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ABSTRACT threads and result in 9% higher average edge coverage over QSYM

Coverage-guided fuzzing has become mainstream in fuzzing to
automatically expose program vulnerabilities. Recently, a group of
fuzzers are proposed to adopt a random search mechanism namely
Havoc, explicitly or implicitly, to augment their edge exploration.
However, they only tend to adopt the default setup of Havoc as an
implementation option while none of them attempts to explore its
power under diverse setups or inspect its rationale for potential
improvement. In this paper, to address such issues, we conduct
the first empirical study on Havoc to enhance the understanding
of its characteristics. Specifically, we first find that applying the
default setup of Havoc to fuzzers can significantly improve their
edge coverage performance. Interestingly, we further observe that
even simply executing Havoc itself without appending it to any
fuzzer can lead to strong edge coverage performance and outper-
form most of our studied fuzzers. Moreover, we also extend the
execution time of Havoc and find that most fuzzers can not only
achieve significantly higher edge coverage, but also tend to perform
similarly (i.e., their performance gaps get largely bridged). Inspired
by the findings, we further propose Havocprap, which models the
Havoc mutation strategy as a multi-armed bandit problem to be
solved by dynamically adjusting the mutation strategy. The evalua-
tion result presents that Havocy 4p can significantly increase the
edge coverage by 11.1% on average for all the benchmark projects
compared with Havoc and even slightly outperform state-of-the-art
QSYM which augments its computing resource by adopting three
parallel threads. We further execute Havocy 4 with three parallel
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1 INTRODUCTION

Fuzzing (or fuzz testing) refers to an automated software testing
methodology that inputs invalid, unexpected, or random data to
programs for exposing unexpected program behaviors (such as
crashes, failing assertions, or memory leaks), which can be further
inspected or analyzed to detect potential vulnerabilities/bugs [43].
In particular, many existing fuzzers tend to facilitate their vulnera-
bility/bug exposure via optimizing code coverage of programs [7,
20, 33, 34, 52]. Given an initial collection of seeds, such coverage-
guided fuzzers usually develop strategies to iteratively mutate them
for generating new seeds that can trigger higher code coverage.
Notably, a number of recent coverage-guided fuzzers (e.g., AFL [52],

AFL++ [12], MOPT [25], QSYM [50], and FairFuzz [20]) integrate
a lightweight random search mechanism namely Havoc! to their
respective fuzzing strategies for increasing their code coverage.
For instance, we observe that while the major fuzzing strategy of
FairFuzz can explore 12k+ program edges within around 21 hours,
its adopted Havoc can explore 7.8k+ program edges within only
around 3 hours. In contrast to many existing fuzzers which adopt
only one mutator under each iterative execution, Havoc randomly
selects multiple diverse mutators, e.g., flipping a single bit and in-
serting/deleting a randomly-chosen continuous chuck of bytes, and
applies them altogether for generating one seed during each itera-
tion. Typically, under each iteration, Havoc can be integrated with
fuzzers either sequentially, i.e., executing Havoc upon the seeds col-
lected after executing their major fuzzing strategies, or in parallel,
i.e., executing Havoc and their major fuzzing strategies at the same
time in different processes/threads upon their seed aggregation.

!While such mechanism may have different names according to different fuzzing
papers, we adopt Havoc following AFL.
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Although Havoc has been widely adopted by existing fuzzers,
they tend to include Havoc only as an implementation option with-
out further investigating its rationale or exploring its potentials.
For instance, AFL, AFL++ and FairFuzz simply adopt Havoc as an
additional mutation stage and QSYM utilizes Havoc to generate
seeds for its concolic execution to increase code coverage. That
said, they simply adopt Havoc under its default setup, i.e., none
of the prior work attempt to study the impact of different Havoc
settings, explore different ways to integrate Havoc, or further boost
the Havoc strategy itself.

In this paper, we conduct the first comprehensive study of Havoc
to unleash its potential. In particular, we first collect 7 recent bi-
nary fuzzers and the pure Havoc (i.e., applying Havoc only without
appending it to any fuzzer) as our studied subjects and construct a
benchmark by collecting their studied projects in common. Then,
we conduct an extensive study to investigate how enabling Havoc
in the studied subjects can impact their performance (e.g., code cov-
erage and bug exposure). Our evaluation results indicate that for
all the studied fuzzers, appending Havoc to them under its default
setup can significantly increase their edge coverage upon all the
benchmark projects from 43.9% to 3.7X on average. Meanwhile, we
also find that even directly applying the pure Havoc only can result
in surprisingly strong edge coverage and significantly outperform
most of our studied fuzzers. Moreover, while different fuzzers can
achieve quite divergent edge coverage results, applying Havoc to the
studied fuzzers under sufficient execution time can in general not
only significantly increase their edge coverage compared with their
default Havoc integration, but also strongly reduce the performance
gap of their edge coverage when applying their original versions.
Lastly, Havoc can also help all the studied fuzzers expose more
unique crashes than their corresponding major fuzzing strategies.

Inspired by our findings, we propose an improved version of
Havoc namely Havocyap [32] which models the Havoc mutation
strategy as a multi-armed bandit problem (MAB) [45] to be further
solved by dynamically adjusting the mutation strategy. The eval-
uation results indicate that under 24-hour execution, Havocyap
can outperform the pure Havoc significantly by 11.1% in terms of
edge coverage on all the benchmarks on average. Havocyap can
also slightly outperform state-of-the-art QSYM which augments
its computing resource by adopting three threads in parallel. More-
over, we also design Havoc?w Ap Dy executing Havocyiap with three
threads in parallel. The evaluation result indicates that Havoch AB
can outperform state-of-the-art QSYM by 9% on average.

To summarize, this paper makes the following contributions:

e We extensively study the performance impact by applying
Havoc to a set of studied fuzzers on real-world benchmarks.

e We find that applying Havoc can substantially improve edge
coverage and crash detection for all the studied fuzzers.

e We propose a lightweight approach Havocygap based on our
findings which can boost the pure Havoc by 11.1% under
a 24-hour execution, and outperform all the other studied
fuzzers.

2 BACKGROUND

Havoc was first proposed in AFL [52] and later further adopted
by many other fuzzers [6, 7, 12, 20, 25]. While their adoptions of
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Havoc can be slightly different, they typically integrate Havoc with
their major fuzzing strategies (i.e., the core fuzzing strategies) for
their iterative executions, i.e., under each iteration, Havoc repeat-
edly mutates each seed provided by (or aggregated to its own seed
collection from) executing the major fuzzing strategy via apply-
ing multiple randomly selected mutators simultaneously. Figure 1
presents the basic workflow of Havoc. For each seed in the seed
corpus, Havoc first determines the count of its mutations based on
the real-time seed information, e.g., queuing time of seeds and the
existing “interesting” seed number (i.e., the number of the seeds
which can explore new edges defined by AFL). Next, each time
when mutating a seed, Havoc implements mutator stacking, i.e.,
mutating it by randomly applying multiple mutators (e.g., 15 for
AFL, MOPT, etc.) in order from a set of mutators. Note that Havoc
usually enables a maximum size of such mutator stack (e.g., 128 for
AFL, MOPT, etc.) and one mutator can thus be selected multiple
times when mutating a given seed. If the generated mutant is “in-
teresting” (i.e., exploring new edges), it will be included as a seed
for further mutations. Havoc repeats such process until hitting the
mutation count. Accordingly, its fuzzer can resume the execution
of its major fuzzing strategy when needed.
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Figure 1: The framework of Havoc

Table 1: Mutation operators defined by Havoc

Type Meaning Mutator
Flip a bit at ds
bitflip 'p a bitat & random bitflip 1
position.
. . . interest 8
interesting  Set bytes with hard-coded .
values interesting values interest 16
& values. interest 32
arithmetic addition 8
. Perform addition operations. addition 16
increase Ly
addition 32
. . decrease 8
arithmetic . .
Perform subtraction operations. decrease 16
decrease
decrease 32
d Randomly set a byte t
random andomly set a byte to random byte
value a random value.
delet: Randomly delet
¢ cte andomy deleie delete chunk bytes
bytes consecutive bytes.
clone/insert Clone bytes in 75%, otherwise clone/insert
bytes insert a block of constant bytes. chunk bytes
overwrite Randomly overwrite the overwrite
bytes selected consecutive bytes. chunk bytes
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2.1 Mutators and Mutator Stacking

Table 1 presents the details of Havoc mutators. Note that in the
“mutator” column, the number followed by the mutator name refers
to the bit-wise mutation range. For instance, bitflip 1 refers to
flipping one random bit at a random position. To our best knowl-
edge, most fuzzers [6, 7, 12, 25, 50, 52] enable a total of 15 mutators
for Havoc. In this paper, we categorize them into two dimensions:
unit mutators (labeled in red in Table 1) and chunk mutators (labeled
in blue). In general, unit mutators refer to mutating the units of data
storage in programs, e.g., bit/byte/word. For example, applying the
bitflip mutator in Table 1 can flip a bit, i.e., switching between 0
and 1. Meanwhile, chunk mutators tend to mutate a seed in terms
of its randomly chosen chunk. For instance, the delete bytes
mutator in Table 1 first randomly selects a chunk of bytes in the
seed and then deletes them altogether.

While many fuzzers [15, 24, 31, 33, 34] mainly apply one mutator
to a seed each time, Havoc enables mutator stacking to stack and
apply multiple mutators on a seed to generate one mutant each
time. Typically, Havoc first defines a stacking size for the applied
mutators which is usually randomly determined by the power of
two till 128, i.e., 2, 4, 8,...128, for each mutation. Accordingly, Havoc
can randomly select mutators into the stack where one mutator
can be possibly selected multiple times. Eventually, all the stacked
mutators are applied to the seed in order to generate a mutant. Note
that while most fuzzers uniformly select mutators for their Havoc,
MOPT and AFL++ adopt a probability distribution generated by
Particle Swarm Optimization [18] for Havoc to select mutators.

2.2 Integration

Havoc can be typically integrated with fuzzers in two manners.
One is the sequential manner, i.e., appending Havoc as a later muta-
tion stage to their major fuzzing strategies. For instance, AFL [52]
launches Havoc upon the seeds generated after applying its de-
terministic mutation strategy to generate more seeds under each
iterative execution. The other is the parallel manner, i.e., applying
Havoc and the major fuzzing strategy of a fuzzer in parallel. For
instance, QSYM [50] enables three threads which execute Havoc,
AFL deterministic mutation strategy, and concolic execution [14]
respectively; more specifically, the first two threads are indepen-
dently executed in parallel and their respective generated seeds are
continuously aggregated to be used for the concolic execution.

While Havoc has been widely adopted by the aforementioned
fuzzers, it is simply utlized as an implementation option while
none of the fuzzers has explicitly explored its potential power,
e.g., assessing its mechanism and adjusting its setup. Therefore,
our paper attempts to explicitly investigate Havoc, i.e., extensively
assessing its performance impact to fuzzers and its mechanisms,
for better leveraging its power and providing practical guidelines
for future research.

3 HAVOC IMPACT STUDY
3.1 Subjects & Benchmarks

3.1.1 Subjects. In general, we determine to adopt the following
types of fuzzers as our study subjects. First, we attempt to include
the fuzzers which originally adopt Havoc to expose how Havoc
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can impact their performance by default. Next, we also attempt to
explore the fuzzers which do not originally adopt Havoc but can
possibly integrate Havoc under appropriate effort. Accordingly, we
can investigate whether and how Havoc can be effective in a wider
range of fuzzers. At last, we also include the pure Havoc, i.e., using
only one seed to launch Havoc for generating new seeds without
appending it to any fuzzer, for analyzing how the power of Havoc
can be unleashed.

Note that while there are many existing fuzzers which can meet
our selection criteria above, we also need to filter them for selecting
the representative ones. To this end, we first determine to limit
our search scope within the fuzzers published in the top software
engineering and security conferences, i.e., ICSE, FSE, ASE, ISSTA,
CCS, S&P, USENIX Security, and NDSS, of recent years. Further-
more, we can only evaluate the fuzzers when their source code are
fully available and can be successfully executed. At last, it is rather
challenging to integrate Havoc with certain potential fuzzers due to
the engineering-/concept-wise challenges. Therefore in this paper,
we only target AFL variants due to the appropriate workloads for
implementing Havoc for them.

Eventually, we select 8 representative fuzzers as our studied
subjects, including 5 fuzzers with Havoc (AFL [52], AFL++ [12],
MOPT [25], FairFuzz [20], QSYM [50]), 2 fuzzers without Havoc
(Neuzz [34], MTFuzz [33]) and the pure Havoc itself. Note that
such subjects can be rather representative in terms of technical
designs, i.e., including AFL-based, concolic-execution-based, and
neural program-smoothing-based fuzzers.

3.1.2  Benchmark programs. We construct our benchmark based on
the projects commonly adopted by the original papers of our studied
fuzzers [20, 25, 33, 34, 50]. In particular, we select 12 frequently used
projects out of the papers to form our benchmark for evaluation.
More specifically, we first select all 6 projects that are adopted by at
least 3 papers; then, we further randomly select another 6 projects
which are adopted by one or two papers. The selection details are
presented in our Github page [32]. Table 2 presents the statistics of
our adopted benchmarks. Specifically, we consider our benchmark
to be sufficient and representative due to following reasons:
(1) These 12 benchmark projects cover 7 different file formats
for seed inputs, e.g., ELF, JPEG, and TIFF;
(2) The sizes of these programs that range from 1,885 to over
120K LoC can represent a wide range of programs in practice;
(3) They cover diverse functions including development tools
(e.g., readelf, objdump), code processing tools (e.g., tiff2bw),
graphics processing tools (e.g., djpeg), network analysis tools
(e.g., tcpdump), etc.

3.2 Evaluation Setups

Our evaluations are performed on ESC servers with 128-core 2.6
GHz AMD EPYC™ ROME 7H12 CPUs and 256 GiB RAM. The
servers run on Linux 4.15.0-147-generic Ubuntu 18.04. The evalu-
ations that involve deep learning model training (i.e., Neuzz and
MTFuzz) are executed with four RTX 2080ti GPUs.

We strictly follow the respective original procedures of the
studied fuzzers to execute them. Specifically, we set the overall
execution time budget for each fuzzer 24 hours following prior
works [6, 7, 19, 20, 33, 34]. Note that we run each experiment five
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Table 2: Statistics of the studied benchmarks

Programs

Package Target Class Loc
readelf ELF 72,164
nm ELF 55,307
binutils-2.36 objdump ELF 74,532
size ELF 54,429
strip ELF 65,432
libjpeg-9¢ djpeg JPEG 9,023
tepdump-4.99.0 tepdump PCAP 46,892
libxml2-2.9.12 xmllint XML 73,320
libtiff-4.2.0 tiff2bw TIFF 15,024
mupdf-1.18.0 mutool PDF 123,575
harfbuzz-2.8.0 harfbuzz TTF 9,847
jhead-3.04 jhead JPEG 1,885

times for obtaining the average results to reduce the impact of
randomness. Notably, all the studied fuzzers are executed with
the programs based on AFL instrumentation to collect the run-
time coverage information. To this end, we apply the AFL (v2.57)
llvm-mode (llvm-8.0) to instrument the source code during com-
pilation. We also follow the instructions mentioned in previous
work [11, 17, 19, 20, 41] to construct initial seed corpus. In particu-
lar, we collect initial seeds for 1ibjpeg, 1ibtiff and jhead from
AFL official seed corpus [53] and for the rest projects from their
own test suites.

We adopt the edge coverage to reflect code coverage where an
edge refers to a transition between program blocks, e.g., a condi-
tional jump. We then measure it via the edge number derived by the
AFL built-in tool named af1-showmap, which has been widely used
as a guidance function by many existing fuzzers [8, 20, 33, 34, 50].
Note that the AFL authors also refer to such metrics as “a better
predictor of how the tool will fare in the wild” [51].

3.3 Research Questions

We investigate the following research questions for extensively
studying Havoc.

e RQ1: How does the default Havoc, i.e., the direct application
of Havoc without modifying its setup or mechanism, perform
on different fuzzers? For this RQ, we attempt to investigate
the performance impact of the default Havoc used in the
studied fuzzers.

e RQ2: How does Havoc perform on different fuzzers under
diverse setups? For this RQ, we investigate the performance
impact of Havoc by enabling Havoc in the studied subjects
under different execution time setups.

3.4 Result Analysis

3.4.1 RQI: performance impact of the default Havoc. We first inves-
tigate the impact of the default Havoc on the fuzzers with Havoc. As
mentioned in Section 2.2, there can be typically two default setting
types for integrating Havoc to fuzzers. For many fuzzers which
append Havoc as a later fuzzing strategy to their major fuzzing
strategies under each iterative execution, Havoc is launched upon
the termination of their major fuzzing strategies and terminated
after hitting the mutation count determined at runtime (illustrated
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in Section 2) without any specific execution time control by default.
As aresult, we can infer that the execution time of the default Havoc
cannot be deterministic. On the other hand, for the fuzzers which
execute Havoc and their major fuzzing strategies in parallel, the
default Havoc is usually executed all along under the execution time.
Therefore, its execution time can be typically equal to the overall
execution time. Figure 2 presents the execution time distribution
of all the studied fuzzers under the total execution time 24 hours
(note that Neuzz and MTFuzz, marked in red, do not have the Havoc
stage by default, and will be discussed later). We can observe that
while AFL, AFL++, and FairFuzz allow quite limited total execution
time of Havoc by default (i.e., from 0.79 hour to 3.09 hours), MOPT
and QSYM allow much longer execution time for Havoc. Note that
the default setting of QSYM utilizes three threads including the
default Havoc. Thus Havoc is executed in QSYM for the whole 24
hours as mentioned in Section 2.2.

Havoc 1.0000(24.0 h)
AFL 0.0393(0.94 h)
AFL++ 0.0328(0.79 h)
Fairfuzz 0.1288(3.09 h)
MOPT 0.6789(16.3 h)
Neuzz 0.1063(2.25 h)
MTFuzz 0.0833(2.00 h)
QSYM 1.0000(24.0 h)
0 0.25 0.5 0.75 1

M Magor Fuzzing Strategy [l Havoc

Figure 2: Execution time distribution within 24 hours

We first study the Havoc impact on the five fuzzers with Havoc.
Specifically, we create their variants by deleting Havoc from their
original implementations, i.e., only retaining their major fuzzing
strategies. Table 3 presents the edge coverage results of the five
fuzzers with Havoc in terms of their major fuzzing strategies (repre-
sented as “Major”) and the original implementations (represented
as “Original”) respectively. Generally, we can observe that the edge
coverage of all the studied fuzzers decrease significantly after delet-
ing Havoc from their implementations averagely, i.e., 9.7% in AFL,
27.0% in AFL++, 32.2% in FairFuzz, 79.4% in MOPT, and 62.2% in
QSYM. Combining Figure 2, we can further infer that the 79.4%
edge coverage decrease for MOPT is caused by reassigning 16.3
hours (67.9% of all time budget) originally spent on Havoc to its
major strategy; the 62.2% edge coverage decrease of QSYM is caused
by excluding the thread executing Havoc. Even for AFL and AFL++
which executes their Havoc only less than 1 hour, excluding Havoc
decreases 9.7% in AFL and 27.0% in AFL++ in terms of edge cover-
age. All such facts indicate that Havoc can significantly increase
the edge coverage over the major fuzzing strategies.

We also attempt to append the default Havoc into the fuzzers
without Havoc, i.e., Neuzz and MTFuzz, and further investigate
how the default Havoc can impact their edge coverage performance.
Specifically, their integration follows the sequential pattern adopted
by many existing fuzzers mentioned in Section 2.2, i.e., appending
Havoc after executing the original fuzzing strategies of Neuzz and
MTFuzz under each iterative execution. Therefore, the execution
time of the default Havoc adopted by them cannot be deterministic.
In particular, their execution time distributions are presented in
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Table 3: The edge coverage performance of fuzzers with Havoc

Programs AFL AFL++ FairFuzz MOPT QSYM
Original Major Original Major Original Major Original Major Original Major
readelf 12,112 11,598 9,844 8,268 36,372 20,184 67,505 8,006 69,597 15,984
nm 7,188 6,004 6,049 5,563 16,456 10,627 23,159 5,413 30,359 8,024
objdump 13,748 13,154 13,473 11,829 24,204 16,246 38,027 11,698 41,097 13,439
size 8,262 8,904 4,205 3,643 16,547 10,503 19,172 3,593 23,700 8,459
strip 15,310 14,938 12,116 9,425 26,622 20,870 37,318 9,814 46,633 16,287
djpeg 5,388 7,756 5,474 3,174 10,405 7,782 15,805 3,222 19,295 7,980
tcpdump 14,972 7,192 5,294 1,758 18,457 11,130 44,275 2,477 45,804 16,385
xmllint 18,189 15,314 15,986 13,955 28,174 14,817 49,618 13,632 46,538 20,635
tiff2bw 5372 5,658 3,767 3,127 8,834 6,340 8,707 3,148 9,301 6,984
mutool 11,529 10,064 11,028 5,677 14,430 10,397 17,438 5,867 17,827 13,653
harfbuzz 21,713 20,513 16,411 9,651 29,939 27,262 54,178 10,365 59,270 26,574
jhead 1,012 636 1,057 404 1,114 633 1,127 452 4516 2,047
Average 11,233 10,144 8,725 6,373 19,269 13,066 31,361 6,474 34,495 13,038

Table 4: The impact of Havoc on Neuzz and MTFuzz

Neuzz MTFuzz

Programs Pure .. Integration .. Integration

Havoc  Origin Havoc Major Origin Havoc Major
readelf 73,478 43,040 18,530 27,699 40,594 13,967 31,220
nm 20,696 16,002 8,617 12,469 20,863 9,841 12,745
objdump 37,401 29,155 14,619 18,661 25,369 12,057 18,784
size 17,634 13,228 6,191 8,040 12,256 8,593 6,686
strip 38,200 29,767 16,117 18,959 28981 14,098 22,884
djpeg 16,142 15805 12,861 8549 7,640 7,432 5142
tecpdump 43,482 17,216 20,704 5,755 14,067 19,237 9,727
xmllint 49,269 28,213 15,891 21,386 27,682 14,228 24,692
tiff2bw 8,516 9,168 3,174 6,016 7,254 2,088 5,806
mutool 17,014 15,560 5,171 13,196 14,391 3,976 12,961
harfbuzz 50,549 38,726 12,548 30,191 41,691 15,203 33,742
jhead 1,132 1,078 705 407 992 698 400
Average 31,126 21,413 11,261 14,277 20,148 10,118 15,399

Figure 2 where Neuzz spends 2.25 hours and MTFuzz spends 2
hours on executing the default Havoc.

Table 4 presents the edge coverage results where “Origin” refers
to the original versions of Neuzz and MTFuzz, while “Integration”
refers to Neuzz and MTFuzz integrated with Havoc. We can observe
that overall, for the new integrated version, Havoc can achieve
78.9%/66.0% higher edge coverage than the major fuzzing strategy
of Neuzz/MTFuzz on average. Moreover, the integrated fuzzers can
achieve rather significant performance gain, i.e., 19.3% over the
original Neuzz and 26.6% over the original MTFuzz. To summarize,
we can derive that for all the studied fuzzers (no matter originally
integrated with Havoc or not), appending the default Havoc to them
can significantly enhance their major/original fuzzing strategies.

Finding 1: Applying Havoc by the default setup can signifi-
cantly improve the edge coverage performance of the studied
fuzzers.

Interestingly, we can find from Table 4 that the pure Havoc, i.e.,
using only one seed to launch Havoc and executing it all along
without appending it to any fuzzer, preforms rather strong in terms
of edge coverage, i.e., 31K+ edges on average on all the benchmark
projects. More specifically, the pure Havoc can significantly outper-
form most of the studied fuzzers, e.g., 177% over AFL, 257% over
AFL++, 45% over Neuzz, while obtaining close performance with
MOPT and QSYM. Note that while we can definitely enable multiple
ways, e.g., applying more than one seed, to launch the execution of

the pure Havoc, the fact that using one seed can already achieve
such superior performance can be a strong evidence that Havoc
itself is a powerful fuzzer.

Finding 2: Havoc is essentially a powerful fuzzer—executing
Havoc under one seed without being appended to any fuzzer
for sufficient time can already achieve superior edge coverage
over many existing fuzzers.

We then investigate the correlation between the edge coverage
performance and the execution time of Havoc. We can observe
that while MTFuzz, QSYM, and the pure Havoc can achieve much
stronger edge coverage over the other fuzzers according to Tables 3
and 4, they also have longer execution time for Havoc as shown in
Figure 2. More specifically, the ranking of the edge coverage perfor-
mance can almost strictly align with the ranking of the execution
time of Havoc among all the studied fuzzers (except for Neuzz and
FairFuzz). Therefore, we can infer that for most fuzzers, executing
Havoc for longer time potentially results in higher edge coverage.

Finding 3: Executing Havoc for a longer time upon a fuzzer
can potentially result in stronger edge coverage performance.

3.4.2  RQ2: performance impact of Havoc under diverse setups. In-
spired by the previous findings, we attempt to further investigate
the performance impact of Havoc on the fuzzers under diverse ex-
ecution time setups. Specifically, while implementing the default
Havoc does not concern its execution time, executing Havoc under
diverse execution time setups essentially demands the modified im-
plementation of integrating Havoc to the fuzzers (i.e., the modified
Havoc).

Implementation. Note that in this paper, we first modify the
implementation for integrating Havoc to fuzzers in the sequential
manner. To begin with, it is essential to figure out how to control
the execution time of the major fuzzing strategy and Havoc of a
fuzzer. Specifically, our insight is to retain the fuzzing states of the
major fuzzing strategy and Havoc when they are halting. To this
end, while realizing such insight by directly integrating the source
code of Havoc into different fuzzers essentially demands substantial
engineering effort, we decide to adopt socket programming [46]
as an alternative solution, which can execute the major fuzzing
mechanism and its appended Havoc in different processes since its
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Table 5: Edge coverage results of fuzzers with modified Havoc

AFL AFL++ FairFuzz MOPT Neuzz MTFuzz

Programs Havoc QSYM - - - - - -
Orig New Orig New Orig New Orig New Orig New Orig New
readelf 73,478 69,597 12,112 73,842 9,844 72,766 36,372 71,689 67,505 73,175 43,040 70,358 40,594 69,824
nm 20,696 30,359 7,188 21,398 6,049 25,259 16,456 21,537 23,159 26,602 16,002 22,258 20,863 24,387
objdump 37,401 41,097 13,748 36,775 13,473 35,004 24,204 35,802 38,027 37,358 29,155 35,739 25,369 36,203
size 17,634 23,700 8,262 17,296 4,205 18,393 16,547 18,118 19,172 18,707 13,228 16,121 12,256 17,395
strip 38,200 46,633 15,310 37,136 12,116 37,419 26,622 37,724 37,318 40,006 29,767 35,147 28,981 37,548
djpeg 16,142 19,295 5,388 18,543 5,474 15,628 10,405 14,660 15,805 18,127 15,805 23,420 7,640 15,962
tcpdump 43,482 45,804 14,972 40,581 5,294 41,178 18,457 40,407 44,275 44,394 17,216 39,687 14,067 42,317
xmllint 49,269 46,538 18,189 45,869 15,986 46,379 28,174 45,004 49,618 47,190 28,213 45,985 27,682 47,365
tiff2bw 8,516 9,301 5,372 8,093 3,767 7,645 8,834 8,204 8,707 8,083 9,168 9,260 7,254 8,671
mutool 17,014 17,827 11,529 17,325 11,028 17,280 14,430 17,065 17,438 17,504 15,560 19,438 14,391 18,554
harfbuzz 50,549 59,270 21,713 56,058 16,411 52,451 29,939 50,619 54,178 59,314 38,726 51,498 41,691 52,964
jhead 1,132 4,516 1,012 1,129 1,057 1,124 1,114 1,123 1,127 1,133 1,078 1,127 992 1,134
Average 31,126 34,495 11,233 31,170 8,725 30,877 19,296 30,163 31,361 32,633 21,413 30,836 20,148 31,027

Table 6: Average edge coverage results under different execution time setups
] SEt“PIteration AFLpg00c AFL 44000 FairFuzz),gy0c MOPTg00c Neuzzjgu0c MTFuzzjg00

1h 31,170 30,877 30,163 32,633 30,836 31,027

2¢h 2h 30,451 31,069 30,853 31,465 31,259 31,265

4h 30,315 30,541 31,296 32,354 31,462 31,472

12h 30,567 30,247 30,543 31,764 30,975 30,865

built-in blocking mechanism can provide the “wake up” function
for both monitoring the execution time of an event given its preset
timeout and retaining the fuzzing states while halting. Note that
such solution can be quite consistent with a single-process fuzzer in
terms of CPU resource consumption. Specifically in the beginning,
we execute the major fuzzing strategy of a fuzzer for time duration ¢
to generate new seeds. Subsequently, we transmit the file names of
the generated seeds to Havoc by socket. After completing the whole
seed transmission, Havoc is executed for time duration t as well
while the execution of the original fuzzing strategy is paused. Note
that instead of dynamically setting a mutation count for controlling
its execution as the default Havoc, our modified Havoc iteratively
generates new seeds based on the updated collection of the “in-
teresting” seeds within time duration ¢. Similarly after executing
Havoc, we transmit the file names of its generated seeds to the
original fuzzing strategy of the fuzzer via socket for further seed
generations. Such process is iterated until hitting the total time
budget.

Evaluation. We first evaluate Havoc by setting the iterative
time duration ¢ of the major fuzzing strategy/Havoc as 1 hour (i.e.,
executing them for 1 hour respectively under each iteration). As a
result, for each fuzzer, its modified Havoc can be executed within a
total of 12 hours under our 24-hour budget. Table 5 presents the
evaluation results of the fuzzers with and without applying such
modified Havoc where “Orig” represents the original fuzzers with
their default implementation and “New” represents the associated
fuzzer integrated with the modified Havoc. Note that since such
setup does not fit for the essential mechanisms of the pure Havoc
and QSYM which execute Havoc for the whole execution, i.e., 24
hours, we retain their results of the previous evaluations in Table 5
simply for illustration and comparison.

We can observe that while MOPT with the modified Havoc can
incur quite close edge coverage compared with its default Havoc

integration as in Table 3, the rest fuzzers with the modified Havoc
can achieve much higher edge coverage compared with their orig-
inal versions, e.g., 1.8X for AFL. Such result can further validate
our Finding 3. Specifically, the original MOPT can already incur
quite long execution time for Havoc by default, i.e., 16.3 hours,
and thus can result in rather strong edge coverage. On the other
hand, the execution time of Havoc for the other fuzzers turns to
be much longer with our new hybrid strategy, and thus results in
a significant performance gain. Note that for the fuzzers which
originally adopts no Havoc (i.e., Neuzz and MTFuzz), their edge
coverage performance can also be significantly improved compared
with their original versions.

More interestingly, we can find that for most fuzzers, they can
incur quite close edge coverage with the modified Havoc on all the
benchmark projects averagely, i.e., around 31K. Moreover, their
project-wise performance can be quite close as well, e.g., around
71K in project readelf and 38K in project objdump. Compared with
the edge coverage from their original versions, their performance
gaps are significantly reduced. To illustrate, we adopt the STD
(Standard Deviation) of the average edge coverage for the studied
fuzzers. Specifically, the STD of all the fuzzers with our new strategy
for integrating Havoc is 819 compared with that of 8,879 when
using their default strategies for integrating Havoc, while their
average edge coverage is 31,118 compared with 20,278. Such result
can indicate that by executing Havoc for sufficient time, the edge
coverage performance gaps of different fuzzers can be significantly
reduced. On the other hand, while the performance of many studied
fuzzers are significantly improved by extending the execution time
of Havoc in a sequential manner, their performance are rather close
to the pure Havoc. Such facts indicate that Havoc can potentially
dominate many fuzzers in terms of edge coverage.

We also include block coverage rate (i.e., the number of accessed
basic blocks divided by the total number of basic blocks) [23, 50] to
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Figure 3: Block coverage of different fuzzers with modified
Havoc

strengthen our findings. We can observe in Figure 3 that almost all
the studied fuzzers significantly increase block coverage compared
with their original implementations, e.g., 42.7% for AFL, and 26.9%
for MTFuzz. Moreover, all the studied fuzzers achieve quite close
block coverage rates after integrating Havoc with the average block
coverage rate of 18.7% and STD of 0.00465, which are consistent
with the edge coverage trends.

Finding 4: Executing Havoc for sufficient time can dominate
the performance of the studied fuzzers and significantly
reduce their performance gaps.

We further attempt to investigate how changing the integration
mode of Havoc with fuzzers can impact their edge coverage perfor-
mance. To this end, we first enable diverse setups of the iterative
time duration t of Havoc in terms of 2 hours, 4 hours, and 12 hours
under the total execution time of 24 hours. Table 6 presents the
evaluation results under such setups. We can observe that overall,
there is no significant performance difference under all the setups.
Specifically, the largest gap of the average edge coverage of a given
fuzzer is only 3.76%. Such fact can indicate that the edge coverage
performance is somewhat resilient to time duration ¢, i.e., under
sufficient total execution time, adapting the execution time of Havoc
under each iteration results in rather limited impact on the edge
coverage of the associated fuzzer.

36000

m Hybrid-2 Hybrid-1 Sequentia
34000
32000
30000
28000 ‘
26000
QSYM AFL++ FairFuzz MOPT Neuzz MTFuzz

Figure 4: Edge coverage of different fuzzers with the hybrid
integration of Havoc
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Finding 5: As long as the total execution time of Havoc is
fixed, how to adapt its iterative execution can have limited
impact on the edge coverage performance of the associated
fuzzer.

While the performance gaps between different fuzzers can be
significantly reduced by applying the modified Havoc, QSYM can
still outperform the other fuzzers by at least 10%. Accordingly, we
hypothesize that executing multiple fuzzing strategies in parallel
can be potentially more advanced in boosting edge exploration. We
then attempt to validate such hypothesis by also adopting addi-
tional threads for executing Havoc in parallel in our studied fuzzers,
i.e., while retaining the execution of their modified Havoc in the
sequential manner for 12 hours, we also execute Havoc for the
whole 24 hours in parallel in additional threads. In particular, we
adopt one and two additional threads for executing Havoc respec-
tively. Figure 4 presents our evaluation results. We observe that
when adopting one additional thread to execute Havoc (labelled as
“Hybrid-1”), averagely the edge coverage of all the studied fuzzers
can be increased by 7.4%. Moreover, we can also observe that com-
pared with adopting one additional thread for Havoc, adopting two
additional threads for Havoc (labelled as “Hybrid-2”) can further
increase the edge coverage performance by 2.9% on top of all the
studied fuzzers. Compared with QSYM which originally achieves
the optimal performance via using three threads for fuzzing, MOPT
and AFL can now even incur performance gains of 1.2% and 0.4%.
On the other hand, since the performance gain by simply increasing
additional threads for executing Havoc becomes marginal, we can
infer that simply investing more computing resource on executing
Havoc may not be cost-effective.

Finding 6: Investing more computing resource in executing
Havoc can potentially reduce its execution time for approach-
ing the performance bound, but may not be cost-effective.

While the previous findings reveal that under sufficient execu-
tion time of Havoc, multiple fuzzers can approach quite close edge
coverage performance, we further attempt to investigate how com-
mon their explored edges can be. To this end, we determine to adopt
the concept of Jaccard Distance [44] to delineate the similarity of
the explored edges from different fuzzers. In particular, Jaccard
Distance is usually used to measure the dissimilarity between two
sets by dividing the difference of their union size and intersection
size by their union size. Figure 5 presents the evaluation results of
seed dissimilarity between the pure Havoc and the other fuzzers
(with the modified Havoc) on average, ranging from 0.134 to 0.256.
Such result indicates that applying Havoc to different fuzzers can
potentially explore quite common edges. Note that QSYM has the
biggest Jaccard Distance although it executes Havoc for 24 hours.
The main reasons can be that 1) QSYM invests more computing
resource, i.e., leveraging three threads running in parallel, and 2)
QSYM leverages concolic execution [14] that may explore different
paths compared with fuzzing. Furthermore, MTFuzz and Neuzz also
have large Jaccard Distance mainly because they further use neural
networks to guide the fuzzing process.
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Figure 5: The average Jaccard Distance of different fuzzers
in all studied programs.

Finding 7: Applying Havoc to different fuzzers potentially
explores rather common edges, while fuzzers guided by con-
colic execution or neural networks can better complement
Havoc.

At last, we investigate the impact of appending Havoc on expos-
ing program vulnerabilities. To this end, we attempt to collect the
program crashes caused by executing the generated seeds with and
without appending Havoc to all the studied fuzzers. Note that when
we append Havoc to fuzzers, we ensure that it can be executed
under sufficient time to fully leverage its power.

To begin with, it is essential to identify unique crashes since
it is likely that many crashes are caused by the same program
vulnerability. In this paper, we follow prior work [6, 7, 9, 19, 20,
25, 52] to identify the unique crashes only if they increase edge
coverage. Note that in this paper, all of the crashes are explored by
all of our previous evaluations. While a crash can only be reported
once among all the fuzzing strategies (including Havoc) within a
fuzzer, it can be possibly explored by different fuzzers. We then
divide crashes into two sets, i.e., the ones explored by the involved
Havoc mechanisms and the ones explored by the major fuzzing
strategies. At last, we count the unique crashes for the two sets
respectively.

Table 7 presents the results of the unique crashes. Overall, we
derive 256 unique crashes from a total of 879 crashes where 243
(95%) are exposed by Havoc and 13 are exposed by their original
fuzzing strategies, e.g., the constraint-solving-based mutations in
QSYM and the gradient-driven mutations in Neuzz. Note that we
exposed 69 unique cashes which have been fixed in the latest ver-
sions of their associated projects [3-5, 13]. We also report the rest
unknown crashes (i.e., they can be exposed in the latest version) to
the corresponding developers [2, 27]. The detailed bug report can
be found in our GitHub page [32]. Moreover, applying Havoc can
expose the crashes in 7 of the 12 total benchmark projects and be
powerful in exposing unique crashes in projects nm (78 out of 79)
and jhead (96 out of 107). Such facts indicate that applying Havoc
can not only successfully advance program vulnerability exposure,
but also potentially dominate the vulnerability exposure on certain
projects.

Mingyuan Wuf, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming Zhang, and Yuqun Zhang*

Table 7: The unique crashes found by Havoc
Unique crashes

Programs Crashes Havoc  Major
readelf (V2.30) 81 50 0
nm (V2.36) 89 78 1
objdump (V2.30) 1 1 0
size (V2.30) 4 2 1
strip (V2.30) 12 12 0
djpeg (V9c¢) 4 4 0
jhead (V3.04) 688 9 11
Total 879 243 13

Finding 8: Havoc can also play a vital role in exposing po-
tential program vulnerabilities.

4 ENHANCING HAVOC

So far, our presented powerful performance of Havoc is simply
caused by modifying its setups, including its execution time and
integration modes with fuzzers. In this section, we attempt to in-
vestigate whether the power of Havoc can be further boosted. To
this end, we first investigate the performance impact of the muta-
tor stacking mechanism adopted by Havoc, and then propose an
intuitive and lightweight technique to improve its performance
accordingly.

4.1 Performance Impact of the Mutator
Stacking Mechanism

Note that as a simplified mutation strategy, the mutator stacking
mechanism contains two steps: determining stacking size and ran-
domly selecting mutators, to impact the performance of Havoc. We
then investigate the performance impact caused by each step. In
particular, we first attempt to investigate the performance impact of
stacking size. To this end, instead of randomly determining stacking
size for mutating seeds at runtime of Havoc originally, we imple-
ment Havoc under a fixed stacking size for all its mutations. Figure 6
presents our evaluation results of the edge coverage ratio results in
terms of all the possible fixed stacking size, i.e., 2, 4, 8,...128, on top
of all the studied benchmark projects. Note that the edge coverage
ratio of one project is computed as the the explored edge number in
terms of one fixed stacking size over the total explored edge number
of all the fixed stacking sizes. We can observe that overall, the stack-
ing size which causes the optimal edge coverage performance for
each studied project can be quite divergent, e.g., selecting stacking
size 8, 2, and 32 can optimize the edge coverage in tcpdump, djpeg,
and mutool respectively. Such results suggest that it is essential to
adapt the stacking size setup for different projects to optimize their
respective edge coverage.

We then investigate the performance impact from mutators. To
this end, instead of uniformly selecting mutators out of a total of 15
mutators, we first uniformly select chunk mutators or unit mutators
and then randomly select their inclusive mutators under the given
stacking size for mutating one seed. Figure 7 presents the edge
coverage ratio results in terms of the selected mutator types on top
of all the studied benchmark projects. Note that the edge coverage
ratio is computed as the explored edge number by either chunk
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Algorithm 1 The Framework of Havocyap

Input : seed

Output:newseed
1: function MULTI_ARMED_UCB_SELECTION

2 newseed « seed

3 stacksize « selectStackArm()

4 mutatortype « selectMutatorTypeArm(stacksize)

5: for iteration in stacksize do

6 mutator « randomSelectMutatorByType(mutatortype)
7 newseed « generateNewSeed(mutator, newseed)

8 reward < 0

9 if isInteresting(newseed) then

10 reward « 1

11: updateStackBandit(reward, stacksize)

12: updateMutatorTypeBandit(reward, stacksize, mutatortype)
13: return newseed

mutators or unit mutators over their total explored edge number.
We can observe that overall, the distribution of the edge coverage
ratio performance can be quite divergent among different projects,
e.g., the edge coverage ratio of the unit mutators ranges from 18.39%
(xmllint) to 94.53% (tiff2bw). Such results suggest that it is also
essential to adapt the selection of the mutator types for different
projects to optimize their respective edge coverage performance.
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Figure 6: Edge coverage for different fixed stack sizes
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Figure 7: Edge coverage for unit mutators and chunk muta-
tors

4.2 Approach

Inspired by the evaluation results above, we attempt to propose
solutions to enhance Havoc via dynamically adjusting the project-
wise selections on stacking size and mutators. Also, note that our
previous findings reveal that to unleash the power of Havoc, it is
essential to invest strong computing resources for Havoc. Accord-
ingly, our design adopts the following principles. First, we only
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enable single thread/process, i.e., enhancing Havoc via only apply-
ing our specifically designed technique instead of leveraging more
threads for more computing resource as found already. Second,
our technique should be lightweight. In particular, when designing
a technique for adjusting Havoc given the deterministic comput-
ing resource, ideally we aim for minimizing its overhead while
maximizing the execution time for the Havoc mechanism itself.

In this paper, we propose a lightweight single-threaded tech-
nique Havocyiap (MAB refers to Multi-Armed Bandit), for the pure
Havoc to automatically adjust its selections on stacking size and
mutators at runtime for facilitating its edge exploration. Specif-
ically, we determine to model our task as a multi-armed bandit
problem [45] which typically refers to allocating limited resources
to alternative choices (i.e., stacking size and mutator selections for
this problem) to maximize their expected gain (i.e., edge coverage
for this problem). More specifically, we design a two-layer multi-
armed bandit machine, i.e., a stacking size-level bandit machine and
amutator-level bandit machine, which is presented in Figure 8. Note
that the stacking size-level bandit machine enables 7 arms where
each arm is designed corresponding to a stacking size choice, i.e., 2,
4, 8,..128. After an arm of stacking size is chosen, the mutator-level
bandit machine which enables 2 arms representing chunk mutators
and unit mutators would first make a choice out of them and then
proceed to select the exact mutators via uniform distribution. Even-
tually, Havocyrop generates a mutant via the selected mutators and
executes it on the program under test for obtaining environmental

feedback for further executions.
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Figure 9: The average edge coverage of Havocyap over time

We adopt the widely-used UCB1-Tuned [1] algorithm to solve our
proposed multi-armed bandit problem. Equation 1 demonstrates
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how to select an arm under such algorithm for a given bandit
machine at time ¢. In particular, x; refers to the average reward for
arm till time ¢, n refers to the total execution count for the bandit
machine and n; refers to the execution count for armj, o; refers to
the sample variance of arm;.

_ Inn | 1 2lnn
arm(t) = arg max (xj + \/—mzn(—, oj+ ) (1)
j nj 4 nj
Note that we define the reward at time t as whether Havocysap has
explored new edges or not for all the eight bandit machines. If a
seed generated by a chosen stacking size and its selected mutators
can explore new edges, the rewards returned to the stacking size-
level bandit machine and its corresponding mutator-level bandit
machine are both 1; otherwise, they are both 0.

Algorithm 1 presents our overall approach. Havocpsap first se-
lects stacking size for the executing seed and then selects its corre-
sponding mutator type (Lines 3 to 4). Next, Havocyrap generates a
mutant by uniformly selecting the mutators of stacking size under
the chosen type (Lines 5 to 7). Eventually, if such mutant explores
new edges, we set the reward as 1 for its corresponding stacking size-
level and mutator-level bandit machines (0 otherwise) to update
Equation 1 for further executions (Lines 8 to 12).

4.3 Evaluation

To evaluate Havocyrap, we include QSYM for performance compar-
ison since it presents the optimal edge coverage performance in our
previous studies. Furthermore, we design a variant of Havocyap
namely Havoc?w g Where Havocyap is executed in three threads
in parallel for comparing with QSYM under identical computing
resources. We also include the pure Havoc as a baseline. Similar as
Section 3.2, we execute each variant for five times for each bench-
mark project to reduce the impact of randomness.

Figure 9 presents the average evaluation results of edge coverage
of the studied approaches on top of all the benchmark projects under
24-hour execution. We can observe that Havocy4p achieves sig-
nificantly better performance than pure Havoc, i.e., increasing the
average edge coverage among all the benchmark projects by 11.1%
(34,574 vs 31,126 explored edges). Moreover, we apply the Mann-
Whitney U test [26] to illustrate the significance of Havocpap. The

fact that the p-value of Havocpyrapg comparing with Havoc in terms
of the average edge coverage is 0.00507 indicates that Havocy 4B
outperforms Havoc significantly (p < 0.05). Interestingly, although
Havocyrap only adopts one thread for execution, it can slightly
outperform QSYM (which leverages three threads for execution)
by 0.2% on average among all 5 runs with the STD of 108.55. It can
also outperform QSYM for 4 out of 5 runs. On the other hand, exe-
cuting Havoc?w 4p can result in 9% edge coverage gain over QSYM
(37,614 vs 34,495 explored edges) with a p-value of 0.01219. Such
results altogether can demonstrate the strength of our proposed
HavocpraB.

Figure 10 presents the edge coverage trends of our studied ap-
proaches upon each benchmark for 24-hour execution. Overall,
Havocpap outperforms pure Havoc in most of the benchmarks sig-
nificantly. Moreover, Havocyap can outperform QSYM by at least
10% (60% more in tiff2w)in terms of edge coverage on five projects
while incurring rather close performance on the rest projects with
a single thread except jhead. Meanwhile, Havoc?w 4 can achieve
the optimal edge coverage performance on eight benchmarks. Note
that QSYM outperforms all other fuzzers in jhead (averagely 4,516
vs. 1,063). This demonstrates that grey-box fuzzing strategies alone
are ineffective for jhead while the effectiveness can be largely im-
proved by concolic execution leveraged in QSYM. Based on this
observation and Finding 7, we highly recommend future research
to investigate more powerful techniques for combining Havoc, con-
colic execution, and learning-based fuzzing.

5 THREATS TO VALIDITY

Threats to internal validity. One threat to internal validity lies
in the implementation of the studied fuzzers in our evaluation. To
reduce this threat, we reused their original source code for our
implementation and experimentation directly. Moreover, the first
4 authors manually reviewed all the code carefully to ensure its
correctness and consistency.

Threats to external validity. The threats to external validity
mainly lie in the subjects and benchmarks. To reduce the threats,
we select 8 representative state-of-the-art fuzzers, including AFL-
based, concolic-execution-based, and neural program-smoothing-
based fuzzers. We also adopt 12 benchmark projects according to
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their popularity, i.e., the most frequently used benchmarks by the
original papers of our studied fuzzers. Another threat to external
validity may lie in the randomness of the evaluation results. To
reduce this threat, all the evaluation results are averaged upon five
runs to reduce the impact of randomness.

Threats to construct validity. The threat to construct validity
mainly lies in the main metric used in this paper, i.e., edge coverage,
to reflect code coverage. To reduce this threat, while there can be
various ways to measure edge coverage, we choose to follow many
existing fuzzers [8, 20, 33, 34, 50] and leverage the AFL built-in tool
named af1l-showmap for collecting edge coverage. Furthermore, we
have also evaluated fuzzing effectiveness in terms of the number of
unique crashes.

6 RELATED WORK

Fuzzing. AFL [52] is one of the most popular fuzzers and has in-
spired many other recent fuzzers for different application domains.
Fioraldi et al. [12] integrated multiple techniques, e.g., taint tracking,
into the basic framework of AFL. Liang et al. [23] also introduced
a path-aware taint analysis fuzzer to facilitate the efficiency of
fuzzing. Bohme et al. [7] utilized a Markov chain model to allocate
energy for seed selection. Peng et al. [30] proposed T-Fuzz, which
removes sanity checks from the target program and then lever-
ages a symbolic execution engine to generate a path to the buggy
point if it finds any crash. Honggfuzz [15] boosted the efficacy of
fuzzing under multiple processes and threads while Chen et al. [10]
proposed a synchronization mechanism for integrating different
fuzzers. Wang et al. [38] proposed SYZVEGAS to fuzz the kernel
of operating systems by dynamically adjusting fuzzing strategies
via reinforcement learning. Li et al. [21] introduced Steelix, which
integrates light-weight static analysis to coverage-guide fuzzing.
Wang et al. [39] proposed Skyfire, which leverages the knowledge
in the vast amount of existing samples to generate well-distributed
seed inputs for fuzzing programs that process highly-structured
inputs. They have also proposed a grammar-aware coverage-based
greybox fuzzing approach, named Superion [40], to fuzz programs
that process structured inputs. In more recent years, researchers
have also proposed various techniques for fuzzing different types
of software systems [29, 36, 42, 55]. Wu et al. [48, 49] proposed to
detect CUDA synchronization bugs via fuzzing and repair them
automatically. Zhang et al. [54] proposed DeepRoad to generate im-
ages to fuzz image-based driving systems. Zhou et al. [56] generated
realistic and continuous images to fuzz such systems. In this paper,
we propose a technique to dynamically adjust mutation selections
for Havoc and result in strong edge coverage performance.

Studies on Fuzzing/Testing. Shen et al. [35] investigated different
bugs on different deep learning compilers. Metzman et al. [28]
introduced a platform for developers and researchers to evaluate
different fuzzers. Although they studied Havoc associated with
fuzzers, they did not evaluate it independently. Klees et al. [19] sur-
veyed the recent research literature and assessed the experimental
evaluations to illustrate the essential experimental setup for reliable
experiments for fuzzing. We actually follow the instruction of this
work to construct our initial seed corpus. Furthermore, Herrera et
al. [16] systematically investigated and evaluated how seed selec-
tion affects the performance of a fuzzer to expose vulnerabilities
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in real-world systems. Many researchers studied the rationales be-
hind fuzzing approaches. Wu et al [47] empirically evaluated the
neural program-smoothing-based fuzzers and improved them by
proposing lightweight learning-based mutation strategies. Liang
et al. [22] presented the main obstacles and corresponding typical
solutions for fuzzing. Tonder et al. [37] presented a technique to
map crashing inputs to unique bugs using program transformation.
In this paper, we conduct the first extensive study on Havoc to
demonstrate that Havoc is a powerful fuzzer, and have also shown
that it is possible to further advance Havoc.

7 CONCLUSION

In this paper, we investigate the impact and design of a random
fuzzing strategy Havoc. We first conduct an extensive study to evalu-
ate the impact of Havoc by applying Havoc to a set of studied fuzzers
on real-world benchmarks. The evaluation results demonstrate that
the pure Havoc can already achieve superior edge coverage and
vulnerability detection compared with other fuzzers. Moreover,
integrating Havoc to a fuzzer or extending total execution time
for Havoc can also increase the edge coverage significantly. The
performance gap among different fuzzers can also be considerably
reduced by appending Havoc. At last, we also design a lightweight
approach to further boost Havoc by dynamically adjusting its mu-
tation strategy.
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