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Abstract Motion-trajectory (MT) curves are used to
introduce Frenet oscillations. Time-varying orienta-
tion of the motion plane that contains the absolute
velocity and acceleration vectors is defined in terms of
three Frenet—Euler angles; the curvature, vertical-
development, and bank angles, referred to as the
Frenet angles for brevity. The Frenet bank angle and
the associated Frenet super-elevation of the motion
plane, which measure deviation of the centrifugal
inertia force from the horizontal plane, can be used to
shed light on definition of the balance speed used in
practice. The concept of the pre-super-elevated oscu-
lating (PSEO) plane is introduced and Rodrigues’
formula is employed to develop an orthogonal rotation
matrix that provides a geometric interpretation of the
PSEO plane. A new inverse-dynamics problem that
utilizes experimentally or simulation recorded motion
trajectories (RMT) is used to define the Frenet inertia
forces and demonstrate their equivalence to the
Cartesian form of the inertia forces. New expressions
for the curvature vector in terms of the velocity and
acceleration, limit on the magnitude of the tangential
acceleration for a given forward velocity, condition
required for the centrifugal force to remain horizontal,
and condition of curvature singular points are derived.
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The Frenet bank angle can be used to prove existence
of the normal vectors at the curvature singular points.
It is shown that the inertia force can assume different
forms, depending on the curve parameter used. The
results of a simple analytical curve demonstrate Frenet
oscillations and importance of distinguishing between
the highway-ramp and railroad track bank angles and
super-elevations, which are time-invariant, and the
Frenet bank angle and super-elevation, which are
motion-dependent.
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1 Introduction

Linear and nonlinear vibrations are motion character-
istics of a wide class of physics and engineering
systems [1-7]. For this reason, understanding and
controlling these vibrations have been the subject of
many investigations [8—12]. Nonetheless, in the per-
formance evaluation of physics and engineering
systems, the actual forces that produce the oscillations
during the system functional operations are not a priori
known. Therefore, experimentally- and computer-
simulation-recorded motion trajectories (MT) will
become increasingly important for understanding the
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motion of complex systems and for providing inter-
pretation of the actual forces that produce this motion.
Sophisticated equipment and sensors in modern vehi-
cles and machines and advanced computer-simulation
technology allow obtaining accurate recorded-motion
trajectories (RMT) using sensor measurements or
credible and detailed virtual-prototyping computer
models.

The analysis of the RMT curves, therefore, can
contribute to better understanding and proper inter-
pretation of the forces that produce the actual motion.
Such an analysis lies at the intersection of two
important fields; nonlinear dynamics and computa-
tional mechanics. The qualitative nonlinear-dynamics
techniques can be used effectively in analysis of large
amount of data obtained using computational algo-
rithms. Furthermore, techniques of differential and
computational geometry are needed to properly inter-
pret the RMT-curve geometries [13—18]. This is
particularly important because forces such as the
inertia forces can have different interpretation depend-
ing on the generalized coordinates used [19-24].
D’Alembert—Lagrange principle leads to different
definitions and interpretations of the inertia forces
depending on the coordinates used to formulate the
dynamic equations of motion.

To better understand RMT data, physics-based
interpretation of the geometry is required. To this end,
Frenet—Euler angles, called Frenet angles for brevity,
are used to describe arbitrary curve geometries and are
explicitly defined in terms of curve derivatives which
can be determined from recorded coordinates, veloc-
ities, and accelerations. As discussed in this paper, any
curvilinear motion, regardless of the geometry of the
highway road or railroad track, leads to centrifugal
forces that do not appear in the classical Newton—
Euler equations in their Cartesian form. Balancing
these forces can be crucial in ensuring stability and
safe operation of vehicle systems. Understanding
direction of the inertia forces and extracting useful
information from RMT data require using new con-
cepts and definitions such as the Frenet super-
elevation and Frenet bank angle, which vary with
time and define orientation of the osculating motion
plane that contains the velocity and acceleration
vectors.

To demonstrate the need for the analysis of the
RMT-curve geometry, the method used to define the
vehicle operating speeds during curve negotiations is
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considered. To ensure a safe operation of highway and
railroad vehicles during curve negotiations, a super-
elevation is used to define a balance speed at which the
vehicle must operate. The goal is to create a lateral
gravity force that balances the lateral component of
the centrifugal inertia force [24-26]. This lateral force
balance is based on the assumption that the vehicle
strictly traces a circular curve that lies in a plane
parallel to the horizontal plane. Figure 1 shows such a
curve, denoted as curve C, which has normal vector n¢
that defines the direction of the centrifugal force under
the above-mentioned condition. Such a condition of
circular curve, however, cannot be met in realistic
motion scenarios because of a lateral vehicle motion.
If the vehicle traces another curve D, with normal np
different from nc, the centrifugal force does not lie in a
plane parallel to the horizontal plane and the assump-
tion used in defining the balance speed is violated.
Such curve examples demonstrate value of the RMT
curve analysis in identifying root causes of accidents
and derailments.

This paper is focused on addressing the important
issue of the RMT curve analysis, and developing
mechanics-based interpretation of the curve geometry.
The specific contributions and organization of the
paper are summarized as follows:

1. The paper generalizes concept of Frenet angles
for describing arbitrary curve geometry by build-
ing on previous recent investigations [25, 26]. In
Sects. 2 and 3, the Frenet angles, which are the
curvature, vertical-development, and bank angles,
are expressed in terms of derivatives of the curve
defined in its parametric form to give them a

Fig. 1 Frenet oscillations [26]
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geometric interpretation. It is shown that the
curvature vector that defines the direction of the
centrifugal force can be written as a linear
combination of two orthogonal unit vectors that
define the normal and bi-normal vectors before
performing the Frenet bank rotation. To this end,
the pre-super-elevated osculating (PSEQO) plane is
introduced. Rodrigues’ formula is used to obtain
the rotation matrix required to perform the
orthogonal transformation that explains the
PSEO-plane orientation.

The condition required for the centrifugal force to
remain in a plane parallel to the horizontal plane
and the condition of curvature singularities are
discussed in Sect. 4. Itis shown that a curve can be
Frenet vertically elevated but not Frenet super-
elevated. Because the curve curvature is defined to
be the magnitude of the curvature vector, the
existence of the normal vector at the curvature
singular point is an issue that can be addressed
using the Frenet angles. A proof of the existence of
the normal vector at the curvature singular points
is provided.

A new inverse problem based on experimentally
or simulation recorded motion trajectories
(RMT) is defined. The Frenet inertia forces
are defined, and their equivalence to the Carte-
sian form is demonstrated in Sect. 5. The curve
geometric description is used to define the
tangential and normal inertia-force components
which lie in the osculating plane. In the special
case of constant forward velocity, new expres-
sions for the curvature vector in terms of the
velocity and acceleration are presented and the
limit on the magnitude of the tangential accel-
eration for a given forward velocity is derived.
Discussion on the assumption of horizontal
centrifugal force used to define the balance
speed is also provided in Sect. 5.

The forms of the equations of motion used in the
inverse problem based on the RMT curves are
developed. It is shown that the inertia force can
assume different forms, depending on the curve
parameter used. As demonstrated in Sect. 6, if the
arc length parameter is not used as the curve
parameter, the inverse-problem equation can
include a quadratic-velocity inertia force vector,
shedding light on the importance of proper

interpretation of the inertia forces when different
coordinates are used.

5. A new procedure is introduced in Sect. 7 to

explain the steps required to extract the geometry
and force variables from the RMT curves. It is
shown that the RMT curves can be used to obtain
different forms of the equations of motion and the
forces that appear in these equations. The cen-
trifugal force in its totality can be determined, and
the lateral and vertical components often used to
study railroad vehicle derailments are readily
available from the information extracted from the
RMT curves.

6. Regardless of the geometry and orientation of the

highway roads and railroad tracks, lateral vehicle
displacements can result in tracing motion curves
with large curvature and sharp radius of curvature
that can be smaller than the minimum track radius
of curvature mandated by federal regulations. To
better explain the problem, an analytical curve is
used to demonstrate the concept of the Frenet
oscillations in Sect. 8. The time-varying oscilla-
tions of the Frenet osculating plane, due to the
change in the Frenet bank angle, define the
direction of the centrifugal forces; shedding light
on the limitations of the method used in practice to
define the balance speed based on the assumption
of a horizontal centrifugal force, an assumption
often violated. The results presented in Sect. 8
also explain importance of distinguishing between
the track bank angle and super-elevation, and the
Frenet bank angle and super-elevation of the
osculating (motion) plane, respectively. While
tangent tracks are designed with zero track super-
elevation, motion-dependent Frenet super-eleva-
tion cannot be avoided on tangent tracks because
of the hunting oscillations [24].

Section 9 provides more discussion on the Frenet bank
angle and the curvature singularity and explains
relationship between the analysis presented in this
investigation and previous studies. Summary and
conclusions drawn from this study are provided in
Sect. 10. While an analytical curve is used in Sect. 7,
future investigations will be concerned with develop-
ing more detailed railroad vehicle models to explain
the importance of distinguishing between the oscilla-
tory Frenet angles and the time-invariant Euler angles
used in the description of the railroad track geometry.
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2 General curve geometry

Without any loss of generality, the relationship
between the Cartesian form and the Frenet form of
the inertia forces can be explained using the spatial
curve written in its parametric form as
r=[x y(x) z(x)]". The curve is defined using
the parameter x, which is assumed different from the
curve arc length s. Basic geometry equations that are
repeatedly used in this paper are summarized in
Sect. 2.1.

2.1 Tangent and curvature vectors

defined as
r,=0r/ox=[1 y Z]", where y =0y/dx and
7 =0z/0x. The norm of this vector is
e =/ 1+ ) +(2)°
to the curve is defined as
r,=0r/ds=[1 y Z]"/|r (1)
Furthermore, one has the differential relationship ds =
|ry|dx, or alternatively Os/0x = |r,| =
1+ (y)*4(z)% It follows that d(1/[r|)/ox =
y/y// + Z/Z// /‘r ‘
The curvature vector is

Iy = azr/as2 = (o([1 ’]T/\rx\)/ax)(ﬁx/as),

which can be written using the equation 0x/0s =

1/r] as 1y = (1/‘rX|)( ( Y T/|rx|)/@x)

This equation yields

The tangent vector is

. Therefore, the unit tangent

1 0
1
ry = W ( (y/y// +ZIZH) y/ + (1 + (y/)2+(zl)2) y//

(y/y// +Z/ZN) —u
.
3|V 0 =) | = |V ey
‘rx‘ /i ‘ ll
+y Y -2y 7' — o

(2)

where o. = (yy' +77") /|rx\2. The curvature Kk,

magnitude of the curvature vector, is defined as
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:\/<(y”)2 (" (%) ] /Irvl

This equation for the curvature can be written as
= () =04 I
= (67 +@P)le—ry + 229 / e

= \/()"’)2(1+(z’)2) +@?(1+ 0 2yzy”z”/\r\
(4)

Using this equation, the radius of curvature of the
curve at an arbitrary point x can be written as
R = R(x) = 1/k(x). The unit tangent vector r; and
the unit normal vector n = r/x define the osculating
(motion) plane which is the plane of the velocity and
acceleration vectors that enter into the definition of the
inertia forces.

To define the torsion, the bi-normal vector must be
determined and differentiated with respect to the arc
length. The bi-normal vector can be determined as the
cross product of the unit tangent and normal vectors.
The definition of the torsion in terms of Euler angles
was provided in [25]. The curve torsion, however,
does not play a role in the development presented in
this paper.

(3)

2.2 Geometric interpretation

One can also show that the curvature vector ry can be
written as a linear combination of two orthogonal
vectors n; and n, as

Iy = Kpp + K,

7/-
L
1+()* [ 0
+#2 - (5)
ey/1+ () L1+ ()

where
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o=y [y i+ 02

o= (10 07) ) f (P07
n = (l/m)[—y’ 1o,

ny — (1/@4@) [~ —y2 1+

(6)

It is worth mentioning that the vectors n; and n, are
functions of the first derivatives only and do not
depend on the second derivatives of the curve. Using
the definitions of the preceding equation, and the
orthogonality of the unit vectors n; and ny, the curve
curvature can be written as

K= (Kh)2+(KV)2

e’/ 1+ ()

It can be shown that this expression of the curvature is
the same as the expression previously obtained in this
section. The two curvature expressions demonstrate
that the curvature can assume different forms in terms
of the first and second derivatives of the curve
coordinates. The analysis presented in this section
can also be used to write the normal vector as

n = (k,/1)ny + (x,/1c)ny (8)

This equation will be used in the following section to
introduce the Frenet angles.

2.3 Curvature singular points

In the classical differential geometry, a point on a
curve is called a singular point if |r,| = 0 or equiv-
alently |r;| = 0. Based on the analysis presented in this
section, a curvature singular point is defined as a point
at which y” =7’ = 0. At curvature singular points,
ae = (yy" + Z'Z”)/\rﬂ2 =0,andk;, =K, =k =0.1t
will be shown that at the curvature singular points of
RMT curves, the tangential acceleration s is equal to
zero, that is § = 0. It is worth mentioning that the
condition y” = 7’ = 0 is derived with the assumption
that x is the curve parameter. If another curve
parameter is selected, this condition can assume a

different form. It is also worth mentioning that zero
curvature does not imply that the derivative of the
curvature is zero, that is, k = 0 does not always imply
that k' = 0. At the curvature singular points, the unit
vector normal to curve cannot be determined by
dividing the curvature vector ry by the curvature . In
the numerical implementation, the curvature singular-
ities can be alleviated using extrapolations or by
selecting a time step that does not coincide exactly
with the curvature singular points. However, by using
the Frenet angles, a proof of existence of the unit
normal n can be provided since the Frenet bank angle
always exists regardless of the magnitude of the curve
curvature.

3 Frenet bank, vertical-development,
and curvature angles

In this section, the Frenet angles are introduced using
the general curve geometry described in the preceding
section. This serves to provide geometric interpreta-
tions of these angles and to generalize the more
specialized analysis presented in the literature
[25, 26].

3.1 Frenet bank angle

The Frenet frame is defined by the three unit vectors
ry,n, and b, where b = r; X n is the bi-normal vector
[13—-18]. The ry — n plane is the osculating plane in
which the velocity and acceleration vectors lie, and for
this reason, it is referred to in this study as the motion
plane. The bi-normal vector b is orthogonal to the
motion plane and serves as its normal. The centrifugal
force in its totality is always along the normal vector n.
The ry — b plane is the rectifying plane which contains
the velocity vector and the tangential component of
the acceleration vector and has n as its normal. The
n — b plane is the normal plane which contains the
normal component of the acceleration vector and has
the unit tangent ry as its normal.

Important in this investigation is a recognition that
the normal plane can be defined by the two orthogonal
unit vectors n and b, or alternatively, by the two unit
vectors n; and n,. This is clear because the unit
tangent vector ry is orthogonal to the two n — b and
n; —n, sets of vectors. That is, these two sets of
vectors lie in the same planar surface, and they differ
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by a single rotation about r; unit vector. This rotation
is the Frenet bank angle ¢, which defines the Frenet
super-elevation of the motion-trajectory curve. As
shown in the preceding section, n = (1/k)r,, and ny,
and n, are defined in Eq. (6), where x is the RMT-
curve curvature. Therefore, the following two equa-
tions define the Frenet bank angle

cos¢p =n-ny = (k;/kK), }

sing =n-mp = (—k,/k)

©)

In this study, x;, is referred to as the Frenet horizontal
curvature since it is defined along the unit vector n;
which lies in a plane parallel to the horizontal plane,
while x, is referred to as the Frenet vertical-develop-
ment curvature, referred to for brevity as the vertical
curvature, because it is along the vector n, which is
vertical if the motion plane is not vertically elevated
(7 = 0). The frame formed by the three vectors r, ny,
and n, is referred to in this study as the Frenet pre-
super-elevated frame, and the ry — n; plane is referred
to as the pre-super-elevated osculating plane (PSEO).
It is important to note that while the two vectors n; and
n, lie in the normal plane, the planar surface defined
by these two vectors remains perpendicular to the unit
tangent r regardless of the Frenet bank angle rotation,
which is an Euler rotation performed along an axis in
the direction of r;.

3.2 Frenet vertical-development angle

The unit vector n;, defined in Eq. (6), lies in a plane
parallel to the horizontal plane and it forms, with the
unit tangent vector ry, the Frenet PSEO plane.
Nonetheless, the PSEO plane is not, in general, a
planar surface that is parallel to the horizontal plane.
This is clear from the general definition of the unit
tangent vector ry. Using the definition of the vector n;
which lies in a plane parallel to the horizontal plane, it
is clear that the PSEO plane differs from the horizontal
plane by a single rotation 0 about the —n; vector,
where the negative sign is used to keep the notations
consistent with what is used in the railroad vehicle
literature [24-26]. The angle 6 is referred to in this
study as the Frenet vertical-development angle.
Without this Frenet—Euler rotation, the unit tangent
vector lies in the horizontal plane and is defined by the

equationrg, = [1 y O]T/\/ 1+ (v')%, which is a
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unit vector orthogonal to mn;. In this special pre-
vertical-development configuration, the vector m
occupies a position defined by the equation
ny, =rg xn =[0 0 l]T: k, which is a unit
vector along the vertical Z axis. Therefore, recalling

thatnz_( /|l’x|\/1+ ) —7 —y7 1+

the Frenet vertical-development angle is defined by
the following two equations:

costk-Hz:\/m/m| (10)

sin0 = (Agk),= 7' /|ry]

where subscript one refers to the first element in the
product Agk and Ay is the orthogonal transformation
matrix defined using Rodrigues formula with —n,; as
the axis of rotation as [24]

Ap =1 -1 sin 0 + 2(;)’sin?(0/2) (11)

where I is the 3 x 3 identity matrix and n; is the skew-
symmetric matrix associated with the unit vector n;. It
is clear from the definition of the Frenet vertical-
development angle 6 that if 7 = 0, this angle is zero,
and k, =0 justifying calling «, Frenet vertical
curvature. Using the definitions presented in this
section, the derivative of the Frenet vertical-develop-
ment angle 0 can be written as

0 = (Z”(l + (/) ) y’y”Z’)/(lrxlz 1+(y’)2>~

In Appendix A of the paper, more discussion on the
vectors n; and n, is provided.

3.3 Frenet curvature angle

Before the Frenet super-elevation or Frenet vertical-
elevation, the curve unit-tangent vector is defined by

the equation ry =[1 O}T/\/l + ()%, This

equation describes a planar curve on the horizontal
plane. The Frenet curvature angle \ is defined by the
two equations

cosy = 1/\/14—(y’)27 sinxp:y’/\/1+(y’)2
(12)

Using these definitions, the vector ry, can be written as
re = [cosy siny  0]", which shows that the angle
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Y can be considered as a rotation about the vertical Z
axis that brings the vector [1 0 0] to the vector
ry, = [cosyy siny 0]". One can also show that

Y =y (1 + (0 )2) The curvature vector of the

planar curve is defined as
rop = (W' /|re])[—siny  cosy  0]", which shows
that the curvature of this planar curve is

e =y <|rx|<1 + (y’)2)>, which is the same
as the Frenet horizontal curvature if 7 = 0, which is
the case of the planar curve considered. The equation

for Y/ can then be written as ' = y”/ (1 + (y')z).

4 Normal vector and curvature singularity

The design of rail-track or highway-ramp super-
elevations is based on the assumption that the vehicle
strictly traces a circular curve that lies in a plane
parallel to the horizontal plane. This case corresponds
to nonzero rail-track or highway-ramp bank angle and
to a zero Frenet bank angle. This assumption is
violated in most realistic motion scenarios because of
the vehicle lateral displacements. Such assumption of
zero Frenet bank angle can only be made if, for
example, a rail vehicle slides up or down and
maintains continuous contact with the high or low
rail, respectively. This situation, often encountered in
practice, is not desirable for two main reasons. First, it
is an indication that the condition of the balance speed
fails to keep the vehicle centered on the track. Second,
because of the continuous wheel/rail contact, the high
or low rail is subjected to high flange contact forces
that can lead to deterioration and wear of the wheel
and rail surfaces, undesirable track movements, and
the possibility of wheel climbs and derailments.
Computer simulations and observations of realistic
motion scenarios have shown that indeed the balance
speed does not always maintain the vehicle centered
and does not prevent wheel/rail flange contact with
significantly high impact forces.

4.1 Direction of the normal vector
The condition required for a vehicle to trace a curve

that lies in a plane parallel to the horizontal plane can
be met only under certain geometric restrictions. From

the definition of the curvature vector rg,, it is clear that
the centrifugal force remains in a plane parallel to the
horizontal plane if the condition z” + y'(Z"y’ — Z'y")

0 is satisfied. That is,
2
/2 =y (14 077) (13)

If this condition is satisfied, the normal vector and the
centrifugal force remain in a plane parallel to the
horizontal plane. Furthermore, this condition shows
that the centrifugal force can remain in a plane parallel
to the horizontal plane (zero Frenet super-elevation)
for nonzero vertical-elevation (nonzero Frenet verti-
cal-elevation).

The helix curve is an example in which the
condition of Eq. (13) is satisfied. The helix is curved,
twisted, vertically elevated, but not Frenet super-
elevated [25, 26]. The equation of the helix is r(s) =
[acoso asino ba]", where o = s/Va2 + b2, s is
the arc length parameter, a is the helix radius,
r =1/ (a)*+(b)?, and b/a is the slope of the helix.
The helix curvature x and torsion T are constant and
defined, respectively, as = |a|/(a*+b*) and
1=10b/(a* +b%).
x =acoso = acos(s/r), one has

Using the equation

cosa =x/a, sinoa=

dx = —|[(a/r)sino]ds

1~ (x/a) 14

Using these identities, the vector r, is defined for the
helix as
r, =r,0s/x) =[x ¥y 7"

=[1 —l/tane —b/(asina)]" (15)

This equation defines

y =—1/tana, 7 = —b/(asina), |r|=r/(asina)
y'=—1/asin’a, "= —<b/(a)2) (cosa/sin’ o)

(16)
To check the condition 7" /7’ = y/y”/(l + (y’)2),one
has z’/7 = (cosa/asin’a), y'y" = cosa/asin’a,
1+ (/)*=1/sin’ o, and
y’y”/(l + (y’)z) = (cosa/asin’«), which demon-

strates that indeed the condition 7"/7 =
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y'y" / (1 + (y’)z) is satisfied, implying that the
curved, twisted, and vertically elevated helix has a
normal that always lies in a plane parallel to the
horizontal plane. This fact can be simply demonstrated
by directly differentiating the unit tangent vector r, to
obtain the curvature vector
ry =0°r/ds’ = —(a/r*)[cosa sina 0]". There-
fore, a vehicle negotiating a helix has a centrifugal
inertia force that always lies in a plane parallel to the
horizontal plane, and such a force cannot be balanced
by the vertical gravity forces if the helix geometry is
not altered. The helix example also demonstrates that
the centrifugal force can remain in a plane parallel to
the horizontal plane for a vertically-elevated curve
which has nonzero vertical-development angle 0, that

is, 6 # 0.
4.2 Existence of the unit normal vector

The unit vector n normal to the curve is defined using
the curvature vector ry, as n = ry/k. At the curvature
singular points, the curve curvature k is equal to zero,
and therefore, the unit normal vector cannot be defined
using the equation n = ry,/k. The Frenet angles can be
used to prove the existence of the unit normal vector
and provide a definition of this vector regardless of
whether or not the value of the curve curvature is zero.
It is clear from the analysis presented in this section
that the Frenet curvature and vertical-development
angles depend on the first derivatives and are not
function of the curvature. The Frenet bank angle, on
the other hand, which defines the Frenet super-
elevation, depends on the curvature and is defined by
the equations ¢ = tan~!(—x, /), which shows that
¢ = tan~'(0/0). Using the definition of x, and r;,, the
condition of the curvature singular points y” = 7’ = 0,
and L’Hopital’s rule, one can show that the Frenet
bank angle can be defined from the curvature ratio

wofin = (27 (14 00) =y2") [07ml) - (17)

Because all the Frenet angles exist and using their
definitions, the unit vector n normal to the curve can
always be written in terms of the Frenet angles as
[24-26]
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—sin i cos ¢ + cos Y sin Osin ¢
n= | cosiycos¢ + siny sinfsin (18)
—cosfsin ¢

This expression for the normal vector is defined at all
curve points including the curvature singular points.
Therefore, the direction of the centrifugal inertia force
is well defined even at the curve points at which the
curvature is zero. This is demonstrated by the analyt-
ical example considered in a later section in which a
curve with curvature singularities is considered.

5 Frenet inertia forces

Experimentally or simulation recorded motion trajec-
tory (RMT) curves can be used to define an inverse
problem in which the inertia force can be expressed in
terms of curve parameters. To distinguish this form of
the inertia force based on a Cartesian representation,
the curve-based definition of the inertia forces is
referred to as the Frenet inertia forces. Differentiating
r = r(s) once and twice with respect to time leads,
respectively, to the velocity and acceleration vectors

F=sr, and F=[§ j z]'= ((s')z/R)n+rS§,
where n = ry/Kk = Rry; is the unit normal vector.

Therefore, the inertia force vector of a vehicle with
mass m tracing a curve can be written as

F,=mi=m[i y ]'= m(((s')z/R)n + sr)
(19)

where R = R(s) is the curve radius of curvature.
5.1 Velocity, acceleration, and curvature vector

If the vehicle has arbitrary forward velocity x, the
tangential velocity s along the tangent r; is

§=0s/0t = [f| =&\/1+ ()’ +(&)? =xrs]  (20)

This equation shows that ds = |f|dt = (|¢|/x)dx. The
component of the acceleration § along the tangent to
the curve can be obtained by differentiating s as
§ = $(ds/ds) = x|ry| + x(d|ry|/dt). This equation
leads to
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§= (ﬂl‘x|2+( 02 (v +Z/Z/l))/|l‘x| _ (V/(S-)z) \/(V)2<(y”)2+(z”)2) GV
= (0" + 226 Il (25)

= (ireroe6)?) [l = (6 (%) e

which shows that if x is constant, §'is not zero and s is
not constant since the tangent vector varies as function
of x, or equivalently as function of 7. It is clear from the
definition of s that at a curvature singular point
defined by the condition Yy’ =z"=0, §=x|r,|

(1)

/3, !0

because o, = (y'y" +7'7") /|rx|2 =0, as previously

mentioned,

Using the definitions of s and §, one has the
following identities:

L+ ()4 (@)= = (570 -
WY + 77 = (s / ()6)2) ((sx ~ 5¥) / (x')2)

The second identity shows that, at the curvature
singular points, the following relationship between the
tangential and forward velocities and acceleration is
satisfied

§/§ = ¥/% (23)

Furthermore, in case of constant forward velocity
X =V, the same identities can be used to show that the
curvature vector can be written in terms of § and § in
the following different forms:

1 0
1
Iy :‘ ‘4 (}/y”+z'z”) y/ + 1+ (y’)2+(z')2 y//
» e
| 0
= o | WY | = /)
V)2 Iy 2
V7l gy
S/ T S/s
1 ~(§/Ir) S

= [ (VY = /)y | == [ W = /9y
(V)| ] (V)22 = (5/|ra])? (s) Ve - (55)7

(24)

In this special case, the curvature k is defined as the
magnitude of the above curvature vector as

The fact that ry is a unit vector implies thatry - rg, = 0,
which when used with the above definition of the
curvature vector ry, shows that, when x is constant,

(( V' 2Z)(s) /|rx|3); an expression that can

be obtained from the general definition of s. Using the
definition of the curvature in the special case of
constant forward velocity and recognizing that the
curvature is positive, the limit on the maximum
acceleration of vehicle negotiating a curve can be
obtained as

s\ [ (0@ = P
(20

This equation defines the limit on magnitude of s,
which depends on the forward velocity V.

5.2 Cartesian- and Frenet—representation
of the inertia forces

The Cartesian and Frenet forms of the inertia force are
equivalent. The Cartesian form is often used in a
forward-dynamics problem, while the Frenet form can
be used in an inverse-dynamics problem if the RMT
curves are available from experimental measurements
or computer simulations. The inertia force in its
Cartesian form, for an arbitrary X, can be written as

F,=m[x y 7|'= m(fc'rx + (x)zrxx) (27)

The component of this force along the tangent vector is
defined using the definition of s as

|Fy| =F;-r, = m(ic'rx T+ (x')ZrM . rS)
= m( () + (67 /10l ) 0y +22)) = ms
(28)

This result is consistent with the equation

F, = mri = m(((s)z/R)n + rsS’). Equation 2 shows

that |rx|2rss = —0o,I'y + Iy, Using this identity and the
fact that ry, = xn and s = x|r,|, the component of the
inertia force along the normal to the curve is defined as
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F;,=F;,—(F; -ry)ry;=m ()'c'rx + (x')zr_m) — msTt

m(x')2|rx|21<n:m( /R)

(29)

=m(x)7 (P —0y) =

This equation defines the centrifugal force in its
totality when the vehicle negotiates a curve. The
preceding two equations demonstrate the equivalence
of the Cartesian and Frenet forms of the inertia force
vector and also show that the norm of the acceleration
vector written as

o o)

5.3 Centrifugal force and horizontal plane

In practice, track super-elevations are designed with
the assumption that the centrifugal force remains in a
plane parallel to the horizontal plane [26]. Using this
assumption, the balance speed is determined by
equating the lateral components of the gravity and
centrifugal forces. According to this assumption, the
vehicle strictly follows a circle that lies in a plane
parallel to the horizontal plane, a condition that cannot
be met in realistic motion scenarios because of the
lateral displacements. The actual motion trajectories
can represent sharp curves with large curvature values.
The orientation of the osculating (motion) plane that
contains the velocity and acceleration vectors defines
the direction of the centrifugal force. If the osculating
plane is not Frenet super-elevated, the centrifugal force
remains in a plane parallel to the horizontal plane To

show that the condition 7’/7 =y'y” ( )

implies zero Frenet bank angle ¢, one can rewrite

cos ¢ = (1 /) =y”/ (KIr,cl2 1+ (y’)z),
sin = (—1w/K) = —(Z"(l + (y’)z) - Z'y’y”)/
(e 1+ 07)

These two equations show that if
7'/7 =y (l—i— ), sing =0 and cos¢ =1,

providing a proof that under this condition the
osculating plane is not Frenet super-elevated.

(30)
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6 Coordinate selection and inertia forces

While the vehicle motion is described in terms of a
large number of coordinates, an RMT curve is one
dimensional, and consequently, the motion of the
center of mass of a vehicle component, as represented
by one RMT curve, is described in terms of one
coordinate if the curve geometry is known from
experimentally or simulation recorded data. Use of
RMT curves is equivalent to using an inverse-dynam-
ics problem in which the motion is assumed to be
partially or fully prescribed and the goal is to
determine the forces that produce this motion. There-
fore, the nonlinear-dynamics analysis approach used
in this paper is different from the classical inverse
problem in which the prescribed motion is used to
determine constraint forces that produce the motion. In
this paper, on the other hand, the assumption is made
that the forces exerted on the vehicle are the actual
forces, and such forces are not determined with the
goal of producing specified motion. The RMT curves,
therefore, are the solution of a forward-dynamics
problem in which the applied forces are not pre-
computed and should not be viewed as control forces.
Nonetheless, such RMT curves have all motion
characteristics and can be used to extract information
that cannot be obtained or easily understood using
other approaches.

If the motion of the vehicle center of mass is
described using the three-dimensional vector
r=[x y z|", the coordinates x,y, and z in the
forward dynamics problem can be considered as
independent if they are not related by constraint
equations. However, RMT curve can be written in
terms of one parameter, which can be time ¢, arc length
s, or any other parameter including the curve coordi-
nates x, y, and z. For example, if the curve longitudinal
coordinate x is used as the curve parameter, one can
writt r =r(x) =[x y(x) z(x)]". This equation
implies that the motion in the inverse problem is
subjected to two kinematic constraints y = y(x) and
z=z(x). If the equation of motion of the vehicle
center of mass is written in the forward-dynamics
problem in response to a force vector F using the
Cartesian coordinates as mr = F, this equation can be
described in the inverse-dynamics problem using the
RMT curve in terms of one parameter only. To this
end, one can write, as previously described,
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r=x[1 y 2], if the coordinate x is used as the
curve parameter. This equation leads to

F=ill Y 0 Y ]

= Bk + (X)’V ey

In this equation, B;; =r, =[1 y 7 }T is a velocity

transformation that reduces to the tangent vector,
which is not in general a unit vector; and Vv =
[0 y" Z"]" is a vector that lies in the lateral y — z
plane. Substituting the preceding equation into the
three equations of motion mr = F and pre-multiplying
by the transpose of the transformation matrix B,;, one
obtains a single equation of motion which can be

m(1+ () +() )i = rTF-
m(x)*(y'y" 4+ /7). By using another coordinate y or
z as the curve parameter and following a similar
procedure, one obtains a similar equation associated
with the other parameter. Therefore, one has the

following different forms of the equation of motion if
the vehicle traces the curve:

written as

m(l + (y’)2+(z’)2)fé =rTF — m(¥)*(yy" +72"), d =dafox

()P 1+ ()°)5 = FTF = m()’ (" +22), d =2a/dy

m((x’)2+(y’)2+1)z': tTF — m(2)P(¢x +yy'), d =dafoz
(32)

Which shows that when x,y, or z is selected as the
curve parameter, there is a quadratic-velocity inertia
force defined by the term
—m(d)*(ry - Taa), a = x,y,z. If the gravity is the only
force applied to the vehicle, the preceding equation
reduces to

mra*d = [0 0 —mg] v, —m(d)*(ry - ¥as),

a=x,y,z (33)

where g is the gravity constant.

It was shown previously that

¥ = §ry + ((s)2 / R) n, where in this case the velocity
transformation matrix becomes B, = r,. Using this
velocity transformation and following the procedure
used with the coordinate x, one can show that the
equation of motion when s is selected as the curve
parameter is given by m§ = r’F. Because r; and r
are orthogonal vectors, the equation ms = rSTF does

not show any quadratic-velocity inertia forces, shed-
ding light on the effect of the selection of the
coordinates in the inverse-dynamics problem on the
interpretation of the inertia forces. The centrifugal

force m ((s')2 / R) is a quadratic-velocity inertia force,

but such a force does not appear in the equation of
motion ms' = r!F because the motion is not allowed
along the normal or the bi-normal to the curve.

7 Recorded motion trajectories (RMT)

Using computational dynamics algorithms or experi-
mental measurements, the motion trajectories of the
vehicle components can be recorded and used in an
inverse problem to extract the geometry and force
equations presented in the preceding sections. The
steps of the procedure for accomplishing this goal can
be summarized as follows:

1. The position, velocity, and acceleration vectors
defined, respectively, by the vectors r, ¥, and ¥ are
recorded as function of time. That is,

T . . . . T

', r=r(@) =[x y Z]

]T

r=r(t)=[x y z
and ¥ =¥¢(r) =[X y Z] . Experimental mea-
surements or computer simulations based on the
solution of a forward dynamics problem can be
used to determine the position, velocity, and
acceleration curves.

s

2. The curve arc length s can be determined by

integrating the equation ds = |¢|df, and the abso-
lute velocity of the vehicle component along the
tangent vector can be determined from the equa-
tion s = |F|. If the forward velocity of the vehicle x
is different from zero, s = |f| > 0. This condition
is satisfied as the vehicle continues to move
forward, which is the assumption made in this
paper.

3. The unit tangent vector to the curve ry is
determined from the equation

r, = [0x/0s Qy/0s 0z/ds]'=r¥/|¥| (34)
It is also clear that
re=[1 y Z|"=v¢/x (35)

This equation can be used to define y' and 7.
Because x is known from the recorded velocity,
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the vector r, can be determined. A similar
procedure can be used to determine ry and r; if
the velocities y and 7 are different from zero.

4. BecauseT = STt + ((s')z/R)n and because r, and

n are orthogonal vectors, the acceleration s can be
defined using the equation § = r - r, and the radius
of curvature R is determined from the equation

R= (s')z/(l"-n), where n is computed in the
following step. The equation R = (s)* / (f-m)

should be used with care at the curvature singular
points. The curvature of the RMT curve is defined
ask =1/R.

5. The equation ¥ = sr; + ((5)2 / R)n shows that

the unit normal vector n is parallel to the vector
n= (R / (s')z) (f — §ty). That is,
n= (i‘—s"rs)/|1"'—s"rs\ (36)

6. Using the recorded velocities and accelerations,
and the equations previously developed in this
study, one can show that

0y = (1)) (F ) (37)

That is, the second derivative with respect to the
parameter x can be determined. Using these second
derivatives, the vertical curvature x, and the horizon-
tal curvature x; can be computed. As check, the
curvature kK can be written in the alternate form

K=/ (1) 2+ ().

7. The RMT Frenet—Euler angles can then be
determined from the equations

cos0 = /1407 /e, sin0=2/ln|.
cosd = (/) =" | (e 1+ 7).
sing = (=K, /k) = — (Z”(l + (y’)z) - Z’y’y”)

/ <K\rl\3 1+ (y’)2>

8. The PSEO plane is defined by the two orthog-
onal vectors n; and n; of Eq. (6), which can be

(38)
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determined using the derivatives defined by the
RMT data.

9. The inertia forces on the vehicle component can
be determined in the global Cartesian coordi-
nate system as mr. The projection of this inertia
force along the RMT normal n can be deter-

mined as mrF-n = m(s')z/R, while the projec-

tion of the inertia force along the tangent vector
r; is determined using mr - ry = ms.

10. Because the gravity force can be written in the
global coordinate system as
F, = -mg[0 0 1]", an estimate of other
forces F,,, including constraint forces, acting on
the vehicle component can be written as
F,, = mr — F,. In the case of tangent track
sections, the elements of the vector F,, define
forces in the longitudinal, lateral, and vertical
directions. The vector F,, can be projected
along the axes of the Frenet frame to define the
components F,, -r;, F,, -n, and F, -b.
Because there is no inertia force along the bi-
normal vector b, one must have
(Feo + F,) - b = 0. If the effect of the gravity
is not considered, F,, - b = 0.

Steps and equations of this procedure are demon-

strated in the numerical-example section using an

analytical space curve which has curvature singular

points.

8 Frenet oscillations and numerical results

In this section, a numerical example of an analytical
space curve is considered to demonstrate use of MT
data to obtain the geometry and force equations
developed in this study. The example is used to
demonstrate that simple MT curves give rise to
centrifugal forces, and such forces are not attributed
to road or track geometry, but to the MT geometry.
The example considered also demonstrates how the
Frenet—Euler angles can be determined using RMT-
curve data.

8.1 Curve geometry
The three-dimensional MT curve, which is assumed to

represent a vehicle travelling with a constant forward
velocity V, is defined as
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r=[x y zJ
= [Vt Yysin(wpt) Zp, + yYysin(wpt) ]T
=[x Yysin(wpx/V)  Zu + pYysin(apx/V)]"
(39)

where Y, and Z, are given amplitudes, w; is the
frequency, x = Vr, and V = 0x/0t. In this example,
Y,=002m, V=15m/ls, y=1/20, o, =0,V =
5.9 rad/s = 0.939 Hz, o = 0.3935 m, and
Zy, = 2 m. It is clear from the definition of the curve
that the coordinate z is related to the curve coordinate y
by the linear relationship z = Z;, + 7y, and z = Z,
when y = 0. For simplicity, the results are reported in
this section using time ¢ as a parameter.

The curve velocity vector is
r=r =[x y i

=[V  wpY,coswpt wthhcoswht]T (40)
=V[l oY, coswut octhhcoswht]T

Using this velocity vector, one has

§=[f| = V\/l + (ath)2(1 + (y)z) cos?wpt (41)

This equation shows that the velocity s along the
tangent to the MT curve is always larger than the
velocity x =V along the curve parameter x. The
velocity s is maximum at the peaks of the curve when
opt = opx/V =nm, n=1,2,.... At these points,
§ = 19.000465 m/s. It is also clear that s =x=V

15.0005

15.0004

15.0003

Velocity (m/s)

15.0002 |

15.0001

Time (s)

Fig. 2 Velocity s

when wpt=wpx/V=m+1)n/2, n=0,2,4,...
Figure 2 shows the velocity s as a function of time.
The oscillatory nature of s is clear from the results
presented in this figure.

Using the MT velocity vector r and the computed
velocity s, one can write

rr=[1 y Z|'=¥¢¥/v

=[1 ouYycoswut oYy coswyt

ry| = \/1 + (thYh)z(l + (y)z) cos? wpt

FU

The unit tangent vector r; can be determined using the
RMT vector as

r;=r/s=(V/s)[l oY,coswpt apyY,cos wht]T

(43)

Figure 3 shows the X-elements of the unit tangent
vector ry, which is the dominant component. While
other elements of the tangent vector were found to be
small, the three elements of the unit tangent r; are
oscillatory. The absolute acceleration vector for the
curve considered in this section is

dijdi =[5 y 2"
—(0p)* V[0 sinwpt ysinowpr]” (44)

l=H
Il

Using the acceleration vector F, the acceleration §
along the tangent to the curve can be evaluated using
the equation

§=F-r = f((wh)3(Yh)2<1 n (y)z) / 25') sin(2apt)
(45)

0.999995

0.99999

0.999985

0.99998

0.999975

Tangent vector X-coordinate

0.99997

0.999965 . L L L L L L
0 0.5 1 15 2 25 3 3.5 4
Time (s)

Fig. 3 X-component of the unit tangent to the curve
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-
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Acceleration (m/sz)
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'
N

Time (s)

Curvatures

Fig. 5 Curve curvatures (black-triangle: curvature x; red-
square: horizontal curvature xj; blue-circle: vertical curvature
Ky)

Figure 4 shows s as a function of time. It is clear that
while the forward velocity V is constant, § is not zero
and it is oscillatory with a small amplitude. The
acceleration §'is the acceleration component along the
tangent to the curve. The curvature x of a curve is
defined to be the magnitude of the curvature vector,
and in the case of a spatial curve is assumed to be
positive. In the case of planar curves, a sign can be
given to the curvature to indicate how the normal
vector is oriented. Figure 5 shows the curvature x, the
horizontal curvature x;,, and the vertical curvature k, .
The results presented in this figure show the curvature
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singular points which are points of discontinuities of
the curvature x. The radius of curvature R at an
arbitrary point can be determined from the equation
R = 1/k. The results presented in Fig. 5 demonstrate
that even simple oscillations can result in curves with
very small radius of curvatures. Federal railroad
regulations, for example, put limit on the radius of
curvature of the tracks. Such limits, however, cannot
be imposed on MT curves which are not a priori
known.

8.2 Force analysis

The direction of the centrifugal force is defined by the
direction of the unit vector n normal to the curve. The
results obtained using the example considered in this
section show that the Y-component of the normal
vector is dominant, while the other two components
are oscillatory, but with small amplitudes. The results
presented in Fig. 6, which shows the Y-component of
the normal vector, explain the dominance of the lateral
component. Figure 7 shows the Frenet bank angle ¢
which defines the Frenet super-elevation of the motion
(osculating) plane which contains the velocity and
acceleration vectors as well as the centrifugal-force
vector. At the point ¢ =0, which is a curvature
singular point, one can use L’Hopital’s rule as
described in the paper to show that at this point,
¢ ~ —2.862°. A Frenet bank angle in the range of 3° is
not considered small when the projection of forces of
heavy vehicles is considered since a small error can
lead to significant unbalance force. Figure 8 shows the

0.998755 T T T T T T T

0.99875

0.998745

0.99874

0.998735

0.99873

Normal vector Y-coordinate

0.998725

0.99872 A A . A L L L
0 0.5 1 15 2 25 3 3.5 4
Time (s)

Fig. 6 Y-coordinate of the unit normal vector
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Fig. 7 Frenet bank angle ¢
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»>
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Fig. 8 Frenet vertical-development and curvature angles
(black-triangle: 0; Red-square: )

Frenet curvature angle y and vertical-development
angle 6 for the space curve considered in this section.

Small oscillations with very large inertia are not
uncommon in vehicle system applications. For exam-
ple, in the case of railroad vehicle systems, 100-ton car
of a freight train experiences hunting oscillations with
amplitude that can be less or exceed the amplitude
considered in this example. The frequency w;, =
o,V =5.9 rad/s = 0.939 Hz considered in this sec-
tion corresponds to a forward velocity of 15 m/s which
is arelatively low speed for both passenger and freight
trains. While the analytical space curve considered in
this section does not duplicate the actual behavior of a
railroad vehicle whose complex motion requires use of
the techniques of constrained multibody system

Centrifugal force (N)

Fig. 9 Centrifugal force (black-triangle m(s)2 / R; red-square:
(ms? /R) cos ¢; blue-circle: (ms*/R) sin ¢)

(MBS) dynamics, the qualitative analysis using such
an analytical curve can shed light on the significance
of the Frenet oscillations introduced in this study.
Figure 9 shows the magnitude of the centrifugal force

m(s)* / R for a 100-ton car tracing the curve used in

this section. This is the total magnitude of the
centrifugal force which has the same direction of the
unit vector n normal to the curve. The figure also
shows the projection of the magnitude of the centrifu-
gal force on the horizontal plane as defined by the

equation (m(s)2 / R) cos ¢ and the vertical compo-
nent as defined by (m(s)2 / R) sin ¢. It is clear from

the results presented in this figure that the vertical
component is small and the horizontal component is
dominant.

As discussed in this paper, oscillatory centrifugal
forces arise in cases the highway roads or rail tracks
are not super-elevated. Even in these cases, the gravity
force can have a component that opposes the centrifu-
gal force which is in the direction of the unit vector n
normal to the curve. In many application, particularly
in the case of conical railroad wheelsets, the conicity
produces self-steering that leads to geometric self-
centering as the result of force self-balancing. Fig-
ure 10 shows the component of the gravity force Fy - n
along the normal to the curve. It is clear from the
results presented in this figure that gravity force has a
component that lies in the motion (osculating) plane of
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Fig. 10 Component of the gravity force in the osculating plane

the curve, and such a gravity component is in a
direction opposite to the direction of the centrifugal
force.

9 Discussion and relationship to previous work

As discussed in this paper, the Frenet bank angle ¢
defines deviation of the plane of the centrifugal force
from the horizontal plane regardless of the geometry
of the railroad track or the highway road. If the Frenet
bank angle ¢ is equal to zero, the centrifugal force and
the vector normal to the curve lie in a plane parallel to
the horizontal plane. This angle also defines the
magnitude of the component of the gravity force that
opposes the centrifugal force in its totality. For
example, a curve can be vertically elevated (devel-
oped), but is not Frenet super-elevated. The helix is a
good example of such a curve. If a particle traces a
helix curve, the gravity force cannot balance the
centrifugal force. Therefore, the Frenet bank angle ¢
in addition to having a clear geometric meaning, it also
has a clear physical interpretation. More investigations
are needed to study the impact of these new definitions
on the interpretation of the forces that produce the
motion.

The analysis presented in this paper shows that
Eq. (9) should not be used to determine the Frenet
bank angle ¢ in case of zero curvature. The angle ¢
can be determined at the singular curvature point using
Eq. (17). The results presented in Fig. 7 for a curve
with a large number of zero-curvature points
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demonstrate that the Frenet bank angle is continuous
and the unit vector normal to the curve is well defined.
Equation 17, therefore, provides a proof that the
normal to the curve is well defined at the points of
zero curvatures. Consequently, there is no discontinu-
ity in the definition of the Frenet frame. This proof
could be developed using the concept of the horizontal
and vertical curvatures used in the railroad vehicle
literature and the definitions of the Frenet angles.

As previously stated, this investigation builds on
previous studies [25, 26], which were not concerned
with the analysis of recorded motion trajectories and
the curvature singularities. This paper presents new
derivations and identities, establishes a data-driven
science approach and algorithm for utilization of
recorded motion trajectories to interpret motion and
forces, provides a proof that demonstrates that the
Frenet frame does not suffer from any discontinuities
at zero-curvature points, and develops a simple
analytical curve to obtain new results that demonstrate
concepts that have not previously discussed in the
literature. The three-dimensional curve analysis pre-
sented in this paper is also different from the analysis
presented in a newly published study which is focused
on x — y curve which has zero Frenet vertical-devel-
opment angle 6 and zero Frenet bank angle ¢ [27].

10 Conclusions

Computer simulations and physical measurements can
be used to record positions, velocities, and accelera-
tions of moving bodies. The RMT curves, which are
the results of actual forces or nonlinear virtual
prototyping of credible computer models, have infor-
mation that can shed light on the system nonlinear
dynamics. In this paper, a mechanics-based descrip-
tion of the curve geometry is developed and used to
introduce the Frenet oscillations, which define the
time-varying characteritics of the motion plane. The
motion (osculating) plane contains the absolute veloc-
ity and acceleration vectors, and its orientation can be
systematically described in terms of the three Frenet—
Euler angles; the curvature, vertical-development, and
bank angles. The Frenet super-elevation of the motion
plane measures the deviation of the direction of the
centrifugal inertia force from the horizontal plane. The
paper uses Frenet angles to introduce a method to
determine the unit vector normal to a curve at the
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curvature singular points. The definition of this normal
vector is necessary in order to define the correct
direction of the centrifugal force. To better understand
the motion-plane oscillations, the concept of the pre-
super-elevated osculating (PSEO) plane is introduced.
A new inverse-dynamics problem that utilizes exper-
imentally or simulation recorded motion trajectories
(RMT) is formulated and used to define the Frenet
inertia forces. The equivalence of the Frenet inertia
forces and the Cartesian form of the inertia forces is
shown. The Frenet inertia forces can include a
quadratic-velocity inertia force vector if a curve
parameter different from the arc length is used. The
recorded velocity and acceleration vectors can be used
to obtain new expressions for the curvature vector.
The paper defines the limit on the magnitude of the
tangential acceleration for a given forward velocity
and the condition that must be met for the centrifugal
force to lie in a plane parallel to the horizontal plane.
The results obtained using a simple analytical curve
example demonstrate the Frenet oscillations and the
importance of distinguishing between the highway-
ramp and railroad track bank angle and super-eleva-
tion, which are time-invariant, and the Frenet bank
angle and super-elevation, which are oscillatory. The
latter defines the correct direction of the centrifugal
forces. While an analytical MT curve is considered to
demonstrate the Frenet oscillations and curvature
singular points, more detailed MBS models will be
the subject of future investigations focused on the
hunting oscillations of railroad vehicle systems and
the interpretation of the Frenet-Euler angles and
Frenet oscillations in complex motion scenarios.

The sequence of rotations Z, —Y, —X used in this
investigation is the sequence adopted by the trans-
portation industry for the construction of the geometry
and layout of railroad tracks. This sequence when
applied to the recorded motion-trajectory curves
allows introducing concepts of the horizontal curva-
ture, vertical-development, and super-elevation used
in the description of the track geometry by the railroad
industry. Use of this sequence, therefore, allows
comparing and distinguishing the geometry of the
motion trajectories from the geometry of the road and
the track because similar concepts are used.

Nonetheless, many of the equations and identities
presented in this paper can have counterparts that may
assume different forms if another sequence of rota-
tions or frames, including the Bishop frame, is used
[28, 29]. For example, Tait-Bryan angles widely used
in vehicle and flight dynamics as well as the Z, X, Z
sequence used by Euler to study the gyroscopic motion
can be used to provide similar development and
identities that will assume different forms depending
on the sequence used. While nonlinear relationships
between different angles based on different sequences
of rotations can always be developed, the Tait-Bryan
sequence and the Z, X, Z sequence used by Euler do
not provide the simple geometric interpretation pro-
vided by the sequence of rotations adopted in this
paper. Furthermore, the Frenet-angle sequence used in
this study demonstrates clearly that the curve can be
completely defined using two independent angles,
which serve as alternatives to the curvature and torsion
in defining the curve geometry. The coordinates of a
curve r can be determined by integrating the equation
dr = r,ds, demonstrating that the curve coordinates
can be expressed in terms of the two independent
angles. Use of another angle sequence can lead to a
unit tangent expressed in terms of three angles instead
of two and such angles may not have the same
geometric interpretation as the one used by the rail
industry. It is also important to point out that the
derivatives of the two vectors n; and n, do not define
vectors along the tangent vector t, and definition of
these two vectors does not require integration of the
torsion which may not be an exact differential.
Therefore, the frame defined by the two vectors n;
and n, should not be confused with the two vectors
used in the definition of the Bishop frame [29].
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Appendix A
Pre-super-elevated-osculating (PSEO) plane

One can show that the two orthogonal vectors n; and
n, can be obtained by, respectively, applying the
following two transformations, which are not neces-
sarily orthogonal, to the unit tangent r;:

0 -1 0
leﬂ 1 0 0],
+0* o 0 o
- (A1)
| 0 0 -1
Ty=——+—|0 -7 0
2
071y o

That is, the two orthogonal unit vectors n; and n; can
be determined using the first derivatives that appear in
the tangent vector. In this case, the scalars x;, and k,
can be determined, respectively, using the dot prod-
ucts K, = I - n; and K, = ry - np. These two curva-
ture components can be used to determine the curve
curvature and radius of curvature. It is also important
to note that the three vectors rg, n;, and n, are three
orthogonal vectors, as discussed in the paper.

The two vectors n; and n, have an interesting
geometric interpretation. These two vectors lie in a
plane whose normal is defined by the unit tangent
vector ry which represents the axis of rotation of the
Frenet bank angle ¢. This means that any other vector
that lies in the plane formed by the two vectors n; and
n, can still be written as a linear combination of the
two orthogonal vectors n; and n, before or after the
Frenet bank angle rotation ¢. As discussed in the
paper, the two orthogonal vectors n; and n, are the
normal and binormal vectors of the Frenet frame
before performing the Frenet bank-angle rotation.
Furthermore, the projection of the inertia forces along
the two orthogonal unit vectors n; and n, can be used
to conveniently define the centrifugal force, as
explained in the paper.
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