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ABSTRACT

The predictability of a certain effect or phenomenon is often equated with the knowledge of relevant physical laws, typically understood as a
functional or numerically derived relationship between the observations and known states of the system. Correspondingly, observations
inconsistent with prior knowledge can be used to derive new knowledge on the nature of the system or indicate the presence of yet unknown
mechanisms. Here, we explore the applicability of Gaussian processes (GP) to establish predictability and uncertainty of local behaviors from
multimodal observations, providing an alternative to this classical paradigm. Using atomic resolution scanning transmission electron
microscopy (STEM) of multiferroic Sm-doped BiFeO3 across a broad composition range, we directly visualize the atomic structure and struc-
tural, physical, and chemical order parameter fields for the material. GP regression is used to establish the predictability of the local polariza-
tion field from different groups of parameters, including the adjacent polarization values and several combinations of physical and chemical
descriptors, including lattice parameters, column intensities, etc. We observe that certain elements of microstructure, including charged and
uncharged domain walls and interfaces with the substrate, are best predicted with specific combinations of descriptors, and this predictability
and associated uncertainties are consistent across the composition series. The associated generative physical mechanisms are discussed. It is
also found that certain parameter combinations tend to predict the orthorhombic phase in the cases where rhombohedral phase is observed,
suggesting a potential role of clamping and confinement phenomena in phase equilibrium in Sm-BiFeO3 system close to morphotropic phase
boundary. We argue that predictability and uncertainty in observational data offer a new pathway to probe the physics of condensed matter
systems from multimodal local observations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0016792

Materials with competing order parameters represent one of the
most fascinating objects in modern physics. Examples range from fer-
roelectric and ferroelastic materials in the vicinity of symmetry-
incompatible morphotropic phase boundaries,1,2,73,74 ferromagnetic
superconductors and materials such as UGe2,

3–7 charge separated
oxides,8–10 and many others. The competition often gives rise to the

complex non-uniform ground states11–14 with many degenerate
energy minima and often yields exceptional functional responses to
external stimuli, ranging from giant electromechanical coupling and
dielectric constants in ferroelectric relaxors15–20 to large volume
changes in phase change memory alloys21–23 and giant magnetoresis-
tance in nanoscale phase-separated manganites.13,24–27 In many cases,
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these phenomena manifest in doped materials, where local atomic dis-
order can significantly affect competition between the order parame-
ters, as exemplified, e.g., by ferroelectric relaxors or cation-substituted
manganites, even though in certain cases, the phase coexistence can be
induced by an external stimulus such as magnetic or electric fields, or
uniaxial or hydrostatic pressure or strain.28,29,75,76

These materials offer a challenge in terms of developing models
capable of describing and predicting their behavior. For homogeneous
materials, the natural description on the mesoscale level can be
explored within Landau theory, where the properties of interest are
associated with the appropriate order parameter and the energy of the
system is represented as its functional. For ferroelectrics, ferroelastics,
and multiferroics, the relevant description can be given by
Ginzburg–Landau theory with a real order parameter,30–32 whereas
complex order parameter fields can be used for description of super-
conductors.33–36 The mesoscopic order parameter-based approach
naturally allows for classification of phase transitions, identification of
topological defects, etc.37 However, the applicability of these meso-
scopic models for atomically disordered systems remains a topic of
continuous controversy and has been for several decades.38–40

Alternatively, the physics of these materials can be explored using
lattice models, with the materials structure or functionality represented
via a collection of local spins interacting via local interactions,41,42

potentially mediated by long-range depolarization fields. These models
can be explored numerically, or in special cases analytically, to yield
corresponding phase diagrams, susceptibilities, response functions,
and other macroscopic functionalities.41,42 On a local level, these mod-
els can give rise both to ordered and disordered ground states, offering
considerably deeper insight into the physics of the material.12 Yet, the
key issue both for the mesoscale and lattice-type models is comparison
with an experiment, as a way to explore the applicability of the model,
extract relevant materials parameters, and enable forward prediction
and thus materials optimization. For spatially uniform ground states,
the combination of diffraction techniques with macroscopic measure-
ments offers comprehensive insight into materials functionality, since
the mesoscopic order parameter fields provide a sufficient description
of the system. This, however, is not the case for disordered systems or
systems with competing and spatially inhomogeneous ground states,
since macroscopically averaged scattering data necessarily lose the rel-
evant information.43,44

Until recently, the analysis of such systems was possible only via
complex diffraction techniques, where the analysis of the correlated
disorder allowed reconstruction of possible microscopic models.44–46

However, the associated inverse problems generally lead to multiple
possible solutions, necessitating additional structural and composi-
tional information. Recently, the emergence of high-resolution aberra-
tion-corrected electron microscopy has provided an opportunity to
visualize these systems at the atomic level and detect minute distor-
tions of local atomic structures that can serve as a proxy for local order
parameter fields. Namely, site variations of symmetry can be extracted
from the atomic coordination neighborhood to identify changes in
local symmetry class, i.e., different phases,47,48 or quantify the
strength of symmetry-lowering distortions which provide measures
for several order parameter fields. For instance, affine-type transforms
of the local atomic lattice (i.e., expansions, compressions, and shears)
serve as proxies for strain fields.49–53 Additional examples include
scalar lattice measurements, such as oxygen octahedral tilt54 or

tetragonality,47,49,51,54,55 and vector quantities, such as inversion-
symmetry breaking from electrical polarization order parameter fields
in displacive ferroelectrics.49,55–57

While these techniques have been primarily used for qualitative
studies, the information can be used to infer quantitative physics of
materials via mesoscopic58,59 or discrete models.60,61 However, this
approach further opens a question as to the role of non-observed
degrees of freedom or unknown physics of interactions between the
observed units, which can act as confounders or latent variables for
observed behaviors. As an example, observation of the larger than
expected Pt–Pt distance by Sohlberg et al.62 was interpreted as a pres-
ence of a capping OH group in a Pt trimer, providing insight into its
catalytic activity. In this case, the discrepancy between theoretical pre-
diction and quantitative experimental measurements was used to infer
the presence of (an unobservable) structural element. A more complex
case is the transition from the electronic carrier screening to oxygen
vacancy screening at ferroelectric interfaces.63 Another example is the
observation of a small region of atomic scale distortion (similar to
nanoislands) in a cleaved manganite crystal in an otherwise featureless
scanning tunneling microscopy image, which was interpreted as a
real-space image of a trapped polaron.64

However, these and many other examples rely on theoretical
models that can fully explain the observed phenomena, and often
require lengthy experiment and hypothesis testing cycles proposing
and ruling out possible explanations for observed behavior. Often, this
approach requires development of novel theoretical models or intro-
duces difficult to access approximations. In some cases, the direct
information on the latent and confounding factors (beyond their exis-
tence) is unavailable, leading to the considerable uncertainty in inter-
pretation of experimental results, as exemplified by multiple reports of
ferroelectricity in ultrathin oxides that can be attributed both to ferro-
electricity65,66 and electrochemical effects,67 or the interplay between
the two.68–70 Generally, the discrepancy between the theory and obser-
vations (Bayesian surprise71) is used to guide scientific research via
proposing the existence of new entities or new physical mechanisms.

Here, we explore whether predictability and uncertainty of physi-
cal behaviors can be used to gain insight into associated physical
mechanisms in the presence of potential confounding, bias, and latent
factors, via machine learning methods. We argue that experimentally
observed correlations active over the large volumes of experimental
data can be used to make a general prediction, whereas the regions
where these correlative relationships are violated suggest the presence
of new physics, either in the form of new laws or presence of latent
variables as illustrated in Fig. 1. For example, for an ideal ferroelectric
material, the local polarization can be expected to be strongly affected
by the polarization in neighboring unit cells, but only weakly sensitive
to the chemical composition. At the same time, in the vicinity of the
phase boundaries (in composition space) or domain boundaries (in
real space), the effects of the compositional fluctuations will be more
pronounced, resulting in larger uncertainties in prediction of relevant
properties. At the same time, the functional form of these relationships
is generally unknown. Thus, an ability to correlate the descriptors to
the observations with a universal function approximator that includes
uncertainty quantification will enable determination of when such
descriptors are adequate (and, therefore, that our inclinations are sup-
ported) and when they appear inadequate to the task of functionality
prediction. The latter can then lead directly to a search for new
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physical descriptors and further our understanding of these systems.
This approach complements the classical physical paradigm of com-
parison to the known functional laws, or numerically derived models.
Here, we use the Gaussian processes as universal interpolators that
allow uncertainty quantification in predictions via the posterior pre-
dictive density and explore the relationship between the predictability
and a priori physical mechanisms.

As a model system, we choose paradigmatic multiferroic material
BiFeO3 (BFO) with Sm substitutional doping of Bi grown as a continu-
ous composition spread library. Pure BFO is a rhombohedral ferroelec-
tric (R3c) with the polarization oriented along the h111i axis of a
prototypical cubic unit cell. Upon Sm substitution of�14%, the material
transforms into an orthorhombic non-ferroelectric phase.72,73 The two
are separated by the morphotropic phase boundary between symmetry-
incompatible phases.74,75 The material structure and behavior in the
vicinity of the morphotropic phase boundary (MPB) are highly complex,
with many functional properties showing pronounced maxima and
microstructure exhibiting the presence of the complex multiscale domain
patterns, nanoscale regions, etc.76,77 While macroscopically many of
these phases identify as monoclinic or triclinic, in the proximity to the
MPB, the corresponding atomistic structures remain unknown. Notably,
the structure and functionality of materials at an MPB remain one of
the most challenging questions in the physics of ferroic systems due to the
multiple interactions between phases, domain structures, and disorder.

A continuous composition spread of Bi1-xSmxFeO3 in the range
of 0� x� 0.2 was fabricated on a SrTiO3 (001) substrate by pulsed
laser deposition. A uniform gradient was produced by alternate abla-
tion of BiFeO3 and SmFeO3 targets with a moving shadow mask. A
chemical composition range, from 0 to 20% Sm, was determined by
wavelength dispersive spectroscopy (WDS) measurements. This com-
position range has been structurally characterized by x-ray diffraction
and piezoresponse force microscopy (PFM),78,79 and it displays a tran-
sition from highly ordered striped ferroelectric domains, to a ferroelec-
tric mosaic, to a non-ferroelectric piezoresponse with increasing
Sm%.80

Cross-sectional atomic resolution STEM imaging was performed
for nominal x¼ 0%, 7%, and 20% Sm concentrations by focused ion
beam (FIB) lift out from a single composition-spread film. Data were
collected along the [001]pseudocubic zone axis at 200 kV on a Nion
UltraSTEM with a high-angle annular dark-field (HAADF) detector,
providing visualization of atomic columns according to their mass-
thickness. To preserve local spatial relationships against raster-scan
artifacts, the HAADF datasets were reconstructed from an orthogonal
pair of HAADF images.81 An example of HAADF dataset for the 0%
Sm BiFeO3 endmember is shown in Figs. 2(a) and 2(b). We quantify
the local spatial relationships based on atom positions, determined by
fit as 2D Gaussians, within a local neighborhood of the 5-cation perov-
skite unit cell as outlined in Ref. 82. Pertinent to the subsequent analy-
sis, we define descriptors for each B-site (Fe) centered unit cell which
contain structural {V, h, a, b}, chemical {I1, I5}, and polarization {P}
informational content, as defined in Table I. They are, respectively, the
unit cell volume (V), internal angle (h), in-plane lattice vector (a), out-
of-plane lattice vector (b), mean HAADF intensity (I1), A- to B-site
intensity difference (I5), and the vector of Fe-cation displacement from
the A-site defined centro-symmetric positions (P), which we hereafter
refer to as the “polar displacement vector.” Diagrams of the V, h, a, b,
and P descriptors, derived from atom positions, are shown for an
example unit cell in Fig. 2(b). Native units for these descriptors are pix-
els (datasets have a uniform scan resolution), with a real space conver-
sion of 0.156 Å/pixel. I1, and I5 derive from the HAADF atomic-
column intensities measured as the Gaussian weighted 9-pixel inten-
sity centered at the atom fit position. These two selected HAADF
intensity descriptors correspond to the average (I1) and A- to B-site
difference (I5) of cation mass-thickness and are indicators of sample
thickness and cation composition variation, respectively.

To explore the predictability of specific physical behaviors, we
adopt the Gaussian process (GP) method.83–86 GP regression learns a
function f over all source-target pairs D ¼ {(x1, y1), …(xN, yN)}, with
each pair related by y¼ f(x) þ e, where e is Gaussian observation
noise, by performing Bayesian inference in a function space, assuming
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FIG. 1. (a) Gaussian process (GP) regression can, like a physical law with known functional form, be used to establish a relationship between two sets of parameters: in this
case, between the atomic coordinate within a lattice and the local polarization. In the classical case, the relationship between the two is established based on known physical
model, e.g., polarization profile across the domain wall. In GP case, the relationship is established based on multiple observations of the system providing interpolation function.
Note that an important aspect of GP approach is that prediction also yields uncertainty, allowing us to establish the significance of prediction and providing an independent
channel of information on the process. Deviation from this behavior in certain locations can indicate the presence of hidden variables. For example, the presence of a dopant
atom at a ferroelectric wall [(b) and (c)] will result in larger uncertainty in prediction of polarization at the certain lattice sites from that of the neighbors.
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that function f has a prior distribution f � GPð0; Kf x; x0ð ÞÞ, where Kf

is a covariance function (kernel).83 Naturally, GP is used as a powerful
interpolator, where the covariance matrix of the GP posterior distribu-
tion serves as an estimator of the uncertainty in the interpolation. It
should be noted that GP is a “lazy” machine learning algorithm that is
evaluated at runtime and does not require specific “training.” The opti-
mization of the GP entails maximizing the log marginal likelihood, by
means of tuning the hyperparameters h of the kernel function K, i.e.,

log p f xð Þjh
� �

¼ � 1
2
f xð ÞTK h; x; x0ð Þ�1f x0ð Þ � 1

2
logdet K h; x; x0ð Þð Þ

� n
2
log 2p:

In the above equation, we note that the first term is essentially a penalty
term for failure to correctly predict function values, whereas the second

term penalizes the model complexity. Here, we used radial basis function

kernel, k x; x0ð Þ ¼ r2exp � kx�x0k2
2l2

� �
, where the variance r and the

length scale l are kernel hyperparameters, which are learned from the
data by maximizing the log-marginal likelihood. For large datasets
(>103), computing the log marginal likelihood becomes nearly intracta-
ble, and instead, a small set of m function points is used as support or
inducing variables, which are inferred along with kernel hyperpara-
meters.87 Here, we adapted the inducing points-based sparse implemen-
tation of GP from the Pyro probabilistic programing library,88 which
allows training a GPmodel with modern GPU accelerators, reducing the
analysis time for datasets with>104 points from hours to minutes. Once
the model is trained, we can calculate the mean prediction and the asso-
ciated variance for each point (see the accompanying notebook at
https://git.io/Jv1Bn for the full code of GP regression). Here, the high
variance reflects higher uncertainty in GP prediction.
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FIG. 2. STEM data and GP predictions for x¼ 0, Bi1-xSmxFeO3 endmember. (a) HAADF STEM dataset for the BiFeO3 film, SrTiO3 substrate at right, with highlighted region
magnified in the inset. (b) An example of single Fe-centered unit cell from (a), shown rotated with corresponding cation position and labels. Diagrams for spatially determined
descriptors are shown at right. (c) Colorized map of the polar displacement vector descriptor P, depicting the polydomain ferroelectric structure with directions and domain wall
types labeled. (d) and (e) The experimental y- and x-components of P. (f) and (g) Corresponding P̂ yy and P̂ xy GP predictions from 8-neighbor Py values with [(h) and (i)] uncer-
tainty maps. All units are in pixels, with real space conversion of 0.156 Å/pixel. The outer radius of the P color legend (c) and the component color scales [(d)–(g)] are6 5.97
pixels.
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To gain insight into the predictability of the physical parameters
in these materials, we first explore the polarization behavior in the sys-
tem. Here, we assume that the material possesses an electrical polariza-
tion field with a proxy representation by the polar displacement vector
descriptor P, defined as the off-centering of the B-site cation. The fol-
lowing treatment is on the two components of P, noted as Px(i,j) and
Py(i,j), where i and j are the lattice positions of the unit cell. We explore
whether the polarization at the individual lattice site can be predicted
from the polarization in the surrounding area, i.e., regressions

GPny!y Py i61; j61ð Þ
� �

! Py i; jð Þ (1)

between an 8-component vector of polarization values in the 8 adjacent
lattice sites and polarization in the given site. We further explore the
predictability of the polarization component from the other polariza-
tion component, i.e., regression

GPnx!y Px i61; j61ð Þð Þ ! Py i; jð Þ: (2)

The spatial degeneracy of the ferroelectric polarization frequently
results in formation of polydomain configurations to minimize stray
field energies and is a product of growth kinetics. Such a polydomain
structure is observed for the 0% Sm ferroelectric BiFeO3 endmember
shown in Figs. 2(c)–2(e). This image contains three domains indicated
by directional arrow labels in Fig. 2(c). The sharp boundaries, i.e.,
domain walls, are classified according to their polarization rotation
across the wall. The domain walls present in the image are 109� and
180�, as labeled in Fig. 2(c), identified by their 2D projected rotations
(where the z-axis rotation must be inferred) and conforming to known
preferential (100) and (110) planes, respectively. In both instances, the
domain walls deviate from their charge-neutral planes to ones with
divergent polarization orientations, labeled with “þ” symbols represent-
ing their bound electrical charges, classified as charged domain walls.

Not surprisingly, the predicted polarization, denoted as P̂yy , from
the Py polarization neighborhood shows values and distribution very
close to the original values [Fig. 2(f)], with the visible effect of GP
being reduction and smoothing of the noise, i.e., essentially a convolu-
tion effect. However, non-trivial behavior emerges in the uncertainty
maps [Fig. 2(g)], where significant uncertainty of prediction is
observed in the vicinity of domain walls and in a number of

distributed locations throughout the material. Notably, the prediction
uncertainty is zero inside the substrate, i.e., local laws are well-defined.

The predicted polarization P̂xy from the Py polarization neighbor-
hood as compared to the true polarization distribution [Fig. 2(g)] shows
considerably more interesting behavior. Note that in most locations of
the image, the predicted polarization is close to the true polarization, as
can be expected since GP is local interpolator. The prediction is reliable
in the vicinity of the 109� domain wall. However, in the vicinity of the
charged domain wall, the polarization shows strong deviations from the
true polarization distribution, with clearly visible regions of opposite
polarization direction. Careful examination of all polarization compo-
nents shows that there may be fluctuations in the true polarization field;
however, these are relatively minor. Therefore, the predicted
“anomalous” polarization in the vicinity of the charged domain wall
may be an indicator of confounding physical factors.

Interestingly, the uncertainty map in Fig. 2(i) shows overall higher
uncertainty in prediction compared toGPny!y , with the larger uncertainty
values in the vicinity of domain walls and substrate interface. However,
the prediction uncertainty has spatial distribution generally different from
the difference between predicted and observed polarization.

Similar analyses for the other two compositions corresponding to the
intermediate phase (x¼ 0.07) and the orthorhombic phase (x¼ 0.2) are
shown in Fig. 3. Here, the intermediate phase [Figs. 3(a) and 3(b)] shows
the presence of a ferroelectric phase with non-zero polarization values in
the vicinity of the interface and a disordered phase in the film. The nature
of this disordered phase is unclear and can correspond to a nanodomain
system averaged in the z-axis direction of the electron beam, or a true dis-
ordered intermediate phase. Similar to the rhombohedral x¼ 0 sample,
the P̂yy image shows features similar to the true image Py [Fig. 3(a)], albeit
with considerably lower noise level and a slight blur. The corresponding
uncertainty map shows regions with high uncertainty at the boundaries
between the ferroelectric and disordered phase. Interestingly, these features
seem to be new, and while they partially overlap with the domain walls,
there is not a one-to-one correspondence. Again, the uncertainty for
prediction within the substrate is uniform and small. The true Px image,
predicted P̂xy , and corresponding uncertainty are shown in Fig. 3(b).
Notably, the uncertainty in GP is similar for P̂yy and P̂xy .

Finally, similar analysis is performed for the x¼ 0.2 orthorhom-
bic phase [Figs. 3(c) and 3(d)]. In this case, the polarization

TABLE I. Unit cell descriptors. Calculations correspond to A- and B-site 2D Gaussian atom fits per Fe-centered HAADF unit cell according to site labels in Fig. 2(b).

Symbol U.C. parameter descriptions Calculation

a In-plane lattice vector
A2;xy � A1;xyð Þ þ A3;xy � A4;xyð Þ

2

b Out-of-plane lattice vector
A4;xy � A1;xyð Þ þ A3;xy � A2;xyð Þ

2
h Internal angle Angle between a and b
V Internal volume Volume of convex hull A1;xy , A2;xy , A3;xy , and A4;xy

I1 Mean cation intensity
A1 þ A2 þ A3 þ A4 þ B1

5

I5 Cation intensity asymmetry A-site vs. B-site
ðA1 þ A2 þ A3 þ A4Þ

4
� B1

P Polar displacement vector
A1;xy þ A2;xy þ A3;xy þ A4;xy

4
� B1;xy
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distribution shows only weak contrast within the image and demon-
strates small inclusions with period doubling (discussed later). For this
composition, both P̂yy and P̂xy are very close to the true distributions
Py and Px, and corresponding uncertainty maps show increase in
uncertainty in the vicinity of the modulated phase regions.

To summarize, for all compositions explored, the predicted and
uncertainty maps demonstrate additional spatial features. Some of
these are concentrated at the regions where polarization changes rap-
idly, including domain walls and the interface. Yet, others are concen-
trated in the “cloud-like” regions within the material and do not bear
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FIG. 3. Px, Py data and Py GP predictions for x¼ 0.07 [(a) and (b)] and x¼ 0.2 [(c) and (d)] SmxBi1-xFeO3 film compositions. (a) Original Py data and P̂ yy GP prediction for
x¼ 0.07 and (b) Px data and P̂ xy GP prediction. (c) Original Py data and P̂ yy GP prediction for x¼ 0.2 and (d) Px data and P̂ xy GP prediction. All units are in pixels, with
0.156 Å/pixel; P component color scales are6 5.97 pixels.
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obvious resemblance with the individual atomic descriptor maps.
Hence, we conclude that the prediction and uncertainty maps contain
non-trivial information or at least highlight the discrepancies where
locally observed polarization differs from that expected given the aver-
age polarization behavior in the sample, pointing to new physical phe-
nomena or the presence of latent variables.

We further proceed to explore the predictability and prediction
uncertainty between the structural descriptors and polarization. For
this, we perform the regressions

GPs!y Sijð Þ ! Py i; jð Þ; (3)

where Sij is the parameter vector of local structural descriptors.
In principle, such analysis can be performed using all the permu-

tations of the available structural descriptors and their gradients (e.g.,
bag of features89 approach), etc., to obtain comprehensive insight into
functional relationships between the descriptors. Given the computa-
tional constraints and being informed by the general physics of ferroic
materials, here we explore five groups of descriptors, namely,
V ; h; a; b; I1; I5f g, a; bf g, V; hf g, V; h; a; bf g, and I1; I5f g. This
choice of groups is made given that I1 and I5 are parameters describing
local chemical composition, V is related to the local phase state and
composition (via Vegard terms), h is the measure of the unit cell defor-
mation from cubic/tetragonal into modulate phase, and a and b define
tetragonality of the unit cell. These variables are not independent;
however, they can be considered as semiquantitative descriptors for
composition, ferroelectricity, and proximity to the orthorhombic
phase, respectively. Notably, all these descriptors are invariant with
respect to the C2 rotations, whereas polarization components change
sign. Hence, the regression Eq. (3) explores whether polarization can
be predicted from this set of structural and chemical descriptors and
provide the associated uncertainties.

The analysis for rhombohedral BiFeO3 is shown in Fig. 4. Here,
the top row visualizes the true polarization distribution Py [Fig. 3(a)]
and the predictions P̂ys for the different groups of structural descrip-
tors [Figs. 3(b)–3(f)]. Upon examining the characteristic features in
the images, we note that none of the groups allows for reliable recon-
struction of polarization field, as can be expected from the physics of

the problem. At the same time, the groups containing V ; hf g as
descriptors allow us to predict the changes in polarization in the
charged domain and separate the ferroelectric phase and the substrate.
The prediction based on a; bf g is completely non-discriminative, and
only the anomalies at the domain walls are visible. Finally, chemical
descriptors I1; I5f g yield the maps resembling chemical disorder in
the system, but do not contain any elements of the true polarization
distribution or phase contrast between ferroelectric and substrate.

In comparison, the uncertainty maps shown in the bottom row
of Fig. 4 show considerably richer behavior. Here, the prediction
uncertainties for descriptor groups containing a; bf g show clear
anomaly at the 109� wall, which is invisible for V ; hf g and I1; I5f g
descriptors. At the same time, chemical descriptors I1; I5f g give rise to
an uncertainty maximum at the ferroelectric-substrate interface.
While this feature can be noticed in three other maps, it is much
weaker. The charged domain wall is visible only in the maps contain-
ing V ; hf g. Finally, I1; I5f g seem to provide regions of higher uncer-
tainty uncorrelated to the true potential distributions and potentially
related to the presence of chemical disorder.

A similar analysis for the intermediate composition, x¼ 0.07, is
shown in Fig. 5. Similar to the ferroelectric phase, in general, the pre-
dicted polarization field is very dissimilar from the true polarization,
with only the maps containing V ; hf g group showing features resem-
bling polarization field. At the same time, a; bf g group clearly visual-
izes the 180� domain wall. Note the highly visible contrast in the
predicted map and associated uncertainty map. In this case, only one
of the domain walls shows in this manner. Finally, I1; I5f g and to
some extent V ; hf g give rise to contrast at the Sm:BFO-substrate
interface. The corresponding uncertainty maps show blob features pri-
marily associated with V ; hf g component, interface uncertainty asso-
ciated with I1; I5f g, and clearly visible 109� domain wall associated
with the a; bf g.

Finally, this analysis for the high Sm concentration, x¼ 0.2, com-
position is shown in Fig. 6. Here, the examination of the predicted
polarization fields and associated uncertainties reveals that a; bf g
group of variables does not allow prediction, and associated uncer-
tainty maps are essentially featureless. The I1; I5f g group shows an
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FIG. 4. Original Py data and GP predictions Py from structural descriptor for rhombohedral phase, x¼ 0. (a) Original Py data. (b)–(f) GP predictions from structural descriptor
sets: (b) V ; h; a; b; I1; I5f g, (c) a; bf g, (d) V ; hf g, (e) V ; h; a; bf g, and (f) I1; I5f g. All Py color scales are6 5.97 pixels.
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interesting effect of image segmentation, with top part of the image
being featureless and bottom showing some contrast. The associated
uncertainty map shows uncertainties at the film-substrate interface.
However, very interesting behavior is associated with the V ; hf g
group of variables that clearly shows the emergence of the modulated
phase throughout the top two-thirds of the image. This phase is essen-
tially unnoticeable in the original polarization image. What is particu-
larly noteworthy is that this predicted ordering differs from the
original one in the dataset.

The Fourier transform of each predicted Py image can be seen in
Figs. 7(a)–7(h), where each FFT was calculated with a Hanning win-
dow to account for edge effects. To account for differences in signal
strength, each FFT is normalized to the area under the cross section of
the central spot. We can see that the maximum FFT intensity is
observed in the original image [Fig. 7(a)] with some superlattice spots
appearing just above the background signal. Similar diffraction spots
can be seen in many of the prediction FFTs including those predicted
from Py8 (the 8 neighbor Py values as used for the P̂yy GP prediction),

Px8 (the 8 neighbor Px values), V; h; a; b; I1; I5f g, V ; h; a; bf g, and
V; hf g. In order to compare the intensities of the diffracted spots, line

profiles of each FFT were taken such that the diffraction spots are
included, as seen in Figs. 7(a) and 7(i). The normalized intensities of
the diffracted spots for each descriptor group are shown in Fig. 7(j).
The maximum intensity of the diffracted spots occurs when using the
full set of descriptors V ; h; a; b; I1; I5f g, with dominant contributions
coming from V ; h; a; bf g and V ; hf g. Here, further analysis estab-
lished that h is the preponderant origin of the modulation. In compari-
son, I1; I5f g and a; bf g correspond to almost zero predicted
modulation.

While the diffracted spots appear in the FFT, the corresponding
ordered region in the real space ground truth (Py) image is difficult to
identify, though they can clearly be seen in the real space images of the
predictions from V ; h; a; b; I1; I5f g, V ; h; a; bf g, and V ; hf g.
Completely unexpectedly, the FFT for I1; I5f g shows a modulation of
a different type, corresponding to (12,

1
2); however, they are very weak.

The detailed analysis of the data suggests that these might be
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originating from the bottom right corner of the sample, as can be con-
firmed by inverse FFT analysis. Note that the prediction of the period
doubling phase by GP is a highly non-trivial result. We pose that a
possible explanation for this behavior is that the compositional and
structural descriptors are that of the orthorhombic phase, but its emer-
gence is suppressed due to the confinement and mechanical depolari-
zation effects.

To explore whether behaviors and uncertainties derived using
Gaussian process regression can be derived via linear analysis, we
explored the linear correlation structure between the predictors, pre-
dictions, and the ground truth images using canonical correlation
analysis (CCA).90 In this analysis, two sets of multi-dimensional varia-
bles (X, Y) are connected by finding linear combinations of variables
that maximize their correlation. New variables are defined by the lin-
ear combinations with weights wa and wb such that U¼wa

0X
and V¼wb

0Y. The weights (wa, wb) are determined by maximizing

Eq. (4), subject to unit variance, wa
0Xwa¼wb

0Ywb¼ 1, to account for
scaling

Cor X;Yð Þ ¼ Cov U ;Vð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Uð ÞÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Vð Þ

ph i
:

(4)

The Pearson correlation coefficient, which quantifies the magnitude of
association between two variables,91 is then calculated between the
learned pair of canonical variables. Specifically, the correlation coeffi-
cients are calculated given the (X, Y) pairs: ({descriptor group}, Py),
({predictions from descriptor group}, Py), and ({descriptor group},
{predictions from descriptor group}), where ({}, Py) is each descriptor
group or prediction from a descriptor group. In the last case, each
descriptor group is only compared to the prediction derived from that
group, i.e., no cross-comparisons are made between descriptor groups
and predictions.
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The CCA analysis of the pairwise combinations between the
ground truth, descriptors, and GP predictions is shown in Fig. 8 for
the chosen groups of descriptors and for three studied compositions.
As a general trend, the descriptors show relatively high correlations
with the prediction, which is maximal for the pure BiFeO3 and
decreases for higher Sm concentrations, across all descriptor groups.
However, this correlation is well below unity and can be as small as
�0.5 for high Sm content BFO. It is also important to note that the lin-
ear correlation explored here provides average information across
image. Hence, the behaviors observed at the localized structural ele-
ments (domain walls, interfaces, etc.) must be interpreted indepen-
dently, as above.

The correlation between the prediction and the truth is generally
above the correlation between the descriptors and predictors, clearly
illustrating that non-linear GP regression is capable of better predic-
tion than linear estimates. This improvement is particularly pro-
nounced for the high Sm composition, where corresponding
correlation coefficients are higher by as much as a factor of 2.

The analysis of the quality of prediction (i.e., correlation between
prediction and truth) for different descriptor groups across the com-
positions reveals several universal observations. In all cases, it appears
that the Py8 group predicts Py extremely well. This behavior is
expected, given the strong correlations between the polarization for
adjacent unit cells. The correlation between Px8 and Py is fairly strong
in BFO and becomes considerably weaker for the high Sm composi-
tion. Finally, extremely interesting behaviors are observed for the
structural and chemical descriptors. Here, for the strongly ferroelectric
material, the best prediction is achieved with the structural descriptors
including V , h, a, and b, whereas inclusion of chemical descriptors I1
and I5 considerably lowers the prediction. The opposite behavior is
observed for the intermediate and high Sm concentrations, where the
quality of prediction improves considerably once the chemical effects
are included.

The behavior of GP prediction uncertainty across the composi-
tions and descriptor groups is shown in Fig. 9. Note that uncertainty is
available only for the Gaussian (or, more generally, Bayesian) methods.
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As expected, for polarization descriptors Py8 ! Py, the uncertainty is
lowest, i.e., prediction is highly reliable.

At the same time, highly non-trivial behavior is observed for the
predictions based on the different polarization component Px8 and
structural and chemical descriptors. Here, the uncertainty in predic-
tion is highest for BFO. This makes sense, since in strongly ferroelec-
tric BFO polarization is less sensitive to the chemical and structural
factors because the corresponding potential well is deepest and depo-
larization effects are strongest. The orthorhombic phase shows the
intermediate uncertainty, presumably because polarization is close to
zero. Interestingly, the lowest uncertainty in prediction is observed for
intermediate phase. We ascribe this behavior to the fact that it is a
mixture of ferroelectric and non-ferroelectric phases which have differ-
ent lattice parameters, and ferroelectric phase is polarized in one direc-
tion. Hence, polarization is most sensitive to the local compositional
fluctuations, allowing for good predictability. Interestingly, this lability
is also the origin of the high functional responses of morphotropic
materials. At the same time, this information is absent in a linear cor-
relation analysis.

Similar to correlation analysis, including additional parameters
slightly reduces the uncertainty, e.g., prediction from V ; h; a; bf g
reduces uncertainty compared to a; bf g and V ; hf g. Inclusion of I1
and I5 considerably reduces uncertainty for intermediate, somewhat
less high Smmaterial, but not pure one. Again, this behavior comports
well with the expectations because compositional effects can be espe-
cially pronounced for regions with phase competition.

To summarize, here we explored whether the predictability and
quantified uncertainty of physical behaviors can be used to determine
manifest and latent physical mechanisms. Classically, this approach is
implemented via, e.g., comparison of theory to experiment, to establish
the presence of latent physical variables or unknown mechanisms, and
subsequently refine their functional form and associated model
parameters. Here, we implement this paradigm via analysis of predict-
ability and uncertainty of Gaussian process regression between multi-
ple spatially distributed degrees of freedoms. In other words, we
explored whether local deviations of the characteristic behaviors estab-
lished globally can be used to identify the latent local physical
behaviors.

This approach is implemented for multiferroic Sm-doped BiFeO3

across the broad composition range as a model. Using the atomic reso-
lution STEM data, we directly visualize the atomic structure and struc-
tural, physical, and chemical order parameter fields for the material.
GP regression is used to establish the predictability of local polariza-
tion field from the different groups of parameters, including the adja-
cent polarization values and several combinations of physical and
chemical descriptors including lattice parameters, column intensities,
etc. We observe that certain elements of materials domain structure,
including charged and uncharged domain walls and interface with
substrate, are best predicted with certain specific combinations of
descriptors, and this predictability and associated uncertainties are
consistent across the composition series. For example, the 180 domain
walls are best predicted from unit cell sizes, whereas charged walls are
best predicted from the molar volume and angles. Interestingly, the
GP regression is shown to considerably exceed predictions based on
linear correlative models. The associated physical mechanisms gener-
ally agree with the expected behaviors for ferroelectric materials across
the morphotropic phase boundary with the non-ferroelectric phase.
Remarkably, we show that uncertainty in prediction provides a new
channel of information, presumably allowing to identify the regions
with latent mechanism, in this case compositional fluctuations.
Finally, and surprisingly, the GP regression predicts the experimentally
unobserved ordering in the Sm-doped BFO phase.

Overall, we believe that the proposed approach can be broadly
used in exploration of potential novel physical mechanisms in both
experimental and modeling datasets. For instance, such tools may be
extremely useful for interpretation of molecular dynamics data of dis-
ordered systems, or for analysis of nanoscale segregation in alloys by
inspection of data from atom probe tomography. Future work can
focus on more advanced functional interpolators, such as neural
network-induced Gaussian process models, or Bayesian neural nets, as
well as more complex descriptors that take into consideration longer
range effects (e.g., graph-based methods). Similarly, one may apply
this methodology to determine mechanisms in light-induced dynam-
ics with local probes–for instance, exploration of photoconductive
effects and ionic transport in perovskite photovoltaics, or for isolating
factors involved in ferroelectric fatigue from nanoscale imaging and
chemical spectroscopy.
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