreta-

tions of these angles and to generalize the more

specialized analysis presented in the literature

[25, 26].

3.1 Frenet bank angle

The Frenet frame is defined by the three unit vectors

rs; n, and b, where b ¼ rs � n is the bi-normal vector

[13–18]. The rs � n plane is the osculating plane in

which the velocity and acceleration vectors lie, and for

this reason, it is referred to in this study as the motion

plane. The bi-normal vector b is orthogonal to the

motion plane and serves as its normal. The centrifugal

force in its totality is always along the normal vector n.

The rs � b plane is the rectifying plane which contains

the velocity vector and the tangential component of

the acceleration vector and has n as its normal. The

n � b plane is the normal plane which contains the

normal component of the acceleration vector and has

the unit tangent rs as its normal.

Important in this investigation is a recognition that

the normal plane can be defined by the two orthogonal

unit vectors n and b, or alternatively, by the two unit

vectors n1 and n2. This is clear because the unit

tangent vector rs is orthogonal to the two n � b and

n1 � n2 sets of vectors. That is, these two sets of

vectors lie in the same planar surface, and they differ
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by a single rotation about rs unit vector. This rotation

is the Frenet bank angle /, which defines the Frenet

super-elevation of the motion-trajectory curve. As

shown in the preceding section, n ¼ 1=jð Þrss, and n1,

and n2 are defined in Eq. (6), where j is the RMT-

curve curvature. Therefore, the following two equa-

tions define the Frenet bank angle

cos/ ¼ n � n1 ¼ jh=jð Þ;
sin/ ¼ n � n2 ¼ �jv=jð Þ

)

ð9Þ

In this study, jh is referred to as the Frenet horizontal

curvature since it is defined along the unit vector n1

which lies in a plane parallel to the horizontal plane,

while jv is referred to as the Frenet vertical-develop-

ment curvature, referred to for brevity as the vertical

curvature, because it is along the vector n2 which is

vertical if the motion plane is not vertically elevated

(z0 ¼ 0). The frame formed by the three vectors rs; n1,

and n2 is referred to in this study as the Frenet pre-

super-elevated frame, and the rs � n1 plane is referred

to as the pre-super-elevated osculating plane (PSEO).

It is important to note that while the two vectors n1 and

n2 lie in the normal plane, the planar surface defined

by these two vectors remains perpendicular to the unit

tangent rs regardless of the Frenet bank angle rotation,

which is an Euler rotation performed along an axis in

the direction of rs.

3.2 Frenet vertical-development angle

The unit vector n1, defined in Eq. (6), lies in a plane

parallel to the horizontal plane and it forms, with the

unit tangent vector rs, the Frenet PSEO plane.

Nonetheless, the PSEO plane is not, in general, a

planar surface that is parallel to the horizontal plane.

This is clear from the general definition of the unit

tangent vector rs. Using the definition of the vector n1

which lies in a plane parallel to the horizontal plane, it

is clear that the PSEO plane differs from the horizontal

plane by a single rotation h about the �n1 vector,

where the negative sign is used to keep the notations

consistent with what is used in the railroad vehicle

literature [24–26]. The angle h is referred to in this

study as the Frenet vertical-development angle.

Without this Frenet–Euler rotation, the unit tangent

vector lies in the horizontal plane and is defined by the

equation rsb ¼ 1 y0 0½ �T
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

, which is a

unit vector orthogonal to n1. In this special pre-

vertical-development configuration, the vector n2

occupies a position defined by the equation

n2b ¼ rsb � n1 ¼ 0 0 1½ �T¼ k, which is a unit

vector along the vertical Z axis. Therefore, recalling

that n2¼ 1

�

rxj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

	 


�z0 �y0z0 1þ y0ð Þ2
� �T

,

the Frenet vertical-development angle is defined by

the following two equations:

cos h ¼ k � n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

�

rxj j

sin h ¼ Ahkð Þ1¼ z0= rxj j

9

>

=

>

;

ð10Þ

where subscript one refers to the first element in the

product Ahk and Ah is the orthogonal transformation

matrix defined using Rodrigues formula with �n1 as

the axis of rotation as [24]

Ah ¼ I � ~n1 sin hþ 2 ~n1ð Þ2sin2 h=2ð Þ ð11Þ

where I is the 3� 3 identity matrix and ~n1 is the skew-

symmetric matrix associated with the unit vector n1. It

is clear from the definition of the Frenet vertical-

development angle h that if z0 ¼ 0, this angle is zero,

and jv ¼ 0 justifying calling jv Frenet vertical

curvature. Using the definitions presented in this

section, the derivative of the Frenet vertical-develop-

ment angle h can be written as

h0 ¼ z00 1þ y0ð Þ2
� �

� y0y00z0
� �

�

rxj j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

	 


.

In Appendix A of the paper, more discussion on the

vectors n1 and n2 is provided.

3.3 Frenet curvature angle

Before the Frenet super-elevation or Frenet vertical-

elevation, the curve unit-tangent vector is defined by

the equation rsb ¼ 1 y0 0½ �T
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

. This

equation describes a planar curve on the horizontal

plane. The Frenet curvature angle w is defined by the

two equations

cosw ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

; sinw ¼ y0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

ð12Þ

Using these definitions, the vector rsb can be written as

rsb ¼ cosw sinw 0½ �T , which shows that the angle
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w can be considered as a rotation about the vertical Z

axis that brings the vector 1 0 0½ �T to the vector

rsb ¼ cosw sinw 0½ �T . One can also show that

w0 ¼ y00
.

1þ y0ð Þ2
� �

. The curvature vector of the

planar curve is defined as

rssb ¼ w0= rxj jð Þ � sinw cosw 0½ �T , which shows

that the curvature of this planar curve is

w0= rxj j ¼ y00
.

rxj j 1þ y0ð Þ2
� �� �

, which is the same

as the Frenet horizontal curvature if z0 ¼ 0, which is

the case of the planar curve considered. The equation

for w0 can then be written as w0 ¼ y00
.

1þ y0ð Þ2
� �

.

4 Normal vector and curvature singularity

The design of rail-track or highway-ramp super-

elevations is based on the assumption that the vehicle

strictly traces a circular curve that lies in a plane

parallel to the horizontal plane. This case corresponds

to nonzero rail-track or highway-ramp bank angle and

to a zero Frenet bank angle. This assumption is

violated in most realistic motion scenarios because of

the vehicle lateral displacements. Such assumption of

zero Frenet bank angle can only be made if, for

example, a rail vehicle slides up or down and

maintains continuous contact with the high or low

rail, respectively. This situation, often encountered in

practice, is not desirable for two main reasons. First, it

is an indication that the condition of the balance speed

fails to keep the vehicle centered on the track. Second,

because of the continuous wheel/rail contact, the high

or low rail is subjected to high flange contact forces

that can lead to deterioration and wear of the wheel

and rail surfaces, undesirable track movements, and

the possibility of wheel climbs and derailments.

Computer simulations and observations of realistic

motion scenarios have shown that indeed the balance

speed does not always maintain the vehicle centered

and does not prevent wheel/rail flange contact with

significantly high impact forces.

4.1 Direction of the normal vector

The condition required for a vehicle to trace a curve

that lies in a plane parallel to the horizontal plane can

be met only under certain geometric restrictions. From

the definition of the curvature vector rss, it is clear that

the centrifugal force remains in a plane parallel to the

horizontal plane if the condition z00 þ y0 z00y0 � z0y00ð Þ ¼
0 is satisfied. That is,

z00=z0 ¼ y00y0
.

1þ y0ð Þ2
� �

ð13Þ

If this condition is satisfied, the normal vector and the

centrifugal force remain in a plane parallel to the

horizontal plane. Furthermore, this condition shows

that the centrifugal force can remain in a plane parallel

to the horizontal plane (zero Frenet super-elevation)

for nonzero vertical-elevation (nonzero Frenet verti-

cal-elevation).

The helix curve is an example in which the

condition of Eq. (13) is satisfied. The helix is curved,

twisted, vertically elevated, but not Frenet super-

elevated [25, 26]. The equation of the helix is r sð Þ ¼
a cos a a sin a ba½ �T ; where a ¼ s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

, s is

the arc length parameter, a is the helix radius,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að Þ2þ bð Þ2
q

, and b=a is the slope of the helix.

The helix curvature j and torsion s are constant and

defined, respectively, as j ¼ aj j
�

a2 þ b2ð Þ and

s ¼ b
�

a2 þ b2ð Þ. Using the equation

x ¼ a cos a ¼ a cos s=rð Þ, one has

cos a ¼ x=a; sin a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x=að Þ2
q

dx ¼ � a=rð Þ sin a½ �ds

9

=

;

ð14Þ

Using these identities, the vector rx is defined for the

helix as

rx ¼ rs os=oxð Þ ¼ x0 y0 z0½ �T

¼ 1 �1=tan a �b= a sin að Þ½ �T
ð15Þ

This equation defines

y0 ¼ �1=tan a; z0 ¼ �b= a sin að Þ; rxj j ¼ r= a sin að Þ

y00 ¼ �1
�

a sin3 a; z00 ¼ � b
.

að Þ2
� �

cos a
�

sin3 a
� �

9

=

;

ð16Þ

To check the condition z00=z0 ¼ y0y00
.

1þ y0ð Þ2
� �

, one

has z00=z0 ¼ cos a
�

a sin2 a
� �

, y0y00 ¼ cos a
�

a sin4 a,

1þ y0ð Þ2¼ 1
�

sin2 a, and

y0y00
.

1þ y0ð Þ2
� �

¼ cos a
�

a sin2 a
� �

, which demon-

strates that indeed the condition z00=z0 ¼
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y0y00
.

1þ y0ð Þ2
� �

is satisfied, implying that the

curved, twisted, and vertically elevated helix has a

normal that always lies in a plane parallel to the

horizontal plane. This fact can be simply demonstrated

by directly differentiating the unit tangent vector rs to

obtain the curvature vector

rss ¼ o2r
�

os2 ¼ � a
�

r2
� �

cos a sin a 0½ �T . There-

fore, a vehicle negotiating a helix has a centrifugal

inertia force that always lies in a plane parallel to the

horizontal plane, and such a force cannot be balanced

by the vertical gravity forces if the helix geometry is

not altered. The helix example also demonstrates that

the centrifugal force can remain in a plane parallel to

the horizontal plane for a vertically-elevated curve

which has nonzero vertical-development angle h, that
is, h 6¼ 0.

4.2 Existence of the unit normal vector

The unit vector n normal to the curve is defined using

the curvature vector rss as n ¼ rss=j. At the curvature

singular points, the curve curvature j is equal to zero,

and therefore, the unit normal vector cannot be defined

using the equation n ¼ rss=j. The Frenet angles can be
used to prove the existence of the unit normal vector

and provide a definition of this vector regardless of

whether or not the value of the curve curvature is zero.

It is clear from the analysis presented in this section

that the Frenet curvature and vertical-development

angles depend on the first derivatives and are not

function of the curvature. The Frenet bank angle, on

the other hand, which defines the Frenet super-

elevation, depends on the curvature and is defined by

the equations / ¼ tan�1 �jv=jhð Þ, which shows that

/ ¼ tan�1 0=0ð Þ. Using the definition of jv and jh, the

condition of the curvature singular points y00 ¼ z00 ¼ 0,

and L’Hopital’s rule, one can show that the Frenet

bank angle can be defined from the curvature ratio

jv=jh ¼ z000 1þ y0ð Þ2
� �

� y0z0y000
� �.

y000 rxj jð Þ ð17Þ

Because all the Frenet angles exist and using their

definitions, the unit vector n normal to the curve can

always be written in terms of the Frenet angles as

[24–26]

n ¼
� sinw cos/þ cosw sin h sin/
cosw cos/þ sinw sin h sin/

� cos h sin/

2

4

3

5 ð18Þ

This expression for the normal vector is defined at all

curve points including the curvature singular points.

Therefore, the direction of the centrifugal inertia force

is well defined even at the curve points at which the

curvature is zero. This is demonstrated by the analyt-

ical example considered in a later section in which a

curve with curvature singularities is considered.

5 Frenet inertia forces

Experimentally or simulation recorded motion trajec-

tory (RMT) curves can be used to define an inverse

problem in which the inertia force can be expressed in

terms of curve parameters. To distinguish this form of

the inertia force based on a Cartesian representation,

the curve-based definition of the inertia forces is

referred to as the Frenet inertia forces. Differentiating

r ¼ r sð Þ once and twice with respect to time leads,

respectively, to the velocity and acceleration vectors

_r ¼ _srs and €r ¼ €x €y €z½ �T¼ _sð Þ2
.

R
� �

n þ rs€s,

where n ¼ rss=j ¼ Rrss is the unit normal vector.

Therefore, the inertia force vector of a vehicle with

mass m tracing a curve can be written as

Fi ¼ m€r ¼ m €x €y €z½ �T¼ m _sð Þ2
.

R
� �

n þ €srs

� �

ð19Þ

where R ¼ R sð Þ is the curve radius of curvature.

5.1 Velocity, acceleration, and curvature vector

If the vehicle has arbitrary forward velocity _x, the

tangential velocity _s along the tangent rs is

_s ¼ os=ot ¼ _rj j ¼ _x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2þ z0ð Þ2
q

¼ _x rxj j ð20Þ

This equation shows that ds ¼ _rj jdt ¼ _rj j= _xð Þdx. The

component of the acceleration €s along the tangent to

the curve can be obtained by differentiating _s as

€s ¼ _s d _s=dsð Þ ¼ €x rxj j þ _x d rxj j=dtð Þ. This equation

leads to
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€s ¼ €x rxj j2þ _xð Þ2 y0y00 þ z0z00ð Þ
� �.

rxj j

¼ €x rxj j4þ y0y00 þ z0z00ð Þ _sð Þ2
� �.

rxj j3

¼ €x rxj j2þac _sð Þ2
� �.

rxj j ¼ €x þ _xð Þ2ac

� �

rxj j

ð21Þ

which shows that if _x is constant, €s is not zero and _s is

not constant since the tangent vector varies as function

of x, or equivalently as function of t. It is clear from the

definition of €s that at a curvature singular point

defined by the condition y00 ¼ z00 ¼ 0, €s ¼ €x rxj j
because ac ¼ y0y00 þ z0z00ð Þ

.

rxj j2 ¼ 0, as previously

mentioned,

Using the definitions of _s and €s, one has the

following identities:

1þ y0ð Þ2þ z0ð Þ2¼ rxj j2¼ _s= _xð Þ2

y0y00 þ z0z00 ¼ _s
.

_xð Þ2
� �

€s _x � _s€xð Þ
.

_xð Þ2
� �

9

=

;

ð22Þ

The second identity shows that, at the curvature

singular points, the following relationship between the

tangential and forward velocities and acceleration is

satisfied

€s= _s ¼ €x= _x ð23Þ

Furthermore, in case of constant forward velocity

_x ¼ V , the same identities can be used to show that the

curvature vector can be written in terms of _s and €s in

the following different forms:

rss ¼
1

rxj j4
� y0y00 þ z0z00ð Þ

1

y0

z0

2

6

4

3

7

5

þ 1þ y0ð Þ2þ z0ð Þ2
� �

0

y00

z00

2

6

4

3

7

5

0

B

@

1

C

A

¼ 1

Vð Þ2 rxj j2
Vð Þ2

0

y00

z00

2

6

4

3

7

5

� €s= rxj jð Þ
1

y0

z0

2

6

4

3

7

5

0

B

@

1

C

A

¼ 1

Vð Þ2 rxj j2

� €s= rxj jð Þ
Vð Þ2y00 � €s= rxj jð Þy0

Vð Þ2z00 � €s= rxj jð Þz0

2

6

4

3

7

5

¼ V

_sð Þ2

� €s= _sð Þ
Vy00 � €s= _sð Þy0

Vz00 � €s= _sð Þz0

2

6

4

3

7

5

ð24Þ

In this special case, the curvature j is defined as the

magnitude of the above curvature vector as

j ¼ V
.

_sð Þ2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vð Þ2 y00ð Þ2þ z00ð Þ2
� �

� €s=Vð Þ2
r

ð25Þ

The fact that rs is a unit vector implies that rs � rss ¼ 0,

which when used with the above definition of the

curvature vector rss shows that, when _x is constant,

€s ¼ y0y00 þ z0z00ð Þ _sð Þ2
.

rxj j3
� �

; an expression that can

be obtained from the general definition of €s. Using the

definition of the curvature in the special case of

constant forward velocity and recognizing that the

curvature is positive, the limit on the maximum

acceleration of vehicle negotiating a curve can be

obtained as

€s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vð Þ4 y00ð Þ2þ z00ð Þ2
� �

r

¼ Vð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y00ð Þ2þ z00ð Þ2
q

ð26Þ

This equation defines the limit on magnitude of €s,

which depends on the forward velocity V .

5.2 Cartesian- and Frenet–representation

of the inertia forces

The Cartesian and Frenet forms of the inertia force are

equivalent. The Cartesian form is often used in a

forward-dynamics problem, while the Frenet form can

be used in an inverse-dynamics problem if the RMT

curves are available from experimental measurements

or computer simulations. The inertia force in its

Cartesian form, for an arbitrary _x, can be written as

Fi ¼ m €x €y €z½ �T¼ m €xrx þ _xð Þ2rxx

� �

ð27Þ

The component of this force along the tangent vector is

defined using the definition of €s as

Fitj j ¼ Fi � rs ¼ m €xrx � rs þ _xð Þ2rxx � rs

� �

¼ m €x rxj jð Þ þ _xð Þ2
.

rxj j
� �

y0y00 þ z0z00ð Þ
� �

¼ m€s

ð28Þ

This result is consistent with the equation

Fi ¼ m€r ¼ m _sð Þ2
.

R
� �

n þ rs€s
� �

. Equation 2 shows

that rxj j2rss ¼ �acrx þ rxx. Using this identity and the

fact that rss ¼ jn and _s ¼ _x rxj j, the component of the

inertia force along the normal to the curve is defined as
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Fin¼Fi� Fi �rsð Þrs¼m €xrxþ _xð Þ2rxx

� �

�m€srs

¼m _xð Þ2 rxx�acrxð Þ¼m _xð Þ2 rxj j2jn¼m _sð Þ2
.

R
� �

n

ð29Þ

This equation defines the centrifugal force in its

totality when the vehicle negotiates a curve. The

preceding two equations demonstrate the equivalence

of the Cartesian and Frenet forms of the inertia force

vector and also show that the norm of the acceleration

vector can be written as

€rj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

€r � €r
� �

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

€sð Þ2þ j _sð Þ2
� �2

r

.

5.3 Centrifugal force and horizontal plane

In practice, track super-elevations are designed with

the assumption that the centrifugal force remains in a

plane parallel to the horizontal plane [26]. Using this

assumption, the balance speed is determined by

equating the lateral components of the gravity and

centrifugal forces. According to this assumption, the

vehicle strictly follows a circle that lies in a plane

parallel to the horizontal plane, a condition that cannot

be met in realistic motion scenarios because of the

lateral displacements. The actual motion trajectories

can represent sharp curves with large curvature values.

The orientation of the osculating (motion) plane that

contains the velocity and acceleration vectors defines

the direction of the centrifugal force. If the osculating

plane is not Frenet super-elevated, the centrifugal force

remains in a plane parallel to the horizontal plane. To

show that the condition z00=z0 ¼ y0y00
.

1þ y0ð Þ2
� �

implies zero Frenet bank angle /, one can rewrite

cos/ ¼ jh=jð Þ ¼ y00
�

j rxj j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

	 


;

sin/ ¼ �jv=jð Þ ¼ � z00 1þ y0ð Þ2
� �

� z0y0y00
� �

�

j rxj j3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

	 


9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

ð30Þ

These two equations show that if

z00=z0 ¼ y0y00
.

1þ y0ð Þ2
� �

, sin/ ¼ 0 and cos/ ¼ 1,

providing a proof that under this condition the

osculating plane is not Frenet super-elevated.

6 Coordinate selection and inertia forces

While the vehicle motion is described in terms of a

large number of coordinates, an RMT curve is one

dimensional, and consequently, the motion of the

center of mass of a vehicle component, as represented

by one RMT curve, is described in terms of one

coordinate if the curve geometry is known from

experimentally or simulation recorded data. Use of

RMT curves is equivalent to using an inverse-dynam-

ics problem in which the motion is assumed to be

partially or fully prescribed and the goal is to

determine the forces that produce this motion. There-

fore, the nonlinear-dynamics analysis approach used

in this paper is different from the classical inverse

problem in which the prescribed motion is used to

determine constraint forces that produce themotion. In

this paper, on the other hand, the assumption is made

that the forces exerted on the vehicle are the actual

forces, and such forces are not determined with the

goal of producing specified motion. The RMT curves,

therefore, are the solution of a forward-dynamics

problem in which the applied forces are not pre-

computed and should not be viewed as control forces.

Nonetheless, such RMT curves have all motion

characteristics and can be used to extract information

that cannot be obtained or easily understood using

other approaches.

If the motion of the vehicle center of mass is

described using the three-dimensional vector

r ¼ x y z½ �T , the coordinates x; y, and z in the

forward dynamics problem can be considered as

independent if they are not related by constraint

equations. However, RMT curve can be written in

terms of one parameter, which can be time t, arc length

s, or any other parameter including the curve coordi-

nates x; y, and z. For example, if the curve longitudinal

coordinate x is used as the curve parameter, one can

write r ¼ r xð Þ ¼ x y xð Þ z xð Þ½ �T . This equation

implies that the motion in the inverse problem is

subjected to two kinematic constraints y ¼ y xð Þ and

z ¼ z xð Þ. If the equation of motion of the vehicle

center of mass is written in the forward-dynamics

problem in response to a force vector F using the

Cartesian coordinates as m€r ¼ F, this equation can be

described in the inverse-dynamics problem using the

RMT curve in terms of one parameter only. To this

end, one can write, as previously described,
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_r ¼ _x 1 y0 z0½ �T , if the coordinate x is used as the

curve parameter. This equation leads to

€r ¼ €x 1 y0 z0½ �Tþ _xð Þ2 0 y00 z00½ �T

¼ Bdi €x þ _xð Þ2v
ð31Þ

In this equation, Bdi ¼ rx ¼ 1 y0 z0½ �T is a velocity

transformation that reduces to the tangent vector,

which is not in general a unit vector; and v ¼
0 y00 z00½ �T is a vector that lies in the lateral y � z

plane. Substituting the preceding equation into the

three equations of motion m€r ¼ F and pre-multiplying

by the transpose of the transformation matrix Bdi, one

obtains a single equation of motion which can be

written as m 1þ y0ð Þ2þ z0ð Þ2
� �

€x ¼ rT
x F�

m _xð Þ2 y0y00 þ z0z00ð Þ. By using another coordinate y or

z as the curve parameter and following a similar

procedure, one obtains a similar equation associated

with the other parameter. Therefore, one has the

following different forms of the equation of motion if

the vehicle traces the curve:

m 1þ y0ð Þ2þ z0ð Þ2
� �

€x ¼ rT
x F � m _xð Þ2 y0y00 þ z0z00ð Þ; a0 ¼ oa=ox

m x0ð Þ2þ1þ z0ð Þ2
� �

€y ¼ rT
y F � m _yð Þ2 x0x00 þ z0z00ð Þ; a0 ¼ oa=oy

m x0ð Þ2þ y0ð Þ2þ1
� �

€z ¼ rT
z F � m _zð Þ2 x0x00 þ y0y00ð Þ; a0 ¼ oa=oz

9

>

>

>

>

=

>

>

>

>

;

ð32Þ

Which shows that when x; y, or z is selected as the

curve parameter, there is a quadratic-velocity inertia

force defined by the term

�m _að Þ2 ra � raað Þ; a ¼ x; y; z. If the gravity is the only

force applied to the vehicle, the preceding equation

reduces to

m raj j2 €a ¼ 0 0 �mg½ �T ra � m _að Þ2 ra � raað Þ;
a ¼ x; y; z ð33Þ

where g is the gravity constant.

It was shown previously that

€r ¼ €srs þ _sð Þ2
.

R
� �

n, where in this case the velocity

transformation matrix becomes Bdi ¼ rs. Using this

velocity transformation and following the procedure

used with the coordinate x, one can show that the

equation of motion when s is selected as the curve

parameter is given by m€s ¼ rT
s F. Because rs and rss

are orthogonal vectors, the equation m€s ¼ rT
s F does

not show any quadratic-velocity inertia forces, shed-

ding light on the effect of the selection of the

coordinates in the inverse-dynamics problem on the

interpretation of the inertia forces. The centrifugal

force m _sð Þ2
.

R
� �

is a quadratic-velocity inertia force,

but such a force does not appear in the equation of

motion m€s ¼ rT
s F because the motion is not allowed

along the normal or the bi-normal to the curve.

7 Recorded motion trajectories (RMT)

Using computational dynamics algorithms or experi-

mental measurements, the motion trajectories of the

vehicle components can be recorded and used in an

inverse problem to extract the geometry and force

equations presented in the preceding sections. The

steps of the procedure for accomplishing this goal can

be summarized as follows:

1. The position, velocity, and acceleration vectors

defined, respectively, by the vectors r; _r, and €r are
recorded as function of time. That is,

r ¼ r tð Þ ¼ x y z½ �T , _r ¼ _r tð Þ ¼ _x _y _z½ �T ,
and €r ¼ €r tð Þ ¼ €x €y €z½ �T . Experimental mea-

surements or computer simulations based on the

solution of a forward dynamics problem can be

used to determine the position, velocity, and

acceleration curves.

2. The curve arc length s can be determined by

integrating the equation ds ¼ _rj jdt, and the abso-

lute velocity of the vehicle component along the

tangent vector can be determined from the equa-

tion _s ¼ _rj j. If the forward velocity of the vehicle _x

is different from zero, _s ¼ _rj j[ 0. This condition

is satisfied as the vehicle continues to move

forward, which is the assumption made in this

paper.

3. The unit tangent vector to the curve rs is

determined from the equation

rs ¼ ox=os oy=os oz=os½ �T¼ _r= _rj j ð34Þ

It is also clear that

rx ¼ 1 y0 z0½ �T¼ _r= _x ð35Þ

This equation can be used to define y0 and z0.
Because _x is known from the recorded velocity,
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the vector rx can be determined. A similar

procedure can be used to determine ry and rz if

the velocities _y and _z are different from zero.

4. Because €r ¼ €srs þ _sð Þ2
.

R
� �

n and because rs and

n are orthogonal vectors, the acceleration €s can be

defined using the equation €s ¼ €r � rs and the radius

of curvature R is determined from the equation

R ¼ _sð Þ2
.

€r � nð Þ, where n is computed in the

following step. The equation R ¼ _sð Þ2
.

€r � nð Þ
should be used with care at the curvature singular

points. The curvature of the RMT curve is defined

as j ¼ 1=R.

5. The equation €r ¼ €srs þ _sð Þ2
.

R
� �

n shows that

the unit normal vector n is parallel to the vector

n ¼ R
.

_sð Þ2
� �

€r � €srsð Þ. That is,

n ¼ €r � €srsð Þ
�

€r � €srsj j ð36Þ

6. Using the recorded velocities and accelerations,

and the equations previously developed in this

study, one can show that

0 y00 z00½ �T¼ 1
.

_xð Þ2
� �

€r � €xrxð Þ ð37Þ

That is, the second derivative with respect to the

parameter x can be determined. Using these second

derivatives, the vertical curvature jv and the horizon-

tal curvature jh can be computed. As check, the

curvature j can be written in the alternate form

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jvð Þ2þ jhð Þ2
q

.

7. The RMT Frenet–Euler angles can then be

determined from the equations

cosw ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

; sinw ¼ y0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

;

cos h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

�

rxj j; sin h ¼ z0= rxj j;

cos/ ¼ jh=jð Þ ¼ y00
�

j rxj j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

	 


;

sin/ ¼ �jv=jð Þ ¼ � z00 1þ y0ð Þ2
� �

� z0y0y00
� �

�

j rxj j3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

	 


9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ð38Þ

8. The PSEO plane is defined by the two orthog-

onal vectors n1 and n2 of Eq. (6), which can be

determined using the derivatives defined by the

RMT data.

9. The inertia forces on the vehicle component can

be determined in the global Cartesian coordi-

nate system as m€r. The projection of this inertia

force along the RMT normal n can be deter-

mined as m€r � n ¼ m _sð Þ2
.

R, while the projec-

tion of the inertia force along the tangent vector

rs is determined using m€r � rs ¼ m€s.

10. Because the gravity force can be written in the

global coordinate system as

Fg ¼ �mg 0 0 1½ �T , an estimate of other

forces Feo, including constraint forces, acting on

the vehicle component can be written as

Feo ¼ m€r � Fg. In the case of tangent track

sections, the elements of the vector Feo define

forces in the longitudinal, lateral, and vertical

directions. The vector Feo can be projected

along the axes of the Frenet frame to define the

components Feo � rs; Feo � n, and Feo � b.

Because there is no inertia force along the bi-

normal vector b, one must have

Feo þ Fg

� �

� b ¼ 0. If the effect of the gravity

is not considered, Feo � b ¼ 0.

Steps and equations of this procedure are demon-

strated in the numerical-example section using an

analytical space curve which has curvature singular

points.

8 Frenet oscillations and numerical results

In this section, a numerical example of an analytical

space curve is considered to demonstrate use of MT

data to obtain the geometry and force equations

developed in this study. The example is used to

demonstrate that simple MT curves give rise to

centrifugal forces, and such forces are not attributed

to road or track geometry, but to the MT geometry.

The example considered also demonstrates how the

Frenet–Euler angles can be determined using RMT-

curve data.

8.1 Curve geometry

The three-dimensional MT curve, which is assumed to

represent a vehicle travelling with a constant forward

velocity V , is defined as

123
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r ¼ x y z½ �T

¼ Vt Yh sin xhtð Þ Zho þ cYh sin xhtð Þ½ �T

¼ x Yh sin xhx=Vð Þ Zho þ cYh sin xhx=Vð Þ½ �T

ð39Þ

where Yh and Zh are given amplitudes, xh is the

frequency, x ¼ Vt, and V ¼ ox=ot. In this example,

Yh ¼ 0:02 m, V ¼ 15 m/s, c ¼ 1=20, xh ¼ ahV ¼
5:9 rad/s ¼ 0:939 Hz, ah ¼ 0:3935 m, and

Zho ¼ 2 m. It is clear from the definition of the curve

that the coordinate z is related to the curve coordinate y

by the linear relationship z ¼ Zho þ cy, and z ¼ Zho

when y ¼ 0. For simplicity, the results are reported in

this section using time t as a parameter.

The curve velocity vector is

_r ¼ rt ¼ _x _y _z½ �T

¼ V xhYh cosxht xhcYh cosxht½ �T

¼ V 1 ahYh cosxht ahcYh cosxht½ �T
ð40Þ

Using this velocity vector, one has

_s ¼ _rj j ¼ V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ahYhð Þ2 1þ cð Þ2
� �

cos2 xht

r

ð41Þ

This equation shows that the velocity _s along the

tangent to the MT curve is always larger than the

velocity _x ¼ V along the curve parameter x. The

velocity _s is maximum at the peaks of the curve when

xht ¼ xhx=V ¼ np; n ¼ 1; 2; . . .. At these points,

_s ¼ 19:000465 m/s. It is also clear that _s ¼ _x ¼ V

when xht ¼ xhx=V ¼ n þ 1ð Þp=2; n ¼ 0; 2; 4; . . ..
Figure 2 shows the velocity _s as a function of time.

The oscillatory nature of _s is clear from the results

presented in this figure.

Using the MT velocity vector _r and the computed

velocity _s, one can write

rx ¼ 1 y0 z0½ �T¼ _r=V

¼ 1 ahYh cosxht ahcYh cosxht½ �T

rxj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ahYhð Þ2 1þ cð Þ2
� �

cos2 xht

r

9

>

>

>

=

>

>

>

;

ð42Þ

The unit tangent vector rs can be determined using the

RMT vector as

rs ¼ _r= _s ¼ V= _sð Þ 1 ahYh cosxht ahcYh cosxht½ �T

ð43Þ

Figure 3 shows the X-elements of the unit tangent

vector rs, which is the dominant component. While

other elements of the tangent vector were found to be

small, the three elements of the unit tangent rs are

oscillatory. The absolute acceleration vector for the

curve considered in this section is

€r ¼ d _r=dt ¼ €x €y €z½ �T
¼ � xhð Þ2Yh 0 sinxht c sinxht½ �T ð44Þ

Using the acceleration vector €r, the acceleration €s

along the tangent to the curve can be evaluated using

the equation

€s ¼ €r � rs ¼ � xhð Þ3 Yhð Þ2 1þ cð Þ2
� �.

2 _s
� �

sin 2xhtð Þ

ð45Þ

Fig. 2 Velocity _s Fig. 3 X-component of the unit tangent to the curve
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Figure 4 shows €s as a function of time. It is clear that

while the forward velocity V is constant, €s is not zero

and it is oscillatory with a small amplitude. The

acceleration €s is the acceleration component along the

tangent to the curve. The curvature j of a curve is

defined to be the magnitude of the curvature vector,

and in the case of a spatial curve is assumed to be

positive. In the case of planar curves, a sign can be

given to the curvature to indicate how the normal

vector is oriented. Figure 5 shows the curvature j, the
horizontal curvature jh, and the vertical curvature jv.

The results presented in this figure show the curvature

singular points which are points of discontinuities of

the curvature j. The radius of curvature R at an

arbitrary point can be determined from the equation

R ¼ 1=j. The results presented in Fig. 5 demonstrate

that even simple oscillations can result in curves with

very small radius of curvatures. Federal railroad

regulations, for example, put limit on the radius of

curvature of the tracks. Such limits, however, cannot

be imposed on MT curves which are not a priori

known.

8.2 Force analysis

The direction of the centrifugal force is defined by the

direction of the unit vector n normal to the curve. The

results obtained using the example considered in this

section show that the Y-component of the normal

vector is dominant, while the other two components

are oscillatory, but with small amplitudes. The results

presented in Fig. 6, which shows the Y-component of

the normal vector, explain the dominance of the lateral

component. Figure 7 shows the Frenet bank angle /
which defines the Frenet super-elevation of the motion

(osculating) plane which contains the velocity and

acceleration vectors as well as the centrifugal-force

vector. At the point t ¼ 0, which is a curvature

singular point, one can use L’Hopital’s rule as

described in the paper to show that at this point,

/ � �2:862�. A Frenet bank angle in the range of 3� is
not considered small when the projection of forces of

heavy vehicles is considered since a small error can

lead to significant unbalance force. Figure 8 shows the

Fig. 4 Acceleration €s

Fig. 5 Curve curvatures (black-triangle: curvature j; red-

square: horizontal curvature jh; blue-circle: vertical curvature

jv)

Fig. 6 Y-coordinate of the unit normal vector
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Frenet curvature angle w and vertical-development

angle h for the space curve considered in this section.

Small oscillations with very large inertia are not

uncommon in vehicle system applications. For exam-

ple, in the case of railroad vehicle systems, 100-ton car

of a freight train experiences hunting oscillations with

amplitude that can be less or exceed the amplitude

considered in this example. The frequency xh ¼
ahV ¼ 5:9 rad/s ¼ 0:939 Hz considered in this sec-

tion corresponds to a forward velocity of 15 m/s which

is a relatively low speed for both passenger and freight

trains. While the analytical space curve considered in

this section does not duplicate the actual behavior of a

railroad vehicle whose complex motion requires use of

the techniques of constrained multibody system

(MBS) dynamics, the qualitative analysis using such

an analytical curve can shed light on the significance

of the Frenet oscillations introduced in this study.

Figure 9 shows the magnitude of the centrifugal force

m _sð Þ2
.

R for a 100-ton car tracing the curve used in

this section. This is the total magnitude of the

centrifugal force which has the same direction of the

unit vector n normal to the curve. The figure also

shows the projection of the magnitude of the centrifu-

gal force on the horizontal plane as defined by the

equation m _sð Þ2
.

R
� �

cos/ and the vertical compo-

nent as defined by m _sð Þ2
.

R
� �

sin/. It is clear from

the results presented in this figure that the vertical

component is small and the horizontal component is

dominant.

As discussed in this paper, oscillatory centrifugal

forces arise in cases the highway roads or rail tracks

are not super-elevated. Even in these cases, the gravity

force can have a component that opposes the centrifu-

gal force which is in the direction of the unit vector n

normal to the curve. In many application, particularly

in the case of conical railroad wheelsets, the conicity

produces self-steering that leads to geometric self-

centering as the result of force self-balancing. Fig-

ure 10 shows the component of the gravity force Fg � n

along the normal to the curve. It is clear from the

results presented in this figure that gravity force has a

component that lies in the motion (osculating) plane of

Fig. 7 Frenet bank angle /

Fig. 8 Frenet vertical-development and curvature angles

(black-triangle: h; Red-square: w)

Fig. 9 Centrifugal force (black-triangle m _sð Þ2
.

R; red-square:

ðm _s2=RÞ cos/; blue-circle: ðm _s2=RÞ sin/)
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the curve, and such a gravity component is in a

direction opposite to the direction of the centrifugal

force.

9 Discussion and relationship to previous work

As discussed in this paper, the Frenet bank angle /
defines deviation of the plane of the centrifugal force

from the horizontal plane regardless of the geometry

of the railroad track or the highway road. If the Frenet

bank angle / is equal to zero, the centrifugal force and

the vector normal to the curve lie in a plane parallel to

the horizontal plane. This angle also defines the

magnitude of the component of the gravity force that

opposes the centrifugal force in its totality. For

example, a curve can be vertically elevated (devel-

oped), but is not Frenet super-elevated. The helix is a

good example of such a curve. If a particle traces a

helix curve, the gravity force cannot balance the

centrifugal force. Therefore, the Frenet bank angle /
in addition to having a clear geometric meaning, it also

has a clear physical interpretation. More investigations

are needed to study the impact of these new definitions

on the interpretation of the forces that produce the

motion.

The analysis presented in this paper shows that

Eq. (9) should not be used to determine the Frenet

bank angle / in case of zero curvature. The angle /
can be determined at the singular curvature point using

Eq. (17). The results presented in Fig. 7 for a curve

with a large number of zero-curvature points

demonstrate that the Frenet bank angle is continuous

and the unit vector normal to the curve is well defined.

Equation 17, therefore, provides a proof that the

normal to the curve is well defined at the points of

zero curvatures. Consequently, there is no discontinu-

ity in the definition of the Frenet frame. This proof

could be developed using the concept of the horizontal

and vertical curvatures used in the railroad vehicle

literature and the definitions of the Frenet angles.

As previously stated, this investigation builds on

previous studies [25, 26], which were not concerned

with the analysis of recorded motion trajectories and

the curvature singularities. This paper presents new

derivations and identities, establishes a data-driven

science approach and algorithm for utilization of

recorded motion trajectories to interpret motion and

forces, provides a proof that demonstrates that the

Frenet frame does not suffer from any discontinuities

at zero-curvature points, and develops a simple

analytical curve to obtain new results that demonstrate

concepts that have not previously discussed in the

literature. The three-dimensional curve analysis pre-

sented in this paper is also different from the analysis

presented in a newly published study which is focused

on x � y curve which has zero Frenet vertical-devel-

opment angle h and zero Frenet bank angle / [27].

10 Conclusions

Computer simulations and physical measurements can

be used to record positions, velocities, and accelera-

tions of moving bodies. The RMT curves, which are

the results of actual forces or nonlinear virtual

prototyping of credible computer models, have infor-

mation that can shed light on the system nonlinear

dynamics. In this paper, a mechanics-based descrip-

tion of the curve geometry is developed and used to

introduce the Frenet oscillations, which define the

time-varying characteritics of the motion plane. The

motion (osculating) plane contains the absolute veloc-

ity and acceleration vectors, and its orientation can be

systematically described in terms of the three Frenet–

Euler angles; the curvature, vertical-development, and

bank angles. The Frenet super-elevation of the motion

plane measures the deviation of the direction of the

centrifugal inertia force from the horizontal plane. The

paper uses Frenet angles to introduce a method to

determine the unit vector normal to a curve at the

Fig. 10 Component of the gravity force in the osculating plane
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curvature singular points. The definition of this normal

vector is necessary in order to define the correct

direction of the centrifugal force. To better understand

the motion-plane oscillations, the concept of the pre-

super-elevated osculating (PSEO) plane is introduced.

A new inverse-dynamics problem that utilizes exper-

imentally or simulation recorded motion trajectories

(RMT) is formulated and used to define the Frenet

inertia forces. The equivalence of the Frenet inertia

forces and the Cartesian form of the inertia forces is

shown. The Frenet inertia forces can include a

quadratic-velocity inertia force vector if a curve

parameter different from the arc length is used. The

recorded velocity and acceleration vectors can be used

to obtain new expressions for the curvature vector.

The paper defines the limit on the magnitude of the

tangential acceleration for a given forward velocity

and the condition that must be met for the centrifugal

force to lie in a plane parallel to the horizontal plane.

The results obtained using a simple analytical curve

example demonstrate the Frenet oscillations and the

importance of distinguishing between the highway-

ramp and railroad track bank angle and super-eleva-

tion, which are time-invariant, and the Frenet bank

angle and super-elevation, which are oscillatory. The

latter defines the correct direction of the centrifugal

forces. While an analytical MT curve is considered to

demonstrate the Frenet oscillations and curvature

singular points, more detailed MBS models will be

the subject of future investigations focused on the

hunting oscillations of railroad vehicle systems and

the interpretation of the Frenet–Euler angles and

Frenet oscillations in complex motion scenarios.

The sequence of rotations Z;�Y;�X used in this

investigation is the sequence adopted by the trans-

portation industry for the construction of the geometry

and layout of railroad tracks. This sequence when

applied to the recorded motion-trajectory curves

allows introducing concepts of the horizontal curva-

ture, vertical-development, and super-elevation used

in the description of the track geometry by the railroad

industry. Use of this sequence, therefore, allows

comparing and distinguishing the geometry of the

motion trajectories from the geometry of the road and

the track because similar concepts are used.

Nonetheless, many of the equations and identities

presented in this paper can have counterparts that may

assume different forms if another sequence of rota-

tions or frames, including the Bishop frame, is used

[28, 29]. For example, Tait-Bryan angles widely used

in vehicle and flight dynamics as well as the Z;X; Z

sequence used by Euler to study the gyroscopic motion

can be used to provide similar development and

identities that will assume different forms depending

on the sequence used. While nonlinear relationships

between different angles based on different sequences

of rotations can always be developed, the Tait-Bryan

sequence and the Z;X; Z sequence used by Euler do

not provide the simple geometric interpretation pro-

vided by the sequence of rotations adopted in this

paper. Furthermore, the Frenet-angle sequence used in

this study demonstrates clearly that the curve can be

completely defined using two independent angles,

which serve as alternatives to the curvature and torsion

in defining the curve geometry. The coordinates of a

curve r can be determined by integrating the equation

dr ¼ rsds, demonstrating that the curve coordinates

can be expressed in terms of the two independent

angles. Use of another angle sequence can lead to a

unit tangent expressed in terms of three angles instead

of two and such angles may not have the same

geometric interpretation as the one used by the rail

industry. It is also important to point out that the

derivatives of the two vectors n1 and n2 do not define

vectors along the tangent vector t, and definition of

these two vectors does not require integration of the

torsion which may not be an exact differential.

Therefore, the frame defined by the two vectors n1

and n2 should not be confused with the two vectors

used in the definition of the Bishop frame [29].
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Appendix A

Pre-super-elevated-osculating (PSEO) plane

One can show that the two orthogonal vectors n1 and

n2 can be obtained by, respectively, applying the

following two transformations, which are not neces-

sarily orthogonal, to the unit tangent rs:

T1 ¼
rxj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

0 �1 0

1 0 0

0 0 0

2

6

4

3

7

5

;

T2 ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y0ð Þ2
q

0 0 �1

0 �z0 0

1 y0 0

2

6

4

3

7

5

ðA1Þ

That is, the two orthogonal unit vectors n1 and n2 can

be determined using the first derivatives that appear in

the tangent vector. In this case, the scalars jh and jv

can be determined, respectively, using the dot prod-

ucts jh ¼ rss � n1 and jv ¼ rss � n2. These two curva-

ture components can be used to determine the curve

curvature and radius of curvature. It is also important

to note that the three vectors rs; n1, and n2 are three

orthogonal vectors, as discussed in the paper.

The two vectors n1 and n2 have an interesting

geometric interpretation. These two vectors lie in a

plane whose normal is defined by the unit tangent

vector rs which represents the axis of rotation of the

Frenet bank angle /. This means that any other vector

that lies in the plane formed by the two vectors n1 and

n2 can still be written as a linear combination of the

two orthogonal vectors n1 and n2 before or after the

Frenet bank angle rotation /. As discussed in the

paper, the two orthogonal vectors n1 and n2 are the

normal and binormal vectors of the Frenet frame

before performing the Frenet bank-angle rotation.

Furthermore, the projection of the inertia forces along

the two orthogonal unit vectors n1 and n2 can be used

to conveniently define the centrifugal force, as

explained in the paper.
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