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ture and torsion can be associated with derivatives of angles. Furthermore,
curve twist is result of coupled in-plane and out-of-plane bending modes.
While this mgde coupling can be represented b){ two rot.atlon.s, curve curva- matrix; Frenet angles;
ture or torsion cannot, in general, be associated with single rotation. Serret-Frenet equations;
Curvature and torsion, in their most general forms, are defined using skew- curve geometry;
symmetric Cartan matrix, which leads to the Serret-Frenet equations. This beam vibration

paper uses two different sequences of rotation to discuss exact differentiabil-

ity of curvature and torsion and demonstrate that curve torsion cannot, in

general, be defined as derivative of uniquely-defined angle performed about

curve tangent vector. Frenet angles are used to develop simple and general

expressions for elements of curve Cartan matrix. The analysis and results pre-

sented show the fundamental difference between Bishop shear angle, which

is not unique and does not enter into definition of curve geometry; and

Frenet bank angle, which is unique and enters into definition of

curve geometry.
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1. Introduction

Curvature of space curves is widely used in formulation of beam vibration equations and in def-
inition of beam strain energy and elastic forces (Antman 1973; Dym and Shames 1973;
Timoshenko, Young, and Weaver 1974; Meirovitch 1986; Goyal, Perkins, and Lee 2008; Goyal
and Perkins 2008; O’Reilly 2016; Khalid Jawed, Novelia, and O’Reilly 2018; Shabana 2019). Curve
torsion is result of out-of-plane bending that leads to twist that requires two independent varia-
bles to completely define curve geometry. In case of a general space curve, curvature and torsion
expressions can assume complex forms (Guggenheimer 1963; O’Neill 1966; Goetz 1970; Kreyszig
1991; Piegl and Tiller 1997; Farin 1999; Rogers 2001; Gallier 2011). Only in special cases, the
curvature and torsion can be represented as derivatives of angles. For a planar curve, the torsion
is zero and the curvature can be defined as derivative of a single angle performed about a fixed
axis. For a space curve, on the other hand, curve curvature and torsion (twist) are result of
coupled in-plane and out-of-plane bending modes. While this mode coupling can be represented
by two rotations, curve torsion cannot, in general, be associated with a single rotation about
curve tangent vector, as will be discussed in this paper.
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1.1. Curve Cartan matrix and exact differentiability

The curvature and torsion can be defined in their most general forms using the skew-symmetric
Cartan matrix, which leads to definition of the Serret-Frenet equations. The Cartan matrix asso-
ciated with a three-dimensional orthogonal matrix A = A(t), where ¢ is a parameter, is defined
as ATA;, where A, = 0A/0t (Guggenheimer 1963; O’Neill 1966). It is to be noted that “Cartan
matrix” is used in the literature to refer to different matrix forms. It is used in this paper to
refer to the skew-symmetric matrix ATA;, as previously used in the literature (Bishop 1975).
For a general orthogonal matrix with no additional conditions imposed on its columns, except
for the six orthonormality conditions, the skew-symmetric Cartan matrix has three independent
elements. For a space curve, the orthogonal matrix that defines the orientation of the curve
Frenet frame is obtained by imposing the condition that the second column of the matrix is
curve normal vector, which is the normalized vector obtained from differentiating the first col-
umn, which is unit vector tangent to the curve, with respect to curve arc length. Because of this
condition, number of Cartan-matrix independent elements reduces to two elements: curvature
and torsion. Nonetheless, because different frames were introduced to overcome problem of
defining Frenet frame at curvature-vanishing points, Cartan matrix can have different structure
if the tangent or normal vector is not used in curve-framing method. Both curvature and tor-
sion, however, are not in general exact differentials and cannot, in general, be defined as deriva-
tive of uniquely-defined angle performed about a single axis. Furthermore, a curve can be
twisted without performing any rotation about the curve tangent vector. For example, a straight
beam can be bent by performing a rotation about the vertical axis to define planar space curve.
The curve can then be twisted by performing a second rotation about curve normal vector (lat-
eral axis). That is, twisted-beam configuration can be achieved without any rotation about
beam longitudinal axis. This fact, which sheds light on torsion definition used in the literature
as the derivative of an angle about longitudinal beam axis, is examined in this study using two
different sequences of rotations. Both rotation sequences demonstrate that the curvature and
torsion are not exact differentials and none of them can, in general, be integrated to determine
an angle.

1.2. Curvature singularity and framing methods

Frenet frame of space curve r = r(t), where t is curve parameter, is defined by three orthogonal
unit vectors: unit tangent vector t = r;/|r¢{] = r;, unit normal vector n = t;/|t;| = r/|rs|, and
bi-normal vector b =t x n, where a, = da/9%, t, = 9°r/ds* = r is the curvature vector, and s
is the curve arc length (Guggenheimer 1963; O’Neill 1966; Goetz 1970; Kreyszig 1991; Piegl and
Tiller 1997; Farin 1999; Rogers 2001; Gallier 2011). The curve curvature x is norm of curvature
vector defined as x = |r,| = 1/R, where R is curve radius of curvature. For straight sections of
space curve, curvature k is equal to zero, and consequently, normal vector n and bi-normal vec-
tor b used as axes of Frenet frame cannot be defined using classical differential-geom-
etry procedures.

Because of curvature singularity and need for framing space curves in a wide range of engin-
eering and physics applications, alternate frames were introduced (Yung-Chow Wong 1963;
1972; Bishop 1975; Andrew and Ma 1995; Bahaddin Bukcu and Karacan 2008; 2009). While
axes of these frames do not have same geometric interpretation as Frenet-frame axes, the goal
was to introduce well-defined frames at curvature-vanishing points. Some of these frames differ
from Frenet frame by single rotation about tangent vector, and therefore, there is infinite num-
ber of frames that differ from Frenet frame by such a single rotation. Curvature vector r, for
example, can have a component along horizontally-oriented axis equal to what is referred to in
the literature as horizontal curvature (Ling and Shabana 2021; Shabana, 2021a, 2021b). Using
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such a frame or other frames, however, has a clear disadvantage compared to Frenet frame
which has normal vector n as one of its axes. Normal vector defines direction of centrifugal
force of a particle or a vehicle tracing space curve. Furthermore, in case of motion-trajectory
curves, Frenet-frame osculating plane (OP), defined by unit vectors t and n tangent and normal
to the curve, respectively, represents motion plane, which contains absolute velocity and acceler-
ation vectors.

Introducing different methods for framing space curves was motivated by lack of definition of
Frenet frame at zero-curvature points when using the classical differential-geometry procedures
based on definition of curvature vector ri. These procedures also fail to define Serret-Frenet
equations at the zero-curvature points. At these points, curvature vector is zero and cross product
b =t x n fails to determine bi-normal vector b (Bishop 1975; Shabana, 2021a).

1.3. Out-of-plane bending and torsion

In differential geometry, torsion is used to refer to curve twist (Guggenheimer 1963; O’Neill
1966; Goetz 1970; Kreyszig 1991; Piegl and Tiller 1997; Farin 1999; Rogers 2001; Gallier 2011).
This type of torsion is to be distinguished from torsion due to shear. Curve torsion is an out-
of-plane bending mode, and consequently, is attributed to second and independent bending
mode that does not lead to any shearing between cross sections. In some investigations, frames
different from curve Frenet frame were introduced by performing a rotation about curve tan-
gent vector. This rotation does not have an effect on curve geometry. To distinguish such a
rotation and make clear that it does not influence curve geometry, the rotation used in other
framing methods will be referred to as shear angle and not torsion angle. The difference
between twist and shear modes is often overlooked in computational mechanics literature as
result of improper use of angles to describe deformation modes.

1.4. Frenet angles and existence of Frenet frame

Another approach is to view curvature vector ri; = xn as a vector along well-defined unit nor-
mal vector n, and avoid using curvature vector r; to define normal vector. Magnitude of curva-
ture vector rg along n can assume zero value at zero-curvature points without having effect on
definition of the normal vector n. For space curves, normal vector can be defined everywhere
using concept of Frenet angles, which are set of Euler angles performed according to Euler
sequence Z, — Y, — X. This sequence of rotations can be used to introduce three Frenet angles:
curvature angle , vertical-development-angle 0, and bank angle ¢ (Ling and Shabana 2021;
Shabana, 2021a, 2021b). In particular, bank angle ¢ defines super-elevation of curve osculating
plane. In this study, another rotation sequence is used to confirm conclusions obtained using
sequence Z, — Y, — X used in railroad literature (Shabana, 2021b). Normal vector n obtained
using Frenet angles is continuous, does not flip over in neighborhood of zero-curvature points,
and coincides with conventional normal vector n. over some curve segments and is opposite to
n. over other curve segments when sense of curvature changes. That is, normal vector deter-
mined using Frenet angles is not always directed along curve center of curvature.

1.5. Scope and contributions of this investigation

The curvature and torsion, in their most general forms, are defined, as previously mentioned, using
skew-symmetric Cartan matrix, which leads to the Serret-Frenet equations. Use of different curve fram-
ing methods leads to different structure of Cartan matrix which has number of independent elements
that depends on number of conditions imposed on the orthogonal matrix used to define its Cartan
matrix. This paper discusses this fundamental issue and its relationship to exact differentiability of the
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curvature and torsion. It is demonstrated that the curvature or torsion cannot, in general, be defined
as derivative of uniquely-defined angle performed about curve tangent. The fact that the curvature and
torsion are not exact differentials is demonstrated using two different rotation sequences; the first of
which is widely used in railroad literature, and therefore, it is discussed in more detail. Specific contri-
butions and organization of this paper are summarized as follows:

1. Cartan matrix structure: Skew-symmetric Cartan matrix is presented in its most general form
in terms of three independent elements to discuss conditions of exact differentiability of these
elements. Conditions that can be imposed on columns of orthogonal transformation matrix
to reduce number of independent elements in its Cartan matrix are formulated in Section 2.
In Section 3, special case of Frenet frame which has Cartan matrix with two independent ele-
ments, curvature and torsion, is discussed.

2. Curve framing methods and curvature-vanishing points: Conditions used to define curve
frames different from Frenet frame to avoid its discontinuity at curvature-vanishing points
are discussed in Section 4 to explain theoretical foundation of Bishop frame discussed in
Section 5. Integrability condition used in developing Bishop frame in view of non-exact dif-
ferentiability of the torsion and non-uniqueness of this frame is discussed. Particular atten-
tion is given to definition of Bishop-torsion angle and its uniqueness. Given the fact that
Frenet frame exists at curvature-vanishing points, discussion of Section 6 sheds light on
whether there is need for introducing other framing methods.

3. Exact differentiability of the torsion: A curve can be twisted without performing any rotation
about its longitudinal axis. The twist is result of two coupled bending modes. In this study,
general torsion expression is used to demonstrate dependence of curve twist on two non-
commutative rotations and to demonstrate twist without performing a rotation about longi-
tudinal axis. Special cases of torsion exact differentiability are presented using Frenet angles
introduced in Section 7 and used in torsion analysis of Section 8.

4. Demonstration Examples: Three examples are used in Section 9 to discuss conditions of exact
differentiability of curvature and torsion. The first example is helix curve equation that
depends on one parameter-dependent angle. This example shows a special case of twisted
curve with exact-differential curvature and torsion. The second example demonstrates funda-
mental difference between Frenet bank and Bishop shear angles. The third example is an
example with non-zero torsion.

5. Rotation Sequences: Two rotation sequences are used in this paper to confirm that curvature
and torsion are not exact differentials and none of them can be, in general, integrated to
define a curvature or torsion angle. The first sequence involves three rotations ¥, 0, and ¢
about axes Z, — Y, and —X, respectively. The second sequence involves three angles ¥/, ¢,
and 0 about axes Z, X, and Y, respectively. Analytical results obtained using these two differ-
ent rotation sequences are compared and used in Section 10 to confirm that curvature and
torsion are not, in general, exact differentials.

6. Relevance to Mechanics Problems: Relevance of the analysis presented in this paper to
mechanics problems is explained in Section 11.

Summary and conclusions drawn from this study are presented in Section 12. It is to be noted
that in each of the two rotation sequences used in this study, three angles are used despite curve
geometry can be completely described using only two independent angles that define in-plane
and out-of-plane bending modes. The reason for using three angles instead of two angles is to
avoid using derivatives in definition of Frenet frame transformation matrix. This is with the
understanding that one of the three angles is dependent on the other two angles (Shabana and
Ling 2019; Ling and Shabana 2021; Shabana, 2021a; Shabana 2022).



MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES @ 5

2, Cartan matrices: background

Space-curve skew-symmetric Cartan matrix is written in terms of curve curvature x and curve
torsion 7 (Guggenheimer 1963; O’Neill 1966). For a three-dimensional orthogonal matrix A =
A(t) = [a;(t) a(t) as(t)] where ¢ is arbitrary parameter, product A"A, defines skew-symmet-

ric matrix @ written in terms of three entries w;,, w3, and w3, which define three-dimensional
vector @. Matrix @ and vector @ are defined, respectively, as

- - - - T
~ 0 —s3 (0] (O3] —73 —a;as3
o= o 0 -—@o|, o=|d|=| @3|=| alay (1)
o - - - T
—Wy (OF] 0 3 —12 —a;ay

L T . -
Alternate form of vector @ is @ =[ala,, —ala;, ala;| . Using equation A"A, = ®, one

can write derivatives of columns aj, in terms of a;, k = 1,2,3 as
_ - T T
ay; = @3a; — @ya3 = —(alay)a, — (alay)as,
T T
—(aJas)as + (af az)ay, (2)

(alTa3t)a1 + (azTagt)az

ay = 0133 — 033

az = ra; — 1ay

In this equation, ay; = da;/0t, k = 1,2,3. .
Three-dimensional unit vector a :[&1 as &3} has at most two independent elements

because of constraint |a| = {/a} + a; + a; = 1. A planar unit vector has at most one independ-

ent element and can always be written in terms of single angle y as a z[ cosy siny O]T. For
general orthogonal matrix, there are three independent elements in its Cartan matrix defined by
the vector @ :[(1)1 (1)2 (I)g,]T = [—6)23 (1)13 —(Z)u]T.

An orthogonal matrix can always be expressed in terms of orientation parameters that can be
angles (Goldstein 1950; Greenwood 1988; Roberson and Schwertassek 1988; Shabana and Ling
2019). In case of general three-dimensional rotations, elements of vector @ are not exact differen-
tials, and therefore, cannot be integrated. Equating any of the elements @;, @, and @3 to deriva-
tive of a variable i does not imply that 5, can be integrated. The variable can assume any value,
while its derivative is uniquely defined by equation f, = @, for a given k = 1,2,3. This is case
of nonholonomic constraint equations encountered in mechanics. Curve curvature and torsion
that appear in curve Cartan matrix are, in general, non-integrable, and each of which cannot be
used to uniquely define an angle.

3. Frenet-frame constraint and normal vector

In this section, Frenet-frame constraint condition, Cartan matrix general form, definition of nor-
mal vector, and sequence of rotations are discussed.

3.1. Frenet-Frame constraint

If last two columns of matrix A = A(f) = [a;(f) a(t) as(f)] are determined from first col-
umn, skew-symmetric matrix @ has only two independent entries. This can be demonstrated by
an example in which a, = aj;/|ay;| and a; = a; X a,. It follows that a;; = aj; X a, +a; X ay =
a; X ay, and alay = 0. In this case, vector @ reduces to @ = — [ay-a3; 0 a; -aZt]T, which
has only two independent elements.

Second and third columns n and b of orthogonal matrix Af = [t n b] that defines space-
curve Frenet frame are determined from unit tangent vector t which is the first column, as previ-
ously discussed. For this reason, one obtains Serret-Frenet equations t; = kn, ny = —kt+ tb, and
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b, = —tn, which correspond to Cartan matrix with two independent elements x = a; - a,; and 7 =
a, - a3 that represent, respectively, curvature and torsion and uniquely define curve geometry.
Uniqueness of curve geometry for given curvature and torsion is associated with differential-geom-
etry local theory of curves and such a geometry is invariant under rigid-body transformation.

3.2. Cartan-matrix general form

For a more general orthogonal matrix expressed in terms of three independent angles that define
orientation of a coordinate system; Cartan matrix, obtained by differentiation with respect to
time t as parameter, defines components of angular velocity vector. These three angular-velocity
components are independent and can assume any values that depend on motion of the coordin-
ate system. Therefore, in case of Frenet frame, resulting Cartan matrix is such that t; = xn and
b, = —tn which describe sense of rotations and frame axes that make derivatives of two vectors t
and b in a direction along third vector n, while derivative of n is linear combination of the other
two vectors t and b as n; = —«xt+ tb. For a curve, another coordinate system can be selected
such that derivatives of unit vectors that define coordinate-system axes have different forms and
two independent parameters that appear in Cartan matrix associated with this frame have differ-
ent interpretation depending on type of constraint imposed.

3.3. Continuous normal vector

Unit tangent vector t = a; defines identity ala; = 1. Differentiation of this equation with respect
to arc length parameter s leads to alTsal +a1Ta15 = 0, which shows that both a;; and —a;, are
orthogonal to a;. In description of conventional Frenet frame in neighborhood of zero-curvature
points, normal vector n. = aj; flips over by 180° leading to discontinuity point at which the
frame is not defined. Use of Frenet angles allows alleviating this problem by defining continuous
normal vector n in neighborhood of zero-curvature points. On some curve segments, n and n.
are in same direction; and on some other curve segments, n and n, are in opposite directions.
That is, normal vector n is not always directed to curve center of curvature. In both representa-
tions, however, curve curvature is defined using equation x = /aj, - aj;, regardless of whether aj;
or —ay, is used. It is to be noted that the approach based on Frenet angles is fundamentally dif-
ferent from attempts previously made in the literature to address Frenet-frame discontinuity using
Bishop frame which does not have unique definition (Carroll, Kose, and Sterling 2013).

3.4. Different rotation sequences

The condition that n = xt, in addition to the orthonormality of matrix Ay demonstrates that Frenet
transformation matrix can always be written in terms of two independent orientation parameters. In
this study, as in previous studies (Shabana and Ling 2019; Ling and Shabana 2021; Shabana 2021a,
2022), three orientation parameters are used in order to avoid use of derivatives in definition of nor-
mal vector n and bi-normal vector b. This is with the understanding that one of the angles used in
three-angle rotation sequence is dependent on the other two angles. Two different rotation sequences
are used to confirm the conclusions drawn in this study. The first sequence involves three rotations
Y, 0, and ¢ about axes Z, — Y, and —X, respectively, with angle ¢ considered as dependent angle. In
this first sequence, in-plane bending is produced by rotation y and out-of-plane bending and twist is
produced by rotation 0. None of these two independent rotations is performed about the longitudinal
axis tangent to the curve. The second sequence, on the other hand, involves three angles v/, ¢, and 0
about axes Z, X, and Y, respectively, with angle 0 considered as dependent angle. In this sequence,
curve twist is produced by a rotation about longitudinal axis tangent to the curve. This second
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sequence, however, demonstrates that the torsion is still not an exact differential, confirming the con-
clusions drawn in this study.

4. Curve framing

Instead of using Frenet frame which is defined by the matrix Ay = [t n b] and is associated
with singularity at vanishing-curvature points, other frames can be introduced to describe motion
along the curve despite these frames do not have the same geometric interpretation as Frenet
frame. There are infinite number of choices of such frames that can have the first axis defined by
unit tangent vector t, that is, a; = t. Because a; is perpendicular to a;; and is perpendicular to
the plane formed by a, and as;, aj; can always be written as linear combination of a, and a;
which are not derived from a,;. That is, one can always write t; = r,; = 0,a; + a3a;. Because a, =
—t x a3 and a3 = t X a,, one has

ay = —t; X a3 —t X az = —(0pa, +o3a3) X a3 —t X ag

—0pay; X az —t X azg = —opt — t X asg (3)

a3S:ts><a2+t><aZS:(o<2a2+oc3a3) X ay +t X ay

ozaz X ay +t X ay, = —ost+t X ay;

Derivatives a,, and a3, do not, in general, lie in curve normal plane, and there are infinite choices
of frames in the form Ap = [t a, a3] that differ from Frenet frame A; = [t n b} by a
. . - T . .

simple rotation Oy about the local t = [1 0 0] axis. In this case, one has

(4)

a; = ncos 0y + bsin 03
a; = —nsin0g + bcos 03

Because 0p can assume any value, to define specific frame that shares tangent vector with Frenet
frame, a condition must be imposed. Since a3 is orthogonal to a;, imposing the condition that
as; is also perpendicular to a, ensures that as; is directed along tangent vector t. Since a2T a3 =
—a3T ay;, one concludes that a,; is also parallel to tangent vector t.

This geometric explanation can be demonstrated mathematically because equation ala;; =0
leads to

_ T T
0= [ —ala;,  tla, ftTaZS] = [O —03 :xz} (5a)

This equation leads to the following counterpart of the Serret-Frenet equations:
t, = way +aza;,  ay = —opt,  az = —ost (5b)

These equations define Bishop frame, which will be discussed further in following sections of this
paper (Bishop 1975). It is important, however, to note that different framing methods used for a
curve do not enter into definition of an already-defined curve geometry. Therefore, angle 0
should not be confused with Frenet angles used to define curve geometry.

5. Bishop frame

The frame defined by the three equations, t, = oya; + a3as, ar; = —at, and as; = —ast are the
basis for defining Bishop frame. According to these equations, normal vector can be written as
n =t/ = (0 /K)a, + (a3/K)a3, where k is curve curvature. Normal vector can then be written
in terms of angle 05 as n = a, cos 0 + a3 sin 0, where tan 05 = a3/0, and kK = /03 + o3.
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Derivative of n = a, cos 0 + a3 sin 0 with respect to arc length s leads to
ng; = —xt + Op,(—a, sin 0 + a3 cos 0) = —kt + Opb (6)

In developing the preceding equation, the fact that unit bi-normal b = (—a, sin 05 + a3 cos 0p) is
utilized. It is clear that this expression for b satisfies t-b =n-b = 0. Equating the preceding
equation with the second Serret-Frenet equation n; = —«xt + tb leads to

Ops = 005/0s = © @)

Bishop determined 0p using integral 05 = [ tds. Nonetheless, torsion and curvature are not, in
general, exact differentials, and therefore, the condition 0p, = 905/Js = t cannot be used to define
unique value for angle 0p. This is mainly due to the fact that constraints on derivatives do not
always define constraints on coordinates. That is, number of independent derivatives can be less
than number of independent coordinates. This case of non-integrable constrains, encountered in
mechanics, is referred to as nonholonomic constraints. Therefore, definition of Bishop frame is not
unique, and any angle of rotation about curve unit tangent t can be used to define a frame different
from Frenet frame. Furthermore, a curve can be twisted without performing a rotation about tan-
gent vector. An example is twisted curve obtained by performing two successive rotations; the first
is rotation  about vertical axis Z to define a curve that lies in the horizontal plane, followed by a
rotation 0 about vector normal to the planar curve to achieve the twist. The twist, therefore, can be
result of two rotations, none of them is performed about curve tangent. The first rotation is about
a vertical axis, while the second rotation is about an axis that lies in the horizontal plane. Use of
Frenet angles to define curve geometry demonstrates this important fact and sheds light on the
approach used to define Bishop frame, which was mainly introduced based on the assumption that
Frenet frame is not defined at curvature-vanishing points. This assumption is briefly discussed in
the following section since existence of Frenet frame at curvature-vanishing points can be demon-
strated (Shabana, 2021a; Shabana, 2022). It is also to be noted that structure of Bishop-frame
Cartan matrix is different from that of Frenet-frame Cartan matrix.

6. Curvature-vanishing points

Bishop frame was introduced as alternate frame to circumvent problem of existence of Frenet
frame and Serret-Frenet equations at curve points with zero curvature. There are, however, con-
cerns regarding Bishop framing method since angle 0p cannot be uniquely defined from integral
0p = | tds since the torsion is not, in general, an exact differential and constraints on derivatives,
such as O, = 00p/0s =1, do not imply constraints on coordinates, as previously discussed.
Furthermore, torsion 7 is not defined at curvature vanishing points. For a curve r =r(t) =
[x(t)  y(1) z(t)]T, torsion t is defined as

T= (l't X l'tt) 'l'zzt/‘l't X rtt|2
. Xttt (}’tztt - )’ttzt) +J/ttt(sztt - xtztt) + Zttt(xt}’tt - )/txtt) (8)
()’tztt - yttzt)z + (thtt - thtt)2 + (xtytt - )/txn)z

At points with zero curvature, one has x4 = yy = z;y = 0, and therefore, torsion 7 is not defined at
curvature-vanishing points if conventional differential-geometry procedures are used. It is also demon-
strated that Frenet frame exists at curvature-vanishing points by writing curvature vector r, as linear
combination of two axes n; and n, that define pre-super-elevated osculating (PSEO) plane as ry =
opny + o,n,, where oy and o, are defined in (Ling and Shabana 2021; Shabana, 2021a). Curve curva-

ture is defined as k = y /a7 + o2 and normal vector can be written as n = (o, /x)n; + (ot /K)m,. At

curvature-vanishing points, ratio o, /oy, is defined using L’'Hopital rule, and therefore, normal vector
and Frenet frame are defined at curvature-vanishing points (Shabana, 2021a; Shabana, 2022).
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7. Frenet-angle representation of the torsion

Frenet angles are Euler angles used to define curve geometry (Ling and Shabana 2021a; Shabana,
2021b). Three Frenet angles are curvature angle \y, vertical-development angle 0, and bank angle
¢. These angles are defined using sequence of rotations Z, — Y, and —X, respectively. Using
these three angles, Frenet frame can be defined as (Ling and Shabana 2021; Shabana 2021a,
Shabana, 2021b)
Ap = [al a, 33] = [t n b]
cosyycos —sinycosp + cosysinfsing —sinysing — cosy sin 6 cos ¢
= | sinycos@  cosycos¢ + sinysin Osin ¢ cos s sin ¢ — sin i sin 0 cos ¢

sin 0 —cos Bsin ¢ cos 0 cos ¢

€

For this matrix to define Frenet frame, one has the condition t; = kn, that is, second column of
Ay is obtained by differentiation of first column with respect to arc length s. This condition is
also equivalent to alas; = —ala;; = 0 as previously discussed. Using this Frenet-angle representa-
tion, the curvature and torsion can be written, respectively, as (Ling and Shabana 2021)

K= alTazS = —aZTals = cospcosl — Ossin ¢
T T ) (10)
T=aya3 = —azay = Y sin0 — ¢,
The condition alTa3S = fa3T aj; = 0 can be expressed in terms of Frenet angles as
alTa3S = —a3Ta1S =Y sin¢pcos0+ O;cosp =0 (11)

This condition, which is result of defining curvature vector ry as derivative of tangent vector
with respect to s, reduces number of independent elements of Cartan matrix AfT Ag from
three to two, and these two independent elements are curvature x and torsion 7. This condi-
tion also demonstrates that curve geometry can be completely described using two independ-
ent angles only since Frenet bank angle ¢ can be expressed in terms of curvature angle
and vertical-development angle 0 as ¢ = tan ' (—0,/y,cosf) . This equation shows that if
Frenet bank angle ¢ is zero, 0, =0, and consequently, vertical-development angle 0 is con-
stant, a condition satisfied for helix curve, for which tangent and normal vectors can be writ-
ten, respectively, as

cos iy cos 0 —siny
t= | sinycosO |, n=| cosy (12)
sin 0 0

In this special case, the curvature is defined in terms of Frenet angles as x = i/, cos 0. Curve bi-
normal vector b and its derivative are defined in this special case as

—cosysin 0 sin
b=txn= | —sinysin0 |, by;=sin0|—cosyy | =—(),sin0)n (13)
cos0 0

This equation defines torsion t in this special case as t = sin0. If Yy, =0 or 0 = 0, the curve
is planar with zero torsion. Therefore, the helix is a twisted curve with constant Frenet vertical-
development angle and zero Frenet bank angle.

Curve twist is the result of coupled in-plane and out-of-plane bendings, as previously men-
tioned. These two bending modes can be represented by two independent rotations. A single
rotation leads to planar curve with zero torsion. The twist, on the other hand, requires two
rotations to achieve both in-plane and out-of-plane bending. A curve can be twisted without
any rotation about tangent vector t. For example, rotation y about Z-axis creates a curve that
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lies in X — Y plane, and such a curve has zero torsion. Unit vector n normal to the planar
curve lies in the horizontal plane. A second rotation 0 about vector n normal to the planar
curve produces the twist which depends on the two rotations. In this case, no rotation about
tangent vector t is performed. This fact is clear from definition of curve torsion 7 in terms of
Frenet angles as © =1 sin0 — ¢,. If no rotation is performed about tangent vector t, the
curve is still twisted and has a torsion defined by the equation 7 =1, sin0. The helix
example, previously discussed in this section, can be used to provide a demonstration of this
special case.

The expression k = 1, cos ¢ cos 0 — 0;sin ¢ for curve curvature is not in general an exact dif-

ferential. Curve curvature can be written in terms of two independent angles y and 0 as x =

k(y,0) = \/('//s cos0)® + (0;)*. This equation shows that curvature x cannot in general be writ-

ten as x = K1Y, + K0 with Ok1/00 = Ok, /O, which is exact-differentiability condition. This
implies that curvature x cannot be written directly as derivative of an angle. An exception to this
rule is planar curves or curves that have special geometry as helix curve for which Frenet verti-
cal-development angle 0 is constant, as will be discussed in a later section of this paper. Curve
torsion is result of two bending modes that define also curve curvature. Torsion definition is
function of curvature vector and its derivative. Derivative of curvature x with respect to arc
length can be written as x; = (1/x)(¥ cos 0 —  0;sin 0 + 0). Derivatives of Frenet vertical-
development and curvature angles are given, respectively, as 0, = (5z; — 5z;)/(5* cos 0), and y, =
(5y1 cos 0 — y,(5 cos 0 — §%0,sin 0))/ (5° cosy cos 20), where dot in this case refers to differenti-
ation with respect to time in case of motion-trajectory curves. These derivatives can also be used
to define curve curvature.

One can also show that, in this case of Frenet angles, projection of vector ® =[7 0 K]T
along tangent vector is @-t = tcosycos 0+ ksin 0, which demonstrates that projection of the
vector that defines elements of skew-symmetric Cartan matrix cannot, in general, be written as
derivative of a single angle along curve tangent vector. This is despite Frenet bank angle ¢ is per-
formed about tangent vector t. That is, while ¢, enters into torsion definition, it is not in general
equal to the torsion, and distinction needs to be made between local (relative) and global geom-
etry definitions.

8. Frame uniqueness

Infinite number of frames can be defined by a simple rotation 0p about curve tangent vector t. If
there are no conditions imposed on definition of these frames, frame Cartan matrix has three
independent elements; alTaZS = —a2T ag, alTa3s = —a3T a;, and a2T a3, = —a3T ay;. The rotations ¢ and
0p are commutative because they are performed about the same axis defined by tangent vector t.
Performing rotation 0p about the tangent vector t defines the frame

AB = [al a a3]

cosycos —sinycosf + cosysinfsinff —sinysinff — cosysinfcosff (14)
= | sinycos  cosycosfi+ sinysinOsin i cossin § — sin iy sin 0 cos f§
sin 0 —cosfsinf§ cosfcos f
In this equation
B=¢+0g (15)

If no conditions are imposed, then Cartan matrix associated with frame Ap has three independent
elements. Frame Ap can be defined using the condition
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a§a35 = —a3Ta2$ =0 (16)
Differentiating vector a, with respect to arc length s, one obtains
—cosiycos f — sinysinOsin ff cos s cos 0
a =Y, | —sinycos f+ cosyysinOsinf | + Ossin f| siny cos 0
0 sin 0
siny sin f 4+ cos iy sin 6 cos f§
+ B, | —cosysin f + sinysin 0 cos f§

—cosfcosf

(17)

which can be written as

—cosycos f — sinysin Osin f§
ay =y, | —sinycos f+ cosysinOsinff | +a;0;sin ff — asf3; (18)
0

It follows that
a3Ta23 = —a2Ta35 =y sin0— ;=0 (19)
This equation shows that
Ops =Y sin0 — ¢, =1 (20)

For a general space curve, T =, sin0 — ¢, is not exact differential, that is, there is no unique
value for angle 0p, and consequently, there are infinite number of arrangements for the frame
defined by the matrix Ap. In this case in which the condition a2T a3, = —a3Ta25 =0 is imposed,
Cartan matrix defined by AgABS leads to

to=a; = kia, +kas, ay=—kit, ay=—kt (21)

where

ki = —(, sin  cos 0 + 0, cos ) } (22)

ky = —(Y, cos fcos O — O sin )

A constant vertical-development angle 0, as in case of the helix curve, implies ¢ = 0. In this spe-
cial case, one has Op; = . sin = 7, which leads to coordinate-level (holonomic) equation 0 =
Opo + (W — ) sin O, where subscript o refers to initial value. Constants k; and k, reduce,
respectively, to

k] _ _lps sinﬁcos() = —Ksin ()B } (23)

ky = — cos fcos) = —k cos Op

which shows that k = \/k? + k3.

9. Examples and results

Three different examples of curves with different geometries are considered in this section. The
first example is helix curve which has zero Frenet bank angle ¢ and constant vertical-develop-
ment angle 0. The helix has constant curvature and torsion, and its twist is not attributed to rota-
tion about curve tangent vector. The second example is a curve with non-constant curvature and
zero torsion. This second example is used to demonstrate the difference between Frenet bank
angle which is oscillatory and Bishop shear angle which increases linearly with arc length. The
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third example is for a curve with non-zero torsion and is used to demonstrate that the torsion is
not in general an exact differential.

9.1. Helix curve

Parametric equation of helix curve is
r(s) = [acoso asina bcx]T (24)

where o = s/r, s is arc-length parameter, a is helix radius, b/a is helix slope, and r = v/a? + b? .
Using the preceding equation, it can be shown that curvature x and torsion 7 are constant and
defined, respectively, as k = |a|/r and T = b/r.

Unit tangent vector is t = (1/r)[ —asin(s/r) acos(s/r) b] ”. The matrix that defines orien-
tation of helix Frenet frame can be written as product of two matrices as

(—a/r)sin(s/r) —cos(s/r) (b/r)sin(s/r)

Aj=[t n b]=| (a/r)cos(s/r) —sin(s/r) —(b/r)cos(s/r) | = AnAp (25)
(b/r) 0 a/r

where
—sin(s/r) —cos(s/r) 0 a/r 0 —=b/r
Ap = | cos(s/r) —sin(s/r) 0|, Ap=1]0 1 0 (26)
0 0 1 b/r 0 a/r
Frenet-angle representation of tangent vector t is
—asin (s/r) cosy cos 0
t=(1/r)| acos(s/r) | = | sinycosO (27)

b sin 0

Using this equation, one can define Frenet curvature and vertical-development angles ¥ and 0,
respectively, as

(28)

cosyy = —sin(s/r), siny = cos(s/r),
cos@=a/r, sinf=">/r,

These equations lead to

Y, =1/r=(r/b)r, t=, sin0=>b/r*=b/(a*>+ V) (29)

This equation shows that torsion 7 depends only on derivative of one angle, curvature angle .
This is a case of a single parameter-dependent rotation. In this special case, torsion 7 is an exact
differential and its integration leads to

ers =b(s—so)/r* = (b/T)(¥ — ¥,) (30)
This equation shows that
V=s/r, Y,=s,/r (31)
That is, helix equation can be written in terms of Frenet curvature angle as
r(s) = [acosy asiny bl//]T (32)

Because the torsion is constant, in this special case of helix curve, derivate of Bishop shear angle
0p, is constant.
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Figure 1. Curve plot.

9.2. Bishop shear and Frenet angles

In case of zero torsion, Bishop angle can assume any constant value, while Frenet bank angle can
be oscillatory. The example considered in this section demonstrates difference between Frenet
bank angle and Bishop shear angle in case of zero-torsion curve. As discussed in this paper,
Frenet bank angle enters into definition of curve geometry and defines direction of curve normal
vector. For helix curve, for example, Frenet bank angle is zero, while Bishop shear angle is non-
zero and increases as the arc length increases since the helix has constant torsion 7. The curve
considered in this section is shown in Figure 1 and is defined as

r:[x y z]T:[t Y,sinwt Zosinwt]T (33)

In this equation, curve parameter ¢ is time, Y, = Z, = 0.02 m, and @ = 6 rad/s. Curve tangent
vector is defined as

r=[x y zt]T:[l wY,cosmt a)ZDcoswt]T (34)

Norm of this tangent vector is |r,| = \/ 1+ (wcoswt)*(Y2 4 Z2). For this curve, Frenet curvature
and vertical-development angles can be defined using the equations:

tanyy = y;/x; = oY, cosw t
} (35)

tan 0 = z,;/\/x? + y? = wZDcoswt/\/l + (wY, coswt)*

These equations show oscillatory nature of the two Frenet angles i and 0. Curve second and
third derivatives with respect to parameter t are defined, respectively, as

T . . T
te= (x4 yu 2] =@*[0 —Y,sinwt —Zsinot] } (36)
T T
Y — I:xt” Vir  Zint ] = CU3 [0 —Yo coswt —Zo Cos t}

The curvature components o and o, are defined for this curve as (Shabana, 2021a; Shabana
2022)



14 A. A. SHABANA

0.8
| . it "

~
L

e
—_—
-
=
1

0.4 q

Curvatures
(=)
N

0 1 ] 1 n ]
| L | A S
-0.2 A ' 1 ' \ ’ |} x .
[ I é ] [ [ I
{ i v : X i i i
-04 |‘ ' * ,‘ . ,l .‘ ' -
1 ‘ ¥ [} ] ‘ I
-0.6 ‘. " \ '-' \ F.’ \ l, 4
g Yo L% o
_0.8 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

Figure 2. Curve curvatures (Black-triangle: Curvature k; Red-square: Curvature component oy; Blue-circle: Curvature component o).
_ 2 2 2
o = (YuXe — xtt}’t)/rt| Ve

= (—w?Y, sinwt)/(l + (wcoswt)’ (Y2 + Zﬁ)) \/1 + (wY, coswt)?,

oy = (Ztt(xf -i-)/,z) — Z¢(Xe Xyt +yzyn))/<rz|3 X +)’%>

= YOZO(— sina)t(l + (wY, coswt)z) +Y,( sinwtcoswt))/|rt|3\/1 + (wY, coswt)2

(37)

Figure 2 shows the curvature x = /o7 4+ 2 and curvature components oy, and o,. The results of
this figure show that all curvature components are oscillatory and the curve has curvature-vanish-
ing points. Figure 3 shows that Frenet bank angle ¢ is also oscillatory around a nominal value
which indicates that super-elevation of Frenet osculating plane is not zero. Figure 4 shows that
Frenet curvature and vertical-development angles of this curve are equal and both angles are
oscillatory. Figure 5 demonstrates that normal vector exists at curvature-vanishing points for this

curve with the longitudinal component having smallest absolute value. Curve unit normal and bi-

normal vectors are defined, respectively, as

n<1/(|rt| Yg+zg>>[—w(Y02+Z§)coswt Y, ZO}T
(e e

This equation shows that bi-normal vector b is constant, and therefore, this curve is a planar
curve with zero torsion. Bishop shear angle 0g, therefore, is constant, which when compared
with the results presented in Figure 3 demonstrates difference between Bishop shear angle 05 and

(38)

Frenet bank angle ¢.
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9.3. Non-zero torsion

Curve equations considered in this example is

r(t) = [ cost sint btz/Z}T (39)
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Tangent vector is

t=(1/])[—sin(t) cos(r) bt]" (40)
where |r,| = /1 4 (bt)>. Curve Frenet-angle representation is
—sint cosy cosf
t=(1/|r;|)| cost | = | sinycosl (41)
bt sin 0
It follows that
cosyy = —sint, siny = cost, (42)
cosO =1/|r;|, sin0 = bt/|r;],

The expression for torsion 7 is
HBS =1T= lps sin 0 — (rbs (43)

If T were an exact differential in this example, then

Ops = 1 = (00p/ Oy, + (005/00)0, (44)
(6205/0 00) = (6°05/00 0)

where 0p is Bishop shear angle. The above exact-differentiability condition, however, is not satis-
tied for this curve since

(45)

(005/09) = sin0 = bt/|r)|, (905/90) = —1
(0205 0090) # (6%05/000)

These equations imply that the torsion 7 is not an exact differential.

10. Rotation sequences

Two of the three Frenet angles used to describe curve geometry are sufficient since third angle ¢
can be written in terms of the other two angles ¥ and 0. This fact is clear from tangent vector
definition t = [ cosycos® siny cos 0 sinQ]T. Using this equation, curvature vector can be
written as

t, = tpscosﬁ[—sinlﬂ cos O]T

T (46)
:05[—c05lpsin9 —siny sin 6 cos@]
which defines curve curvature as k = \/ (Y, cos 0)* + (0,)* and curve normal vector n as
= 0/x)| —si o]
n= (Y,cos0/x)[—siny cosy 0] )

= (0s/x)[ — cosyysin0 —sinysin0 cosQ]T

Bi-normal vector b can be obtained from cross-product b =t x n. Therefore, Frenet frame trans-
formation matrix As can be written in terms of two independent angles only. However, deriva-
tives of these angles with respect to the arc length s appear in this matrix. Definition of normal
vector n in the preceding equation, however, shows that angle ¢ = tan ~!(—0;/y; cos §)) can be
used to eliminate explicit dependence of Frenet-frame transformation matrix on derivatives.

Another set of angles that can be used are three rotations V/, ¢, and 0 about local axes Z, X,
and Y, respectively. This sequence is selected to examine effect of applying rotation ¢ about tan-
gent vector before applying third rotation 0. Using this new sequence, one has
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Af = [al a 33]

cos 1/_/ —sin t} cos q_b sin 1} sin (ES cosf 0 sinf (48)
= | sinyy cosypcosd —cosy sing 0 1 0
0 sin q?) cos (}5 —sinf 0 cosf

One can show that if first and second columns of this matrix define tangent and normal vector,
respectively, one has the condition

Ysing +0,=0 (49)

The curvature and torsion that form skew-symmetric Cartan matrix are given in this case,
respectively, as

Kk =1 cos0cosd + ¢p,sin0, (50)
T= ﬂ}ssinécosgﬁ + (}Scos@

These definitions of the curvature and torsion demonstrate again that curve geometric invariants
are not exact differentials. That is, exact differentiability of Cartan-matrix elements does not
depend on rotation sequence. Comparing these expressions with the rotation sequence previously
used indicates that the first rotation sequence leads to simple expressions. Furthermore, this first
sequence is more relevant to railroad track construction procedures used in practice.

In order to check the results obtained in this section using an alternate approach, tangent and
normal vectors are written, respectively, using the matrix Ay = [t n b} as

cosQ/ cosE) — sin l} sin (ZS sin @ — sinilz cosﬁq_b
t= | sinyycos + cosysingsind |, n= | cosycose (51)
—cos ¢ sinf sin ¢

This equation shows that curvature vector t; = r,; can be written as

—sintﬁcos@—cost}sin(}sin@ —sint}cos&b
tSZJ/S cosx/?cos@—sint}sinr}sinb —i—(}ﬁﬁin@ cosn}cos&)
0 sin ¢
- - - ¢ (52)
— cos Y sin @ — sin i sin ¢ cos 0
+ 0, —sinlﬁ sin0 + cost/_/sin(?)cos@
—cos ¢ cos 0
Using condition i/ sin ¢ 4 0, = 0 to eliminate 0;, the preceding equation can be written as
~ B o |- sin_l} cos_(}
t; = (f,cospcosO + ¢ sin0) | cosy cos¢p | =kn (53)
sin ¢

This result confirms curvature expression previously obtained. It is to be noted, however, that for
this rotation sequence, unlike the first rotation sequence, use of two angles } and ¢ without
introducing third angle 0 is not sufficient to properly define unit tangent vector. This is mainly
due to the fact that rotation ¢ about curve tangent vector in the horizontal plane does not
change orientation of this vector and this tangent vector remains function of angle i only.

11. Relevance to mechanics problems

The analysis presented in this paper is focused on curve geometry, and consequently, it is relevant
to both motion trajectory curves and one-dimensional beam theory. No restriction is imposed in
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this study on space-curve geometry, and therefore, the analysis is applicable to recorded motion
trajectories with arbitrary geometry and large deformation of beams. Because curve geometry is
defined in terms of two independent Frenet angles; curvature angle y and vertical-development
angle 0, it is clear, as previously mentioned, that curve twist (torsion) is due to out-of-plane
bending mode and should be distinguished from torsion due to shear. It is demonstrated that
curve torsion due to out-of-plane bending cannot be defined as derivative of an angle, shedding
light on issues that need to be addressed when considering Bishop frame in which definition of
angle 0p is not unique and depends on assumed initial value. Because curve torsion is in general
not an exact differential, such a torsion due to bending cannot be integrated to define a frame.

Bishop frame is also to be distinguished from frames introduced in mechanics-literature to
account for torsion due to shear. von Dombrowski introduced a frame that has beam-centerline
tangent as its first axis (von Dombrowski 2002). This frame also differs from Frenet frame by sin-
gle rotation about beam-centerline tangent vector. Nonetheless, von Dombrowski properly intro-
duced additional degree of freedom to describe torsion due to shear. This degree of freedom is
associated with unique initial conditions required for solving resulting second-order ordinary dif-
ferential equations of motion. The frame introduced by von Dombrowski, therefore, should not
be confused with Bishop frame which does not have unique definition. Nonetheless, if Bishop
frame is associated with beam cross section, both g, and 0 g can be integrated since 0p represents
a rotation about single axis and is uniquely defined by initial conditions. In this case, Bishop
frame and the frame used in (von Dombrowski 2002) are identical; and Op; = 90p/0s can be
used to define strain energy resulting from torsion due to shear. Bending strain energy that
accounts for beam twist can be defined using beam-centerline curvature .

Regarding relevance of the analysis presented in this study to beam vibration problems, curve
equation used in this study represents a specific configuration in which s is curve arc length.
That is, the curve can be viewed as a snapshot of a configuration that can be reference or current
configuration regardless of how beam equation is formulated. Using general curve description in
terms of Frenet angles which define two bending modes; in-plane and out-of-plane bending; non-
linear beam equations can be systematically formulated to obtain two partial differential equations
associated with ¥ = /(s) and 6 = 6(s). Kinetic energy can be defined in terms of these two filed
variables, and bending strain energy can be defined using general curvature expression. Resulting
partial differential equations can be highly nonlinear if small displacement assumptions are not
made in formulating beam strain energy and definition of curvature. Nonetheless, using two
Frenet angles defines an inextensible beam since longitudinal tangent determined by differenti-
ation with respect to arc length s remains unit vector. To account for beam extension, longitu-
dinal field variable can be introduced. A snapshot of beam configuration defines a space curve of
extensible beam with arc length s defined in current configuration. Formulation of beam equation
using Frenet angles is beyond the scope of this investigation which is focused on definition of
space-curve Cartan matrix and demonstrating that curve curvature and torsion are not in general
exact differentials.

12. Conclusions

Space-curve curvature is used in linear and nonlinear formulations of beam vibration equations
to formulate strain energy and elastic forces. Curve torsion is result of out-of-plane bending that
produces twist to be distinguished from continuum-mechanics shear mode. Nonetheless, the
curvature and torsion are not, in general, associated with derivatives of angles because they are
elements of Cartan matrix and are not exact differentials. Curve twist, for example, is result of
coupled in-plane and out-of-plane bending modes, which can be described mathematically using
two rotations. As discussed in this paper, a curve can be twisted without performing a rotation
about curve tangent; example of such a curve is the helix curve. Because different frames were



20 A. A. SHABANA

introduced to overcome problem of defining Frenet frame at curvature-vanishing points, Cartan
matrix can have different structures that depend on the condition used to define the frame.
Frenet angles are used in this study to develop simple and general expressions for the curvature
and torsion. Two different rotation sequences are used to demonstrate that the curvature and tor-
sion are not exact differentials. The analysis and results presented in this investigation demon-
strate fundamental difference between Bishop shear angle and Frenet bank angle. Uniqueness of
Bishop shear angle and Bishop frame are discussed
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