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Disentangling (2 + 1)D topological states of matter with entanglement negativity

Pak Kau Lim ,1 Hamed Asasi,1 Jeffrey C. Y. Teo,2 and Michael Mulligan1

1Department of Physics and Astronomy, University of California, Riverside, California 92511, USA
2Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

(Received 30 June 2021; revised 15 September 2021; accepted 16 September 2021; published 27 September 2021)

We use the entanglement negativity, a bipartite measure of entanglement in mixed quantum states, to study
how multipartite entanglement constrains the real-space structure of the ground-state wave functions of (2 + 1)-
dimensional topological phases. We focus on the (Abelian) Laughlin and (non-Abelian) Moore-Read states at
filling fraction ν = 1/m. We show that a combination of entanglement negativities, calculated with respect to
specific cylinder and torus geometries, determines a necessary condition for when a topological state can be
disentangled, i.e., factorized into a tensor product of states defined on cylinder subregions. This condition, which
requires the ground state to lie in a definite topological sector, is sufficient for the Laughlin state. On the other
hand, we find that a general Moore-Read ground state cannot be disentangled even when the disentangling
condition holds.
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I. INTRODUCTION

A. Background

One of the defining characteristics of a topological phase of
matter is the sensitivity of its ground state to the topology of
the space on which it’s placed [1] (see Ref. [2] for a review).
For instance, the Laughlin state at filling fraction ν = 1/m has
ground-state degeneracy mg where g is the genus of space.
Topological phases with robust ground-state degeneracy, such
as the Laughlin state at m > 1, are said to be long-range
entangled [3]. On the other hand, short-range entangled (topo-
logical) states [4,5], which occur in the integer quantum Hall
effect, have a unique ground state when placed on any closed
manifold, but share other defining topological characteristics
such as protected gapless boundary modes [6].

The entanglement entropy is a useful diagnostic for these
two classes of states. The entanglement entropy between sub-
systems A and B of a state ρ ∈ HA ⊗ HB equals the von
Neumann entropy SA = −trAρA ln ρA of its reduced density
matrix ρA = trBρ. (Here we are denoting pure and mixed
states by ρ.) In a topological phase, the entanglement entropy
scales with the linear size L → ∞ of region A as [7–9]

SA = αL − γ . (1.1)

The coefficient α is nonuniversal and UV divergent, while the
topological entanglement entropy γ is a universal, geometry-
dependent constant that characterizes the phase.1

For instance, if A is a disk, γ = 1
2 log

∑
a d2

a , where the
sum is over all superselection sectors of the phase and da � 1

1For notational simplicity, we do not indicate the dependence of γ

on A, B, or the state.

is the quantum dimension of quasiparticle a [8,9].2 Short-
range entangled phases have a single superselection sector
(corresponding to its unique ground state) with d0 = 1; long-
range entangled phases, which include both Abelian states like
the toric code [10] and non-Abelian states like the Moore-
Read state [11], have at least two superselection sectors and,
consequently, γ > 0. There can be other boundary contribu-
tions to γ due to interactions localized along the border of
A in both short-range and long-range entangled states [12,13]
(see also Refs. [14,15]). Importantly, for long-range entangled
states, only and when A is noncontractible, γ can receive
an additional contribution—that we generally refer to as the
topological sector correction—that depends on the amplitude
ψa to be in the sector a degenerate ground state [16,17]. For
example, consider the ground state of a topological phase on
the torus: |�〉 =∑a ψa|�a〉, where ψa is the amplitude to be
in the ground state |�a〉 of sector a. If the torus is divided
into two cylinders A and B, then the topological entanglement
entropy of region A is γ = log

∑
a d2

a −∑a |ψa|2 log |ψa|2
d2

a
.

To better understand the distinct forms of entanglement
that these different contributions to γ reflect in a topological
ground state, Lee and Vidal [18], Castelnovo [19], and Wen
et al. [20] employed the entanglement negativity [21]. Unlike
the entanglement entropy, which only quantifies the quantum
correlations between a subsystem and its complement when
ρ is pure [21–23], the entanglement negativity is a mixed
state entanglement measure [24] that can thereby distinguish
multipartite features of entanglement (e.g., Ref. [25]), for

2da controls the Hilbert space dimension dN
a of N quasiparticles a as

N → ∞. Abelian phases have da = 1 for all a; non-Abelian phases
have at least one quasiparticle with da > 1.
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instance, if ρ = trC |�ABC〉〈�ABC | obtains by tracing out de-
grees of freedom in a third subsystem C.

The entanglement negativity3 is motivated by Peres’s [24]
necessary condition for a mixed state ρ ∈ HA ⊗ HB to be
separable. This criterion says that a separable state ρ has
positive partial transpose ρTA with respect to subsystem A,
where

〈iA jB|ρTA |kAlB〉 = 〈kA jB|ρ|iAlB〉, (1.2)

and |iA〉, |kA〉 (| jB〉, |lB〉) are basis states for HA (HB). The neg-
ativity NA:B(ρ) = (||ρTA ||1 − 1)/2 sums (the absolute value
of) any negative eigenvalues of ρTA and thereby measures the
degree of nonseparability of ρ. Here, ||ρ||1 ≡ tr

√
ρ†ρ is the

trace norm of ρ. The entanglement negativity EA:B(ρ) is a
closely related measure defined as

EA:B(ρ) = log ||ρTA ||1 = log(1 + 2NA:B(ρ)). (1.3)

In contrast to NA:B(ρ), the entanglement negativity has an
operational meaning as an upper bound to the amount of
pure state entanglement contained in a general mixed state
[21]. For pure states, EA:B(ρ) reduces to the q = 1/2 Renyi
entropy of ρ [18]. Other situations in which the entanglement
negativity has been measured include conformal field theory
[26], holography [27,28], thermal phase transitions [29–31],
topological systems with symmetry [32] or at nonzero temper-
ature, [33,34] nonequilibrium systems [35–39], and, recently,
at measurement-driven phase transitions [40,41].

In this paper, we use the entanglement negativity to study
how multipartite entanglement constrains the structure of the
many-body wave function of a topological phase. In partic-
ular, we show how topological degeneracy can prevent the
disentanglement [42] of a topological ground state.

In general, a state ρ ∈ HA ⊗ HB ⊗ HC is said to satisfy the
disentangling condition4 with respect to HA and HC if

EA:BC (ρ) = EA:B(ρAB), (1.4)

where ρAB = trCρ. Notice that ρAB is necessarily mixed (ρ
could also be a mixed state) and so the entanglement negativ-
ity is an appropriate measure to use to compare the quantum
correlations in ρAB and ρ. To appreciate Eq. (1.4), we can
heuristically view it as a special case of the monogamylike
relation,5

N 2
A:BC (ρ) � N 2

A:B(ρAB) + N 2
A:C (ρAC ), (1.5)

which expresses how entanglement is shared between A, B,
and C subsystems [43,44]. Since the entanglement negativity
is a monotonic function of the negativity Eq. (1.3), the disen-
tangling condition obtains when NA:C (ρAC ) = EA:C (ρAC ) = 0,

3This quantity is also known as the logarithmic negativity. See
below for the definition of the negativity.

4He and Vidal [42] introduced an equality like Eq. (1.5) in terms
of the negativity N instead of entanglement negativity E . These two
forms are equivalent when NA:C (ρAC ) = 0.

5Monogamylike relations such as these depend on the entangle-
ment measure and aren’t generally satisfied for all states in a given
Hilbert (sub)space. For example, this inequality isn’t satisfied gener-
ally if N 2 is replaced by N [42].

FIG. 1. (a) Torus geometry. Decomposition of a torus X into
2M = 4 cylinders X1, X2, X3, X4 with Xodd = X1 ∪ X3 and Xeven =
X2 ∪ X4; (b) Cylinder geometry. Degrees of freedom in cylinder Ȳ =
X4 have been traced over; the remaining cylinders Y = Yodd ∪ Yeven

with Yodd = X1 ∪ X3 and Yeven = X2 have R = 2 shared interfaces.
Interactions between low-energy boundary modes at cylinder inter-
faces are indicated by dashed green lines. Superselection sector a
is represented by the blue (quasiparticle) threading the center of the
(solid) torus.

i.e., there are no quantum correlations between degrees of
freedom in A and C. In three-qubit systems, for instance,
only product states such as |�ABC〉 = |�AB〉 ⊗ |�C〉 satisfy the
disentangling condition [45]. When the Hilbert space of sub-
system B further factorizes as HB = HBL ⊗ HBR , pure states
satisfying Eq. (1.4) can be disentangled as

|�ABC〉 = |�ABL 〉 ⊗ |�BRC〉, (1.6)

a result known as the disentangling theorem [42]. A more
general set of states that fulfill the disentangling condition
are those that saturate the strong subadditivity of the en-
tanglement entropy [46], i.e., IA:BC = IA:B, where the mutual
information IA:B = SA + SB − SAB. For such states, Hayden
et al. [47] showed there exists a decomposition of the Hilbert
space as

HB =
⊕

j

HB j
L
⊗ HB j

R
(1.7)

such that ρ is separable:

ρ =
∑

j

p jρAB j
L
⊗ ρB j

RC . (1.8)

Here {p j} are probabilities.

B. Summary of results

We study the disentangling condition Eq. (1.4) for the
(Abelian) Laughlin and (non-Abelian) Moore-Read states at
filling fractions ν = 1/m. We show explicitly how Laughlin
states satisfying this condition can be disentangled according
to either Eq. (1.6) or Eq. (1.8). Interestingly, we find that a
general Moore-Read ground state cannot be disentangled even
when Eq. (1.4) is satisfied.

To do this, we use the cut and glue construction of these
states [48–52] to calculate the entanglement negativity in two
related geometries (see Fig. 1). (When there is overlap, our
results agree with Refs. [18–20].) In the first, we partition
a torus into 2M cylinders Xi (i ∈ {1, . . . , 2M}) and perform
partial transposition with respect to degrees of freedom on the
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odd cylinders Xodd ≡ X1 ∪ X3 ∪ · · · ∪ X2M−1 [i.e., cylinders X1

and X3 in Fig. 1(a)]. We find that the entanglement negativity
is

EXodd:Xeven = 2 log
∑

a

|ψa|ζ 2M
a , (1.9)

where Xeven ≡ X2 ∪ X4 ∪ · · · ∪ X2M and ψa is the unit-
normalized amplitude to be in the sector a torus ground state.
ζa is a ratio of sector a edge state partition functions at inverse
temperatures β = 1/2 and β = 1,

ζa = tre−Ha/2

√
tre−Ha

, (1.10)

with entanglement Hamiltonian Ha. This dependence of the
entanglement negativity on the spectrum of the entanglement
Hamiltonian is reminiscent of a similar dependence (ρA ∝
e−Ha ) of the entanglement entropy, e.g., Refs. [53–64]. In
contrast to the entanglement entropy, the entanglement nega-
tivity measures the system at two different temperatures [27].
For the fully chiral topological phases that we study, i.e.,
when all the edge modes move in the same direction, Ha is
proportional to the edge-state Hamiltonian. In general, there
can be a different Ha for each of the 2M interfaces [12]; here
we only consider torus states where the interactions are the
same at each interface.

The second geometry that we consider is obtained by trac-
ing over the degrees of freedom on N � M cylinders Ȳ ⊂ X
[for example, X4 in Fig. 1(b)]. We show that the entanglement
negativity of the resulting state is

EYodd:Yeven = log
∑

a

(|ψa|ζ R
a

)2
, (1.11)

where R is the number of shared interfaces between the re-
maining cylinders Yodd and Yeven whose degrees of freedom
have not been traced over [e.g., R = 2 in Fig. 1(b)] and ζa is
again given in Eq. (1.10).

Thus, the entanglement negativities Eqs. (1.9) and (1.11)
are determined by ratios of entanglement Hamiltonian parti-
tion functions. For the Laughlin and Moore-Read states, we
show that the above entanglement negativities take the form

EXodd:Xeven = MαL − M log D2 + 2 log
∑

a

|ψa|dM
a , (1.12)

EYodd:Yeven = R

2
αL − R

2
log D2 + log

∑
a

|ψa|2dR
a , (1.13)

where α is nonuniversal, da is the quantum dimension of
quasiparticle a, and D = √∑a d2

a is the total quantum dimen-
sion of the phase. The Laughlin state has m Abelian anyons
each with quantum dimension da = 1; the Moore-Read state
has 2m Abelian anyons (da = 1) and m non-Abelian anyons
with quantum dimensions da = √

2, corresponding to the Ma-
jorana quasiparticle.

We use these entanglement negativities Eqs. (1.12) and
(1.13) to test the disentangling condition Eq. (1.4) for the
geometries in Fig. 1. For a general topological state on the

torus, we find6

EA:BC (ρ) − EA:B(ρAB) = log
(
∑

a |ψa|da)2∑
a |ψa|2d2

a

. (1.14)

Thus, the disentangling condition is only satisfied when the
torus state lies in a specific topological sector with ψa = 1 for
some a and all other amplitudes equal to zero. For topological
states on the cylinder, the disentangling condition is always
satisfied.

We find the disentangling condition Eq. (1.4) is gener-
ally only a necessary condition to allow the disentanglement
of a topological state. Specifically, we show that Laughlin
and untwisted sector Moore-Read states can be disentangled
according to Eqs. (1.6) and (1.8) when (1.4) holds; on the
other hand, twisted sector Moore-Read states cannot be dis-
entangled even when the disentangling condition is satisfied.
(As we review later, the Moore-Read state decomposes into
so-called untwisted and twisted sectors, associated to Abelian
and non-Abelian bulk quasiparticles.) These results provide
a precise illustration for how entanglement and non-Abelian
topological order constrain a many-body wave function.

The remainder of this paper is organized as follows. In
Sec. II, we review the edge-state theories for the Laughlin
and Moore-Read states at filling fraction ν = 1/m and how
the torus or cylinder ground state is built out of topological
states on subcylinders (e.g., according to the geometry in
Fig. 1). In Sec. III, we derive the entanglement negativities in
Eqs. (1.12) and (1.13). In Sec. IV, we discuss the implications
of these results for disentangling topological states. In Sec. V,
we conclude and discuss possible directions of future study.

II. CUT AND GLUE APPROACH TO TORUS
GROUND STATES

In this section, we review the edge-state theories for the
Laughlin and Moore-Read states and how topological states
on the torus can be decomposed into states on the subcylinders
using the corresponding edge states. In the next section, we
study the multipartite entanglement properties of these torus
and cylinder states.

A. Laughlin interface ground state

We start by discussing the construction of the Laughlin
state at filling fraction ν = 1/m on the torus. One approach is
to glue together a collection of parallel 1d wires each hosting
a single, nonchiral electron by suitable sine-Gordon interwire
couplings [52]. An equivalent approach [48–52], which we
follow here, is to construct the torus state by gluing together
a collection of cylinder states in the target phase of interest
along their shared boundaries by appropriate edge-state inter-
actions.

In the Laughlin phase, each cylinder Xi with i ∈
{1, . . . , 2M} hosts a pair of U(1)m chiral edge modes φσ

i with

6In Eq. (1.12), we set M = 1 for the two cylinders A = X2 and B ∪
C = (X1 ∪ X3) ∪ X4; in Eq. (1.13) we set R = 2 for the two cylinders
A = X2 and B = X1 ∪ X3 and we use EA:B = EB:A.
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Lagrangian density:

Lσ
i = m

4π
∂xφ

σ
i (σ∂t − vc∂x )φσ

i . (2.1)

Here, φσ
i ∼ φσ

i + 2πZ with σ = L(R) = +1(−1) is a real,
boson field that takes values on a circle of unit radius and
vc > 0 is the common7 velocity of the edge modes. The charge
density on each edge is ρσ

i = ∂xφ
σ
i /(2π ) in units where e = 1.

The Lagrangian implies the equal-time commutation rela-
tions: [

φσ
i (x), ∂x′φσ

i (x′)
] = 2π iσ

m
δ(x − x′). (2.2)

The primary fields of the theory are the vertex operators
eirφσ

i for r ∈ {0, 1, . . . , m − 1}. They carry charge σ r/m and
spin8 r2/2m. For r > 0, these operators create/destroy for
σ = L/R fractionally charged Laughlin quasiparticles at a
point along the edge. The monodromy braiding phase between
bulk quasiparticles, corresponding to operators eirφ and eir′φ ,
equals e2π irr′/m. Local quasiparticles correspond to products
of the fundamental electronic operator eimφσ

i carrying unit
charge and integer (half-integer) spin when m is even (odd).
The braiding phase between mutually local quasiparticles is
trivial, i.e., equal to one. (For example, when m is odd, eimφσ

i

creates/destroys an electron on the edge.)
Take the boundary circles on each cylinder to have circum-

ference L. Then φσ
i has the mode expansion,

φR
i = φR

i,0 + 2πNRXi
x

L

+
∑
k>0

√
2π

mL|k| (ai,keikx + (ai,k )†e−ikx ),

φL
i = φL

i,0 + 2πNLXi
x

L

+
∑
k<0

√
2π

mL|k| (ai,keikx + (ai,k )†e−ikx ), (2.3)

with integer quantized momenta k = 2π j/L and j ∈ Z\{0}.
Here, k > 0 (k < 0) corresponds to a right (left) mover. The
superscript RXi (LXi) refers both to the right (left) edge and
the right-moving (left-moving) edge mode of cylinder Xi. The
equal-time commutation relations imply the mode operators
in Eqs. (2.3) satisfy the following commutation relations:

[ai,k, (ai,k′ )†] = δk,k′ , [ai,k, ai,k′ ] = 0,[
φR

i,0, NRXi
] = −[φL

i,0, NLXi
] = − i

m
. (2.4)

The winding number NσXi measures the total charge of the
σXi edge state since

NσXi =
∫ L

0

∂xφ
σ
i

2π
dx. (2.5)

7This simplification does not affect our conclusions; it merely sim-
plifies the presentation.

8The spin of an operator with left and right scaling dimensions
(hL, hR ) equals |hR − hL|.

FIG. 2. (a) Anyon flux threading continuously across a cylinder
with no bulk excitation. φL,R

i refer to bosonic edge modes of the
Laughlin and Moore-Read states; χL,R

i refer to fermionic edge modes
only in the Moore-Read state. (b) Wilson string operators in the x or
y directions parallel or perpendicular to interfaces between cylinders
A and B.

The local operator eimφσ
i obeys periodic boundary conditions

(in the absence of any additional fields). For this requirement
to be consistent with Eq. (2.5),

eimφσ
i (x+L) = eimφσ

i (x)eim2πNσXi
, (2.6)

the winding number must be quantized as NσXi − σ a
m ∈ Z

[65]. Thus, a = 0, 1, . . . , m − 1 (mod m) specifies m inequiv-
alent boundary conditions for φσ

i . As the notation suggests,
these boundary conditions are in 1:1 correspondence with the
different anyon types. In particular, boundary condition a can
be viewed as resulting from threading the flux of anyon a
through the cylinder (see Fig. 2). Each of these boundary
conditions corresponds to a Wilson line of type a connecting
the two edges, obtained by the creation of an anyon of type
a on, say, the left edge and its subsequent destruction on the
right edge.

We are interested in gluing together the right edge states
of cylinder Xi−1 to the left edge states of cylinder Xi to form
the torus state. (The subscripts are 2M periodic: X0 ≡ X2M and
therefore X2M+1 ≡ X1.) This means we want to add a suitable
interaction between edge modes on the right edge of cylinder
Xi−1 and the left edge of cylinder Xi that results in a gapped
state along their shared interface i. According to Eq. (2.1),
before the interaction is added, the relevant edge modes are
controlled by the Hamiltonian:

H (0)
i = mvc

4π

∫ L

0
dx
[(

∂xφ
R
i−1

)2 + (∂xφ
L
i

)2]
. (2.7)

The edges are glued together by an interaction that tunnels a
local boson or fermion between nearby edges. This is accom-
plished by the sine-Gordon interaction:

H (1)
i = −2g

π

∫ L

0
dx cos

[
m
(
φR

i−1 + φL
i

)]
. (2.8)
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We take coupling of the interaction g > 0 to be independent
of i. The total Hamiltonian at interface i is therefore

Hi = H (0)
i + H (1)

i . (2.9)

The resulting torus Hamiltonian is then H =∑i Hi. Upon
projecting each cylinder Xi into the same topological sector
a, i.e., all edge modes obey the same boundary conditions
around L, these decoupled Hi may be considered indepen-
dently.

For large coupling g → ∞, we approximate the sine-
Gordon potential at quadratic order in an expansion in (φR

i−1 +
φL

i ) [51,52]. This is a dramatic simplification that enables the
following exact solution to the approximated Hi; it relies on
the ability of the sine-Gordon potential to generate a gapped
interface ground state. (We will denote and refer to the ap-
proximated Hamiltonian by Hi.) Using the mode expansion
Eqs. (2.3) for the bosons, the total Hamiltonian decouples into
zero and oscillation (osc) mode sectors:

Hi = H zero
i,b + Hosc

i,b . (2.10)

Defining Xi = m(NRXi−1 − NLXi )/2 and Pi = φR
i−1,0 + φL

i,0
such that [Xi, Pi] = i, the zero mode Hamiltonian is

H zero
i,b = 2πvc

mL
X 2

i + πλvcL

2
P2

i , (2.11)

where λ ≡ 2gm2/π2vc > 0. This has the form of an harmonic
oscillator Hamiltonian and a corresponding ground state:

|bzero
a,i 〉 =

∑
Na,i∈Z− a

m

e− veπm
2L N2

a,i |NRXi−1 = Na,i〉RXi−1

⊗ |NLXi = −Na,i〉LXi . (2.12)

RXi−1 (LXi) labels the Hilbert space of edge modes on the
right (left) boundary of cylinder Xi−1 (Xi) with X0 ≡ X2M and
ve = 2

π

√m
λ

is the entanglement velocity.
The oscillation mode Hamiltonian is

Hosc
i,b = vc

∑
k>0

[(ai−1,k )† ai,−k]

[
Ak Bk

Bk Ak

][
ai−1,k

(ai,−k )†

]
, (2.13)

with Ak ≡ |k| + 2λπ2

m|k| and Bk ≡ 2λπ2

m|k| . Using the Bogoliubov
transformation,[

βi,k

(γi,k )†

]
=
[

cosh θk sinh θk

sinh θk cosh θk

][
ai−1,k

(ai,−k )†

]
, (2.14)

where cosh 2θk = Ak/Ek and sinh 2θk = Bk/Ek with Ek =√
|k|2 + 4λπ2/m, the oscillation mode Hamiltonian is diag-

onal:

Hosc
i,b = vc

∑
k>0

Ek (β†
i,kβi,k + γ

†
i,kγi,k + 1). (2.15)

The ground state of the diagonalized Hamiltonian is given by
the coherent state [65],

|bosc
i 〉 =

∏
k>0

e−�k (ai−1,k )†(ai,−k )† |0〉, (2.16)

where |0〉 is the vacuum state annihilated by all ai−1,k and
ai,−k . |bosc

i 〉 satisfies βi,k|bosc
i 〉 = γi,k|bosc

i 〉 = 0 for k > 0 with
�k = tanh θk . In the limit |k| � λ, tanh θk ≈ vek/2. Upon

expanding the exponential in Eq. (2.16), the oscillation ground
state can be rewritten as∣∣bosc

i

〉 = ∑
{ni,k∈Z+}

e−∑k>0
vek

2 (ni,k+1/2)
∣∣{nRXi−1

b,k = ni,k
}

k>0

〉
RXi−1

⊗ ∣∣{nLXi
b,−k = ni,k

}
k>0

〉
LXi

. (2.17)

Here, nRXi−1

b,k is the eigenvalue of the right-moving number op-

erator (ai−1,k )†ai−1,k on cylinder Xi−1 and nLXi
b,k the eigenvalue

of the left-moving number operator (ai,−k )†ai,−k on cylinder
Xi. The coherent state form for |bosc

i 〉 in Eq. (2.16) ensures
these two eigenvalues coincide in each interface oscillator
state.

Putting together these results, we find the unnormalized
torus state in sector a equals

|�a〉 =
⊗

i

∣∣bzero
a,i

〉⊗ ∣∣bosc
i

〉
. (2.18)

The topological sector label a = 0, 1, . . . , m − 1 coincides
with the m-fold ground state degeneracy of the Laughlin phase
on the torus. Notice that each cylinder is in the same topo-
logical sector a. This follows from our assumption that there
are no bulk excitations inside any cylinder. Consequently, all
cylinders are threaded by the same anyon flux a and NRXi =
−NLXi = a/m mod 1 for all Xi (see Fig. 2). Using Eq. (2.12),
Na,i = −NLXi = NRXi = Na,i+1 mod 1 and therefore Na,i ≡
a/m mod 1 for all cylinder i. A general (unnormalized) ground
state on the torus is the linear combination of states |�a〉 with
different anyon fluxes a.

B. Moore-Read interface ground state

The Moore-Read state at filling fraction ν = 1/m has
(U(1)m × Ising)/Z2 topological order. The Z2 symmetry cou-
ples together the U(1)m and Ising topological orders. The
U(1)m sector edge states are described by the same bosonic
fields φσ

i used in the construction in the Laughlin state. In
particular, the commutation relations Eq. (2.2) and mode ex-
pansions Eqs. (2.3) still hold. The Ising sector, which has
electrically neutral Majorana fermion edge states, supports
bulk quasiparticles 1, χ , and ξ . Here, 1 labels the identity
sector containing the vacuum, χ = χ† is the neutral Majo-
rana fermion, and ξ is the non-Abelian Ising twist field. The
Ising anyon and the Majorana fermion have mutual semionic
statistics, so the monodromy braiding phase between χ and ξ

is −1.
We set the notion of locality in the Moore-Read edge-state

theory by taking the fundamental electronic operator to be
ψel = χeimφ . When m is even, ψel is a fermion; when m is odd,
ψel is a boson. Integral combinations of the fundamental elec-
tronic operator, such as e±2imφ , belong to the identity sector.
They are mutually local in the sense that the corresponding
bulk quasiparticles have trivial monodromy braiding phases
with one another.

The remaining anyons in the Moore-Read theory corre-
spond to the operators Ir = eirφ , χ r = χeirφ and ξ r+1/2 =
ξei(r+1/2)φ , where r ∈ {0, 1, . . . , m − 1}. The correspond-
ing anyons have trivial braiding monodromy with linear
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TABLE I. The 3m anyon types of the Moore-Read topological order. Occupied entries are the spins (mod 1) of distinct (deconfined) anyons,
Ir = er ≡ eirφ , χ r = χer and ξ r+1/2 = ξer+1/2, for r = 0, 1, . . . , m − 1. Empty entries (∗) are confined fields disallowed by electron locality.

1 e1/2 e1 e3/2 . . . er er+1/2 . . . em−1 em−1/2

1 0 ∗ 1
2m ∗ . . . r2

2m ∗ . . . m2+1
2m ∗

χ 0 ∗ 1
2 + 1

2m ∗ . . . 1
2 + r2

2m ∗ . . . 1
2 + m2+1

2m ∗
ξ ∗ 1

16 + 1
8m ∗ 1

16 + 9
8m . . . ∗ 1

16 + (2r+1)2

8m . . . ∗ 1
16 + (2m−1)2

8m

combinations of ψel. The anyons obey the fusion rules:

Ir × Ir′ = χ r × χ r′ = Ir+r′
, Ir × χ r′ = χ r+r′

Ir × ξ r′+1/2 = χ r × ξ r′+1/2 = ξ r+r′+1/2,

ξ r+1/2 × ξ r′+1/2 = Ir+r′+1 + χ r+r′+1. (2.19)

The fusion rules imply the quantum dimensions dIr = dχ r = 1
and dξ r+1/2 = √

2. The locality of the electronic operator dic-
tates that fields that differ by ψel belong in the same anyon
class, a × ψel ≡ a. Hence, the anyon types have a m-fold (i.e.,
charge e) periodicity:

χ r+m ≡ Ir, Ir+m ≡ χ r, ξ r+m+1/2 ≡ ξ r+1/2. (2.20)

In total, there are 3m distinct anyon classes; they are listed in
Table I.

Bulk anyonic quasiparticles are nonlocal excitations that
must come in conjugate pairs in real space, i.e., the total
anyon charge contained in a region is conserved. Anyons
in the physical Hilbert space are identified by equivalence
classes of particles. Two anyons belong to the same class if
they differ by a multiple of the electronic operator. Different
topological sectors on the torus are obtained by imagining a
process in which an anyon-anti-anyon pair is nucleated at a
point and then each is dragged around the y loop in Fig. 2
in opposite directions until they meet again and annihilate.
Decomposing the torus into cylinders, edges of adjacent cylin-
ders must therefore carry conjugate anyon charge (see Fig. 1).
This constraint was imposed implicitly when we considered
the Laughlin state by requiring each cylinder to lie in sector a;
in the present case, the presence of non-Abelian quasiparticles
makes this more delicate, as we discuss.

The Moore-Read edge-states on cylinder Xi are described
by the Lagrangian density [66]:

Lσ
i = i

2
χσ

i (∂t − σvm∂x )χσ
i + m

4π
∂xφ

σ
i (σ∂t − vc∂x )φσ

i .

(2.21)

As before, φσ
i is a real boson with unit compactification radius

and σ ∈ {L, R} = {±1}, χσ
i is a Majorana fermion, and vc

(ṽc) is the velocity of the the boson (Majorana fermion). χσ
i

satisfies the anticommutation relations:{
χσ

i (x), χσ
i (x′)

} = δ(x − x′). (2.22)

The mode expansions [65] of the Majorana fermion fields are

χR
i = 1√

L

∑
k

eikxcR
i,k, χL

i = 1√
L

∑
k

eikxcL
i,k . (2.23)

The fermionic mode operators cσ
i,k obey (cσ

i,k )† = cσ
i,−k since

χσ
i is real, and the anticommutation relations:{

cσ
i,k, cσ ′

i′,k′
} = δk,−k′δii′δ

σσ ′
. (2.24)

The Moore-Read state is classified into untwisted and
twisted sectors [65]. In the untwisted sector, the Ma-
jorana fermions obey antiperiodic boundary conditions
(χσ

i (x + L) = −χσ
i (x)). Consequently, the fermionic mo-

menta are quantized in half integers: k = 2π
L ( j + 1/2) with

j ∈ Z. This sector consists of Abelian quasiparticles that
correspond to vertex operators {eirφσ

i , χσ
i eirφσ

i }. The boson
winding number is quantized as NσXi − σ r/m ∈ Z.

In the twisted sector, the Majorana fermion is periodic
[χσ

i (x + L) = χσ
i (x)] and the fermionic momenta are inte-

grally quantized: k = 2π j
L , j ∈ Z. The change in boundary

conditions is effected by inserting a π flux through the cylin-
der. In addition to the fermion oscillation modes with nonzero
momenta (k > 0), there is an additional Majorana zero mode
(k = 0) cσ

i,0 due to the integral quantization of momenta in the
twisted sector. The boson winding number also changes its
quantization to NσXi − σ

r+1/2
m ∈ Z in response to the added

π flux. The non-Abelian bulk quasiparticles are associated to
the vertex operators {ei(r+1/2)φσ

i }.
While the boson and fermion modes are decoupled in

the Lagrangian Eq. (2.21), physical states must be invariant
under a Z2 internal symmetry. This neutrality requirement
introduces correlations between the bosonic and fermionic
components of a physical state. To see how this works, we first
observe that the local electronic operator (ψel )σi = χσ

i eimφσ
i is

neutral under the following Z2 transformation, which is local
to a given cylinder Xi:

Z2(i) : χσ
i′ → (−1)δii′ χσ

i′ , φσ
i′ → φσ

i′ + iπσ

m
δii′ . (2.25)

Consequently, any integral combination of electron operators,
such as a Wilson string that creates a conjugate pair of anyons
on the two ends of Xi, must be even under the local Z2 sym-
metry. Assuming there are no bulk excitations inside any of
the cylinders, the artificially extended Hilbert space in which
the bosons and fermions are decoupled where Eq. (2.21) acts
must be restricted to the physical Hilbert space that is invariant
under all Z2(i) symmetries. The restriction can be achieved by
the projection operator P =∏i PXi , where

PXi = 1
2 (1 + (−1)NLXi +NRXi (−1)F LXi +F RXi ) (2.26)

is the projection operator for cylinder Xi that ensures the
corresponding edge states are even under Z2(i). Here NσXi is
the winding number defined in Eq. (2.5) and F σXi measures
the fermion parity of a state. In particular, (−1)FσXi

χσ
i =

−χσ
i (−1)FσXi .
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Now consider gluing the right edge of cylinder Xi−1 to the
left edge of cylinder Xi. The strategy is similar to that of the
Laughlin case. In the absence of any coupling, the edge modes
are described by the free, decoupled Hamiltonians associated
to Eq. (2.21). The cylinders can be pieced together at the
interfaces by the electron tunneling terms,

H (1)
i = − 2g

2π

∫ L

0
dx
{(

ψL
i

)†
ψR

i−1 + H.c.
}

= −2g

π

∫ L

0
dx
{
iχL

i χR
i−1 cos

[
m
(
φR

i−1 + φL
i

)]}
, (2.27)

where the coupling constant g > 0 is taken to be independent
of the specific interface i. We treat the tunneling term in a
mean-field approximation [65] in which the corresponding
ground-state expectation values (up to Z2 symmetry) of the
bosonic and fermionic operators are〈

m
(
φL

i + φR
i−1

)〉 = 0 mod 2π and
〈
iχL

i χR
i−1

〉
> 0,

or
〈
m
(
φL

i + φR
i−1

)〉 = π mod 2π and
〈
iχL

i χR
i−1

〉
< 0. (2.28)

The overall scale of the expectation value of the fermion
bilinear is absorbed into g. In the g → ∞ limit, we once again
employ the quadratic approximation to the sine-Gordon po-
tential and pin the bosonic fields at the corresponding minima.
This allows only neutral charge (NRXi−1 + NLXi = 0) at the
interfaces. With these approximations, the tunneling potential
becomes

H (1)
i =

∫ L

0
dx

[
vcλπ

2

(
φR

i−1 + φL
i

)2
+ vmg̃iχL

i χR
i−1 + const. + · · ·

]
, (2.29)

where g̃ = − 2g
vmπ

< 0 and λ > 0. The ellipsis denotes higher-
order terms which can be ignored as g → ∞.

It remains to construct torus ground state of this simplified
model. We treat the untwisted and twisted sectors in turn.

1. Untwisted sector

We construct the ground state of the quadratic Hamiltonian
discussed in the previous section and then project the result to
the physical Hilbert space. Since the bosonic zero and oscilla-
tion mode Hamiltonians are the same as in the Laughlin case,
the bosonic parts of the unprojected ground state are given
in Eqs. (2.12) and (2.17). The Hamiltonian for the fermionic
oscillation modes is

Hosc
i, f = vm

∑
k>0

[(
cR

i−1,k

)†
cL

i,−k

][k −ig̃
ig̃ −k

][
cR

i−1,k

(cL
i,−k )†

]
,

(2.30)

where k = 2π ( j + 1/2)/L with j a non-negative integer. For
suitable ϕk , the following transformation:[

β̃i,k

(γ̃i,k )†

]
=
[

cos ϕk −i sin ϕk

sin ϕk i cos ϕk

][
cR

i−1,k

(cL
i,−k )†

]
, (2.31)

diagonalizes the Hamiltonian to

Hosc
i, f = vm

∑
k>0

((β̃i,k )†β̃i,k + (γ̃i,k )†γ̃i,k − 1). (2.32)

We take cos 2ϕk = k/εk , sin 2ϕk = g̃/εk , and εk =
√

k2 + g̃2.
The ground state is given by the BCS coherent state,∣∣ f osc

i

〉 =∏
k>0

e−i�k (cL
i,−k )†(cR

i−1,k )† |0〉, (2.33)

where β̃i,k| f osc
i 〉 = γ̃i,k| f osc

i 〉 = 0, and cL
i−1,−k|0〉 = cR

i,k|0〉 = 0
for all k > 0. In the limit of |k| � |g̃|, �k = tan ϕk ≈ ṽek/2
with ṽe ≡ 2/|g̃| the entanglement velocity in the fermionic
sector. Similar to |bosc

i 〉 in Eq. (2.17), the ground state can be
rewritten as∣∣ f osc

i

〉 = ∑
{ñi,k∈Z2}

i
∑

k>0 ñi,k e−∑k>0
ṽek

2 (ñi,k+1/2)

× ∣∣{nRXi−1

f ,k = ñi,k
}

k>0

〉
RXi−1

⊗ ∣∣{nLXi
f ,−k = ñi,k

}
k>0

〉
LXi

,

(2.34)

where nRXi−1

f ,k and nLXi
f ,−k are the eigenvalues of the fermion

number operators (cR
i−1,k )†cR

i−1,k and (cL
i,−k )†cL

i,−k .
Because the zero mode and oscillation modes are decou-

pled (in the artificially extended Hilbert space), the torus
ground state for the approximated Hamiltonian can be written
as a tensor product of Eqs. (2.12), (2.17), and (2.34):

|�̂a〉 =
⊗

i

∣∣bzero
r,i

〉⊗ ∣∣bosc
i

〉⊗ ∣∣ f osc
i

〉
. (2.35)

The corresponding physical ground state that is invariant un-
der the internal Z2 symmetry Eq. (2.25) is the projection,

|�a〉 = P|�̂a〉
=
⊗

i

Pa,i

∣∣bzero
r,i

〉⊗ ∣∣bosc
i

〉⊗ ∣∣ f osc
i

〉
, (2.36)

where the projection operator P is given in Eq. (2.26). In the
untwisted sector, the projection operator for each cylinder Xi

decomposes into the product of left and right edge projection
operators Pa,iPa,i+1 given by

Pa,i = 1
2 (1 + (−1)Na,i−r/m+∑k>0 ñi,k ). (2.37)

(Note that ñi,k denotes one of the fermion number operators
(cR

i−1,k )†cR
i−1,k or (cL

i,−k )†cL
i,−k , whose eigenvalues coincide at

interface i.) These operators restrict the winding number and
fermion parity of the ground state at interface i between Xi−1

and Xi.

2. Twisted sector

In the twisted sector, we must include the Majorana zero
mode excitations, which arise from the π flux that threads
across all cylinders and results in fermionic momenta that
are integrally quantized as k = 2π j/L. The contributions of
the bosonic modes and fermion oscillator modes to the un-
projected torus state have the same form as before and so we
need only discuss the novelty presented by the Majorana zero
modes.

The Majorana zero mode Hamiltonian is

H zero
f = ig̃

∑
i

cR
i−1,0cL

i,0 = g̃
∑

i

f †
i fi, (2.38)

where g̃ > 0. This Hamiltonian is essentially the Kitaev chain
[67] with quantum states labeled by the eigenvalues n′

i = 0, 1
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FIG. 3. Basis Change. Three F -moves are used to transform
from the interface to cylinder bases. Each |n′

i = 0〉 in |0′0′0′0′〉
obtains by fusing two non-Abelian twist fields ξ into the vacuum
channel; fusion into the χ channel is denoted by 1. The interface
fermion numbers generally satisfy n′

1 + n′
2 + n′

3 + n′
4 = 0 (mod 2).

of the fermion number operators f †
i fi at the interface be-

tween cylinders Xi−1 and Xi. Here, fi = (cR
i−1,0 + icL

i,0)/
√

2
is an interface Dirac fermion. Suppose the torus is divided
into four consecutive cylinders X1 ∪ X2 ∪ X3 ∪ X4. Then the
ground state of Eq. (2.38) is | f zero〉 = |0′0′0′0′〉, where the
primes refer to the interface basis states.

Because the Z2 projection operator is not diagonal with
respect to this interface basis, we need to change to an appro-
priate cylinder basis for the Majorana zero modes. To this end,
we define the cylinder Dirac fermions di = (cR

i,0 + icL
i,0)/

√
2

on Xi and the corresponding occupation numbers γi = 0, 1 of
the operators d†

i di. Notice that f †
i fi and d†

i′ di′ do not commute
when i = i′ or i = i′ + 1. The F symbols [68] generate the
basis transformation between cylinder and interface bases.
This basis change is depicted in Fig. 3. For Ising topological
order, the relevant F-move transformation is given by the 2×2
matrix,

(
F ξξξ

ξ

)ν
μ

= 1√
2

(−1)μν, (2.39)

where μ, ν ∈ {0, 1}, corresponding to the two possible fusion
channels of ξ . Thus, the F-moves transform |0′0′0′0′〉 to a
basis written in terms of states labeled by the fusion channels
of pairs of ξ belonging to a particular cylinder. The index
μ is the original internal channel and ν the new internal
channel after the F move. Thus, to transform the ground state
|n′

1 = 0, n′
2 = 0, n′

3 = 0, n′
4 = 0〉, we use

|n′
1n′

2n′
3n′

4〉 =
∑

γ1,γ2,γ3

(
F ξξξ

ξ

)γ3

n′
4

(
F ξξξ

ξ

)γ2

n′
1+n′

2

(
F ξξξ

ξ

)γ1

n′
1

× |γ1γ2γ3γ4〉, (2.40)

where γ4 = 1 + γ1 + γ2 + γ3 (mod 2), with the result

| f zero〉 = 1√
8

(|0001〉 + |0010〉 + |0100〉 + |0111〉

+ |1000〉 + |1011〉 + |1101〉 + |1110〉). (2.41)

Each of the unprimed states in | f zero〉 is an eigenstate of d†
i di.

For example, |γ1γ2γ3γ4〉 has eigenvalue (−1)γi under d†
i di.

Here, the total fermion parity in the cylinder basis,
∑

i γi, is
odd, while the total parity in the interface basis,

∑
i n′

i, is even.
This is because the two total parities are exactly opposite:∏

i

(−1) f †
i fi = (−1)M22M

∏
i

cR
i−1,0cL

i,0

= −(−1)M22M
∏

i

cR
i,0cL

i,0

= −
∏

i

(−1)d†
i di . (2.42)

For 2M cylinders, this result generalizes to

| f zero〉 = 1√
22M−1

∑
�γ∈{0,1}2M |C

|γ1γ2 · · · γ2M〉. (2.43)

Here, {0, 1}2M |C indicates that �γ takes values in {0, 1}2M

subject to the constraint
∑2M

i=1 γi ≡ 1 (mod 2); the overall nor-
malization comes from the fact that there are 22M−1 solutions
to this constraint. Physically, this constraint on �γ means the
overall topological charge of the 2M Majorana fermions on
the torus is in the vacuum channel. Similar to Eq. (2.40), it
will sometimes be convenient to take the sum in Eq. (2.43)
to be over unconstrained γi for i ∈ {1, . . . , 2M − 1} with γ2M

implicitly determined by the constraint.
Thus, the unprojected ground state for the twisted sector is

|�̂a〉 =
(⊗

i

∣∣bzero
r,i

〉⊗ ∣∣bosc
i

〉⊗ ∣∣ f osc
i

〉)⊗ | f zero〉. (2.44)

Here a refers to the Ising twist field ξ r+1/2 = ξei(r+1/2)φ ,
for r = 0, 1, . . . , m − 1, and therefore the winding number
Nr,i of |bzero

r,i 〉 takes values in (r + 1/2)/m + Z. The physical
ground state that is invariant under the internal Z2 symmetry
Eq. (2.25) is the projection:

|�a〉 = P|�̂a〉 =
∏

i

Pa,Xi |�̂a〉, (2.45)

where the projection operator Pa,Xi on cylinder Xi is defined
by

Pa,Xi = 1

2
(1 + (−1)Na,Xi +

∑
k>0(ñXi ,k )+d†

i di+ui ),

Na,Xi ≡ −Na,i + Na,i−1, ñXi,k ≡ ñi−1,k + ñi,k,

ui = δ2M,i =
{

0, if i = 1, . . . , 2M − 1
1, if i = 2M

. (2.46)

Here, the additional u2M accounts for the total odd par-
ity in the zero mode sector

∏
i(−1)d†

i di = (−1)
∑

i ui = −1
[see Eq. (2.42)].
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III. ENTANGLEMENT NEGATIVITY

We now study the entanglement negativity of the Laughlin and Moore-Read states at filling fraction ν = 1/m on the torus,
constructed in the previous section.

A. ν = 1/m Laughlin state

1. Torus geometry

We begin with the Laughlin state at filling fraction ν = 1/m and the torus geometry [e.g., Fig. 1(a)]. The unnormalized torus
ground state in sector a ∈ {0, . . . , m − 1} factorizes as

|�a〉 =
2M⊗
i=1

|�a,i〉, (3.1)

where i refers to the interface between cylinders Xi−1 and Xi and

|�a,i〉 = ∣∣bzero
a,i

〉⊗ ∣∣bosc
i

〉
. (3.2)

The bosonic zero mode |bzero
a,i 〉 and oscillator |bosc

i 〉 states are given in Eqs. (2.12) and (2.17). Introducing the collective mode
numbers,

N LXi ≡ (−NLXi ,
{
nLXi

b,−k

}
k>0

)
, (3.3)

N RXi ≡ (NRXi ,
{
nRXi

b,k

}
k>0

)
, (3.4)

Na,i ≡ (Na,i,
{
ni,k
}

k>0

)
, (3.5)

with domains defined in Eqs. (2.12) and (2.17), we write

|�a,i〉 =
∑
Na,i

λ(Na,i )|N RXi−1 = Na,i〉RXi−1 ⊗ |N LXi = Na,i〉LXi , (3.6)

where

λ(Na,i ) = exp

[
−veπm

2L
N2

a,i −
∑
k>0

vek

2

(
ni,k + 1

2

)]
. (3.7)

Assembling the preceding together, we have

|�a〉 =
2M⊗
i=1

∑
Na,i

λ(Na,i )|Na,i〉RXi−1 ⊗ |Na,i〉LXi . (3.8)

Equation (3.8) shows how a product of cylinder states glue together to form the unnormalized torus state in sector a. The norm
squared of |�a〉 is

(Za)2M =
(∑

Na

λ2(Na)

)2M

, (3.9)

with mode number Na defined as in Eq. (3.5). We identify Za as the partition function in sector a at inverse temperature β = 1
of the entanglement Hamiltonian Ha,

Za(β ) = tre−βHa , (3.10)

with entanglement spectrum equal to −2 log λ(Na).
We use Lemma 1 below to calculate the entanglement negativity of the general torus state |�〉 =∑a ψa|�a〉 with respect to

the torus partition [e.g., Fig. 1(a)], where the normalized sector a state is

|�a〉 = Z−M
a |�a〉. (3.11)

While the details of the proof of the analogous lemma for the non-Abelian Moore-Read state differs slightly due to the presence
of fermionic zero modes (in the twisted sector), it turns out that the result of Lemma 1 continues to apply. Readers uninterested
in the details of the straightforward but tedious proof of Lemma 1 may safely skip it and use the result.
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Lemma 1. The entanglement negativity of ρ = |�〉〈�| with respect to the torus partition X = Xodd ∪ Xeven (e.g., Fig. 1) and
with partial transposition on odd cylinders Xodd = X1 ∪ X3 ∪ · · · ∪ X2M−1 equals

EXodd:Xeven = 2 log
∑

a

|ψa|
(

Za(1/2)√
Za(1)

)2M

, (3.12)

where Xeven = X2 ∪ X4 ∪ · · · ∪ X2M and Za(β ) is defined in Eq. (3.10).
Proof. We directly evaluate ||ρTodd ||1 = tr

√
(ρTodd )†ρTodd to compute EXodd:Xeven = log ||ρTodd ||1, where ρTodd denotes the par-

tial transpose of ρ with respect to Xodd. Define { �Na} ≡ {(Na,1,Na,2, . . . ,Na,2M )} with Na,i in Eq. (3.5) and ca( �Na) =
ψa
∏2M

i=1 λ(Na,i )/
√

Za (no sum over a) with λ(Na,i ) given in Eq. (3.7); we will sometimes denote ca = ca( �Na) for brevity.
Then we may write

ρ =
∑
a,a′

∑
�Na, �N ′

a′

c∗
a ( �Na)ca′ ( �N ′

a)|N ′
a′,1N ′

a′,2〉〈Na,1Na,2|X1 ⊗ · · ·

⊗ |N ′
a′,2M−1N ′

a′,2M〉〈Na,2M−1Na,2M |X2M−1 ⊗ |N ′
a′,2MN ′

a′,1〉〈Na,2MNa,1|X2M . (3.13)

Note that |N ′
a′,iN ′

a′,i+1〉〈Na,iNa,i+1|Xi denotes the outer product of states on the edges of cylinder Xi: the first entry of each ket
or bra refers to states on the left edge of Xi, while the second entry refers to states on the right edge of Xi. Taking the partial
transpose with respect to Xodd, we have

ρTodd =
∑
a,a′

∑
�Na, �N ′

a′

c∗
aca′ |Na,1Na,2〉〈N ′

a′,1N ′
a′,2|X1 ⊗ . . . ⊗ |N ′

a′,2M−2N ′
a′,2M−1〉〈Na,2M−2Na,2M−1|X2M−2

⊗ |Na,2M−1Na,2M〉〈N ′
a′,2M−1N ′

a′,2M |X2M−1 ⊗ |N ′
a′,2MN ′

a′,1〉〈Na,2MNa,1|X2M . (3.14)

Next we evaluate

(ρTodd )†ρTodd =
∑

a,a′,a′′,a′′′

∑
�Na, �N ′

a′ , �N ′′
a′′ , �N ′′′

a′′′

c∗
a′′′ca′′c∗

aca′ |N ′′′
a′′′,1N ′′′

a′′′,2〉〈N ′′
a′′,1N ′′

a′′,2|Na,1Na,2〉〈N ′
a′,1N ′

a′,2|X1 ⊗ . . .

⊗ |N ′′
a′′,2M−2N ′′

a′′,2M−1〉〈N ′′′
a′′′,2M−2N ′′′

a′′′,2M−1|N ′
a′,2M−2N ′

a′,2M−1〉〈Na,2M−2Na,2M−1|X2M−2

⊗ |N ′′′
a′′′,2M−1N ′′′

a′′′,2M〉〈N ′′
a′′,2M−1N ′′

a′′,2M |Na,2M−1Na,2M〉〈N ′
a′,2M−1N ′

a′,2M |X2M−1

⊗ |N ′′
a′′,2MN ′′

a′′,1〉〈N ′′′
a′′′,2MN ′′′

a′′′,1|N ′
a′,2MN ′

a′,1〉〈Na,2MNa,1|X2M . (3.15)

Using the orthonormality of states with different quantum numbers in the above overlaps,

a′′′ = a′, N ′′′
a′′′,i = N ′

a′,i,

a′′ = a, N ′′
a′′,i = Na,i, (3.16)

for all 1 � i � 2M, we find that (ρTodd )†ρTodd is diagonal with entries given by |ca′ ( �N ′
a′ )|2|ca( �Na)|2. Thus,√

(ρTodd )†ρTodd =
∑
a,a′

∑
�Na, �N ′

a′

|ca′ ||ca||N ′
a′,1N ′

a′,2〉〈N ′
a′,1N ′

a′,2|X1 ⊗ |Na,2Na,3〉〈Na,2Na,3|X2 ⊗ · · ·

⊗ |Na,2MNa,1〉〈Na,2MNa,1|X2M (3.17)

and tr
√

(ρTodd )†ρTodd =∑a,a′
∑

�Na, �N ′
a′

|ca′ ||ca|.
Tracing through our definitions, we find

||ρTodd ||1 =
(∑

a

∑
�Na

|ca( �Na)|
)2

=
⎛
⎝∑

a

|ψa|
∑

�Na

2M∏
i=1

λ(Na,i )√
Za

⎞
⎠

2

=
⎛
⎝∑

a

|ψa|
⎛
⎝ ∑

Na
λ(Na)√∑

Na
λ2(Na)

⎞
⎠

2M⎞
⎠

2

=
(∑

a

|ψa|
(

Za(1/2)√
Za(1)

)2M
)2

. (3.18)

Taking the logarithm of ||ρTodd ||1, we obtain Eq. (3.12) and thereby complete the proof.
It remains to calculate Za(β ). We are specifically interested in the L → ∞ limit. The partition function of the Laughlin edge

states in sector a can be written as

Za(β ) = θ
−a/m
0 (mτ )

η(τ )
, τ = iτ2 = iβve

L
, (3.19)
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where the Jacobi θ and Dedekind η functions (see the Appendix) are

θ
−a/m
0 (mτ ) =

∑
Na∈Z− a

m

e− βveπm
L N2

a , (3.20)

=
∑
n∈Z

q
1
2 (n− a

m )2
, (3.21)

η−1(τ ) =
∑

ni,k∈Z+
e−∑k>0 βvek(ni,k+1/2) (3.22)

= q− 1
24

∏
ni,k∈Z+

(1 − qni,k )−1, (3.23)

and q = e2π iτ . These functions have a useful transformation under the modular transformation τ �→ −1/τ that allows us to
easily extract the scaling behavior of the entanglement negativity as L → ∞. Specifically,

θ
−a/m
0 (mτ ) = θ0

−a/m(−1/mτ )√−imτ
, (3.24)

η(τ ) = η(−1/τ )√−iτ
. (3.25)

Thus, Za(β ) = 1√
m

exp[ πL
12βve

] and so
Za(1/2)√

Za(1)
= 1

4
√

m
e

πL
8ve . (3.26)

Inserting this expression into Eq. (3.12) and taking the L → ∞ limit, we find the topological entanglement negativity

EXodd:Xeven = M

(
π

2ve

)
L − M log m + 2 log

∑
a

|ψa|. (3.27)

We see that EXodd:Xeven receives 2M contributions, proportional to log
√

m, and a single topological sector correction, equal to
2 log

∑
a |ψa|. Since the Laughlin phase has only Abelian quasiparticles (da = 1), EXodd:Xeven takes the form given in Eq. (1.12)

with α = π
2ve

and D = √
m.

2. Cylinder geometry

Next we consider the entanglement negativity between subsets of Xeven and Xodd when the degrees of freedom on N � M
cylinders Ȳ ⊂ X have been traced over. We denote the remaining (2M − N ) cylinders by Y and their decomposition into odd
and even cylinders as Yodd and Yeven. The resulting entanglement negativity will depend on the number R of shared interfaces
between the remaining cylinders in Yodd ∪ Yeven. As an example, Fig. 1(b) represents TrX4 |�〉〈�|, i.e., the X1 ∪ X2 ∪ X3 cylinder
state when the degrees of freedom on Ȳ = X4 have been traced over; we then consider the entanglement negativity of TrX4 |�〉〈�|
between degrees of freedom on Yodd = X1 ∪ X3 and Yeven = X2 with a result that depends on R = 2.

Our calculation of the entanglement negativity will apply Lemma 2 below to the torus ground state from the previous section.
This lemma applies to both the Abelian Laughlin and non-Abelian Moore-Read states. We will summarize the appropriate
generalization of its proof in the non-Abelian case in a later section.

Lemma 2. Consider the reduced density matrix ρY = TrȲ |�〉〈�|, where |�〉 =∑a ψa|�a〉 is a general state on the torus
X = Y ∪ Ȳ . Then the entanglement negativity of ρY equals

EYodd:Yeven = log
∑

a

(
|ψa|

(
Za(1/2)√

Za(1)

)R)2

, (3.28)

where R equals the number of interfaces shared between the remaining cylinders Y = Yodd ∪ Yeven and Za(β ) is defined in
Eq. (3.10).

Proof. We use notation introduced in Lemma 1. There are four cases to consider.
Case I: We remove cylinder Ȳ = X2k where 1 < 2k � 2M by tracing over its left and right edge states. Thus, Yodd = Xodd,

Yeven = X2 ∪ · · · ∪ X2k−2 ∪ X2k+2 · · · X2M , and R = 2M − 2.
We begin with the torus ground state |�〉〈�|:

ρ =
∑
a,a′

∑
�Na, �N ′

a′

ca( �Na)c∗
a′ ( �N ′

a′ ) × · · · ⊗ |Na,2k−2Na,2k−1〉〈N ′
a′,2k−2N ′

a′,2k−1|X2k−2 ⊗ |Na,2k−1Na,2k〉〈N ′
a′,2k−1N ′

a′,2k|X2k−1

⊗ |Na,2kNa,2k+1〉〈N ′
a′,2kN ′

a′,2k+1|X2k ⊗ |Na,2k+1Na,2k+2〉〈N ′
a′,2k+1N ′

a′,2k+2|X2k+1

⊗ |Na,2k+2Na,2k+3〉〈N ′
a′,2k+2N ′

a′,2k+3|X2k+2 ⊗ · · · . (3.29)
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Tracing over degrees of freedom on X2k sets

a′ = a, N ′
a′,2k = Na,2k, N ′

a′,2k+1 = Na,2k+1, (3.30)

and removes the corresponding outer products involving states on X2k . The first condition above (a = a′) removes any
interference in TrX2k (ρ) between states in different topological sectors. Using Eq. (3.39) and the definition of ca( �Na), the partial
transpose of TrX2k (ρ) with respect to Yodd is

ρ
Todd
Y =

∑
a

∑
�Na, �N ′

a

ca( �Na)c∗
a ( �N ′

a) × · · · ⊗ |Na,2k−2Na,2k−1〉〈N ′
a,2k−2N ′

a,2k−1|X2k−2 ⊗ |N ′
a,2k−1Na,2k〉〈Na,2k−1Na,2k|X2k−1

⊗ |Na,2k+1N ′
a,2k+2〉〈Na,2k+1Na,2k+2|X2k+1 ⊗ |Na,2k+2Na,2k+3〉〈N ′

a,2k+2N ′
a,2k+3|X2k+2 ⊗ · · · , (3.31)

where

ca( �Na)c∗
a ( �N ′

a) = |ψa|2
Z2M

a

λ(Na,1)λ(N ′
a,1) . . . λ(Na,2k−1)λ(N ′

a,2k−1)λ2(Na,2k )λ2(Na,2k+1)

× λ(Na,2k+2)λ(N ′
a,2k+2) × . . . λ(Na,2M )λ(N ′

a,2M ). (3.32)

There is no dependence on N ′
a,2k or N ′

a,2k+1 above because of Eq. (3.39). In what follows, it will be implicitly understood that

N ′
a,2k,N ′

a,2k+1 are removed in sums over �N ′
a. The remainder of the proof follows that of Lemma 1. Specifically, we compute(

ρ
Todd
Y

)†
ρ

Todd
Y =

∑
a,a′

∑
�Na, �N ′

a, �N ′′
a′ , �N ′′′

a′

c∗
a′ ( �N ′′

a′ )ca′ ( �N ′′′
a′ )ca( �Na)c∗

a ( �N ′
a) × · · ·

⊗ |N ′′′
a′,2k−2N ′′′

a′,2k−1〉〈N ′′
a′,2k−2N ′′

a′,2k−1|Na,2k−2Na,2k−1〉〈N ′
a,2k−2N ′

a,2k−1|X2k−2

⊗ |N ′′
a′,2k−1N ′′

a′,2k〉〈N ′′′
a′,2k−1N ′′

a′,2k|N ′
a,2k−1Na,2k〉〈Na,2k−1Na,2k|X2k−1

⊗ |N ′′
a′,2k+1N ′′

a′,2k+2〉〈N ′′
a′,2k+1N ′′′

a′,2k+2|Na,2k+1N ′
a,2k+2〉〈Na,2k+1Na,2k+2|X2k+1

⊗ |N ′′′
a′,2k+2N ′′′

a′,2k+3〉〈N ′′
a′,2k+2N ′′

a′,2k+3|Na,2k+2Na,2k+3〉〈N ′
a,2k+2N ′

a,2k+3|X2k+2

⊗ · · · . (3.33)

Note that N ′
a,2k,N ′

a,2k+1 and N ′′′
a,2k,N ′′′

a,2k+1 are absent in the sums over �N ′
a and �N ′′′

a . The above overlaps fix a = a′ and

N ′′′
a′,i = N ′

a,i, N ′′
a′,i = N ′

a,i, (3.34)

for 1 � i � 2M. Analogous to Eq. (3.26), we may now read off ||ρTodd
Y ||1 = tr

√
(ρTodd

Y )†ρ
Todd
Y to find∣∣∣∣ρTodd

Y

∣∣∣∣
1 =

∑
a

∑
�Na, �N ′

a

|ca( �Na)||ca( �N ′
a)|

=
∑

a

|ψa|2
∣∣∣∣Z2M−2

a (1/2)

ZM−2
a (1)

∣∣∣∣
∣∣∣∣Z2M−2

a (1/2)

ZM
a (1)

∣∣∣∣ =∑
a

(
|ψa|

(
Za(1/2)√

Za(1)

)2M−2)2

. (3.35)

The second equality follows from Eq. (3.41) and the definition of the ca( �Na). Taking the logarithm of ||ρTodd
Y ||1, we obtain

Eq. (3.37) and thereby complete the proof of the lemma when Ȳ = X2k , i.e., a single even cylinder has been removed.
This dependence of the entanglement negativity on the number R of shared interfaces of the remaining cylinders Y not traced

over continues in the other cases.
Case II: If X2k and an additional even cylinder X2k′ are traced out, then the generalization of Eq. (3.39) will also remove any

dependence on N ′
a,2k′ and N ′

a,2k′+1. Proceeding with the remaining steps outlined for Case 1, we find R = 2M − 4, reflective
of the number of remaining shared interfaces. In the special case when k′ = k + 1, degrees of freedom on X2k+1 become
disconnected from those on the remaining cylinders; because X2k+1 has no shared interface with the remaining cylinders, we
conclude that it effectively makes no contribution to the entanglement negativity.

Case III: The proof proceeds identically if instead Ȳ = X2k−1. Then Eq. (3.39) removes the dependence on N ′
a,2k′−1 and N ′

a,2k′ ,
and the remainder of the proof proceeds as before, obtaining R = 2M − 2 in this case.

It is straightforward to generalize the above reasoning to the situation when more than two nonconsecutive cylinders, e.g.,
a subset of the even cylinders, are removed. In this situation, the generalization of the above arguments gives R = 2M − 2Q,
where Q equals the number of cylinders removed.

Case IV: The remaining case to discuss involves the removal (by trace) of two consecutive cylinders, say, X2k−1 and X2k . In
this case, Eq. (3.39) removes the dependence on N ′

a,2k−1,N ′
a,2k, and N ′

a,2k+1. There are only three mode numbers in this case
because states at the interface between X2k−1 and X2k share N ′

a,2k . Proceeding then as above, we obtain R = 2M − 3.
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The above reasoning can then be suitably generalized, as needed, to show Eq. (3.37) with R equal to the number of shared
interfaces in Y . This completes our proof of Lemma 2.

By Lemma 2, the calculation of the entanglement negativity between Yodd and Yeven reduces to the calculation of the ratio of
entanglement Hamiltonian partition functions. Making use of the partition function results from the previous section, we find

EYodd:Yeven = R

2

(
π

2ve

)
L − R

2
log m + log

∑
a

|ψa|2

= R

2

(
π

2ve

)
L − R

2
log m, (3.36)

where in the last line we used
∑

a |ψa|2 = 1. This verifies Eq. (1.13) with α = π/2ve and D = √
m. Similar to the torus geometry,

there are R contributions, equal to log
√

m. However, the topological sector correction is absent: the trace that is used to construct
the cylinder state removes the correlations between different topological sectors when the state is Abelian (da = 1). We show in
the next section that a topological sector correction is present for the Moore-Read state.

B. ν = 1/m Moore-Read state

1. Torus geometry

We now consider the entanglement negativity of the Moore-Read state on the torus geometry [e.g., Fig. 1(a)]. At filling
fraction ν = 1/m, there are 2m untwisted anyon sectors a = Ir = er or χ r = χer and m twisted anyon sectors a = ξ r+1/2 =
ξer+1/2 topological sectors for r = 0, 1, . . . , m (see Table I). For the untwisted sector, much of our presentation will mirror that
of the Laughlin state; in the twisted sector, there are some differences associated to Majorana fermion zero modes that we will
highlight and discuss as they arise.

We begin with the untwisted sectors. The unnormalized torus ground state in sector a can be factorized as [see Eq. (2.36)]

|�a〉 = Pa|�̂a〉 =
2M⊗
i=1

Pa,i|�̂a,i〉, (3.37)

where i labels the interface between cylinders Xi and Xi+1, Pa = ⊗iPa,i is the decomposition of the sector a projection operator
into projection operators local to each interface, and the unprojected state:

|�̂a,i〉 = ∣∣bzero
r,i

〉⊗ ∣∣bosc
i

〉⊗ ∣∣ f osc
i

〉
. (3.38)

The bosonic zero mode and oscillator states are given in Eqs. (2.12) and (2.17); the fermionic oscillator states are given in
Eq. (2.34). The collective mode numbers are now

N LXi ≡ (−NLXi ,
{
nLXi

b,−k

}
k>0, {nLXi

f ,−k}k>0
)
, (3.39)

N RXi ≡ (NRXi ,
{
n

RXj

b,k

}
k>0,

{
nRXi

f ,k

}
k>0

)
, (3.40)

Na,i ≡ (Na,i, {ni,k}k>0, {ñi,k}k>0), (3.41)

with domains defined in Eqs. (2.12), (2.17), and (2.34). When acting on |�̂a,i〉, we may replace Pa,i with its eigenvalue Pa(Na,i ),
using

Pa,i(|Na,i〉RXi−1 ⊗ |Na,i〉LXi ) = 1

2
(1 + (−1)Na,i− r

m +∑k>0 ñi,k )|Na,i〉RXi−1 ⊗ |Na,i〉LXi ≡ Pa(Na,i )|Na,i〉RXi−1 ⊗ |Na,i〉LXi . (3.42)

Putting this all together, we have

|�a〉 =
2M⊗
i=1

∑
Na,i

Pa(Na,i )λ(Na,i)|Na,i〉RXi−1 ⊗ |Na,i〉LXi , (3.43)

where

λ(Na,i ) = exp

[
−veπm

2L
N2

a,i −
∑
k>0

vek

2

(
ni,k + 1

2

)
−
∑
k>0

ṽek

2

(
ñi,k + 1

2

)]
. (3.44)

The norm squared of |�a〉 is

(
Zuntwisted

a

)2M =
(∑

Na

P(Na)λ2(Na)

)2M

. (3.45)
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Similar to the Laughlin case, Zuntwisted
a defines the untwisted sector a partition function at inverse temperature β = 1 of the

Moore-Read entanglement Hamiltonian Ha,

Zuntwisted
a (β ) = tre−βHa , (3.46)

with untwisted entanglement spectrum equal to −2 log λ(Na), subject to the condition on allowed states imposed by the
projection operator eigenvalues in Eq. (3.54). (As we have already done above, we will continue to abuse notation below;
however, we will make sure to specify whether we are dealing with the untwisted or twisted topological sectors.)

We next turn to the twisted sectors. The unprojected sector a torus state is

|�̂a〉 =
(

2M⊗
i=1

|�̂a,i〉
)

⊗ | f zero〉, (3.47)

where |�̂a,i〉 takes the form in Eq. (3.50) and the Majorana zero mode state | f zero〉 is given in Eq. (2.43). Note that the domain
of Na,i ∈ Z + (r + 1/2)/m and oscillator fermion momenta are shifted by a half integer.

The presence of Majorana zero modes makes the decomposition of the torus ground states into cylinder states more delicate.
In particular, the twisted sector a projection operator Pa does not factorize in terms of independent projection operators local to
each interface (as in, e.g., Eq. (3.49); instead, we can at most decompose Pa = ⊗2M

i=1Pa,Xi , where Pa,Xi is the projection operator
for cylinder Xi. When acting on a cylinder state |�̂a,i〉 ⊗ |γi〉 ∈ (⊗i|�̂a,i〉) ⊗ | f zero〉, we may replace the projection operator Pa,Xi

with its eigenvalue Pa(Na,i,Na,i+1, γi ), using

Pa,Xi |Na,i,Na,i+1, γi〉|Xi = 1
2 (1 + (−1)−Na,i+Na,i+1+

∑
k>0(ñi,k+ñi+1,k )+γi )|Na,i,Na,i+1, γi〉|Xi

≡ Pa(Na,i,Na,i+1, γi )|Na,i,Na,i+1, γi〉|Xi . (3.48)

Using these eigenvalues, the product of 2M projection operators can be reduced to a product of (2M − 1) operators, e.g.,

2M∏
i=1

Pa,Xi |�̂a〉 =
2M−1∏

i=1

Pa,Xi |�̂a〉. (3.49)

Thus, the norm squared of twisted sector a state |�a〉 = Pa|�̂a〉 [see Eq. (2.45)] equals

(
Z twisted

a

)2M = 1

22M−1

∑
�Na

λ2(Na,2M )
∑

γ1,...,γ2M−1∈{0,1}

2M−1∏
i=1

Pa(Na,i,Na,i+1, γi )λ
2(Na,i )

= 1

22M−1

(∑
Na

λ2(Na)

)2M

, (3.50)

where λ(Na,i) is given in Eq. (3.57) and we have used
∑

γi∈{0,1} Pa(Na,i,Na,i+1, γi ) = 1. As before, we may interpret Z twisted
a in

terms of a twisted sector partition function Z twisted
a (β ) of a Hamiltonian Ha with spectrum −2 log λ(Na) at inverse temperature

equal to one. In contrast to the untwisted sector, the projection operator eigenvalues do not appear in the norm squared of the
twisted sector state |�a〉 or the corresponding partition function.

To calculate the entanglement negativity of |�〉 =∑a ψa|�a〉, where the sum is over all topological sectors and the
normalized sector a state is

|�a〉 = Z−M
a |�a〉. (3.51)

We will again use Lemma 1. [Here and in the generalized proof below we drop the untwisted/twisted superscripts for the
normalization factors in Eqs. (3.58) and (3.64).] The proof that we previously gave of this lemma was special to the Laughlin
state; below we will sketch how the proof generalizes for the Moore-Read state.

Generalized Proof of Lemma 1. As before, we will directly evaluate ||ρTodd ||1 = tr
√

(ρTodd )†ρTodd . We begin by writing the
torus state as

|�〉 =
∑

a

∑
�Xa

ca( �Na)Pa( �Xa)
2M⊗
i=1

|Xa,i〉, (3.52)

Xa,i ≡ (Na,i,Na,i+1, saγi ), (3.53)

ca( �Na) ≡ ψa

2M∏
i=1

λ(Na,i )√
Za

, (3.54)

Pa( �Xa) ≡
2M∏
i=1

Pa(Xa,i ), (3.55)
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where sa = 0 if a belongs to an untwisted sector and sa = 1 if a belongs to a twisted sector. The sum over �Xa is understood
to be a sum over �Na and, when sa = 1, the Majorana fermion parity eigenvalues �γ , (i.e.,

∑
�Xa

=∑ �Na,sa �γ ). Pa(Xa,i ) =
Pa(Na,i,Na,i+1, saγi ) is defined in Eq. (3.61) for twisted sector a where sa = 1, this eigenvalue is also valid for untwisted a,
in which case sa = 0.

The density matrix ρ = |�〉〈�| and its partial transpose with respect to Xodd are then

ρ =
∑
a,a′

∑
�Xa, �X ′

a′

ca( �Na)c∗
a′ ( �N ′

a′ )Pa(Xa,1)|Xa,1〉〈X ′
a′,1|Pa′ (X ′

a′,1) ⊗ Pa(Xa,2)|Xa,2〉〈X ′
a′,2|Pa′ (X ′

a′,2) ⊗ · · ·

⊗ Pa(Xa,2M )|Xa,2M〉〈X ′
a′,2M |Pa′ (X ′

a′,2M ), (3.56)

ρTodd =
∑
a,a′

∑
�Xa, �X ′

a′

ca( �Na)c∗
a′ ( �N ′

a′ )Pa′ (X ′
a′,1)|X ′

a′,1〉〈Xa,1|Pa(Xa,1)

⊗ Pa(Xa,2)|Xa,2〉〈X ′
a′,2|Pa′ (X ′

a′,2) ⊗ · · · ⊗ Pa(Xa,2M )|Xa,2M〉〈X ′
a′,2M |Pa′ (X ′

a′,2M ). (3.57)

Thus,

(ρTodd )†ρTodd =
∑

a,a′,a′′,a′′′

∑
�Xa

∑
�X ′

a′

∑
�X ′′

a′′

∑
�X ′′′

a′′′

ca( �Na)c∗
a′ ( �N ′

a′ )ca′′′ ( �N ′′′
a′′′ )c∗

a′′ ( �N ′′
a′′ )

× Pa′′′ (X ′′′
a′′′,1)Pa′′ (X ′′

a′′,1)|X ′′
a′′,1〉〈X ′′′

a′′′,1|X ′
a′,1〉〈Xa,1|Pa(Xa,1)Pa′ (X ′

a′,1)

⊗ Pa′′ (X ′′
a′′,2)Pa′′′ (X ′′′

a′′′,2)|X ′′′
a′′′,2〉〈X ′′

a′′,2|Xa,2〉〈X ′
a′,2|Pa′ (X ′

a′,2)Pa(Xa,2)

⊗ Pa′′′ (X ′′′
a′′′,3)Pa′′ (X ′′

a′′,3)|X ′′
a′′,3〉〈X ′′′

a′′′,3|X ′
a′,3〉〈Xa,3|Pa(Xa,3)Pa′ (X ′

a′,3) ⊗ . . .

⊗ Pa′′ (X ′′
a′′,2M )Pa′′′ (X ′′′

a′′′,2M )|X ′′′
a′′′,2M〉〈X ′′

a′′,2M |Xa,2M〉〈X ′
a′,2M |Pa′ (X ′

a′,2M )Pa(Xa,2M ). (3.58)

The inner products identify

a′′′ = a′,X ′′′
a′′′,2k−1 = X ′

a′,2k−1, Pa′′′ (X ′′′
a′′′,2k−1) = Pa′ (X ′

a′,2k−1),

a′′ = a,X ′′
a′′,2k = Xa,2k, Pa′′ (X ′′

a′′,2k ) = Pa(Xa,2k ), (3.59)

for k ∈ {1, . . . , M}. From Eq. (3.68), we see that X ′′′
a′′′,2k−1 = X ′

a′,2k−1 means that N ′′′
a′′′,i = N ′

a′,i for all i = 1, 2, . . . , 2M and
sa′′′γ ′′′

2k−1 = sa′γ ′
2k−1 for k = 1, 2, . . . , M. If the projection operators Pa′′′ (X ′′′

a′′′,2k ) and Pa′ (X ′
a′,2k ) are to be nonzero simultaneously

for fixed �N ′′′
a′′′ = �N ′

a′ , then sa′′′γ ′′′
2k = sa′γ ′

2k for k = 1, 2, . . . , M. Thus, we conclude the above inner products identify Pa′′′ (X ′′′
a′′′,i ) =

Pa′ (X ′
a′,i ) and X ′′′

a′′′,i = X ′
a′,i for all i. Using similar logic, we likewise find X ′′

a′′,i = Xa,i and Pa′′ (X ′′
a′′,i ) = Pa(Xa,i) for all i. Thus,

(ρTodd )†ρTodd is again diagonal and√
(ρTodd )†

ρTodd =
∑
a,a′

∑
�Xa

∑
�X ′
a′

Pa( �Xa)Pa′ ( �X ′
a′ )|ca( �Na)||ca′ ( �N ′

a′ )|

× |Xa,1〉〈Xa,1| ⊗ |X ′
a′,2〉〈X ′

a′,2| ⊗ · · · ⊗ |X ′
a′,2M〉〈X ′

a′,2M |. (3.60)

Consequently,

tr
√

(ρTodd )†
ρTodd =

∑
a,a′

∑
�Xa

∑
�X ′
a′

Pa( �Xa)Pa′ ( �X ′
a′ )|ca( �Na)||ca′ ( �N ′

a′ )|, (3.61)

=
⎛
⎝∑

a

∑
�Xa

Pa( �Xa)|ca( �Na)|
⎞
⎠

2

. (3.62)

Following the same logic as in Eq. (3.27) and using the definitions in Eqs. (3.58) and (3.64) as well as the identity∑
γi∈{0,1} P(Xa,i ) = 1 when sa = 1, we find

||ρTodd ||1 =
( ∑

a∈untwisted

|ψa|
(

Zuntwisted
a (1/2)√
Zuntwisted

a (1)

)2M

+
∑

a∈twisted

|ψa|
(

Z twisted
a (1/2)√
Z twisted

a (1)

)2M
)2

. (3.63)

We obtain Lemma 1 upon taking the logarithm of ||ρTodd ||1. �
To finish the computation of the entanglement negativity, we need to evaluate the untwisted and twisted partition functions in

the L → ∞ limit. The untwisted sector a partition function at inverse temperature β can be written as [65]

Zuntwisted
a (β ) = 1

2χ
Ising
0 (q̃)[χ+

r/m(q) + χ−
r/m(q)] + 1

2χ
Ising
1/2 (q̃)[χ+

r/m(q) − χ−
r/m(q)], (3.64)
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where the characters χ are

χ
Ising
0 (q̃) = 1

2
q̃− 1

48

[∏
j>0

(
1 + q̃ j+ 1

2
)+

∏
j>0

(
1 − q̃ j+ 1

2
)]

χ
Ising
1/2 (q̃) = 1

2
q̃− 1

48

[∏
j>0

(
1 + q̃ j+ 1

2
)−

∏
j>0

(
1 − q̃ j+ 1

2
)]

χ±
r/m(q) =

(∑
n∈Z

(±1)nqm(n− r
m )2

/2

)
q− 1

24

∏
j>0

(1 − q j )−1. (3.65)

Recall that q = e2π iτ and τ is defined in Eq. (3.28). In addition, we have a new pair of modular parameters τ̃ and q̃ defined by
τ̃ = τ/2 = iτ̃2 and q̃ = e2π iτ̃ . The characters can be rewritten in terms of modular functions (Appendix) as

χ
Ising
0 (q̃) = 1

2

√
θ0

0 (τ̃ )

η(τ̃ )
+ 1

2

√
θ0

1/2(τ̃ )

η(τ̃ )
,

χ
Ising
1/2 (q̃) = 1

2

√
θ0

0 (τ̃ )

η(τ̃ )
− 1

2

√
θ0

1/2(τ̃ )

η(τ̃ )
,

χ±
r/m(q) = θ

−r/m
0 (mτ )

η(τ )
, or

e
iπr
m θ

−r/m
1/2 (mτ )

η(τ )
. (3.66)

θ0
1/2(τ̃ ) goes to zero in the L → ∞ limit. Therefore, the untwisted 1 and χ sector partition functions both reduce to

Zuntwisted
a (β ) = 1

2

√
θ0

0 (τ̃ )

η(τ̃ )

θ
−r/m
0 (mτ )

η(τ )
. (3.67)

In the L → ∞ limit,

Zuntwisted
a (1/2)√
Zuntwisted

a (1)
= 1√

2
√

m
exp

[
πL

8

(
1

ve
+ 1

2ṽe

)]
. (3.68)

The twisted sector a partition function is

Z twisted
a = χ

Ising
1/16 (q̃)χ+

(r+1/2)/m(q), (3.69)

where the characters are

χ
Ising
1/16 (q̃) =

∑
ni,k∈Z+

e−∑k>0 βṽek(ni,k+ 1
2 )

= q̃
1

24

∞∏
j=1

(1 + q̃ j ), k = 2π j

L
, j ∈ Z+

χ(r+1/2)/m(q) = q− 1
24

∞∏
j=1

(1 − q j )−1

(∑
n∈Z

qm(n− r+1/2
m )2

/2

)
. (3.70)

χ
Ising
1/16 produces the da = √

2 quantum dimension associated to the Majorana quasiparticle of the Moore-Read state. In terms of
modular functions (Appendix), the characters are

χ
Ising
1/16 (q̃) =

√
θ

1/2
0 (τ̃ )

2η(τ̃ )
,

χ(r+1/2)/m(q) = θ
−(r+1/2)/m
0 (mτ )

η(τ )
. (3.71)

Thus,

Z twisted
a =

√
θ

1/2
0 (τ̃ )

2η(τ̃ )

θ
−(r+1/2)/m
0 (mτ )

η(τ )
, (3.72)
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and for L → ∞,

Z twisted
a (1/2)√
Z twisted

a (1)
= 1

4
√

2m
exp

[
πL

8

(
1

ve
+ 1

2ṽe

)]
. (3.73)

Plugging these untwisted and twisted partition function ratios Eqs. (3.83) and (3.88) into Lemma 1, we find

||ρTodd ||1 =
( ∑

a∈untwisted

|ψa|
[

Zuntwisted
a (1/2)√
Zuntwisted

a (1)

]2M

+
∑

a∈twisted

|ψa|
[

Z twisted
a (1/2)√
Z twisted

a (1)

]2M
)2

=
((

1

2
√

m

)M

exp

[
MπL

4

(
1

ve
+ 1

2ṽe

)]∑
a

|ψa|(da)M

)2

; (3.74)

EXodd:Xeven = M

[
π

2

(
1

ve
+ 1

2ṽe

)]
L − 2M log

√
4m + 2 log

∑
a

|ψa|(da)M . (3.75)

In the second identity above, we recovered the quantum dimensions of the quasiparticles associated to each sector: for the {1, χ}
untwisted sectors, da = 1; while for the ξ twisted sectors, da = √

2. In addition to the 2M contributions, proportional to log
√

4m,
in the entanglement negativity, there is a topological sector correction equal to 2 log

∑
a |ψa|(da)M . This recovers Eq. (1.12) with

the nonuniversal constant given by α = π
2 ( 1

ve
+ 1

2ṽe
) and the total quantum dimension equal to D = √

4m.

2. Cylinder geometry

Next we calculate the entanglement negativity between subsets of Xeven and Xodd when the degrees of freedom on N � M
cylinders Ȳ ⊂ X of the Moore-Read state (constructed in the previous section) have been traced over [e.g., Fig. 1(b)]. As in
Sec. III A 2, we denote the remaining (2M − N ) cylinders by Y and their decomposition into odd and even cylinders as Yodd and
Yeven. The resulting entanglement negativity will depend on the number R of shared interfaces between the remaining cylinders
in Yodd ∪ Yeven.

To find the entanglement negativity in this cylinder geometry, we will apply Lemma 2. Before doing so, we describe how the
proof of this lemma generalizes to the Moore-Read state.

Generalized Proof of Lemma 2. The argument follows almost exactly the proof for the Laughlin case upon updating the
notation to the Moore-Read state with the replacements: ca( �Na) → Pa( �Xa)ca( �Na) and |Na,i,Na,i+1〉 → |Xa,i〉. Because of this,
we will only discuss one case (Case I) below; the remaining cases (Cases II–IV) follow straightforwardly using the same
logic as in the Laughlin case and the manipulations outlined for the generalized proof of Lemma 1. We will suppress the
untwisted/twisted superscripts on Za when convenient.

Case I: We remove cylinder Ȳ = X2k where 1 < 2k � 2M by tracing over its left and right edge states. Thus, Yodd = Xodd,
Yeven = X2 ∪ · · · ∪ X2k−2 ∪ X2k+2 · · · X2M , and R = 2M − 2.

The density matrix of the Moore-Read torus state in Eq. (3.76) is

ρ =
∑
a,a′

∑
�Xa, �X ′

a′

ca( �Na)c∗
a′ ( �N ′

a′ ) × · · · Pa(Xa,2k−1)|Xa,2k−1〉〈X ′
a′,2k−1|Pa′ (X ′

a′,2k−1)

⊗ Pa(Xa,2k )|Xa,2k〉〈X ′
a′,2k|Pa′ (X ′

a′,2k ) ⊗ Pa(Xa,2k+1)|Xa,2k+1〉〈X ′
a′,2k+1|Pa′ (X ′

a′,2k+1) ⊗ · · · . (3.76)

The trace over degrees of freedom on cylinder Ȳ = X2k sets

a′ = a, X ′
a′,2k = Xa,2k, Pa′ (X ′

a′,2k ) = Pa(Xa,2k ) (3.77)

and removes the corresponding outer products involving states on X2k In particular, TrȲ (ρ) is a direct sum over untwisted and
twisted topological sectors.The partial transpose of ρY = TrȲ (ρ) with respect to Yodd is

ρ
Todd
Y =

∑
a

∑
�Xa, �X ′

a

ca( �Na)c∗
a ( �N ′

a)P2
a (Xa,2k ) × · · · Pa(Xa,2k−2)|Xa,2k−2〉〈X ′

a,2k−2|Pa(X ′
a,2k−2)

⊗ Pa(Xa,2k−1)|N ′
a,2k−1,Na,2k, saγ

′
i−1〉〈Xa,2k−1|Pa(N ′

a,2k−1,Na,2k, saγ
′
i−1)

⊗ Pa(Xa,2k+1)|Na,2k+1,N ′
a,2k+2, saγ

′
2k+1〉〈Xa,2k+1|Pa(Na,2k+1,N ′

a,2k+2, saγ
′
2k+1)

⊗ Pa(Xa,2k+2)|Xa,2k+2〉〈X ′
a,2k+2|Pa(X ′

a,2k+2) ⊗ · · · , (3.78)

where ca( �Na)c∗
a ( �N ′

a) takes the same form as in Eq. (3.41). There is no dependence on X ′
a,2k above because of Eq. (3.92). In

Eq. (3.93), we have expanded out the arguments of two of the projection operator eigenvalues and kets involved in the outer
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products associated to cylinders X2k−1 and X2k+1 to make the identifications Eq. (3.92) manifest. Next, we compute

(ρTodd
Y )†ρ

Todd
Y =

∑
a,a′

∑
�Xa, �X ′

a, �X ′′
a′ , �X ′′′

a′

c∗
a′ ( �N ′′

a′ )ca′ ( �N ′′′
a′ )ca( �Na)c∗

a ( �N ′
a)P2

a (Xa,2k )P2
a′ (X ′′

a,2k ) × · · ·

⊗ Pa′ (X ′′′
a,2k−2)Pa′ (X ′′

a,2k−2)Pa(Xa,2k−2)Pa(X ′
a,2k−2)|X ′′′

a′,2k−2〉〈X ′′
a′,2k−2|Xa,2k−2〉〈X ′

a,2k−2|
⊗ Pa′ (X ′′′

a,2k−1)Pa′ (X ′′
a,2k−1)Pa(Xa,2k−1)Pa(X ′

a,2k−1)|X ′′
a′,2k−1〉〈X ′′′

a′,2k−1|X ′
a,2k−1〉〈Xa,2k−1|

⊗ Pa′ (X ′′′
a,2k+1)Pa′ (X ′′

a,2k+1)Pa(Xa,2k+1)Pa(X ′
a,2k+1)|X ′′

a′,2k+1〉〈X ′′
a′,2k+1|Xa,2k+1〉〈Xa,2k+1|

⊗ Pa′ (X ′′′
a,2k+2)Pa′ (X ′′

a,2k+2)Pa(Xa,2k+2)Pa(X ′
a,2k+2)|X ′′′

a′,2k+2〉〈X ′′
a′,2k+2|Xa,2k+2〉〈X ′

a,2k+2|
⊗ · · · . (3.79)

Note that X ′
a,2k and X ′′′

a,2k are absent in the sums over �X ′
a and �X ′′′

a and it is to be understood that we have imposed Eq. (3.92) and
the analogous constraints for X ′′′

a,2k above. The above overlaps fix a′ = a and identify

X ′′′
a′,2i−1 = X ′

a,2i−1, X ′′
a′,2i = Xa,2i,

Pa′ (X ′′′
2i−1) = Pa(X ′

2i−1), Pa′ (X ′′
2i ) = Pa(X2i ) (3.80)

for 1 < 2i � 2M. (Recall that 2M + 1 ≡ 1.) As in the generalized proof of Lemma 1, these identifications imply X ′′′
a′,i = X ′

a,i,
X ′

a′,i = Xa,i, and equate corresponding projection operators for all i. Thus, (ρTodd
Y )†ρ

Todd
Y is again diagonal and, analogous to

Eq. (3.75), we may read off tr
√

(ρTodd
Y )†ρ

Todd
Y to find

||ρTodd
Y ||1 =

∑
a

∑
�Xa, �X ′

a

Pa( �Xa)|ca( �Na)|Pa( �X ′
a)|ca( �N ′

a)|

=
∑

a

(
|ψa|

(
Za(1/2)√

Za(1)

)2M−2)2

, (3.81)

where the sum is over all topological sectors and the identifications in Eq. (3.92) are understood and the corresponding sums are
removed. Taking the logarithm of ||ρTodd

Y ||1, we complete the proof of Lemma 2 for the Moore-Read state when X ′′ = X2k . As
remarked above, the remaining cases follow similarly. �

By Lemma 2, the entanglement negativity between Yodd and Yeven reduces to the calculation of entanglement Hamiltonian
partition functions for the Moore-Read state. Using the partition functions calculated in the previous section, we find

EYodd:Yeven = R

2

(
π

2

(
1

ve
+ 1

2ṽe

))
L − R log

√
4m + log

∑
a

|ψa|2dR
a , (3.82)

where the sum is over a in the last term is over all topological sectors and the quantum dimensions da = 1 for the {1, χ} untwisted
sectors and da = √

2 for the ξ twisted sectors. This verifies Eq. (1.13) with α = π
2 ( 1

ve
+ 1

2ṽe
) and D = √

4m. Similar to the torus
geometry, there are R terms each proportional to log D. In addition and in contrast to the Abelian case (where da = 1), there is a
topological sector correction equal to log |ψa|2dR

a .

IV. DISENTANGLING

In this section, we discuss how the topological order of the
Laughlin and Moore-Read states affects the spatial structure
of their many-body wave functions. Specifically, we deter-
mine when the disentangling condition,

EA:BC (ρ) = EA:B(ρAB), (4.1)

holds, for suitable choices of cylinder subsets A, B, and C of
the torus, and the implication of Eq. (4.1) for the many-body
wave function. We focus on two decompositions of the torus:

(1) AB1CB2 geometry: The torus is divided into four con-
secutive cylinders A, B1, C, and B2 with disjoint B = B1 ∪ B2.
In this case, ρABC = |�ABC〉〈�ABC | with |�ABC〉 a pure ground
state on the torus.

(2) ABCD geometry: The torus is divided into four con-
secutive cylinders A, B, C, and D. In this case, ρABC =
trD|�ABCD〉〈�ABCD| is a mixed state on cylinder A ∪ B ∪ C
and |�ABCD〉 is a pure torus ground state.

The entanglement negativity results in the previous section
can be used to determine when the disentangling condition
Eq. (4.1) is satisfied. Applying Eqs. (1.12) with M = 1 and
(1.13) with R = 2 to the AB1CB2 geometry, we find

EA:BC (ρABC ) − EA:B(ρAB) = log

(∑
a |ψa|da

)2∑
a |ψa|2d2

a

. (4.2)

Consequently, only torus states in a specific topological sector,
i.e., ψa = 1 for a single a with all other amplitudes vanishing,
satisfy the disentangling condition. For the ABCD geometry,
Eq. (1.13) with R = 1 implies any mixed cylinder state on A ∪
B ∪ C satisfies Eq. (4.1).

Generally, for a tripartite Hilbert space HA ⊗ HB ⊗ HC ,
the degrees of freedom in subsystems A and C have no
quantum correlations in states that satisfy the disentangling
condition. This allows their corresponding wave functions to
be disentangled in the following sense. For pure states |�ABC〉,
He and Vidal [42] showed that Eq. (4.1) implies that there
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exists a decomposition of the Hilbert space of region B as
HB = HBL ⊗ HBR such that the state can be factorized as

|�ABC〉 = |�ABL 〉 ⊗ |�BRC〉. (4.3)

The reverse statement is also valid: The disentangling con-
dition Eq. (4.1) is implied by states satisfying Eq. (4.3). For
mixed states, Gour and Guo [46] demonstrated that the dis-
entangling condition Eq. (4.1) is satisfied for all states that
saturate the strong subadditivity of the entanglement entropy.
The structure of these states follows

ρABC =
∑

j

p jρAB j
L
⊗ ρB j

RC, (4.4)

where the Hilbert space of B decomposes into HB =⊕
j HB j

L
⊗ HB j

R
and {p j} are probabilities. The reverse state-

ment of this case is not necessarily true: not all mixed states
that satisfy the disentangling condition have the structure of
Eq. (4.4).

To what extent does Eq. (4.1) constrain the structure of
the many-body ground state of a topological phase? More
specifically, how are the disentangling condition Eq. (4.1) and
the decompositions Eqs. (4.3) and (4.4) related, if at all, for
the Laughlin and Moore-Read ground states? Because the rel-
evant ground state of a topological phase is generally a direct
sum over distinct topological sectors, |�〉 =∑a ψa|�a〉, the
applicability of the above results is less clear. For example,
the degenerate ground state Hilbert space H =⊕a Ha does
not decompose into a tensor product HA ⊗ HB ⊗ HC of local
cylinder spaces. (See Ref. [69] for a related discussion in
the context of entanglement entropy in gauge theory.) This
provides an a priori explanation for the necessity of restriction
to a single topological sector a to disentangle a ground state.

In this section, we will show that the Abelian Laughlin
and untwisted sector Moore-Read states can be decomposed
according to Eqs. (4.3) in the AB1CB2 geometry and Eq. (4.4)
in the ABCD geometry. On the other hand, the twisted sector
Moore-Read states fail to decompose according to Eq. (4.3)
or Eq. (4.4). In other words, even when the disentangling
condition Eq. (4.1) is satisfied, the ground state |�a〉 cannot
be disentangled, if a = ξ r+1/2 is an Ising twist field.

The general failure of the Moore-Read state to disentangle
stems from the non-Abelian nature of the twisted sectors.
The Ising twist field carries nontrivial quantum dimension
da = √

2 > 1, associated to each Majorana zero mode cσ
i,0.

The ground state fixes the fermion parity (−1)n′
i = icR

i−1,0cL
i,0

of the pair of zero modes to be even at any given interface.
However, the two zero modes do not belong to the same
cylinder. When decomposing the ground state into a tensor
product of local cylinder states, the ground state becomes a
superposition of states with different cylinder fermion parities
(−1)γi = icR

i,0cL
i,0. Since (−1)n′

i and (−1)γi do not commute,
they do not share simultaneous eigenstates and the basis
transformations between the two bases are generated by the
nondiagonal F symbol in Eq. (2.39). Consequently, the zero-
mode part of the ground state, | f zero〉 in Eq. (2.43), is a
maximally entangled state where the cylinder fermion parities
(−1)γi are scrambled. This state | f zero〉 does not decompose
because the total fermion parity

∑
i γi has a fixed value [see

Eq. (2.42)].

The main results of this section are summarized as the
follows. The ground state of a fixed Abelian (Laughlin or
untwisted Moore-Read) sector |�a〉 admits the factorization
Eq. (4.7) in the AB1CB2 geometry. The reduced density matrix
TrD|�a〉〈�a| in the ABCD geometry also factorizes according
to Eq. (4.26). These results are in agreement with the factor-
izability Eqs. (4.3) and (4.4) (from Refs. [42] and [46]) as the
ground state |�a〉 obeys the disentangling condition Eq. (4.1).
On the other hand, we show that the ground state |�a〉 [see
Eq. (4.18)] of a non-Abelian twisted sector a = ξ r+1/2 of
the Moore-Read state fails to decompose. We demonstrate
this by focusing on the zero mode sector and seeing that (i)
the (partially traced) reduced density matrix Eq. (4.19) is a
mixed state and therefore the ground state must be entangled
and (ii) the (partially transposed) density matrix Eq. (4.20)
in the AB1CB2 geometry does not factorize. Furthermore, we
show that (iii) the reduced density matrix Eq. (4.27) in the
ABCD geometry also fails to disentangle. These results serve
as concrete examples where Eqs. (4.3) and (4.4) both fail
to hold even though the disentangling condition Eq. (4.1) is
satisfied.

A. AB1CB2 geometry

We first consider the AB1CB2 torus geometry with X1 = A,
X2 = B1, X3 = C, and X4 = B2. Our discussion below will
apply to both the Laughlin and Moore-Read states with the
understanding that Majorana fermion labels and projection
operators are dropped for the Laughlin and untwisted Moore-
Read states.

Since we are interested in measuring the entanglement
EA:BC (ρABC ) between A and its complement in Eq. (4.1), we
first show how the corresponding four-cylinder state can be
viewed as a two-cylinder state on cylinders A and Ā = B1 ∪
C ∪ B2. The torus state is given by

|�〉 =
∑

a

Paψa

∑
Na,1,Na,2

λ(Na,1)λ(Na,2)√
Za,1Za,2

× |01〉′sa
⊗ |Na,1Na,2〉X1 ⊗ |02〉′sa

⊗ |Na,2〉LX2 ⊗ |�̂bulk〉 ⊗ |Na,1〉RX4 . (4.5)

The partition functions Za,i = Za for all i with Za defined in
Eq. (3.10) for the Laughlin state and in Eqs. (3.59) and (3.64)
for the untwisted and twisted sectors of the Moore-Read state;
the additional i indices are bookkeeping devices that associate
these factors to their corresponding cylinders Xi. The (unpro-
jected) bulk state is

|�̂bulk〉 =
∑

Na,3,Na,4

∏
i=3,4

λ(Na,i )√
Za,i

|Na,3〉RX2 ⊗ |03〉′sa

⊗ |Na,3Na,4〉X3 ⊗ |04〉′sa
⊗ |Na,4〉LX4 . (4.6)

It is normalized: 〈�̂bulk|�̂bulk〉 = 1. Because of summing over
all the internal indexes labeled by Na,3, Na,4, |01〉′sa

, and
|04〉′sa

in Eq. (4.6), |�̂bulk〉〈�̂bulk| acts as an identity operator
when computing ρ = |�〉〈�|. Therefore, |�̂bulk〉 makes no
contribution to the measured entanglement. This is the key
observation for relating the four-cylinder and two-cylinder
states. Note that |0i〉′sa

= |0i〉′ when sa = 1 in the twisted
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sector where |0i〉′ denotes the parity of the Majorana zero
mode states at the interfaces between cylinders. These states
appear before the F symbol basis change to states labeled by
the parity of Majorana zero mode states on a given cylinder.
|0i〉′sa

= 1 when sa = 0 in an Abelian or untwisted sector. One
can then perform a basis transformation using the F symbols
and shift the labeling of Majorana fermion parity from the
interfaces to the cylinders. The second identity in Eq. (4.5)
shows that the above four-cylinder torus state is equivalent to
the the two-cylinder torus state. Thus, we may safely apply the
results of the previous section for the entanglement negativity
to conclude that only pure states is a specific topological sec-
tor, i.e., those states without long-range entanglement, satisfy
the disentangling condition Eq. (4.1).

In a specific sector a, the unprojected state |�̂a〉 can be
factorized as

|�̂a〉 = |�̂X1(LX2RX4 ),a〉 ⊗ |�̂(RX2LX4 )X3,a〉, (4.7)

where

|�̂X1(LX2RX4 ),a〉

=
∑

Na,1,Na,2

λ(Na,1)√
Za,1

λ(Na,2)√
Za,2

�̂
(Na,1Na,2 )
X1,a

�̂
Na,2Na,1

LX2RX4
,

|�̂(RX2LX4 )X3,a〉

=
∑

Na,3,Na,4

λ(Na,3)√
Za,3

λ(Na,4)√
Za,4

�̂
(Na,3Na,4 )
X3,a

�̂
Na,3Na,4

RX2LX4
, (4.8)

and

�̂
(Na,1Na,2 )
X1,a

= |01〉′sa
⊗ |Na,1Na,2〉X1 ⊗ |02〉′sa

,

�̂
(Na,3Na,4 )
X3,a

= |03〉′sa
⊗ |Na,3Na,4〉X3 ⊗ |04〉′sa

,

�̂
Na,2Na,1

LX2RX4
= |Na,1〉RX4 ⊗ |Na,2〉LX2 ,

�̂
Na,3Na,4

RX2LX4
= |Na,3〉RX2 ⊗ |Na,4〉LX4 . (4.9)

Here, |�̂X1(LX2RX4 ),a〉 and |�̂(RX2LX4 )X3,a〉 are normalized. Equa-
tion (4.7) is the desired factorization for the Laughlin state,
where there is no projection operator. For an untwisted sector
Moore-Read state, the projection operator Pa can be decom-
posed into cylinder state projection operators Pa,Xi , which in
turn decompose into left and right edge projection operators
as Pa,Xi = Pa,iPa,i+1. Including these factorized projection op-
erators, we find the untwisted Moore-Read ground state wave
function in a specific sector a can be disentangled.

In the twisted sector of the Moore-Read phase, the projec-
tion operator PXi does not factorize into left- and right-edge
components. Further division of a given cylinder into sub-
cylinders does not appear to help, as the resulting Hilbert
space is not a simple tensor product. Thus, the corresponding
many-body wave function does not factorize as Eq. (4.3).
Although the corresponding pure state density matrix can be
written in a form similar to Eq. (4.4), we will show in the
following that the factorization of HB = HBL ⊗ HBR fails.

By splitting cylinder B1 into subcylinders X2, X3, and B2

into subcylinders X5, X6 (see Fig. 4), the torus ground state of

FIG. 4. A torus is divided by the dashed lines into the AB1CB2

geometry: Region A is the X1 cylinder while region C the X4 cylinder.
Region B1 is the union of X2 and X3, and B2 the union of X5 and
X6. The collective modes Ni are defined on the ith interface as in
Eqs. (3.5) or (3.53).

a fixed twisted sector a = ξ r+1/2 is

|�a〉 =
∑
�Na,�γ

ca( �Na)Pa( �Na, �γ )
6⊗

i=1

|Na,iNa,i+1γi〉Xi , (4.10)

where ca( �Na) ≡∏6
i=1

λ(Na,i )√
Za

and the projection operator

eigenvalues Pa( �Na, �γ ) =∏6
i=1 Pa(Na,i, γi ) are defined in

Eqs. (2.46). We find that under the restricted sum
∑6

i=1 γi = 1
mod 2 [see Eq. (2.42)], we can split and restrict the sum over
γ1, γ2, γ6 and the sum over γ3, γ4, γ5 according to the parity

s = −(−1)γ1+γ2+γ6 = (−1)γ3+γ4+γ5 = ±. (4.11)

The projections Pa,X1 Pa,X2 Pa,X6 and Pa,X3 Pa,X4 Pa,X5 from
Eqs. (2.46) both require s = (−1)Na,3+Na,6 .

The density matrix ρ twist = |�a〉〈�a| from the twisted sec-
tor a = ξ r+1/2 can now be factorized as

ρ twist =
∑

j

p jρ
j
X1(X2X6 ) ⊗ ρ

j
(X3X5 )X4. (4.12)

Here the summation index j is an abbreviation for the collec-
tion of quantities

j =
{

Na,3,Na,6, s
N ′

a,3,N ′
a,6, s′

∣∣∣∣ s = (−1)Na,3,Na,6

s′ = (−1)N
′
a,3,N ′

a,6

}
. (4.13)

The probabilities in the density matrix are

p j ≡
∏

i=3,6

λ(Na,i )λ(N ′
a′,i )√

Za,iZa,i
(4.14)
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so
∑

j p j = 1. The density matrix components are

ρ
j
X1(X2X6 ) =

∑
{h}

∏
i=1,2

λ(Na,i )λ(N ′
a,i )√

Za,iZa,i

∑
γ1, γ2, γ6

s = −(−1)γ1+γ2+γ6

∑
γ ′

1, γ
′
2, γ

′
6

s′ = −(−1)γ
′
1+γ ′

2+γ ′
6

Pa,X6 |Na,6Na,1γ6〉〈N ′
a,6,N ′

a,1, γ
′
6|Pa,X6

⊗ Pa,X1 |Na,1Na,2γ1〉〈N ′
a,1N ′

a,2γ
′
1|X1 Pa,X1 ⊗ Pa,X2 |Na,2Na,3γ2〉〈N ′

a,2,N ′
a,3, γ

′
2|Pa,X2 , (4.15)

with {h} ≡ {Na,1N ′
a,1,Na,2,N ′

a,2}, and

ρ
j
(X3X5 )X4

=
∑
{e}

∏
i=4,5

λ(Na,i )λ(N ′
a,i )√

Za,iZa,i

∑
γ3, γ4, γ5

s = (−1)γ3+γ4+γ5

∑
γ ′

3, γ
′
4, γ

′
5

s′ = (−1)γ
′
3+γ ′

4+γ ′
5

Pa,X3 |Na,3Na,4γ3〉〈N ′
a,3,N ′

a,4, γ
′
3|Pa,X3

⊗ Pa,X4 |Na,4Na,5γ4〉〈N ′
a,4N ′

a,5γ
′
4|Pa,X4 ⊗ Pa,X5 |Na,5Na,6γ5〉〈N ′

a,6,N ′
a,6, γ

′
5|Pa,X5 ,

(4.16)

with {e} ≡ {Na,4N ′
a,4,Na,5,N ′

a,5}. All density matrix components ρ’s are Hermitian and have unit trace.
We notice that the ground state Eq. (4.10) and the density matrix Eq. (4.12) of any of the twisted sectors are not factorizable

and cannot be expressed in Eqs. (4.3) and (4.4). This is because the summation index j involves the parities s, s′, which specify
the fermion parity of half of the torus ABtop = X1(X2X6) and BbottomC = (X3X5)X4. These parity indices cannot be absorbed
entirely into Btop and Bbottom, and therefore the Hilbert space decomposition HB =⊕ j HB j

top
⊗ HB j

bottom
is not satisfied. We show

this failure of decomposition of the ground state below by focusing on the zero mode sector

|GS〉 = 1

4
√

2

∑
{γi}|C

|γ1γ2γ3γ4γ5γ6〉, (4.17)

where the constraint C requires that
∑6

i=1 γi = 1 mod 2.
Proof. We first see that the ground state can be reexpressed as

|GS〉 = 1√
2

∑
s=±

⎛
⎜⎜⎜⎝1

2

∑
γ1, γ2, γ6

s = −(−1)γ1+γ2+γ6

|γ1γ2γ6〉

⎞
⎟⎟⎟⎠⊗

⎛
⎜⎜⎜⎝1

2

∑
γ3, γ4, γ5

s = (−1)γ3+γ4+γ5

|γ3γ4γ5〉

⎞
⎟⎟⎟⎠. (4.18)

To show that the above ground state does not decompose according to Eq. (4.3), we assume the contrary that |GS〉 = |GS〉ABtop ⊗
|GS〉BbottomC . This would imply the reduced density matrix ρABtop = TrBbottomC (ρ) is a pure state, where ρ = |GS〉〈GS|. However,
from Eq. (4.18),

TrBbottomC |GS〉〈GS| = 1

8

∑
(−1)γ1+γ2+γ6

= (−1)γ
′
1+γ ′

2+γ ′
6

|γ1γ2γ6〉〈γ ′
1γ

′
2γ

′
6| (4.19)

has spectrum {1/2, 1/2, 0, 0, 0, 0, 0, 0} and is a mixed state. Therefore the assumption |GS〉 = |GS〉ABtop ⊗ |GS〉BbottomC must be
false, and the ground state does not disentangle according to Eq. (4.3).

Furthermore, we consider the density matrix ρ = |GS〉〈GS|,

ρ = 1

32

∑
�γ |C

∑
�γ ′|C

|γ1γ2γ6〉〈γ ′
1γ

′
2γ

′
6| ⊗ |γ3γ4γ5〉〈γ ′

3γ
′
4γ

′
5|

= 1

32

∑
s,s′=±

⎛
⎜⎜⎜⎝

∑
s = −(−1)γ1+γ2+γ6

s′ = −(−1)γ
′
1+γ ′

2+γ ′
6

|γ1γ2γ6〉〈γ ′
1γ

′
2γ

′
6|

⎞
⎟⎟⎟⎠⊗

⎛
⎜⎜⎜⎝

∑
s = (−1)γ3+γ4+γ5

s′ = (−1)γ
′
3+γ ′

4+γ ′
5

|γ3γ4γ5〉〈γ ′
3γ

′
4γ

′
5|

⎞
⎟⎟⎟⎠. (4.20)

We define the density matrix components

ρss′
ABtop

= 1

4

∑
s = −(−1)γ1+γ2+γ6

s′ = −(−1)γ
′
1+γ ′

2+γ ′
6

|γ1γ2γ6〉〈γ ′
1γ

′
2γ

′
6|,

ρss′
BbottomC = 1

4

∑
s = (−1)γ3+γ4+γ5

s′ = (−1)γ
′
3+γ ′

4+γ ′
5

|γ3γ4γ5〉〈γ ′
3γ

′
4γ

′
5|. (4.21)
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These components have unit trace only when s = s′, and have vanishing trace when s �= s′. Therefore, Eq. (4.20) does not admit
a density matrix decomposition Eq. (4.4). Moreover, even when s = s′, the parity index cannot be absorbed entirely in Btop and
Bbottom. To see this, we assume the contrary that the density matrix components decompose, ρs

ABtop
= ρA ⊗ ρs

Btop
, where ρA and

ρBtop have unit trace. This implies ρA = TrBtop (ρs
ABtop

) and ρs
Btop

= TrA(ρs
ABtop

). By taking the partial traces in Eq. (4.21),

ρA = TrBtop

(
ρs

ABtop

) = 1

2

∑
γ1=0,1

|γ1〉〈γ1| and ρs
Btop

= TrA
(
ρs

ABtop

) = 1

4

∑
(−1)γ2+γ6

= (−1)γ
′
2+γ ′

6

|γ2γ6〉〈γ ′
2γ

′
6|.

(4.22)

The product ρA ⊗ ρs
Btop

= TrBtop (ρs
ABtop

) ⊗ TrA(ρs
ABtop

) is

1

8

∑
γ1=0,1

∑
(−1)γ2+γ6

= (−1)γ
′
2+γ ′

6

|γ1γ2γ6〉〈γ ′
1γ

′
2γ

′
6|, (4.23)

which contradicts Eqs. (4.21). Therefore, the assumption ρs
ABtop

= ρA ⊗ ρs
Btop

must be false. Similarly, ρs
BbottomC is also not

factorizable. �

B. ABCD geometry

As we found in the proof of Lemma 2, the trace over
degrees of freedom in cylinder D results in a reduced density
matrix ρABC that is a direct sum over each of the topolog-
ical sectors. We may therefore consider the decomposition
Eq. (4.4) for the Laughlin and untwisted Moore-Read states
separately from that of the twisted Moore-Read states. We will
show how the latter set of states admits a refinement of the
decomposition Eq. (4.4). In both cases, the reduced density
matrices ρABC saturate the strong subadditivity relation of the
entanglement entropy.

1. Laughlin and untwisted sector Moore-Read states

We begin with a fixed pure torus state with anyon flux a,

|�〉 =
∑

�Na

Pa( �Na)
4∏

i=1

λ(Na,i )√
Za,i

× |Na,1Na,2〉X1 ⊗ |Na,2Na,3〉X2

⊗ |Na,3Na,4〉X3 ⊗ |Na,4Na,1〉X4 . (4.24)

Here we are taking X1 = A, X2 = B, X3 = C, and X4 = D.
Pa( �Na) is the product of projection operator eigenvalue for the
four cylinders. For the Laughlin state, Pa( �Na) = 1. For the un-
twisted sectors of the Moore-Read state, a cylinder projection
operator eigenvalue can be factorized into a product of left
and right edge projection operator eigenvalues for each cylin-
der, i.e., Pa,Xi (Na,i,Na,i+1) = Pa,i(Na,i )Pa,i+1(Na,i+1) with
Pa,i(Na,i ) given in Eq. (3.54). The density matrix ρABC =
trX4 |�〉〈�| obtained by tracing out X4 is

ρABC =
∑

Na,1,Na,2,N ′
a,2

λ2(Na,1)

Za,1

λ(Na,2)√
Za,2

λ(N ′
a,2)√

Za,2

× Pa,X1 |Na,1Na,2〉〈Na,1N ′
a,2|X1 Pa,X1

⊗ Pa,2|Na,2〉〈N ′
a,2|LX2 Pa,2

⊗
∑

Na,3,N ′
a,3,Na,4

λ2(Na,4)

Za,4

λ(Na,3)√
Za,3

λ(N ′
a,3)√

Za,3

× Pa,3|Na,3〉〈N ′
a,3|RX2 Pa,3

⊗ Pa,X3 |Na,3Na,4〉〈Na,3N ′
a,4|X1 Pa,X3 , (4.25)

where the partition functions Za,i = Za for all i (for the uni-
form states we consider) with Za defined in Eq. (3.10) for the
Laughlin state and in Eq. (3.59) for the untwisted sectors of
the Moore-Read state. By inspection, this admits the decom-
position Eq. (4.4):

ρABC = ρa
A(LB) ⊗ ρa

(RB)C . (4.26)

The density matrices associate with Eq. (4.26) are

ρa
A(LB) =

∑
Na,2,N ′

a,2

λ(Na,2)λ(N ′
a,2)

Za,2
ρ

Na,2N ′
a,2

A,a ρ
Na,2N ′

a,2

LB,a , (4.27)

where

ρ
Na,2N ′

a,2

A,a =
∑
Na,1

λ2(Na,1)

Za,1
Pa,X1 |Na,1Na,2〉〈Na,1N ′

a,2|X1 Pa,X1 ,

ρ
Na,2N ′

a,2

LB,a = Pa,2|Na,2〉〈N ′
a,2|LX2 Pa,2. (4.28)

ρ(RB)C,a has a similar decomposition,

ρa
(RB)C =

∑
Na,3,N ′

a,3

λ(Na,3)λ(N ′
a,3)

Za,3
ρ

Na,3N ′
a,3

RB,a ρ
Na,3N ′

a,3

C,a . (4.29)

2. Twisted sector Moore-Read states

For the twisted sectors of the Moore-Read state, we need to
split B into two consecutive cylinders BI and BII . Specifically,
we take X1 = A, X2 = BI , X3 = BII , X4 = C, X5 = D1 and
X6 = D2 (see Fig. 5) and begin with the generic twisted sector
pure state.

The ground state of a fixed twisted sector a = ξ r+1/2 is
again described by Eq. (4.10). We will show the reduced
density matrix ρ twist

ABC , after tracing out subsystem D, cannot
factorize according Eq. (4.4). Similar to the previous AB1CB2

geometry in the last subsection, it suffice to focus on the zero
mode sector. The ground state in the zero mode sector is
|GS〉 =∑{γi}|C |γ1 . . . γ6〉/(4

√
2), where the sum is restricted

by
∑6

i=1 γi = 1 mod 2.
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FIG. 5. A torus is divided by the dashed lines into the ABCD1D2

geometry: Region A is the X1 cylinder while region C the X4 cylinder.
Region B is the union of X2 and X3, and D the union of X5 and X6.

The reduced density matrix is

ρ twist
ABC = TrD(|GS〉〈GS|)

= 1

16

∑
γ1 + . . . + γ4

= γ ′
1 + . . . + γ ′

4

|γ1 . . . γ4〉〈γ ′
1 . . . γ ′

4|. (4.30)

To show that it does not decompose, we follow a sim-
ilar procedure to before and assume the contrary that
ρ twist

ABC =∑ j p jρAB j
I
⊗ ρB j

IIC
, where p j are probabilities satis-

fying
∑

j p j = 1. Tracing over subsystem B, the factorization
would imply TrB(ρ twist

ABC ) = ρA ⊗ ρC . At the same time, from
Eq. (4.30),

TrB(ρ twist
ABC ) = 1

4

∑
γ1 + γ4

= γ ′
1 + γ ′

4

|γ1γ4〉〈γ ′
1γ

′
4|,

ρA = TrBC
(
ρ twist

ABC

) = 1

2

∑
γ1=0,1

|γ1〉〈γ1|,

ρC = TrAB
(
ρ twist

ABC

) = 1

2

∑
γ4=0,1

|γ4〉〈γ4|. (4.31)

However, this would lead to a contradiction because ρA ⊗
ρC = 1

4

∑
γ1γ4

|γ1γ4〉〈γ1γ4|, which disagrees with TrB(ρ twist
ABC )

in the equation above. Therefore, the assumption that the
reduced density matrix decomposes, ρ twist

ABC =∑ j p jρAB j
I
⊗

ρB j
IIC

, must be false.

V. DISCUSSION AND CONCLUSION

In this paper, we studied multipartite entanglement in the
Laughlin and Moore-Read ground-state wave functions. Our
main results for the entanglement negativity of these states are
summarized in Eqs. (1.12) and (1.13). From these entangle-
ment negativities, we constructed a disentangling condition
Eq. (1.14) for whether states can be disentangled, i.e., de-
composed according to either Eq. (1.6) or Eq. (1.8). The
disentangling condition is only satisfied by states in a definite
topological sector. We found the disentangling condition to
be a necessary and sufficient condition to disentangle the
Laughlin and untwisted sector Moore-Read states.

Despite satisfying the disentangling condition, a twisted
sector Moore-Read ground-state wave function on the torus

cannot be disentangled. The obstruction is due to the lack
of a tensor product decomposition of the twisted sector torus
Hilbert space into appropriate subspaces. It would be inter-
esting to find a generalization of the disentangling condition,
perhaps one that involves the partial time-reversal [70] or any-
onic partial transpose [71], that is sensitive to this particular
obstruction to wavefunction disentanglement.

Our results rely on the cut and glue construction of topo-
logical ground states. In this approach, the correlation length
is zero. With finite correlation length, we expect exponentially
suppressed corrections to appear in the disentangling condi-
tion. It would also be interesting to consider the disentangling
condition at phase transitions where the correlation length is
infinite.

We focused on the Laughlin and Moore-Read topological
states. We expect that our entanglement negativity results hold
for more general topological states in 2 + 1 dimensions, such
as those phases hosting metaplectic anyons [72] and Fibonacci
anyons [73]. It is unclear to us whether the corresponding
wave functions for such states might disentangle, as the fu-
sion rule structure of general states is more intricate than
the Laughlin and Moore-Read states. Fracton orders in 3 + 1
dimensions [74] have similar entanglement signatures as their
lower-dimensional conventional topologically ordered coun-
terparts [75]. Recent work has shown how certain types of
fracton order obtain from coupled-wire constructions [76,77]
or from infinite-component (2+1)-dimensional Chern-Simons
gauge theory [78]. The multipartite entanglement characteris-
tics of this order are yet to be understood.
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APPENDIX: MODULAR AND CHARACTER FUNCTIONS

1. Modular functions

For all the modular functions in this paper, we will follow
directly the notation from Sohal et al. [65]. The nome q is
defined by

q = e2πτ . (A1)

For the fictitious inverse temperature β = 1/T , the modular
parameter τ for our physical systems is defined by

τ = iτ2 = iβve

L
, (A2)

where τ ∈ C. The Dedekind’s η function is defined as

η(τ ) = q1/24
∞∏

n=1

(1 − qn). (A3)
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The modular transformations (with τ → −1/τ and
τ → τ + 1) of the eta function gives us the following
relations:

η(−1/τ ) = √−iτη(τ ), (A4)

η(τ + 1) = eiπ/12η(τ ). (A5)

The more general Jacobi theta functions are defined by

θα
β (τ ) =

∑
n∈Z

q
1
2 (n+α)2

e2π i(n+α)β . (A6)

Under modular transformations, the theta functions satisfy the
following relations:

θα
β (−1/τ ) = √−iτe2π iαβθ

β
−α (τ ), (A7)

θα
β (τ + 1) = e−π iα(α−1)θα

α+β− 1
2
(τ ). (A8)

Recall that τ = iτ2, where τ2 ∈ R+. As τ2 → ∞, the modular
functions approach asymptomatic values:

lim
τ2→∞ η(i/τ2) = q1/24, (A9)

lim
τ2→∞ θα

β (i/τ2) = δα,0. (A10)

The standard theta functions can be written in terms of the
above general theta functions in the following form:

θ2(τ ) =
∑
n∈Z

q(n+ 1
2 )2

/2 = θ
1/2
0 (τ ), (A11)

θ3(τ ) =
∑
n∈Z

qn2/2 = θ0
0 (τ ), (A12)

θ4(τ ) =
∑
n∈Z

(−1)nqn2/2 = θ0
1/2(τ ). (A13)

Include here also three product representation of theta
functions:

θ2(τ ) = 2 4
√

q
∏
j>0

(1 − q2 j )(1 + q2 j )2, (A14)

θ3(τ ) =
∏
j>0

(1 − q2 j )(1 + q2 j−1)2, (A15)

θ4(τ ) =
∏
j>0

(1 − q2 j )(1 − q2 j−1)2. (A16)

2. Character functions

From the entanglement Hamiltonian for fermions, its par-
tition function under antiperiodic boundary condition (k =
2π
L ( j + 1

2 )), the fermionic partition function is instead∑
ni,k=0,1

e−∑k>0 βṽek(ni,k+1/2)

= q̃
1

24

∏
j>0

∑
ni,k=0,1

(q̃ j+1/2)ni,k

= q̃− 1
48

∏
j>0

(1 + q̃ j+1/2). (A17)

Under the action of parity (−1)
∑

k>0 ni,k , the partition functions
now become∑

ni,k=0,1

(−1)
∑

k>0 ni,k e−∑k>0 βṽek(ni,k+1/2)

= q̃
1

24

∏
j>0

∑
ni,k=0,1

eiπni,k e− 2π iβṽe
L ( j+ 1

2 )ni,k

= q̃− 1
48

∏
j>0

(1 − q̃ j+1/2). (A18)

Using Eq. (A15), the partition function can be recast in terms
of modular function as

q̃− 1
48

∏
j>0

(1 + q̃ j+1/2)

=
√

q̃− 1
24

∏
j>0

(1 + q̃
1
2 (2 j−1))2

=

√√√√∏ j>0

(
1 + q̃

1
2 (2 j−1)

)2(
1 − q̃

1
2 (2 j)

)
q̃

1
24
∏

j>0(1 − q̃ j )

=
√

θ0
0 (τ̃ )

η(τ̃ )
. (A19)

Similarly, using Eq. (A16),

q̃− 1
48

∏
j>0

(1 − q̃ j+1/2)

=
√

q̃− 1
24

∏
j>0

(
1 − q̃

1
2 (2 j−1)

)2

=

√√√√∏ j>0

(
1 − q̃

1
2 (2 j−1)

)2(
1 − q̃

1
2 (2 j)

)
q̃

1
24
∏

j>0(1 − q̃ j )

=
√

θ0
1/2(τ̃ )

η(τ̃ )
. (A20)

Thus the character functions in the untwisted sector have the
forms

χ
Ising
0 (q̃) = 1

2

√
θ0

0 (τ̃ )

η(τ̃ )
+ 1

2

√
θ0

1/2(τ̃ )

η(τ̃ )
,

χ
Ising
1/2 (q̃) = 1

2

√
θ0

0 (τ̃ )

η(τ̃ )
− 1

2

√
θ0

1/2(τ̃ )

η(τ̃ )
. (A21)

On the other hand, for periodic boundary condition (k =
2π j

L , j ∈ Z), the fermionic partition functions is instead∑
ni,k=0,1

e−∑k>0 βṽek(ni,k+1/2)

= q̃
1

24

∏
j>0

∑
ni,k=0,1

(q̃ j )ni,k

= q̃
1

24

∏
j>0

(1 + q̃ j ). (A22)

We now rewrite Eq. (A22) in terms of modular function using
Eq. (A14):

q̃
1
24

∏
j>0

(1 + q̃ j )

=
√

q̃1/12
∏
j>0

(1 + q̃ j )2
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= 2q̃
1
8

∏
j>0

(
1+q̃

1
2 (2 j)

)2(
1−q̃
) 1

2 (2 j)

2q̃
1

24
∏

j>0(1 − q̃ j )

=
√

θ
1/2
0 (τ̃ )

2η(τ̃ )
. (A23)

So, the character function in the twisted sector has the form

χ
Ising
1/16 (q̃) =

√
θ

1/2
0 (τ̃ )

2η(τ̃ )
. (A24)

The rest of character functions in this paper can be read off
from Eqs. (A3) and (A6).
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[57] Z. Papić, B.A. Bernevig, and N. Regnault, Phys. Rev. Lett. 106,

056801 (2011).
[58] A. Chandran, M. Hermanns, N. Regnault, and B. A. Bernevig,

Phys. Rev. B 84, 205136 (2011).
[59] M. Hermanns, A. Chandran, N. Regnault, and B. A. Bernevig,

Phys. Rev. B 84, 121309(R) (2011).
[60] I. D. Rodríguez, S. C. Davenport, S. H. Simon, and J. K.

Slingerland, Phys. Rev. B 88, 155307 (2013).
[61] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa,

Phys. Rev. B 81, 064439 (2010).
[62] L. Fidkowski, Phys. Rev. Lett. 104, 130502 (2010).

115155-25



LIM, ASASI, TEO, AND MULLIGAN PHYSICAL REVIEW B 104, 115155 (2021)

[63] E. Prodan, T. L. Hughes, and B. A. Bernevig, Phys. Rev. Lett.
105, 115501 (2010).

[64] C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys. Rev. B 87,
035119 (2013).

[65] R. Sohal, B. Han, L. H. Santos, and J. C. Y. Teo, Phys. Rev. B
102, 045102 (2020).
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