

1 **Solitary magnetic structures developed from gyro-resonance with solar wind**  
2 **ions at Mars and Earth**

3 Li-Jen Chen<sup>1</sup>, Jasper Halekas<sup>2</sup>, Shan Wang<sup>1,3</sup>, Gina A. DiBraccio<sup>1</sup>, Norberto Romanelli<sup>1,3</sup>,  
4 Jonathan Ng<sup>1,3</sup>, Christopher T. Russell<sup>4</sup>, Steven J. Schwartz<sup>5,6</sup>, David Sibeck<sup>1</sup>, William  
5 Farrell<sup>1</sup>, Craig Pollock<sup>7</sup>, Daniel Gershman<sup>1</sup>, Barbara Giles<sup>1</sup>, and Yaireska Collado-Vega<sup>1</sup>

6

7 <sup>1</sup>NASA Goddard Space Flight Center, Greenbelt, MD 20771

8 <sup>2</sup>University of Iowa, Iowa City, IA 52242

9 <sup>3</sup>University of Maryland, College Park, MD 20747

10 <sup>4</sup>University of California, Los Angeles, Los Angeles, CA 90095

11 <sup>5</sup>Laboratory for Space and Atmospheric Physics, Colorado University Boulder, Boulder,  
12 CO 80305

13 <sup>6</sup>Emeritus, Blackett Laboratory, Imperial College London, London SW7 2AZ, UK

14 <sup>7</sup>Denali Scientific, Healy, Alaska 99743

15

16

17

18

19

20

21

22

23

24

25

26 **Key points**

27 • Solitary magnetic structures with density enhancements, plasma heating, and ion  
28 reflection are observed in the Martian foreshock

29 • The structures resemble those developed from foreshock waves gyro-resonant with  
30 solar wind ions at Earth

31 • The structures and ion distributions are reproduced by simulations, and shown to be  
32 self-induced turbulence

33

34

35

36

37 Abstract

38 We investigate solitary magnetic structures in the foreshock of Mars and Earth. The  
39 structures exhibit pulse-like magnetic field and density enhancements along with plasma  
40 heating and local solar wind ion reflection. The structures at Mars resemble the foreshock  
41 structures developed from Ultra-Low-Frequency electromagnetic waves gyro-resonant  
42 with solar wind ions at Earth, and propagate toward the magnetosphere. We perform fully  
43 kinetic simulations to reproduce the solitary structures and the nonlinear evolution of ion  
44 distribution functions, illustrating their resonance with solar wind ions. The structures  
45 present self-induced foreshock turbulence that can have space weather effects. Our results  
46 advance the fundamental understanding of how solar wind interacts with planetary  
47 magnetospheres, and have potential impact on the current picture of planet-origin ion  
48 escape.

49 1. Introduction

50 Mars has an induced magnetosphere [Nagy et al., 2004; Ramstad et al., 2020], and a  
51 highly active environment upstream of the bow shock (e.g., review by Mazelle et al.,  
52 2004). The region upstream of the bow shock is permeated by a number of plasma waves,  
53 ranging from Alfvén waves [Dubinin et al., 2000; Halekas et al., 2017], Ultra-Low-  
54 Frequency (ULF) magnetosonic waves [Collinson et al., 2018; Ruhunusiri et al., 2016;  
55 Shan et al., 2020a] including those near the proton gyro-frequency [Brain et al., 2002;  
56 Russell et al., 1990; Romanelli et al., 2016], whistler-mode waves at frequencies of a few  
57 Hz [Brain et al., 2002; Halekas et al., 2020], and other higher frequency waves [Grard et  
58 al., 1989; Sagdeev et al., 1990; Skalsky et al., 1992]. Upstream particles, including  
59 reflected solar wind [Dubinin et al., 2006; Yamauchi et al., 2011] and freshly ionized  
60 Martian [Yamauchi et al., 2015a] protons as well as heavier ions [Yamauchi et al.,  
61 2015b] have been reported. A variety of structures have been observed upstream of the  
62 bow shock, including those identified as fast-mode small-scale shocks developed from  
63 ULF magnetosonic waves [Shan et al., 2020b], diamagnetic cavities [Øieroset et al.,  
64 2001], hot flow anomalies [Collinson et al., 2015], spontaneous hot flow anomalies  
65 [Collinson et al., 2017], foreshock cavities [Collinson et al., 2020], and quasi-periodic  
66 compressive structures reminiscent of Short Large Amplitude Magnetic Structures  
67 (SLAMS [Schwartz et al., 1992]) [Fowler et al., 2019; Halekas et al., 2017]. The  
68 ionospheric impact of ULF magnetosonic foreshock structures are documented  
69 [Collinson et al., 2018; Fowler et al., 2019]. Compressive foreshock structures have been  
70 shown to occur most frequently during times when the interplanetary magnetic field

71 (IMF) is nearly Sun-planet aligned (quasi-radial), but can occur under a broad range of  
72 upstream Mach number and dynamic pressure [Halekas et al., 2017].

73 In this paper, we analyze pulse-like magnetic field and density enhancements along  
74 with plasma distribution functions at Mars, compare them with structures from the  
75 Earth's foreshock with similar parameters, and elucidate the key defining physics with  
76 particle-in-cell (PIC) simulations. We term the pulses solitary magnetic structures  
77 because they exhibit properties (including polarization, spatial-temporal scales,  
78 capabilities to heat the plasma and reflect solar wind ions) similar to those developed  
79 from foreshock ULF waves gyro-resonant with solar wind ions at Earth [Chen et al.,  
80 2020; Paper I hereafter], in contrast with the ULF waves [Eastwood et al., 2005] gyro-  
81 resonant with backstreaming ions [Gary, 1991; Akimoto et al., 1993]. Intense solitary  
82 magnetic structures are shown by a global simulation of the terrestrial magnetosphere to  
83 bombard the magnetopause and induce reconnection as well as Earth-sized indents,  
84 opening potential dayside escape channels for planet-origin ions [Chen et al., 2021]. The  
85 induced magnetosphere of Mars, created by its ionosphere and crustal magnetic field,  
86 stands off the solar wind and produces a bow shock and magnetosheath that are much  
87 closer to the planet than those at Earth. We envision that the processes discussed in this  
88 paper have powerful capacities to facilitate dayside loss of Martian ions.

89

## 90 2. Spacecraft Measurements

91 In this section, we present examples of solitary magnetic structures from the  
92 foreshock of Mars and Earth, identify their similarities, and extract key parameters for  
93 simulations and linear instability analysis. The analyzed spacecraft measurements are

94 from Mars Atmosphere and Volatile EvolutioN (MAVEN) [Jakosky et al., 2015] and  
95 Magnetospheric Multiscale (MMS) [Burch et al., 2016] missions. Two key parameters  
96 determining the dominant wave mode are: ratio of the density of ions streaming back  
97 toward the Sun (backstreaming, viewed in the plasma center-of-mass frame) to the total  
98 plasma density ( $n_b/n_0$ ) and relative drift velocity ( $V_d/V_A$ ) between the two ion populations  
99 [e.g., Gary, 1984; Akimoto et al., 1993; Weidl et al., 2019]. The selected MMS foreshock  
100 crossing has both parameters similar to those in the MAVEN event. MMS provides  
101 higher-resolution (~50 times higher cadence ion distribution functions than those from  
102 MAVEN, for example) plasma measurements to enable the ion phase space structure to  
103 be fully resolved and compared with simulation results.

104 The MAVEN measurements employed in this study are: magnetic field data (32  
105 samples/s; 1 sample/s) from the Magnetometer [Connerney et al., 2015]; ion and electron  
106 energy flux (4 s per sample) and distribution functions (8 s per sample) from the Solar  
107 Wind Ion Analyzer (SWIA; Halekas et al., 2015) and the Solar Wind Electron Analyzer  
108 (SWEA; Mitchell et al., 2016), respectively; the plasma density data from the SWIA  
109 onboard moments (4 s per sample). Determination of the density and velocity of  
110 backstreaming protons in the foreshock region is based on data from both SWIA and the  
111 Supra-Thermal and Thermal Ion Composition (STATIC) instrument [McFadden et al.,  
112 2015]. All vector are shown in the Mars-Solar-Orbital (MSO) coordinate system in which  
113 the x-axis points from Mars to the Sun, the z-axis normal to the orbital plane (positive to  
114 the north), and the y-axis completes the right-handed coordinate system.

115 For the presented MMS data, the magnetic fields (128 samples/s) are measured by  
116 the Flux Gate Magnetometer [Russell et al., 2016], and electron (30 ms/sample) as well

117 as ion (150 ms/sample for burst mode; 4.5 s/sample for fast survey mode) data from the  
118 Fast Plasma Investigation [Pollock *et al.*, 2016]. Vectors are shown in the Geocentric  
119 solar ecliptic (GSE) coordinate system which is defined in an analogous manner as MSO.

120 Intense magnetic pulses (Figure 1c) disrupting the solar wind (Figure 1a) and  
121 heating electrons (Figure 1b) are observed upstream of the Martian bow shock (shown by  
122 the green shaded bar and orbit above Figure 1a and in Figure 1f, respectively) at ~1725-  
123 1830 UT on July 11, 2019. The IMF is dominantly Sun-Mars aligned with  $B_x$  much  
124 larger than  $B_{y,z}$  as seen in the beginning of the shown interval (Figure 1e) and on average  
125 throughout the interval with magnetic pulses. The pulses reach magnitudes 10-18 nT ~5-  
126 9 times the background IMF strength (Figure 1c). Associated with the magnetic pulses  
127 are the plasma density enhancements to  $4-5 \text{ cm}^{-3}$  (the upstream solar wind density ~1.2  
128  $\text{cm}^{-3}$ , averaged from SWIA data at 1710-1720 UT). Solar wind protons exhibit strong  
129 deceleration at the magnetic field and density spikes, as seen by the intense flux  
130 extending from 1 keV to ~100 eV (Figures 1a and 2c). The nature of this deceleration  
131 will be further discussed in Figure 3.

132 The sudden disappearance of magnetic pulses at ~1830UT suggests a sharp  
133 boundary (at approximately  $Z \sim 1.2 R_M$ ) beyond which the pulses are absent, rendering  
134 the primary impact region of the solitary structures to be the quasi-parallel foreshock  
135 within  $\sim 1 R_M$  from the bow shock nose. Note that the IMF is still dominated by  $B_x$  and the  
136 ions are solar wind-like. The location of MAVEN at 1800 UT in MSO coordinates is  
137  $[2.0, 0.4, 0.9] R_M$ , estimated to be  $\sim 0.5 R_M$  ( $\sim 1695 \text{ km} \sim 8 d_i$ , where  $d_i$  is the ion skin  
138 depth based on the upstream solar wind density) from the Martian bow shock encountered  
139 after 1840 UT (Figure 1a).

140       Similar to that which observed in the foreshock of Mars, disruption of the solar wind  
141    (Figure 1g) and heating of electrons (Figure 1h) are observed at the magnetic pulses in  
142    the selected MMS event. The magnetic field amplitude (Figure 1i) and plasma density  
143    (Figure 1j) are enhanced by about an order of magnitude compared with the upstream  
144    values (IMF  $\sim$  4.1 nT; density  $\sim$  3.7 cm $^{-3}$ ). The intense  $B_y$  and  $B_z$  (Figures 1e and 1k)  
145    exhibit both positive and negative excursions, and can enlarge magnetic shear angles  
146    across the magnetopause [Chen et al., 2021]. The MMS four spacecraft configuration in  
147    the selected foreshock crossing is colinear with an inter-spacecraft separation a few  $d_i$ ,  
148    enabling definitive determination that the solitary magnetic structures evolve from the  
149    ULF waves gyro-resonant with solar wind ions (Figure 3 in Paper I).

150       For the wave gyro-resonant with solar wind ions, the inter-pulse separation results  
151    from the nature of the solitary pulse formation: growing from the maxima of beat-wave-  
152    like envelopes [Paper I], in contrast to the quasi-periodic shocks whose inter-pulse  
153    separation is dictated by the proton cyclotron periodicity [Shan et al., 2020b]. The  
154    separation in time between two consecutive pulses varies substantially, ranging from 5 to  
155    25 s in the zoom-in interval (Figure 2f). For comparison, the proton cyclotron period for  
156    the background magnetic field (2 nT, taken from 1720 UT; MAVEN MAG) is  $\sim$ 33 s. The  
157    inter-pulse durations observed by MMS are also not organized by the cyclotron period  
158    which is  $\sim$ 17s for the MMS foreshock event (Figure 2n).

159       The backstreaming ion population exhibits a net sunward velocity in the spacecraft  
160    frame. The  $v_x$  reduced distribution function (summed over  $v_y$  and  $v_z$ ; Figures 2b, 2d, and  
161    2l) shows the colder solar wind population at  $v_x \sim -440$  km/s, and the backstreaming  
162    hotter population (predominantly at  $v_x \sim 100$ -200 km/s in Figures 2b and 2l) which

163 exhibits variations in both the phase-space-density (PSD) and velocity as does the  
164 backstreaming population in the simulation (Figures 3aeh).

165 We note the following additional features in the side-by-side zoom-in views of  
166 solitary magnetic structures from Mars and Earth shown in Figure 2: (1) At the solitary  
167 magnetic structures, the solar wind (SW) ion population is decelerated to below 100 eV  
168 as well as accelerated to  $\sim$ 4 keV (Figures 2c and 2k; the acceleration at Mars is further  
169 supported by  $H^+$  data from STATIC). SW ion acceleration also occurs in the simulation  
170 (below  $-4 V_A$  in Figures 3h and 3n). (2) The most intense flux of decelerated SW ions  
171 occurs at the upstream edge of the structure (Figures 2cdg and 2klo; examples: 120131,  
172 120220, and 120245 UT), corresponding to the density peak which tends to be displaced  
173 upstream from the magnetic field peak (Figure 2o; the structure at 120130 UT for  
174 example). (3) The duration of a single pulse is  $\sim$ 3-10 s (Figures 2f, 2j, and 2n; a 10s-  
175 duration pulse is at 183005-183015UT, not shown) and the pulse polarization is  
176 dominantly right-handed in the spacecraft frame (pulse moving toward  $-x$ ,  $B_y$  leads  $B_z$   
177 variations by  $\sim$ 90 degrees and  $B_x > 0$  in Figures 2f and 2n; magnetic wave power shown in  
178 Figures 2hi and 2pq), consistent with the polarization of ULF waves gyro-resonant with  
179 solar wind ions. (4) Electrons remain one population throughout the interval of interest  
180 (Figures 2e and 2m). The electron thermal spread in  $v_x$  enhances in intervals when  
181 thermalized ions are observed (Figures 2cde and 2klm; the interval at  $\sim$ 1821 UT for  
182 Mars, and 120120-30 UT for MMS) and the associated densities are relatively low.

183 We separate the solar wind and backstreaming populations in the 3D ion distribution  
184 data to compute their moments to obtain the key parameters needed for PIC simulations  
185 and linear instability analysis. For Mars,  $n_b/n_0 \sim 0.15-0.17$ ,  $V_d/V_A \sim 15$  based on

186 MAVEN data (SWIA and STATIC H+) from 20190711/1732-1734 UT. For Earth,  $n_b/n_0$   
187  $\sim 0.17$ ,  $V_d/V_A \sim 15$  based on MMS3 data from 20190222/115819-20 UT. Solitary  
188 magnetic structures have been shown by PIC simulations to develop from ULF  
189 electromagnetic waves gyro-resonant with solar wind ions using a backstreaming ion  
190 density ratio  $n_b/n_0=0.5$  extracted from an Earth foreshock event where N and  $|B|$  peaks  
191 coincide with each other without a relative phase shift [Paper I]. Using the same setup as  
192 in Paper I and the Mars/MMS parameters, the simulations reproduce structure properties  
193 including the displacement of the density peak slightly upstream of the  $|B|$  maximum as  
194 discussed below.

195

### 196 3. Particle-in-cell simulations

197 We carry out PIC simulations to demonstrate that given the conditions at the  
198 foreshock of Mars and Earth, intense solitary magnetic structures develop from waves  
199 gyro-resonant with solar wind ions under a constant IMF. The initial conditions are: two  
200 counterstreaming ion and one electron populations (as seen in Figures 2be and 2lm) with  
201 zero net total current. We perform simulations and corresponding linear instability  
202 analyses with  $n_b/n_0 = 0.1, 0.2$  and  $V_d/V_A = 10, 15, 20$ . The mode gyro-resonant with solar  
203 wind ions dominates in all combinations of parameters in the above range. We show  
204 results from the run with  $n_b/n_0 = 0.2$  and  $V_d/V_A = 20$  to illustrate the key physics. In the  
205 plasma center-of-mass frame (plasma frame), the initial conditions are: one cold ion  
206 population moving at  $V_{sw} = -4V_A$  (corresponding to  $V_{sw} = -9V_A \sim -440 \text{ km/s}$  for Mars and  
207 Earth in the spacecraft frame), where  $V_A$  is the Alfvén speed based on the background  
208 magnetic field  $B_0$  and the total number density ( $n_0$ ); one hot backstreaming ion

209 population at  $V_b = 16V_A$ ; the temperature ratios  $T_b/T_{sw} = 25$  and  $T_e/T_{sw} = 2$ ; a uniform  
210  $B_0 = (0.067, 0, 0)m_e c/|e|d_e$ , where  $m_e$  is the electron mass,  $c$  is the speed of light,  $e$  is the  
211 electron charge, and  $d_e$  is the electron inertia length. Other parameters are: the mass ratio  
212  $m_i/m_e = 100$ , electron plasma to cyclotron frequency ratio  $\omega_{pe}/\omega_{ce} = 15$ , and solar wind  
213 ion beta  $\beta = 1$ . The simulation has one spatial and three velocity dimensions, performed  
214 using the particle-in-cell code VPIC, which solves a system of relativistic Vlasov-  
215 Maxwell equations [Bowers et al 2008].

216 In the simulation, the magnetic field  $B_{y,z}$  grows from right-hand polarized  
217 electromagnetic waves (electric field variations are similar to those presented in Figures 2  
218 and 4 in Paper I) in which  $B_y$  leads  $B_z$  by 90 degrees, consistent with the observed pulse  
219 forms shown in Figure 2. The magnetic field first develops as quasi-sinusoidal waves like  
220 the profiles from t-2 (Figure 3i; the even earlier stage is similar to that shown in Figure 4,  
221 Paper I). Later the field grows further at local maxima of  $|B|$  to form solitary structures at  
222 time  $t$  and  $t+2.5$ .

223 Simulation results show ion reflection, thermalization, and electron heating at sites  
224 of magnetic field and density enhancements, consistent with the observations (Figure 2)  
225 at the foreshock of Mars and Earth. Majorities of the incoming solar wind ions are  
226 reflected slightly upstream of the  $|B|$  peak, forming an arc structure in the  $[x, v_x]$  phase-  
227 space (Figure 3a). Such arc structures are seen in the high-cadence MMS ion  $v_x$   
228 distribution (120130 and 120243 UT in Figure 2l). Electron heating occurs at the solitary  
229 structure, and tends to be more intense in regions where ions are more thermalized (e.g.,  
230  $x \sim 580-585$  in Figure 3b), similar to that observed by MAVEN and MMS (Figure 2).

231 The density (N) maximum is displaced slightly upstream (to the right) of the  $|B|$   
232 peak (Figure 3d), a feature resolved by MMS (Figure 2o). At later time (for example, 2.5  
233  $\omega_{ci}^{-1}$  later, where  $\omega_{ci}$  is the ion cyclotron frequency), further ion thermalization occurs  
234 (Figure 3e), the magnetic field enhancements become more isolated (Figure 3f), and the  
235 relationship between the  $|B|$  and N peaks becomes more variable across different solitary  
236 structures (Figure 3g). The less correlated  $|B|$  and N profiles observed by MAVEN and  
237 MMS in the more thermalized regions (e.g., ~182050-182110 UT in Figures 2c and 2g  
238 for Mars; ~120120-120130 UT in Figures 2k and 2o for Earth) can thus be attributed to  
239 temporal evolution of the structures.

240 Solitary magnetic structures grow from waves gyro-resonant with solar wind ions.  
241 The mode is right-hand polarized and non-resonant with the backstreaming ions. Before  
242 the formation of solitary structures at time  $t$ , the wave propagates at  $V_{ph}=-2V_A$  with a  
243 dominant wave number of  $kd_i \sim 0.53$ , consistent with linear instability analysis predicting  
244 the maximum growth rate to be  $0.81 \omega_{ci}$  at  $kd_i \sim 0.51$  for the non-resonant mode. The  
245 cyclotron resonant velocity is  $V_{res} = V_{ph} + \omega_{ci}/k = -3.9V_A$ , within one solar-wind ion  
246 thermal speed ( $1.1 V_A$ ) from  $V_{sw} = -4V_A$ , and hence satisfies the solar wind gyro-  
247 resonance condition [Gary, 1991; Weidl et al., 2019].

248 The capacity of solitary structures to reflect SW ions like a collisionless shock is  
249 further demonstrated by  $v_x$ - $v_y$  ion velocity distribution functions (summed over  $v_z$ ) from  
250 PIC (Figure 3j), Mars (Figure 3k), and Earth (Figure 3l). All three distribution functions  
251 (in the spacecraft frame) show the co-existence of the slightly slowed down incoming  
252 SW and the reflected SW population at the upstream edge just before the  $|B|$  peak. The

253  $v_x$ - $v_y$  distributions are 2D velocity-space views of a slice (at a fixed  $x$  in PIC or fixed time  
254 in MMS) of the arc structure in the  $v_{ix}$  reduced distribution (Figures 2l and 3a).

255 The solitary-structure velocity lies between the incoming SW and the locally  
256 reflected SW populations, as verified by the PIC and MMS distributions. Based on MMS  
257 multi-spacecraft timing analysis, the propagation velocities of terrestrial solitary  
258 structures (such as the ones shown in Figure 2n) are estimated to be 200-300 km/s anti-  
259 sunward in the spacecraft frame, consistent with the average velocity of the incoming and  
260 reflected SW components ( $\sim 5-6V_A \sim 250-300$  km/s). For Mars, the observed velocities  
261 of the two populations indicate that the solitary structure moves toward the planet with a  
262 speed approximately 250-300 km/s.

263 Solitary magnetic structures are kinetic in nature. The solar wind ion population  
264 having a finite thermal spread in the velocity space enables gyro-resonance of a subset of  
265 SW ions with the wave and a rich spectrum of deceleration/acceleration (including  
266 reflections) throughout the solitary structure as seen in the  $x$ - $v_x$  structure (Figure 3). To  
267 further illustrate this kinetic nature, we trace all SW ions within a spatial bin (size 0.02  $d_i$ ;  
268 marked by a magenta vertical line in Figure 3m) forward in time from  $t-2$  (Figure 3m) to  
269  $t$ , and display all traced ions (as magenta open circles) in the  $x$ - $v_x$  phase-space at  $t$  (Figure  
270 3n). The SW ions spread out from a 0.02  $d_i$  bin to an  $x$  range of 13  $d_i$  ( $x \sim 600-613$ ),  
271 occupy a much larger  $v_x$  range, and populate key  $x$ - $v_x$  phase-space structures such as the  
272 arc ( $x \sim 611-613$ ; Figure 3n). Examination of traced solar wind ion orbits (one example  
273 shown as the cyan curve in Figure 3n) further confirms that reflection occurs at different  
274 locations within the solitary structure, and the most probable turning points correspond to  
275 the density peak. The histogram (Figure 3o) of the number of traced SW ions exhibits a

276 profile qualitatively similar to the density profile (black curves in Figures 3m-n  
277 represents 3N). The differing acceleration and deceleration features of the SW ions and  
278 their local reflections throughout the magnetic structure indicate that the solar wind  
279 population cannot be viewed as a fluid element, but need to be treated as particles  
280 interacting through their mean fields.

281

282 4. Summary, discussion, and conclusion

283 In summary, we report solitary magnetic structures developed from gyro-resonance  
284 with solar wind ions in the foreshock of Mars, based on comparing MAVEN  
285 measurements with the high-cadence MMS data from an Earth foreshock crossing that  
286 exhibits similar parameters and comparing the observations with PIC simulations. The  
287 solitary structures in both observations and simulations decelerate/accelerate solar wind  
288 ions, locally reflect portions of the incoming solar wind population, and heat electrons,  
289 behaving like kinetic shocks moving toward the planet. The dominant instability is  
290 consistent with the right-hand non-resonant mode in the literature [Gary, 1991; Paper I],  
291 and requires higher backstreaming ion density and/or velocity than does the resonant  
292 mode. The evidence for the non-resonant mode reported in the paper indicates that a  
293 quasi-radial IMF may stimulate the foreshock/shock/magnetosphere environment of Mars  
294 to provide more/faster backstreaming ions through reflecting the incoming SW or  
295 through enabling ionized martian ions to flow sunward. The exact process remains an  
296 open question.

297 Strictly speaking, given the single spacecraft measurements from MAVEN, one  
298 cannot entirely rule out the possibility that the solitary structures are from the upstream

299 solar wind and propagate to the foreshock of Mars. However, the presence of  
300 backstreaming ions, the similarity of structure properties with those observed in Earth's  
301 foreshock where the evolution of ULF waves into solitary structures are directly  
302 observed, and the similarity with solitary structures generated in PIC simulations all  
303 combine to support that the structures in the Martian foreshock are generated by the  
304 kinetic interaction of the solar wind and backstreaming ions.

305 The solitary magnetic structures discussed in this paper develop from the ULF  
306 electromagnetic waves gyro-resonant with solar wind protons (coded as "SWr structures"  
307 in this paragraph), to be distinguished from the periodic shocks that evolve from gyro-  
308 resonance with freshly ionized Martian hydrogen [Shan et al., 2020b]. The key observed  
309 differences are: 1) Polarization in the spacecraft frame: SWr structures are dominantly  
310 right-handed. The quasi-periodic shocks are primarily left-handed. 2) Time scales: for  
311 SWr structures, the inter-pulse duration is not organized by the cyclotron period, but as  
312 emphasized in Paper I, the solitary nature stems from a beat-like magnetic field envelope  
313 where the  $|B|$  local maxima set the initial locations for fastest nonlinear growth; the  
314 individual pulse span is 3-10 s, consistent with a time scale dominated by the Doppler  
315 shift  $k V_{sw} / 2 \pi \sim 0.1\text{-}0.3$  Hz ( $f_{ci}$  is only 0.03 Hz), where  $k$  is the most unstable wave  
316 number ( $kd \sim 0.4\text{-}0.7$ ) for the parameter range  $n_b/n_0 = 0.1\text{-}0.2$  and  $V_d/V_A = 10\text{-}20$ . The  
317 quasi-periodic shocks are governed by the proton cyclotron periodicity. 3) Backstreaming  
318 ion velocity in the spacecraft frame: SWr structures are associated with ions streaming  
319 with a net sunward velocity. The backstreaming ion population for the quasi-periodic  
320 shocks are newborn protons that have a net anti-sunward velocity or nearly at rest [Shan  
321 et al., 2020b]. 4) Pulse shapes: SWr structures have bipolar  $B_{xyz}$  (the bipolar  $B_x$  with

322 respect to the background field is most likely due to the wave vector not along x)  
323 dominated by  $B_{yz}$ . The  $B_{xyz}$  profiles of the quasi-periodic shocks are primarily unipolar ( $B_x$   
324 never crosses zero, in particular; Figure 1b in Shan et al. [2020b]). Note that the above  
325 contrast is based on two case studies. Further investigations are required to assess the  
326 generality for both types of structures.

327 We emphasize that the physics leading to the density increase at the structures  
328 reported here is primarily local reflections of solar wind ions. Our simulation predicts that  
329 the most probable site of reflection corresponds to the density maximum, and occurs  
330 slightly upstream of the magnetic field peak given the parameters from the reported  
331 foreshock crossings at Mars and Earth. This displacement is observed by MMS in the  
332 high cadence measurements.

333 Solitary magnetic structures have the capacity to lead to dayside ion escape. The  
334 structures have been demonstrated to further intensify in the magnetosheath and lead to  
335 magnetic reconnection as well as indents at the magnetopause by a global hybrid  
336 simulation of the terrestrial magnetosphere [Chen et al., 2021]. The induced  
337 magnetosphere of Mars is much smaller and weaker than Earth's, and hence more  
338 susceptible to the impact of these planet-sized structures. For example, the foreshock  
339 generated and amplified bipolar  $B_y$  and  $B_z$  (Figures 2) can increase the shear angle  
340 between the magnetosheath field and the crustal magnetic field at the dayside, and hence  
341 may increase the likelihood of dayside reconnection such as that observed by MAVEN  
342 [Harada et al., 2018], and open escape pathways from the dayside ionosphere, a major  
343 reservoir of Martian ions. Even though the wave modes differ, the structures reported in  
344 this paper exhibit magnetic field and density enhancements similar in strengths as the

345 ULF magnetosonic waves (both types of structures can be viewed as subclasses of  
346 SLAMS [Schwartz et al., 1992], as they meet the criterion of  $|B| > \sim 2B_0$ ), and hence may  
347 impact the ionosphere of Mars in ways similar to those documented [Collinson et al.,  
348 2018; Fowler et al., 2019] and contribute to the atmospheric loss.

349 In conclusion, the solitary magnetic structures in the foreshock of Mars are  
350 consistent with the terrestrial solitary structures developed from the ULF waves gyro-  
351 resonant with solar wind ions under a constant quasi-radial IMF. The structures are  
352 planet-sized and kinetic in nature, behaving like mini-shocks moving toward the  
353 magnetosphere. They have the potential to lead to dayside escape of planetary ions. Our  
354 results suggest that planet-sized space weather events can be self-induced under steady  
355 IMF and solar wind conditions.

356 **Captions**

357 **Figure 1.** Overview of solitary magnetic structures at the foreshock of Mars (left) and  
358 Earth (lower right). (a) Ion energy flux. (b) Electron energy flux. (c) Magnetic field  
359 amplitude enhanced with the density (d). (e) magnetic field components  $B_{xyz}$ . (f)  
360 MAVEN Orbit (color coded with shades of green along with the horizontal bar above  
361 Figure 1a to aid visualization). (g-k) Measurements from Earth's foreshock presented in  
362 the same format as Figures 1a-e.

363 **Figure 2.** Zoom-in view of example solitary structures and corresponding plasma  
364 distribution functions at Mars and Earth. (a, f, n) Magnetic field components. (b, d, l) Ion  
365 phase-space density in the  $v_x$  space (summed over  $v_y$  and  $v_z$ ). (c, k) Ion energy flux. (e,  
366 m) Electron phase-space density in  $v_x$ . (g, o) pulse-like enhancements of the magnetic  
367 field amplitude and density. Ion thermalization (d, l) and electron heating (c, m) occur at  
368 solitary structures. (h-i, p-q) Magnetic wave power showing that the fluctuations at  $\sim$   
369 0.1Hz and slightly above are dominantly right-hand (RH) polarized, in contrast with the  
370 much weaker wave power in the LH panels. The vertical blue dashed lines mark the  
371 upstream side of example solitary structures and the center time of the distribution  
372 functions presented in Figure 3, magenta arrows example backstreaming ion populations  
373 when the SW is approximately un-disturbed, blue arrows example accelerated SW ion  
374 features, and black arrows the arc structures signifying local SW ion reflection.

375 **Figure 3.** PIC simulation results showing ion reflection, thermalization, and electron  
376 heating at sites of magnetic field and density enhancements, consistent with the  
377 observations at the foreshock of Mars and Earth. Local reflection of solar wind ions at the  
378 solitary structure is featured. (a-b, e, h) Ion and electron  $x-v_x$  phase space (summed over

379  $v_y$  and  $v_z$ ) presented in the plasma frame. (c, f, i) Magnetic field components showing  $B_{y,z}$   
380 develop from right-hand polarized waves. (d, g, m, o) Magnetic field amplitude ( $|B|$ ) and  
381 density ( $N$ ) profiles. Ion  $v_x$ - $v_y$  velocity distribution functions from PIC (j), Mars (k), and  
382 Earth (l), presented in the same normalized unit, same velocity axes and velocity range in  
383 the spacecraft frame, showing that the incoming SW (denoted as “IncSW” and indicated  
384 by green arrows) co-exists with the locally reflected SW (“LocRefSW,” magenta arrows).  
385 Zoom-in views of the SW ion  $x$ - $v_x$  phase space at  $t-2$  (m) and  $t$  (n) shows how all the solar  
386 wind ions in the 3D velocity distribution from  $x=615$  (marked by a vertical magenta  
387 dashed line) at  $t-2$  are distributed at  $t$  (magenta open circles). One example orbit of  
388 reflected SW ions is displayed as the cyan curve (n). The highest number of traced SW  
389 ions at time  $t$  (o) occurs at the location of the most probable reflection, corresponding to  
390 the bend-over location of the arc structure in  $x$ - $v_x$  (n). (a-d) are from  $t = 13$ , (e-g) from  
391  $t + 2.5$ , and (h-i) from  $t - 2$ . Time is in unit of  $\omega_{ci}^{-1}$ . The horizontal green bar marks the  $x$   
392 range shown in Figures 3m-o. The vertical line in (a-d) indicates the location from which  
393 the  $v_x$ - $v_y$  distribution function (j) is taken.

394

395 Acknowledgments

396 The research at GSFC and UMCP is supported in part by the MMS mission, DOE grants  
397 DESC0016278, DESC0020058, NSF AGS-1619584, AGS-2010231, and NASA  
398 80NSSC18K1369. N.R. is supported through a cooperative agreement with Center for  
399 Research and Exploration in Space Sciences & Technology II (CRESST II) between  
400 GSFC and UMCP under award number 80GSFC21M0002.

401

402 Open Research

403 MMS data are available at <https://lasp.colorado.edu/mms/sdc/public/about/browse-wrapper/>. MAVEN data are available at  
404 <https://lasp.colorado.edu/maven/sdc/public/data/sci/>. The study uses L2 FPI and FGM  
405 data from MMS, and L2 swi, swe, sta, and mag data from MAVEN.

407

408 References

409 Akimoto, K., Winske, D., Gary, S. P., and Thomsen, M. F. (1993), Nonlinear evolution  
410 of electromagnetic ion beam instabilities, *J. Geophys. Res.*, 98 (A2), 1419– 1433,  
411 doi:10.1029/92JA02345.

412 Bowers, K. J., B. J. Albright, L. Yin, Bergen, and T. J. T. Kwan (2008), Ultrahigh  
413 performance three-dimensional electromagnetic relativistic kinetic plasma  
414 simulation, *Phys. Plasmas*, 15, 055,703

415 Brain, D. A., Bagenal, F., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Mazelle, C.,  
416 et al. (2002). Observations of low-frequency electromagnetic plasma waves upstream  
417 from the Martian shock. *Journal of Geophysical Research: Space Physics*, 107(A6),  
418 doi:10.1029/2000JD000416.

419 Burch, J. L. et al. (2016), Electron-scale measurements of magnetic reconnection in  
420 space, *Science*, 12, aaf2939.

421 Chen, L. J., Wang, S., Ng, J., Bessho, N., Tang, J. M., Fung, S. F., et al. (2020). Solitary  
422 magnetic structures at quasi-parallel collisionless shocks: Formation. *Geophysical  
423 Research Letters*, 48, e2020GL090800.

424 Chen, L.-J., Ng, J., Omelchenko, Y., & Wang, S. (2021). Magnetopause reconnection and

425 indents induced by foreshock turbulence. *Geophysical Research Letters*, 48,  
426 e2021GL093029.

427 Collinson, G., Halekas, J., Grebowsky, J., Connerney, J., Mitchell, D., Espley, J., et al.  
428 (2015). A hot flow anomaly at Mars. *Geophysical Research Letters*, 42(21), 9121–  
429 9127. <https://doi.org/10.1002/2015GL065079>

430 Collinson, G., Sibeck, D., Omidi, N., Grebowsky, J., Halekas, J., Mitchell, D., et al.  
431 (2017). Spontaneous hot flow anomalies at Mars and Venus. *Journal of Geophysical  
432 Research (Space Physics)*, 122(10), 9910–9923.  
433 <https://doi.org/10.1002/2017JA024196>

434 Collinson, G., Wilson, L. B., Omidi, N., Sibeck, D., Espley, J., Fowler, C. M., et al.  
435 (2018). Solar Wind Induced Waves in the Skies of Mars: Ionospheric Compression,  
436 Energization, and Escape Resulting From the Impact of Ultralow Frequency  
437 Magnetosonic Waves Generated Upstream of the Martian Bow Shock. *Journal of  
438 Geophysical Research (Space Physics)*, 123(9), 7241–7256.  
439 <https://doi.org/10.1029/2018JA025414>

440 Collinson, G., Sibeck, D., Omidi, N., Frahm, R., Zhang, T., Mitchell, D., et al. (2020).  
441 Foreshock Cavities at Venus and Mars. *Journal of Geophysical Research: Space  
442 Physics*, 125(8), e2020JA028023. <https://doi.org/10.1029/2020JA028023>

443 Connerney, J., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., & Sheppard,  
444 D. (2015). The MAVEN magnetic field investigation. *Space Science Reviews*, 195,  
445 257–291. <https://doi.org/10.1007/s11214-015-0169-4>

446 Dubinin, E., Sauer, K., Delva, M., Livi, S., Lundin, R., Skalsky, A., & Szego, K. (2000).  
447 Deceleration of the Solar Wind Upstream of the Martian Bow Shock. *Mass-loading*

448 or Foreshock Features? *Advances in Space Research*, 26(10), 1627–1631.

449 [https://doi.org/10.1016/S0273-1177\(00\)00104-6](https://doi.org/10.1016/S0273-1177(00)00104-6)

450 Dubinin, E., Fraenz, M., Woch, J., Barabash, S., Lundin, R., & Yamauchi, M. (2006).

451 Hydrogen exosphere at Mars: Pickup protons and their acceleration at the bow

452 shock. *Geophysical Research Letters*, 33(22), L22103.

453 <https://doi.org/10.1029/2006GL027799>

454 Eastwood, J. P., Balogh, A., Lucek, E. A., Mazelle, C., & Dandouras, I. (2005). Quasi-

455 monochromatic ULF foreshock waves as observed by the four-spacecraft cluster

456 mission: 1. Statistical properties. *Journal of Geophysical Research*, 110, A11219.

457 <https://doi.org/10.1029/2004JA010617>

458 Fowler, C. M., Halekas, J., Schwartz, S., Goodrich, K. A., Gruesbeck, J. R., & Benna, M.

459 (2019). The Modulation of Solar Wind Hydrogen Deposition in the Martian

460 Atmosphere by Foreshock Phenomena. *Journal of Geophysical Research: Space*

461 *Physics*, 124(8), 7086–7097. <https://doi.org/10.1029/2019JA026938>

462 Gary, S. P. (1991). Electromagnetic ion/ion instabilities and their consequences in space

463 plasmas—A review, *Space Sci Rev.*, 56, 373–415, doi:10.1007/BF00196632.

464 Grard, R., Pedersen, A., Klimov, S., Savin, S., Skalsky, A., Trotignon, J. G., & Kennel,

465 C. (1989). First measurements of plasma waves near Mars. *Nature*, 341(6243), 607–

466 609. <https://doi.org/10.1038/341607a0>

467 Halekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W., McFadden, J. P.,

468 Mitchell, D. L., Lin, R. P., and Jakosky, B. M. (2015), The solar wind ion analyzer

469 for MAVEN, *Space Sci. Rev.*, doi:10.1007/s11214-013-0029-z

470 Halekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C., et  
471 al. (2017). Structure, dynamics, and seasonal variability of the Mars-solar wind  
472 interaction: MAVEN Solar Wind Ion Analyzer in-flight performance and science  
473 results. *Journal of Geophysical Research (Space Physics)*, 122(1), 547–578.  
474 <https://doi.org/10.1002/2016JA023167>

475 Halekas, J. S., Ruhunusiri, S., Vaisberg, O. L., Harada, Y., Espley, J. R., Mitchell, D. L.,  
476 et al. (2020). Properties of Plasma Waves Observed Upstream From Mars. *Journal of*  
477 *Geophysical Research: Space Physics*, 125(9), e2020JA028221.  
478 <https://doi.org/10.1029/2020JA028221>

479 Harada, Y., Halekas, J. S., DiBraccio, G. A., Xu, S., Espley, J., McFadden, J. P., et al.  
480 (2018). Magnetic reconnection on dayside crustal magnetic fields at Mars: MAVEN  
481 observations. *Geophysical Research Letters*, 45, 4550–4558.  
482 <https://doi.org/10.1002/2018GL077281>

483 Jakosky, B. M., et al. (2015), The Mars Atmosphere and Volatile Evolution (MAVEN)  
484 mission, *Space Sci. Rev.*, doi:10.1007/s11214-015-0139-x.

485 Le, G., C. T. Russell, M. F. Thomsen, and J. T. Gosling (1992), Observations of a new  
486 class of upstream waves with periods near 3 seconds, *J. Geophys. Res.*, 97, 2917–  
487 2925.

488 Mazelle, C., Winterhalter, D., Sauer, K., Trotignon, J. G., Acuña, M. H., Baumgärtel, K.,  
489 et al. (2004). Bow Shock and Upstream Phenomena at Mars. *Space Science*  
490 *Reviews*, 111(1), 115–181. <https://doi.org/10.1023/B:SPAC.0000032717.98679.d0>

491 McFadden, J. P., Kortmann, O., Curtis, D., Dalton, G., Johnson, G., Abiad, R., et al.  
492 (2015). MAVEN SupraThermal and Thermal Ion Composition (STATIC)

493 instrument. Space Science Reviews, 195(1-4), 199–256.

494 <https://doi.org/10.1007/s11214-015-0175-6>

495 Mitchell, D. L., Mazelle, C., Sauvaud, J.-A., Thocaven, J.-J., Rouzaud, J., Fedorov, A., et  
496 al. (2016). The MAVEN Solar Wind Electron Analyzer. *Space Science Reviews*,  
497 200, 495–528. <https://doi.org/10.1007/s11214-015-0232-1>

498 Nagy, A. F., Winterhalter, D., Sauer, K., Cravens, T. E., Brecht, S., Mazelle, C., et al.  
499 (2004). The plasma environment of Mars. *Space Science Reviews*, 111(1/2), 33–114.  
500 <https://doi.org/10.1023/B:SPAC.0000032718.47512.92>

501 Øieroset, M., Mitchell, D. L., Phan, T. D., Lin, R. P., & Acuña, M. H. (2001). Hot  
502 diamagnetic cavities upstream of the Martian bow shock. *Geophysical Research  
503 Letters*, 28(5), 887–890. <https://doi.org/10.1029/2000GL012289>

504 Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., et al. (2016). Fast  
505 plasma investigation for magnetospheric multiscale. *Space Science Reviews*, 199,  
506 331–406. <https://doi.org/10.1007/s11214-016-0245-4>

507 Romanelli, N., et al. (2016). Proton cyclotron waves occurrence rate upstream from Mars  
508 observed by MAVEN: Associated variability of the Martian upper atmosphere, *J.  
509 Geophys. Res. Space Physics*, 121, doi:10.1002/2016JA023270

510 Ramstad, R., Brain, D.A., Dong, Y. et al. (2020). The global current systems of the  
511 Martian induced magnetosphere. *Nat Astron* 4, 979–985.  
512 <https://doi.org/10.1038/s41550-020-1099-y>

513 Ruhunusiri, S., Halekas, J. S., Connerney, J. E. P., Espley, J. R., McFadden, J. P.,  
514 Mazelle, C., et al. (2016). MAVEN observation of an obliquely propagating low-  
515 frequency wave upstream of Mars. *Journal of Geophysical Research (Space  
516 Physics)*, 121(3), 2374–2389. <https://doi.org/10.1002/2015JA022306>

517 Russell, C. T., Luhmann, J. G., Schwingenschuh, K., Riedler, W., & Yeroshenko, Ye.  
518 (1990). Upstream waves at Mars: Phobos observations. *Geophysical Research*  
519 *Letters*, 17(6), 897–900. <https://doi.org/10.1029/GL017i006p00897>

520 Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer,  
521 D., et al. (2016). The magnetospheric multiscale magnetometers. *Space Science*  
522 *Reviews*, 199, 189–256. <https://doi.org/10.1007/s11214-014-0057-3>

523 Sagdeev, R. Z., Shapiro, V. D., Shevchenko, V. I., Zacharov, A., Király, P., Szegő, K., et  
524 al. (1990). Wave activity in the neighborhood of the bowshock of Mars. *Geophysical*  
525 *Research Letters*, 17(6), 893–896. <https://doi.org/10.1029/GL017i006p00893>

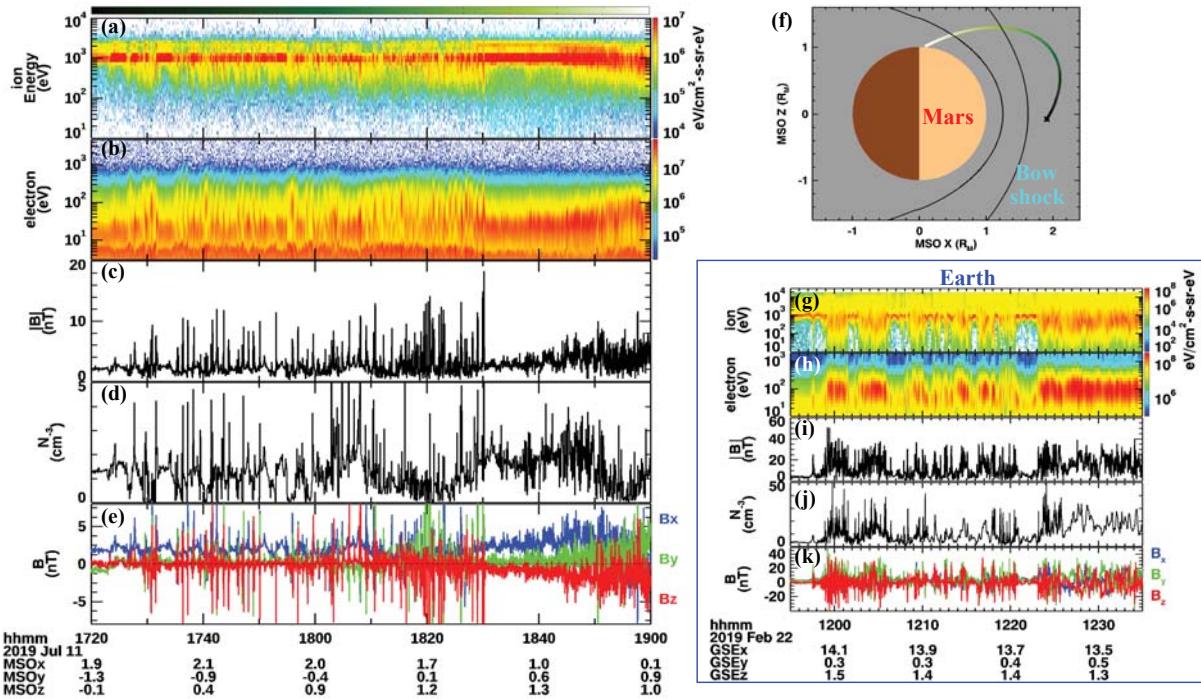
526 Schwartz, S. J., D. Burgess, W. P. Wilkinson, R. L. Kessel, M. Dunlop, and H. Luehr  
527 (1992), Observations of short large-amplitude magnetic structures at a quasi-parallel  
528 shock, *J. Geophys. Res.*, 97, 4209–4227, doi:10.1029/91JA02581.

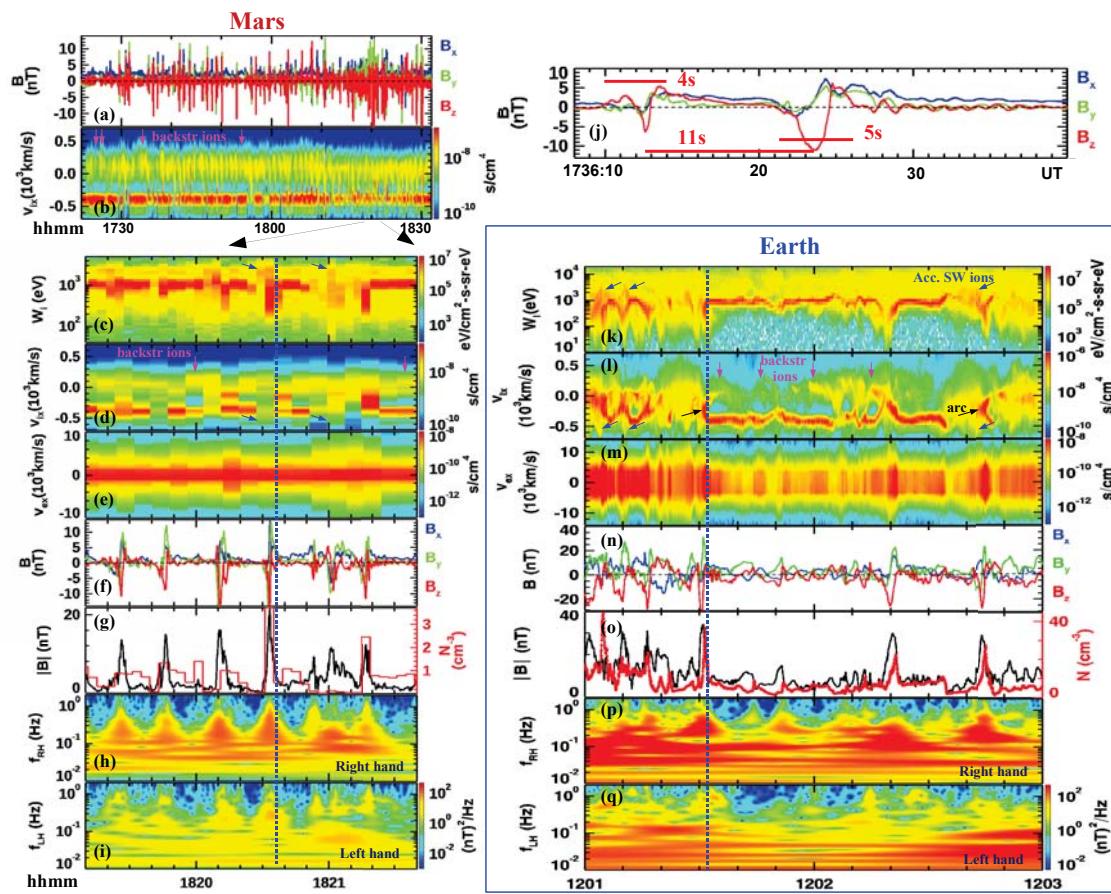
529 Skalsky, A., Grard, R., Klimov, S., Nairn, C. M. C., Trotignon, J. G., & Schwingenschuh,  
530 K. (1992). The Martian bow shock: Wave observations in the upstream region.  
531 *Journal of Geophysical Research: Space Physics*, 97(A3), 2927–2933.  
532 <https://doi.org/10.1029/91JA03078>

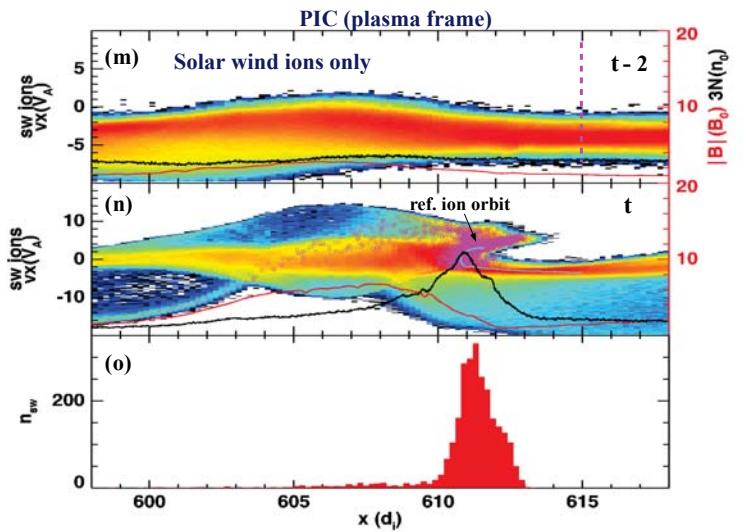
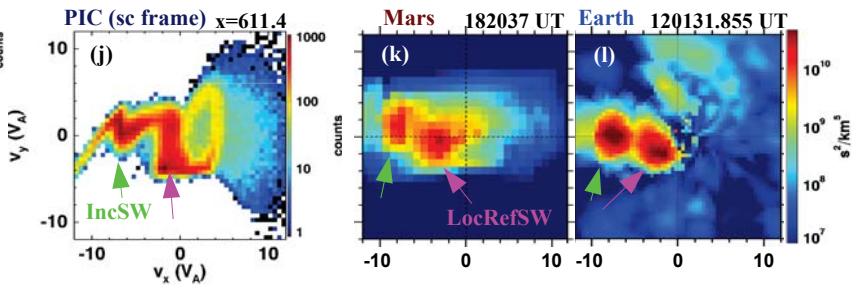
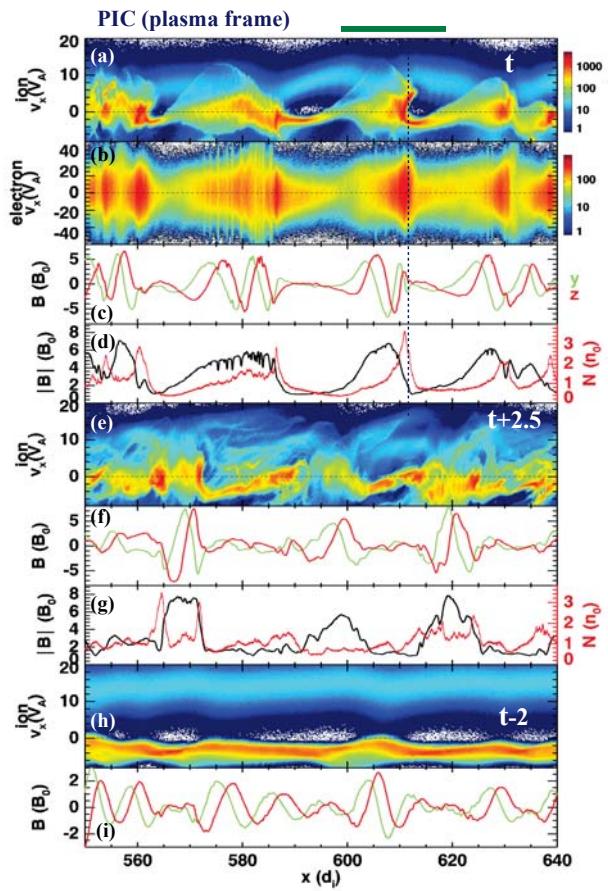
533 Shan, L., Ge, Y., & Du, A. (2020a). A case study of large-amplitude ULF waves in the  
534 Martian foreshock. *Earth and Planetary Physics*, 4(1), 45–50.  
535 <https://doi.org/10.26464/epp2020004>

536 Shan, L., Tsurutani, B. T., Ohsawa, Y., Mazelle, C., Huang, C., Du, A., et al. (2020b).  
537 Observational Evidence for Fast Mode Periodic Small-scale Shocks: A New Type of  
538 Plasma Phenomenon. *The Astrophysical Journal Letters*, 905(1), L4.  
539 <https://doi.org/10.3847/2041-8213/abcb02>

540 Weidl, M. S., Winske, D., and Niemann, C. (2019), On the background-gyroresonant  
541 character of Bell's instability in the large-current regime, *The Astrophys. J.*, 872:48,  
542 <https://doi.org/10.3847/1538-4357/aafad0>.


543 Yamauchi, M., Futaana, Y., Fedorov, A., Frahm, R. A., Winningham, J. D., Dubinin, E.,  
544 et al. (2011). Comparison of accelerated ion populations observed upstream of the  
545 bow shocks at Venus and Mars. *Annales Geophysicae*, 29(3), 511–528.  
546 <https://doi.org/10.5194/angeo-29-511-2011>


547 Yamauchi, M., Hara, T., Lundin, R., Dubinin, E., Fedorov, A., Sauvaud, J.-A., et al.  
548 (2015a). Seasonal variation of Martian pick-up ions: Evidence of breathing  
549 exosphere. *Planetary and Space Science*, 119, 54–61.  
550 <https://doi.org/10.1016/j.pss.2015.09.013>




551 Yamauchi, M., Lundin, R., Frahm, R. A., Sauvaud, J.-A., Holmström, M., & Barabash, S.  
552 (2015b). Oxygen foreshock of Mars. *Planetary and Space Science*, 119, 48–53.  
553 <https://doi.org/10.1016/j.pss.2015.08.003>

554

555





