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Abstract—Motivated by ample evidence in the automotive
cybersecurity literature that the car brake ECUs can be mali-
ciously reprogrammed, it has been shown that an adversary who
can directly control the frictional brake actuators can induce
wheel lockup conditions despite having a limited knowledge of
the tire-road interaction characteristics [1]. In this paper, we
investigate the destabilizing effect of such wheel lockup attacks
on the lateral motion stability of vehicles from a robust stability
perspective. Furthermore, we propose a quadratic programming
(QP) problem that the adversary can solve for finding the optimal
destabilizing longitudinal slip reference values.

I. INTRODUCTION

Electronic Control Units (ECUs) form the backbone of the
modern automotive control systems, where protocols such as
FlexRay and CAN are utilized to network these embedded
devices with each other on one or more buses.

The automotive control systems including their in-vehicle
networks (IVNs) and ECUs can be attacked in a variety of
ways (see, e.g., [2], [3]). One type of attack geared towards
reprogramming the vehicle ECUs and manipulating the car
physical behaviors such as steering and braking can be carried
out using interfaces such as the vehicle OBD port, Wi-Fi,
and cellular networks. For instance, Miller and Valasek [4]
carried out such an attack, which was effective on all Fiat-
Chrysler vehicles, by reprogramming a V850 chip to disable
the car braking system (also, see [5] for other attacks on the
brake ECUs). Furthermore, an adversary who can reprogram
the firmware of ECUs through the Unified Diagnostic Services
(UDS) codified in ISO-14229 [6] can also read live data from
the IVN (such as vehicle speed or engine speed). This live data
reading capability has been demonstrated in an experimental
wireless attack against Tesla vehicles [7]. Therefore, an ad-
versary can affect the stability of motion of a vehicle under
attack by means of closed-loop feedback control mechanisms.

Motivated by the possibility of malicious reprogramming
of the car braking ECUs, we have investigated the capabilities
of an adversary who has taken over these ECUs and would
like to induce wheel lockup conditions during braking in our

previous work [1]. In particular, we have proposed a feedback
attack policy for the frictional brakes that can compensate for
the adversary’s lack of knowledge of the tire-road interaction
dynamics (see Figure 1). The proposed attack policy is capable
of regulating the front and/or rear longitudinal tire slips to a
small neighborhood of any desired wheel slip value within a
small amount of time as determined by the adversary.

Our other work [1], however, did not investigate the effect
of such wheel lockup attacks on lateral stability of vehicle
motion. Indeed, as evidenced in the vehicle safety litera-
ture, wheel lockup can cause severe degradation in vehicle
steerability, directional stability, and general control over the
car [8] leading to catastrophic road injuries [9]. Therefore,
understanding the stability implications of this type of attack
policy is of great importance.

In this paper, we formally demonstrate that an adversary
who is employing the brake attack policies in our other
work [1] can induce instability in vehicle lateral motion.
Furthermore, we present a QP that the adversary can solve
for finding the “optimal”1 longitudinal slip reference values
for the front and rear wheels capable of destabilizing the
vehicle lateral motion. When these reference values are fed
into the braking attack policy [1], the instability of the vehicle
lateral motion ensues. Our lateral motion robust stability
conditions and the ensuing QP rely on the framework by Yi
and Tseng [10], which has also been employed for designing
aggressive vehicle maneuvers in the work by Yi et al. [11]
(also, see the work by Chi and Tsiotras [12]).
Contributions of the paper. This article adds to body of
knowledge on cybersecurity in autonomous vehicles in the
following ways. First, this work provides a formal analy-
sis of the lateral motion stability of vehicles under wheel
lockup attacks in an adversarial setting where the longitudinal
slip ratios of either the front, rear, or both wheels can be
controlled by an adversary. While the conditions of lateral
motion instability have already been derived in the work
by Yi and Tseng [10], this paper sheds a new light on
these instability results using a graphics-oriented robustness
analysis using Mikhailov’s plots [13], which have also been
employed for robust stability analysis in power systems [14].

1Despite the fact that optimality in engineering might imply stable behavior
in engineered systems, the adjective “optimal” in this context refers to the
adversary’s capabilities of inducing unstable dynamical behavior in a vehicle
under attack.
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Fig. 1: Block diagram of the attack policy [1].

Furthermore, this paper encodes the vehicle lateral motion
instability conditions using a QP. Given the advent of efficient
QP-solvers in embedded applications (see, e.g., [15]), such
QP formulation has serious safety implications for real-time
destabilization of lateral motion of an attacked vehicle.

The rest of this short paper is organized as follows. In
Section II, we present some preliminaries about the coupling
in-between the vehicle lateral and longitudinal dynamics using
the framework developed by Yi and Tseng [10]. Thereafter,
we present the conditions under which the lateral dynamics
become unstable and shed a new light on these results in terms
of tools for robust stability analysis. Next, in Section III, we
formulate the obtained lateral motion instability conditions in
terms of a QP. Section IV concludes the paper with future
research directions.

II. PRELIMINARIES

A. An overview of wheel lockup feedback attack policy

In this section, we present a summary of the results in [1].
For the sake of brevity, the mathematical expressions of the
closed-loop feedback attack policy are not presented. Rather,
we only review the capabilities of an adversary who is using
these attack policies (see [1] for further details).

In the proposed wheel lockup attack policy in [1], it is
assumed that the attacker can read from the in-vehicle net-
work and can issue commands to the brake actuators. Under
such an assumption, which is well-grounded in the vehicle
cybersecurity literature, the attack policy in [1] is capable
of issuing closed-loop feedback control-based commands to
the vehicle brake actuators such that the trajectories of the
vehicle longitudinal dynamics during braking converge to any
sufficiently close neighborhood of a desired value for the
wheel slips within a finite time interval. Although the attack
policy in [1] is focused on inducing lockup on the wheel under
attack (corresponding to the desired wheel slip value λref = 1),
the slip values can be regulated to any desired value λref with
a slight modification of the results in [1].

As it can be seen from Figure 1, the closed-loop feedback
attack policy for the frictional brakes in [1] relies on employ-
ing a predefined-time controller and a nonlinear disturbance
observer (NDOB) [16]. The role of the pre-defined time
controller is to drive the trajectories of the vehicle longitudinal
dynamics during braking to any sufficiently close neighbor-
hood of a desired value for the wheel slips within a finite
time interval when the adversary has a complete knowledge

of the tire-road interaction dynamics. When such knowledge
is lacking, the role of the NDOB is to compensate for this
lack of knowledge via a feedforward compensating command.

B. The coupled longitudinal-lateral motion dynamics

In this section, we briefly present the linearized dynamics
that capture the coupling in-between the longitudinal and
lateral tire/road friction forces. The interested reader is referred
to the work by Yi and Tseng [10] for the complete nonlinear
model. Similar to this work, we consider a bicycle model for
vehicle dynamics. Figure 2 depicts the schematic of the bicycle
model and the parameters pertinent to our stability analysis.
To analyze the lateral motion stability of the vehicle, the state
variable x := [tanβ, ψ̇]⊤ is considered (see Figure 2), where
tanβ := vGy/vGx. In our derivations, we assume a zero
steering angle δf = 0 for the sake of brevity. Our analysis
can be easily extended to the cases where δf ̸= 0 (see [10]
for further details).

Yi and Tseng in [10] have shown that the linearized dynam-
ics capturing the lateral motion stability about the equilibrium
x = [0, 0]⊤ are given by

ẋ = A(λf , λr)x, (1)

where λf ∈ [0, 1] and λr ∈ [0, 1] are the front and rear
wheel longitudinal wheel slips. It is known from the vehicle
dynamics literature (see, e.g., [8]) that the wheel slip values
during braking vary in-between zero and one, where zero
and one correspond to free rolling and lockup conditions,
respectively. Furthermore, the trace and determinant of the
state transition matrix in (1) are given by (see [10] for further
details)

tr(A(λf , λr)) =
−g
Lv

[
bfgfy(1− bfλf )L2 + brgry(1− brλr)

L1

]
− gL1L2

IzLv

[
bfgfy(1− bfλf )L1 + brgry(1− brλr)L2

]
,

(2)
and

det(A(λf , λr)) =
m

Iz

(gL1L2

Lv

)2{
Lbfgfy(1− bfλf )

[
Lbrgry

(1− brλr)−
v

g
+
Lv

g
brgry(1− brλr)

]}
,

(3)
where L := L1 + L2, and the lengths L1 and L2 are
shown in Figure 2. Moreover, Iz , m, v, and g denote the
moment of inertia, mass, the forward speed of the vehicle, and
gravitational acceleration, respectively. Also, bigiy , i = r, f , is
given by bigiyFiz = 1

2Ciα; and, Ciα, i = r, f , denotes the tire
corner stiffness coefficient, which can be computed using the
approach by Yi et al [10], [17]. Finally, under a static normal
load distribution, Ffz=L2

L mg and Frz=L1

L mg.
Remark 2.1: As demonstrated Yi and Tseng [10], if the

dynamics given by (1) are asymptotically stable, then the
lateral motion will be stable. Given that the wheel lockup
attacks in our other work [1] can regulate either λf , or
λr, or both to any desired value, we will find conditions
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Fig. 2: Bicycle model schematic.

that guarantee instability of the vehicle lateral motion when
λf = λref

f , or λr = λref
r , or both in Section III.

III. DESIGN/COMPUTATION OF DESTABILIZING
LONGITUDINAL WHEEL SLIP VALUES

In this section, we consider the dynamics in (1) and provide
conditions on longitudinal wheel slips λf and λr such that the
lateral motion of the vehicle becomes unstable. Using tools
from robust stability literature (see, e.g., [13]), our analysis
sheds a new light on these instability results. Later, we will
encode these conditions in terms of a QP whose solutions
provide the destabilizing slip values (see Figure 1).

A. Robust stability analysis of the lateral motion dynamics

The characteristic polynomial associated with the dynamics
in (1) is given by

∆
A(λf ,λr)

(s) = s2 − tr(A(λf , λr))s+ det(A(λf , λr)) (4)

where the trace and determinant of A(λf , λr) are given by (2)
and (3). The dynamics in (1) are unstable if and only if

tr(A(λf , λr)) ≥ 0 or det(A(λf , λr)) ≤ 0, (5)

Therefore, if the wheel slip values λf ∈ [0, 1] and λr ∈ [0, 1]
satisfy (5), then lateral motion instability in the vehicle ensues.

In general, since λf and λr are free to vary in the interval
[0, 1], the dynamics in (1) can be considered as an uncertain
linear time-invariant (LTI) dynamical system, where the char-
acteristic polynomial in (4) belongs to the family

F :=
{
∆(s,q) = s2+q1s+q2 : q1 ∈ [q−1 , q

+
1 ], q2 ∈ [q−2 , q

+
2 ]
}
,

(6)
where the uncertain vector q = [q1, q2]

⊤ is given by

q(λf , λr) = [−tr(A(λf , λr)), det(A(λf , λr))]
⊤. (7)

Therefore, the uncertain parameter vector q belongs to a subset
D of the operating domain

Q := [q−1 , q
+
1 ]× [q−2 , q

+
2 ], (8)

where q−1 =min(−tr(A(λf , λr))), q+1 =max(−tr(A(λf , λr))),
q−2 =min(det(A(λf , λr))), and q+2 =max(det(A(λf , λr))).

According to the so-called “Boundary Crossing Theorem”
from robust stability analysis literature (see, e.g., [13]), if the
family of polynomials in (6) are stable within a subset D of the
operating domain Q, then as the uncertain parameter vector

Fig. 3: Mikhailov’s plot for (λf , λr) ∈ [0, 0.03]× [0, 0.03].

Fig. 4: Mikhailov’s plot for (λf , λr) ∈ [0.95, 1]× [0.03, 0.05].

q is changing within D, the roots of the lateral dynamics
characteristic polynomial ∆(s,q) cannot jump from the left
half to the right half of the complex plane without crossing
the imaginary jω-axis. To formally verify this condition, a
graphics-oriented method based on drawing the image set
∆(jω,D) = {∆(jω,q) : q ∈ D} can be invoked (see,
e.g., [13]). This image set is called the Mikhailov’s plot
associated with the family of uncertain system characteristic
polynomials. In particular, we have the following proposition
regarding the robust stability of the vehicle dynamics in (1).

Proposition 3.1: Consider the uncertain dynamics in (1)
as well as a closed and connected set D ⊂ Q. Then, the
characteristic polynomials ∆(s,q) in (6), q ∈ D, are robustly
stable if and only if (i) there exists a stable ∆(s,q) in ∆(s,D);
and (ii) for all ω ≥ 0, the set ∆(jω,D) = {(jω)2 + q1(jω)+
q2 : q ∈ D} does not contain the origin of the complex plane.

Remark 3.2: According to Proposition 3.1, in order to
verify the robust stability of the lateral motion dynamics on a
collection of front and rear wheel longitudinal slip values, we
need to draw the frequency plot ∆(jω,D) associated with
the vehicle lateral motion on a grid of ω in the complex
plane. If this frequency plot, which is called the Mikhailov’s
plot, contains the origin, then there exist front and rear wheel
longitudinal slip values that cause instability.

We now apply Proposition 3.1 to the numerical example
provided by Yi and Tseng [10], where we have omitted the
numerical values for the sake of brevity. Our robust stability
analysis approach enables us to predict stability/instability of
the lateral motion dynamics without having to compute the
trace and determinant of the transition matrix at each pair value
of λf and λr. We consider two cases. In the first case, the
front and rear wheel longitudinal slip values both vary in the
interval [0, 0.03]. It can be easily verified that the characteristic
polynomial is asymptotically stable for λf=λr=0. Figure 3
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depicts the Mikhailov’s plots in this scenario. Since the origin
is encircled by the plots and not contained in ∆(jω,D)
for all ω ≥ 0, then the lateral motion is robustly stable
for (λf , λr) ∈ [0, 0.03] × [0, 0.03]. In the second case, we
consider the situation where (λf , λr) ∈ [0.95, 1]× [0.03, 0.05]
corresponding to a locked up front wheel. Figure 4 depicts the
Mikhailov’s plots in this situation. Since the origin is contained
in ∆(jω,D), then we immediately conclude that the dynamics
in (1) become unstable for some pair (λf , λr).

B. QP for computing destabilizing longitudinal slip values

In this section we present a QP whose solutions can be used
by an adversary using the wheel lockup attacks in our other
work [1]. In particular, the longitudinal slip values resulting
from the proposed QP result in instability in the coupled
lateral-longitudinal dynamics in (1). To proceed, let us define
the vectors

ΛΛΛ := [1− bfλf , 1− brλr]
⊤, ζζζ1 := [bfgfy, brgry]

⊤, (9)

Moreover, we define the diagonal matrices ΞΞΞ1:=diag{L2, L1}
and ΞΞΞ2:=diag{L1, L2}, and

ΞΞΞ := ΞΞΞ1 +
L1L2

Iz
ΞΞΞ2. (10)

Subsequently, defining the vector γγγ⊤ := −ζζζ⊤1 ΞΞΞ and using (2),
it is possible to show that the trace of A(λf , λr) can be ex-
pressed as tr(A(λf , λr)) = −γγγ⊤ΛΛΛ. Therefore, from instability
conditions in (5), it immediately follows that if γγγ⊤ΛΛΛ < 0, then
the lateral motion instability ensues.

In addition to ensuring γγγ⊤ΛΛΛ < 0, the adversary can
meet the inequality constraint γγγ⊤ΛΛΛ < 0, while minimizing
det(A(λf , λr)). This observation is formally stated in the
following proposition, where a QP for finding destabilizing
slip values is provided.

Proposition 3.3: Consider the QP associated with the cou-
pled longitudinal-lateral dynamics in (1)

min
ΛΛΛ

ΛΛΛ⊤
[
0 1

2
1
2 0

]
ΛΛΛ− v

gLbfbrgrygfy
ζζζ⊤1 DΛΛΛ

s.t. γγγ⊤ΛΛΛ < 0,

ΛΛΛlb ≤ ΛΛΛ ≤ ΛΛΛub,

(11)

where D = diag{1, −1}, ΛΛΛlb = [1 − bf , 1 − br]
⊤, and

ΛΛΛub = [1, 1]⊤. Consider the solution ΛΛΛ∗ to the QP in (11).
Then, the longitudinal slip value vector [λf , λr]⊤ = [1, 1]⊤ −
diag{ 1

bf
, 1
br
}ΛΛΛ∗ results in unstable dynamics in (1).

The proof is straightforward and omitted for the sake of
brevity. The obtained destabilizing reference values from the
QP in (11) can then be utilized by the adversary for executing
the wheel lockup attack proposed in [1].

Remark 3.4: In case that one of the slip values cannot be
directly controlled by the adversary, an equality constraint
should be added to the QP. For instance, if the rear wheel
longitudinal slip is equal to λr0 and cannot be controlled,
then the equality constraint [0, −1

br
]⊤ΛΛΛ = −1

br
+ λr0 should

be included in the QP given by (11).

Remark 3.5: The appeal of the QP formulation in (11) for
an adversary, who is interested in causing the most possible
damage to a vehicle under attack, is rooted in the emergence
of customized ECUs that can efficiently solve numerical
optimization problems in real-time (see, e.g., [15]).

IV. CONCLUDING REMARKS AND FUTURE RESEARCH
DIRECTIONS

Motivated by the recent development of braking attack
policies, this paper investigated the analysis and design of
longitudinal wheel slip values that result in instability of
vehicle lateral motion. Future research directions will include
developing QP-based solutions for finding destabilizing wheel
slip values under uncertainty, utilizing these results in the
context of driving simulators such as CARLA [18], and
investigating the implications for cyberattacks against platoons
of connected vehicles [19].
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