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Abstract10

Filters are small, fast, and approximate set membership data structures. They are often used to11

filter out expensive accesses to a remote set S for negative queries (that is, filtering out queries12

x /∈ S). Filters have one-sided errors: on a negative query, a filter may say “present” with a tunable13

false-positive probability of ε. Correctness is traded for space: filters only use log(1/ε) + O(1) bits14

per element.15

The false-positive guarantees of most filters, however, hold only for a single query. In particular,16

if x is a false positive, a subsequent query to x is a false positive with probability 1, not ε. With this17

in mind, recent work has introduced the notion of an adaptive filter. A filter is adaptive if each18

query is a false positive with probability ε, regardless of answers to previous queries. This requires19

“fixing” false positives as they occur.20

Adaptive filters not only provide strong false positive guarantees in adversarial environments21

but also improve query performance on practical workloads by eliminating repeated false positives.22

Existing work on adaptive filters falls into two categories. On the one hand, there are practical23

filters, based on the cuckoo filter, that attempt to fix false positives heuristically without meeting24

the adaptivity guarantee. On the other hand, the broom filter is a very complex adaptive filter that25

meets the optimal theoretical bounds.26

In this paper, we bridge this gap by designing the telescoping adaptive filter (TAF), a27

practical, provably adaptive filter. We provide theoretical false-positive and space guarantees for28

our filter, along with empirical results where we compare its performance against state-of-the-art29

filters. We also implement the broom filter and compare it to the TAF . Our experiments show that30

theoretical adaptivity can lead to improved false-positive performance on practical inputs, and can31

be achieved while maintaining throughput that is similar to non-adaptive filters.32
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80:2 Telescoping Filter: A Practical Adaptive Filter

1 Introduction41

A filter is a compact and probabilistic representation of a set S from a universe U . A filter42

supports insert and query operations on S. On a query for an element x ∈ S, a filter returns43

“present” with probability 1, i.e., a filter guarantees no false negatives. A filter is allowed to44

have bounded false positives—on a query for an element x /∈ S, it may incorrectly return45

“present” with a small and tunable false-positive probability ε.46

Filters are used because they allow us to trade correctness for space. A lossless represent-47

ation of S ⊆ U requires Ω(n log u) bits, where n = |S|, u = |U|, and n ≪ u. Meanwhile, an48

optimal filter with false-positive probability ε requires only Θ(n log(1/ε)) bits [11].49

Examples of classic filters are the Bloom filter [7], the cuckoo filter [18], and the quotient50

filter [6]. Recently, filters have exploded in popularity due to their widespread applicability—51

many practical variants of these classic filters have been designed to improve upon throughput,52

space efficiency, or cache efficiency [8, 16,19,22,29,32].53

A filter’s small size allows it to fit in fast memory, higher in the memory hierarchy than a54

lossless representation of S would allow. For this reason, filters are frequently used to speed55

up expensive queries to an external dictionary storing S.56

In particular, when a dictionary for S is stored remotely (on a disk or across a network),57

checking a small and fast filter first can avoid expensive remote accesses for a 1 − ε fraction58

of negative queries. This is the most common use case of the filter, with applications in59

LSM-based key-value stores [12,23,27], databases [13,15,17], and distributed systems and60

networks [9, 31].61

False positive guarantees and adaptivity. When a filter is used to speed up queries to62

a remote set S, its performance depends on its false-positive guarantees: how often does the63

filter make a mistake, causing us to access S unnecessarily?64

Many existing filters, such as the Bloom, quotient and cuckoo filters, provide poor65

false-positive guarantees because they hold only for a single query. Because these filters do66

not adapt, that is, they do not “fix” any false positives, querying a known false positive x67

repeatedly can drive their false-positive rate to 1, rendering the filter useless.68

Ideally, we would like a stronger guarantee: even if a query x has been a false positive in69

the past, a subsequent query to x is a false positive with probability at most ε. This means70

that the filter must “fix” each false positive x as it occurs, so that subsequent queries to x71

are unlikely to be false positives. This notion of adaptivity was formalized by Bender et72

al. [5]. A filter is adaptive if it guarantees a false positive probability of ε for every query,73

regardless of answers to previous queries. Thus, adaptivity provides security advantages74

against an adversary attempting to degrade performance, e.g., in denial-of-service attacks.75

At the same time, fixing previous false positives leads to improved performance. Many76

practical datasets do, in fact, repeatedly query the same element—on such a dataset, fixing77

previous false positives means that a filter only incurs one false positive per unique query.78

Past work has shown that simple, easy-to-implement changes to known filters can fix false79

positives heuristically. Due to repeated queries, these heuristic fixes can lead to reduction of80

several orders of magnitude in the number of incurred false positives [10,21,25].81

Recent efforts that tailor filters to query workloads by applying machine learning tech-82

niques to optimize performance [14,24,30] reinforce the benefits achieved by adaptivity.83

Adaptivity vs practicality. The existing work on adaptivity represents a dichotomy84

between simple filters one would want to implement and use in practice but are not actually85

adaptive [21, 25], or adaptive filters that are purely theoretical and pose a challenge to86

implementation [5].87
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Mitzenmacher et al. [25] provided several variants of the adaptive cuckoo filter (ACF)88

and showed that they incurred significantly fewer false positives (compared to a standard89

cuckoo filter) on real network trace data. The data structures in [25] use simple heuristics to90

fix false positives with immense practical gains, leaving open the question of whether such91

heuristics can achieve worst-case guarantees on adaptivity.92

Recently, Kopelowitz et al. [21] proved that this is not true even for a non-adversarial93

notion of adaptivity. In particular, they defined support optimality as the adaptivity94

guarantee on “predetermined” query workloads: that is, query workloads that are fixed ahead95

of time and not constructed in response to a filter’s response on previous queries. They96

showed that the filters in [25] fail to be adaptive even under this weaker notion—repeating97

O(1) queries n times may cause them to incur Ω(n) false positives.98

Kopelowitz et al. [21] proposed a simple alternative, the cuckooing ACF, that achieves99

support optimality by cuckooing on false positives (essentially reinserting the element).100

Furthermore, they proved that none of the cuckoo filter variants (including the cuckooing101

ACF) are adaptive. They showed that a prerequisite to achieving adaptivity is allocating102

a variable number of bits to each stored element—that is, maintaining variable-length103

fingerprints. All of the cuckooing filter variants use a bounded number of bits per element.104

The only known adaptive filter is the broom filter of Bender et al. [5], so-named because105

it “cleans up” its mistakes. The broom filter achieves adaptivity, while supporting constant-106

time worst-case query and insert costs, using very little extra space—O(n) extra bits in total.107

Thus the broom filter implies that, in theory, adaptivity is essentially free.108

More recently, Bender et al. [4] compared the broom filter [5] to a static filter augmented109

with a comparably sized top-k cache (a cache that stores the k most frequent requests). They110

found that the broom filter outperforms the cache-augmented filter on Zipfian distributions111

due to “serendipitous corrections”—fixing a false positive eliminates future false positives112

in addition to the false positive that triggered the adapt operation. They noted that their113

broom filter simulation is “quite slow,” and left open the problem of designing a practical114

broom filter with performance comparable to that of a quotient filter.115

In this paper, we present a practical and efficient filter which also achieves worst-case116

adaptivity: the telescoping adaptive filter. The key contribution of this data structure is117

a practical method to achieve worst-case adaptivity using variable-length fingerprints.118

Telescoping adaptive filter. The telescoping adaptive filter (TAF) combines ideas from119

the heuristics used in the adaptive cuckoo filter [25], and the theoretical adaptivity of the120

broom filter [5].121

The TAF is built on a rank-and-select quotient filter (RSQF) [29] (a space- and cache-122

efficient quotient filter [6] variant), and inherits its performance guarantees.123

The telescoping adaptive filter is the first adaptive filter that can take advantage of any124

amount of extra space for adaptivity, even a fractional number of bits per element. We125

prove that if the TAF uses
(

1
e + b

(1−b)2

)
extra bits per element in expectation, then it is is126

provably adaptive for any workload consisting of up to n/(b
√

ε) unique queries (Section 4).127

Empirically, we show that the TAF outperforms this bound: with only 0.875 of a bit extra per128

element for adaptivity, it is adaptive for larger query workloads. Since the RSQF uses 2.125129

metadata bits per element, the total number of bits used by the TAF is (n/α)(log2(1/ε) + 3),130

where α is the load factor.131

The TAF stores these extra bits space- and cache-efficiently using a practical implement-132

ation of a theoretically-optimal compression scheme: arithmetic coding [20,33]. Arithmetic133

coding is particularly well-suited to the exponentially decaying probability distribution of134

repeated false positives. While standard arithmetic coding on the unit interval can be slow,135
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we implement an efficient approximate integer variant.136

The C code for our implementation can be found at https://github.com/djslzx/137

telescoping-filter.138

Our contributions. We summarize our main contributions below.139

We present the first provably-adaptive filter, the telescoping adaptive filter, engineered140

with space, cache-efficiency and throughput in mind, demonstrating that adaptivity is141

not just a theoretical concept, and can be achieved in practice.142

As a benchmark for TAF, we also provide a practical implementation of the broom143

filter [5]. We call our implementation of the broom filter the extension adaptive filter144

(exAF). While both TAF and exAF use the near-optimal Θ(n) extra bits in total to adapt145

on Θ(n) queries, the telescoping adaptive filter is optimized to achieve better constants146

and eke out the most adaptivity per bit. This is confirmed by our experiments which show147

that given the same space for adaptivity (0.875 bits per element), the TAF outperforms148

the false-positive performance of the exAF significantly on both practical and adversarial149

workloads. Meanwhile, our experiments show that the query performance of exAF is150

factor 2 better than that of the TAF . Thus, we show that there is a trade off between151

throughput performance and how much adaptivity is gained from each bit.152

We give the first empirical evaluation of how well an adaptive filter can fix positives153

in practice. We compare the TAF with a broom filter implementation, as well as with154

previous heuristics. We show that the TAF frequently matches or outperforms other155

filters, while it is especially effective in fixing false positives on “difficult” datasets, where156

repeated queries are spaced apart by many other false positives. We also evaluate the157

throughput of the TAF and the exAF against the vacuum filter [32] and RSQF, showing158

for the first time that adaptivity can be achieved while retaining good throughput bounds.159

2 Preliminaries160

In this section, we provide background on filters and adaptivity, and describe our model.161

2.1 Background on Filters162

We briefly summarize the structure of the filters discussed in this paper. For a more detailed163

description, we refer the reader to the full version. All logs in the paper are base 2. We164

assume that ε is an inverse power of 2.165

The quotient filter and cuckoo filter are both based on the single-hash function filter [28].166

Let the underlying hash function h output Θ(log n) bits. To represent a set S ⊆ U , the filter167

stores a fingerprint f(x) for each element x ∈ S. The fingerprint f(x) consists of the first168

log n + log(1/ε) bits of h(x), where n = |S| and ε is the false-positive probability.169

The first log n bits of f(x) are called the quotient q(x) and are stored implicitly; the170

remaining log(1/ε) bits are called the remainder r(x) and are stored explicitly in the data171

structure. Both filters consist of an array of slots, where each slot can store one remainder.172

Quotient filter. The quotient filter (QF) [6] is based on linear probing. To insert x ∈ S,173

the remainder r(x) is stored in the slot location determined by the quotient q(x), using linear174

probing to find the next empty slot. A small number of metadata bits suffice to recover the175

original slot for each stored element. A query for x checks if the remainder r(x) is stored176

in the filter—if the remainder is found, it returns “present”; otherwise, it returns “absent.”177

https://github.com/djslzx/telescoping-filter
https://github.com/djslzx/telescoping-filter
https://github.com/djslzx/telescoping-filter
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The rank-and-select quotient filter (RSQF) [29] implements such a scheme using very few178

metadata bits (only 2.125 bits) per element.179

Broom filter. The broom filter of Bender et al. [5] is based on the quotient filter. Initially,180

it stores the same fingerprint f(x) as a quotient filter. The broom filter uses the remaining181

bits of h(x), called adaptivity bits, to extend f(x) in order to adapt on false positives.182

On a query y, if there is an element x ∈ S such that f(x) is a prefix of h(y), the broom183

filter returns “present.” If it turns out that y /∈ S, the broom filter adapts by extending184

the fingerprint f(x) until it is no longer a prefix of h(y).1 Bender et al. show that, with185

high probability, O(n) total adaptivity bits of space are sufficient for the broom filter to be186

adaptive on Θ(n) queries.187

Cuckoo filters and adaptivity. The cuckoo filter resembles the quotient filter but uses188

a cuckoo hash table rather than linear probing. Each element has two fingerprints, and189

therefore two quotients. The remainder of each x ∈ S must always be stored in the slot190

corresponding to one of x’s two quotients.191

The Cyclic ACF [25], Swapping ACF [25], and Cuckooing ACF [21]2 change the function192

used to generate the remainder on a false positive. To avoid introducing false negatives, a193

filter using this technique must somehow track which function was used to generate each194

remainder so that the appropriate remainders can be compared at query time.195

The Cyclic ACF stores s extra bits for each slot, denoting which of 2s different remainders196

are used. The Swapping ACF, on the other hand, groups slots into constant-sized bins, and197

has a fixed remainder function for each slot in a bin. A false positive is fixed by moving198

some x ∈ S to a different slot in the bin, then updating its remainder using the function199

corresponding to the new slot. The Cuckooing ACF works in much the same way, but both200

the quotient and remainder are changed by “cuckooing” the element to its alternate position201

in the cuckoo table.202

2.2 Model and Adaptivity203

All filters that adapt on false positives [5, 21, 25] have access to the original set S. This is204

called the remote representation, denoted R. The remote representation does not count205

towards the space usage of the filter. On a false positive, the filter is allowed to access the206

set R to help fix the false positive.207

The justification for this model is twofold. (This justification is also discussed in [5,21,25].)208

First, the most common use case of filters is to filter out negative queries to S—in this case,209

a positive response to a query accesses R anyway. Information to help rebuild the filter can210

be stored alongside the set in this remote database. Second, remote access is necessary to211

achieve good space bounds: Bender et al. [5] proved that any adaptive filter without remote212

access to S requires Ω(n log log u) bits of space.213

Our filter can answer queries using only the local state L. Our filter accesses the remote214

state R in order to fix false positives when they occur, updating its local state. This allows215

our filter to be adaptive while using small (near optimal) space for the local state.216

Adaptivity. The sustained false positive rate of a filter is the probability with which a217

query is a false positive, regardless of the filter’s answers to previous queries.218

1 These additional bits are stored separately in the broom filter: groups of Θ(log n) adaptivity bits,
corresponding to log n consecutive slots in the filter, are stored such that accessing all the adaptivity
bits of a particular element (during a query operation) can be done in O(1) time.

2 We use the nomenclature of [21] in calling these the Cyclic ACF, Swapping ACF, and Cuckooing ACF.

ESA 2021
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The sustained false positive rate must hold even if generated by an adversary. We use219

the definition of Bender et al. [5], which is formally defined by a game between an adversary220

and the filter, where the adversary’s goal is to maximize the filter’s false positive rate. We221

summarize this game next; for a formal description of the model see Bender et al. [5].222

In the adaptivity game, the adversary generates a sequence of queries Q = x1, x2, . . . , xt.223

After each query xi, both the adversary and filter learn whether xi is a false positive (that224

is, xi /∈ S but a query on xi returns “present”). The filter is then allowed to adapt before225

query xi+1 is made by the adversary. The adversary can use the information about whether226

queries x1, . . . , xi were a false positive or not, to choose the next query xi+1.227

At any time t, the adversary may assert that it has discovered a special query x̃t that is228

likely to be a false positive of the filter. The adversary “wins” if x̃t is in fact a false positive229

of the filter at time t, and the filter “wins” if the adversary is wrong and x̃t is not a false230

positive of the filter at time t.231

The sustained false positive rate of a filter is the maximum probability ε with which232

the adversary can win the above adaptivity game. A filter is adaptive if it can achieve a233

sustained false positive rate of ε, for any constant 0 < ε < 1.234

Similar to [5], we assume that the adversary cannot find a never-before-queried element235

that is a false positive of the filter with probability greater than ε. Many hash functions236

satisfy this property, e.g., if the adversary is a polynomial-time algorithm then one-way hash237

functions are sufficient [26]. Cryptographic hash functions satisfy this property in practice,238

and it is likely that even simple hash functions (like Murmurhash used in this paper) suffice239

for most applications.240

Towards an adaptive implementation. Kopelowitz et al. [21] showed that the Cyclic ACF241

(with any constant number of hash-selector bits), the Swapping ACF, and the Cuckooing242

ACF are not adaptive. The key insight behind this proof is that for all three filters, the243

state of an element—which slot it is stored in, and which fingerprint function is used—can244

only have O(1) values. Over o(n) queries, an adversary can find queries that collide with an245

element on all of these states. These queries can never be fixed.246

Meanwhile, the broom filter avoids this issue by allowing certain elements to have more247

than O(1) adaptivity bits—up to O(log n), in fact. The broom filter stays space-efficient by248

maintaining O(1) adaptivity bits per element on average.249

Thus, a crucial step for achieving adaptivity is dynamically changing how much space is250

used for the adaptivity of each element based on past queries. The telescoping adaptive filter251

achieves this dynamic space allocation (hence the name “telescoping”) using an arithmetic252

coding.253

3 The Telescoping Adaptive Filter254

In this section, we describe the high-level ideas behind the telescoping adaptive filter.255

Structure of the telescoping adaptive filter. Like the broom filter, the TAF is based256

on a quotient filter where the underlying hash function h outputs Θ(log n) bits. For any257

x ∈ S, the first log n bits of h(x) are the quotient q(x) (stored implicitly), and the next258

log(1/ε) bits are the initial remainder r0(x), stored in the slot determined by the quotient.259

We maintain each element’s original slot using the strategy of the rank-and-select quotient260

filter [29], which stores 2.125 metadata bits per element.261

The TAF differs from a broom filter in that, on a false positive, the TAF changes its262

remainder rather than lengthening it, similar to the Cyclic ACF.263
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For each element in the TAF, we store a hash-selector value. If an element x has264

hash-selector value i, its remainder ri is the consecutive sequence of log(1/ε) bits starting at265

the (log n + i log(1/ε))th bit of h(x). Initially, the hash-selector values of all elements are266

0, and thus the remainder r(x) is the first log 1/ε bits immediately following the quotient.267

When the hash-selector value of an element x ∈ S is incremented, its remainder “slides over”268

to the next (non-overlapping) log 1/ε bits of the hash h(x), as shown in Figure 1. Thus, the269

fingerprint of x is f(x) = q(x)◦ri(x), where ◦ denotes concatenation and i is the hash-selector270

value of x.271

Figure 1 The fingerprint of x ∈ S is its quotient q(x) followed by its remainder ri(x), where i is
the hash-selector value of x.

On a false positive query y /∈ S, there must be some x ∈ S with hash-selector value i,272

such that q(x) = q(y) and ri(x) = ri(y). To resolve this false positive, we increment i. We273

update the hash-selector value and the stored remainder accordingly.274

We describe below how to store hash-selector values using an average 0.875 bits per275

element. This means that the TAF with load factor α uses (n/α)(log(1/ε) + 3) bits of space.276

Difference between hash-selector and adaptivity bits. Using hash-selector bits, rather277

than adaptivity bits (as in the broom filter), has some immediate upsides and downsides.278

If fingerprint prefixes p(x) and p(y) collide, they will still collide with probability 1/2 after279

each prefix has been lengthened by one bit. But adding a bit also reduces the probability280

that x will collide with any future queries by a factor of 1/2. Such false positives that are281

fixed (without being queried) are called serendipitous false positives [4].282

On the other hand, incrementing the hash-selector value of an element x ∈ S after it283

collides with an element y /∈ S reduces the probability that y will collide again with x by a284

factor of ε ≪ 1/2. Thus, the TAF is more aggressive about fixing repeated false positives.285

However, the probability that x collides with future queries that are different from y remains286

unchanged. Thus, on average the TAF does not fix serendipitous false positives.287

Our experiments (Section 6) show that the gain of serendipitous false positive fixes is288

short-lived; aggressively fixing false positives leads to better false-positive performance.289

Storing hash selectors in blocks. The TAF does not have a constant number of bits per290

slot dedicated solely to storing its hash-selector value. Instead, we group the hash-selector291

values associated with each Θ(log n) contiguous slots (64 slots in our implementation) together292

in a block. We allocate a constant amount of space for each such block. If we run out of293

space, we rebuild by setting all hash-selector values in the block to 0. (After a rebuild, we294

still fix the false positive that caused the rebuild. Therefore, there will often be one non-zero295

hash-selector value in the block after a rebuild.)296

Encoding hash-selector bits. To store the hash selectors effectively, we need a code that297
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satisfies the following requirements: the space of the code should be very close to optimal;298

the code should be able to use < 1 bits on average per character encoded; and the encode299

and decode operations should be fast enough to be usable in practice.300

In Section 5, we give a new implementation of the arithmetic coding that is tailored to301

our use case, specifically encoding characters from the distribution given in Corollary 3. Our302

implementation uses only integers, and all divisions are implemented using bit shifts, leading303

to a fast and reliable implementation while still retaining good space bounds.304

4 Telescoping Adaptive Filter: Analysis305

In this section, we analyze the sustained false-positive rate, the hash-selector probabilities,306

and the space complexity of the telescoping adaptive filter.307

We assume the TAF uses a uniform random hash function h such that the hash can be308

evaluated in O(1) time. In our adaptivity analysis of the TAF (Theorem 1), we first assume309

that the filter has sufficient space to store all hash-selector values; that is, it does not rebuild.310

Then, in Theorem 4, we give a bound on the number of unique queries that the TAF can311

handle (based on its size) without the need to rebuild, thus maintaining adaptivity.312

Adaptivity. We first prove that the telescoping adaptive filter is adaptive, i.e., it guarantees313

a sustained false positive rate of ε.314

We say a query x has a soft collision with an element y ∈ S if their quotients are the315

same: q(x) = q(y). We say a query x has a hard collision with an element y ∈ S if both316

their quotients and remainders are the same: q(x) = q(y) and ri(x) = ri(y), where i is the317

hash-selector value of y at the time x is queried (see Section 3).318

▶ Theorem 1. Consider a telescoping adaptive filter storing a set S of size n. For any319

adaptively generated sequence of t queries Q = x1, x2, . . . , xt (possibly interleaved with320

insertions), where each xi /∈ S, the TAF has a sustained false-positive rate of ε; that is,321

Pr[xi is a false positive] ≤ ε for all 1 ≤ i ≤ t.322

Proof. Consider the i-th query xi ∈ Q. Query xi is a false positive if there exists an element323

y ∈ S such that there is hard collision between them. Let hi(y) = q(y) ◦ rk(y) denote the324

fingerprint of y at time i, where y has the hash-selector value k at time i. Then, xi and y325

have a hard collision if and only if hi(xi) = hi(y).326

We show that for any y, regardless of answers to previous queries, xi and y have a hard327

collision with probability ε/n; taking a union bound over all elements gives the theorem.328

We proceed in cases. First, if xi is a first-time query, that is, xi /∈ {x1, . . . , xi−1}, then329

the probability that hi(xi) = hi(y) is the probability that both their quotient and remainder330

match, which occurs with probability 2−(log n+log 1/ε) = ε/n.331

Next, suppose that xi is a repeated query, that is, xi ∈ {x1, . . . , xi−1}. Let j < i be the332

largest index where xi = xj was previously queried. If xj did not have a soft collision with333

y, that is, q(xj) ̸= q(y), then xi cannot have a hard collision with y. Now suppose that334

q(xj) = q(y). We have two subcases.335

1. y’s hash-selector value has not changed since xj was queried. Note that, in this case, xj336

must not have had a hard collision with y, as that would have caused y’s hash-selector337

value, and thus its remainder, to be updated. Thus, hj(y) = hi(y) ̸= hj(xj) = hi(xi).338

2. y’s hash-selector value has been updated since xj was queried. Such an update could339

have been caused by a further query to xj having a hard collision with y, or some other340

query xk ∈ xj , xj+1, . . . , xi having a hard collision with y. In either case, the probability341

that the new remainder matches, i.e., ri(y) = ri(xi), is 2− log 1/ε = ε.342
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Therefore, the probability that xi has a hard collision with y is at most ε · Pr[q(xj) =343

q(y)] = ε/n. Finally, by a union bound over n possibilities for y ∈ S, we obtain that344

Pr[xi is a false positive] ≤ ε for all 1 ≤ i ≤ t, as desired. ◀345

Hash-selector probabilities. The telescoping adaptive filter increments the hash-selector346

value of an element y ∈ S whenever a false positive query collides with y. Here we analyze347

the probability of an element having a given hash-selector value.348

▶ Lemma 2. Consider a sequence Q = x1, x2, . . . , xt of queries (interleaved with inserts),349

where each xi /∈ S and Q consists of cn unique queries (with any number of repetitions),350

where c < 1/ε − 1. Then for any y ∈ S, if v(y) is the hash-selector value of y after all queries351

in Q are performed, then:352

Pr[v(y) = k]
{

= (1 − ε
n )cn if k = 0

≤ εk(1 − ε)
∑k

i=1
(

cn
i

) 1
ni if k > 0

353

Proof. First, consider the case k = 0: the hash-selector value of y stays zero after all the354

queries are made if and only if none of the queries have a hard collision with y. Since there355

are cn unique queries, and the probability that each of them has a hard collision with y is356

ε/n, the probability that none of them collide with y is (1 − ε/n)cn.357

Now, consider the case k ≥ 1. Given that the hash selector value of y is k, we know358

that there have been exactly k hard collisions between queries and y (where some of these359

collisions may have been caused by the same query). Suppose there are i unique queries360

among all queries that have a hard collision with y, where 1 ≤ i ≤ k. Let kj be the number361

of times a query j collides with y causing an increment in its hash-selector value, where362

1 ≤ j ≤ i. Thus,
∑i

j=1 kj = k.363

For a query xj , the probability that xj collides with y, the first time xj is queried, is ε/n.364

Then, given that xj has collided with y once, the probability of any subsequent collision365

with y is ε. (This is because the log 1/ε bits of the remainder of y are updated with each366

collision.) Thus, the probability that xj collides with y at least kj times is ε
n · εkj−1.367

The probability that a query xj collides with y at least kj times, is given by
∏i

j=1
ε
n ·368

εkj−1 = εk

ni . There are
(

cn
i

)
ways of choosing i unique queries from cn, for 1 ≤ i ≤ k, which369

gives us370

Pr[v(y) ≥ k] = εk
k∑

i=1

(
cn

i

)
1
ni

(1)371

Finally, using Inequality 1, we can upper bound the probability that a hash-selector value372

is exactly k.373

Pr[v(y) = k] = Pr[v(y) ≥ k] − Pr[v(y) ≥ k + 1]374

= εk

[
k∑

i=1

(
cn

i

)
1
ni

− ε

k+1∑
i=1

(
cn

i

)
1
ni

]
375

= εk · (1 − ε)
[

k∑
i=1

(
cn

i

)
1
ni

− ε

1 − ε

(
cn

k + 1

)
1

nk+1

]
376

≤ εk(1 − ε)
k∑

i=1

(
cn

i

)
1
ni

◀377

378
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We simplify the probabilities in Lemma 2 in Corollary 3. The probability bounds in Corol-379

lary 3 closely match the distribution of hash-selector frequencies we observe experimentally.380

▶ Corollary 3. Consider a sequence Q = x1, x2, . . . , xt of queries (interleaved with inserts),381

where each xi /∈ S and Q consists of cn unique queries (with any number of repetitions),382

where c < 1/ε − 1. For any y ∈ S, if v(y) is the hash-selector value of y after all queries in383

Q are performed, then:384

Pr[v(y) = 0] <
1

ecε
, and Pr[v(y) = k] < εk

k∑
i=1

ci

i! for k ≥ 1.385

Proof. To upper bound Pr[v(y) = 0], we use the inequality (1 − 1/x)x ≤ 1/e for x > 1. To386

upper bound Pr[v(y) = k], we upper bound:387 (
cn

i

)
1
ni

≤ cn · (cn − 1) · · · (cn − i)
i!

1
ni

≤ cini

i!ni
= ci

i! ◀388

Space analysis. Up until now, we have assumed that we always have enough room to store389

arbitrarily large hash selector values. Next, we give a tradeoff between the space usage of390

the data structure and the number of unique queries it can support.391

We use the hash-selector probabilities derived above to analyze the space overhead of392

storing hash-selector values. Theorem 4 assumes an optimal arithmetic encoding: storing393

a hash-selector value k that occurs with probability pk requires exactly log(1/pk) bits. In394

our implementation we use an approximate version of the arithmetic coding for the sake of395

performance.396

▶ Theorem 4. For any ε < 1/2 and b ≥ 2, given a sequence of n/(b
√

ε) unique queries (with397

no restriction on the number of repetitions of each), the telescoping adaptive filter maintains398

a sustained false-positive rate of ε using at most
(

1
e + b

(b−1)2

)
bits of space in expectation399

per element.400

Proof. Let c = 1/(b
√

ε); thus, there are cn unique queries. Consider an arbitrary element401

y ∈ S. The expected space used to store the hash-selector value v(y) of y is
∑∞

k=0 pk log 1/pk,402

where pk is the probability that v(y) = k.403

We separate out the case where k = 0, for which pk is the largest, and upper bound the404

p0 log 1/p0 term below, using the probability derived in Lemma 2.405

p0 log 1/p0 = (1 − ε/n)cn log 1
(1 − ε/n)cn

≤ 1
ecε

· log(1 + ε

n
)cn

406

= 1
ecε

· cn log(1 + ε

n
) ≤ 1

ecε
· cn

ε

n
= cε

ecε
<

1
e

(2)407
408

In step (2) above we use the fact that x/ex < 1/e for all x > 0.409

We now upper bound the rest of the summation, that is,
∑∞

k=1 pk log 1/pk for k ≥ 1.410

When upper bounding this summation we will be using upper bounds on pk—but this is411

a lower bound on log 1/pk. To deal with this, we observe that the function x log 1/x is412

monotonically increasing for x < 1/e. Therefore, if we show that the bounds in Corollary 3413

never exceed 1/e, we can substitute both terms in pk log 1/pk in our analysis. We start by414

showing this upper bound. In the following, we use b ≥ 2 and ε < 1/2.415

pk < εk
k∑

i=1

ci

i! < εkck · k < εk ·
(

1
b
√

ε

)k

· k = k

bk
· εk/2 < k · 1

23k/2 <
1
e

.416
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We now upper bound the sum
∑∞

k=1 pk log 1/pk by replacing pk with its upper bound417

εkck · k (this replacement is an upper bound because we showed εk
∑k

i=1
ci

i! < 1/e above).418

∞∑
k=1

pk log 1/pk ≤
∑
k≥1

kεkck log 1
εkckk

=
∞∑

k=1

k

bk
·
(

εk/2 · log 1/εk
)

(3)419

<

∞∑
k=1

k

bk
= b

(b − 1)2 . (4)420

421

We simplify step (3) above using the fact that
√

x log 1/x < 1 for all x ≤ 1; step (4) is a422

known identity.423

Thus,
∑∞

k=0 pk log 1/pk < 1/e + b/(b − 1)2, which is the expected number of bits used to424

store the hash-selector value of y. ◀425

Theorem 4 implies that if the TAF is using a certain number of bits per element in426

expectation to store hash-selector values, then there is a precise bound on the number of427

unique queries it can handle in any query workload while being provably adaptive. For428

example, if ε = 1/28 and we set b = 4 in Theorem 4, then a telescoping adaptive filter that429

uses 4/9 + 1/e ≈ 0.812 bits per element in expectation can handle 4n unique queries without430

running out of space and having to rebuild. In Section 6, the TAF outperforms this bound,431

retaining good performance with 0.812 bits per element for A/S ≤ 20.432

5 Implementation433

In this section, we describe the implementation of the TAF and our implementation of the434

broom filter [5], which we call the extension adaptive filter (exAF).435

Recall that adaptive filters have a local state L and a remote representation R.436

Rank-and-select quotient filter. The local state L of both the TAF and exAF is437

implemented as a rank-and-select quotient filter (RSQF) [29]. The RSQF stores metadata438

bits—one occupied bit and one runend bit for each slot. The occupied bit associated with439

slot i indicates whether any elements with the quotient i have been inserted into the filter.440

The runend bit associated with slot i tracks whether the remainder placed in slot i is the441

last remainder in a contiguous run of remainders with the same quotient. These metadata442

bits are sufficient to find the original slot of an element, but processing them bit-by-bit can443

be slow. The RSQF cleverly uses rank and select operations to quickly jump to the original444

slot [6]. These operations are efficiently implemented using x86 instructions on 64-bit words.445

To improve cache efficiency, the RQSF stores remainders (along with their 2 metadata446

bits) in 64-element blocks. In particular, each block stores 64 contiguous remainders and two447

64-bit metadata arrays. To search through the blocks efficiently, an offset (stored using at448

most 8 bits) is stored for each block. The offset of a location i is the distance between i and449

i’s associated runend. Each block stores the offset of its first slot. In total, the RSQF stores450

2.125 metadata bits per element in the filter.451

Arithmetic coding on integers. Arithmetic coding can give theoretically optimal com-452

pression, but the standard implementation that recursively divides the unit interval relies on453

floating point operations. These floating point operations are slow in practice, and involve454

precision issues that can lead to incorrect answers or inefficient representations. In our455

implementation, we avoid these issues by applying arithmetic coding to a range of integers,456

{0, . . . , 2k − 1} for the desired code length k, instead of the unit interval. We set k = 56,457
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encoding all hash-selector values for a block in a 56-bit word. When multiplying or dividing458

integral intervals by probabilities in [0, 1], we approximate floating point operations using459

integer shifts and multiplications.460

Remote representation. We implement R for both filters as an array storing elements in461

the set S, along with their associated hashes. We keep R in sync with L: if the remainder462

r(x) is stored in slot s in L, then x is stored in slot s in R. This leads to easy lookups: to463

lookup an element x in R, we simply check the slot R[s] where r(x) = L[s]. Insertions that464

cause remainders to shift in L are expensive, however, as we need to shift elements in R as465

well.466

TAF implementation. The local state of TAF is an RSQF where each block of 64467

contiguous elements stores the remainders of all elements, all metadata bits (each type stored468

in a 64-bit word), an 8-bit offset, and a 56-bit arithmetic code storing hash-selector values.469

TAF’s inserts are similar to the RSQF, which may require shifting remainders. The TAF470

updates the hash-selector values of all blocks that are touched by the insertion.471

Our implementation uses MurmurHash [3] which has a 128-bit output. We partition the472

output of MurmurHash into the quotient, followed by chunks of size log(1/ε), where each473

chunk corresponds to one remainder. Each time we increment the hash-selector value, we474

just slide over log(1/ε) bits to obtain the new remainder.475

On a query x, the TAF goes through each slot s corresponding to quotient q(x) and476

compares the remainder stored in s to ri(y), where i is the hash-selector value of s, retrieved477

by decoding the blocks associated with each s. If they match, the filter returns “present”478

and checks R to determine if x ∈ S. If x /∈ S, the filter increments the hash-selector i of x479

and updates the arithmetic code of the block containing x.480

If the 56-bit encoding fails, we rebuild: we set all hash-selector bits in the block to 0,481

and then attempt to fix the false positive again.482

exAF implementation. Our implementation of the broom filter, which we call the exAF,483

maintains its local state as a blocked RSQF, similar to the TAF . The main difference484

between the two filters is how they adapt. The exAF implements the broom filter’s adapt485

policy of lengthening fingerprints. To do this efficiently, we follow a strategy similar to the486

TAF . We divide the data structure into blocks of 64 elements, storing all extensions for a487

single block into an arithmetic code that uses at most 56 bits.488

The exAF’s insertion algorithm resembles the RSQF and broom filter’s insertion al-489

gorithms. However, while the broom filter adapts on inserts to ensure that all stored490

fingerprints are unique, the exAF does not adapt on inserts, and may have duplicate finger-491

prints.492

During a query operation, the exAF first performs an RQSF query: it finds if there is a493

stored element whose quotient and remainder bits match, without accessing any extension bit.494

Only if these match does it decode the block’s arithmetic code, allowing it to check extension495

bits. This makes queries in the exAF faster compared to TAF, which must perform decodes496

on all queries. If the full fingerprint of a query y collides with an element x ∈ S, the filter497

returns “present” and checks R to determine if x ∈ S. If x /∈ S, the exAF adapts by adding498

extension bits to f(x) by decoding the block’s arithmetic code, updating x’s extension bits,499

and re-encoding.500

As in the TAF, if the 56-bit encoding fails, the exAF rebuilds by setting all adaptivity501

bits in the block to 0, and then attempts to fix the false positive again.502
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6 Evaluation503

In this section, we empirically evaluate the telescoping adaptive filter and the exAF.504

We compare the false-positive performance of these filters to the Cuckooing ACF, the505

Cyclic ACF (with s = 1, 2, 3 hash-selector bits), and the Swapping ACF. The Cyclic ACF506

and the Cuckooing ACF use 4 random hashes to choose the location of each element, and507

have bins of size 1. The Swapping ACF uses 2 location hashes and bins of size 4.508

We compare the throughput of the TAF and exAF against the vacuum filter [32], our509

implementation of the RSQF, and a space-inefficient version of the TAF that does not510

perform arithmetic coding operations.511

Experimental setup. We evaluate the filters in terms of the following parameter settings.512

Load factor. For the false-positive tests, we use a load factor of .95. We evaluate the513

throughput on a range of load factors.514

Fingerprint size: We set the fingerprint size of each filter so that they all use the same515

amount of space. We use 8-bit remainders for the TAF. Because the TAF has three516

extra bits per element for metadata and adaptivity, this corresponds to fingerprints of517

size 11 for the Swapping and Cuckooing ACF, and size 11 − s for a Cyclic ACF with s518

hash-selector bits.519

A/S ratio. The parameter A/S (shorthand for |A|/|S|) is the ratio of the number of520

unique queries in the query set A and the size of the filter’s membership set S. Depending521

on the structure of the queries, a higher A/S value may indicate a more difficult workload,522

as “fixed” false positives are separated by a large number of interspersed queries.523

All experiments were run on a workstation with Dual Intel Xeon Gold 6240 18-core 2.6 Ghz524

processors with 128G memory (DDR4 2666MHz ECC). All experiments were single-threaded.525

6.1 False Positive Rate526

Firehose benchmark. We measure the false positive rate on data generated by the Firehose527

benchmark suite [1,2] which simulates a real-world cybersecurity workload. Firehose has two528

generators: power law and active set; we use data from both.529

The active set generator generates 64-bit unsigned integers from a continuously evolving530

“active set” of keys. The probability with which an individual key is sampled varies in time531

according to a bell-shaped curve to create a “trending effect” as observed in cyberstreams [2].532

We generated 10 million queries using the active set generator. We set the value POW_EXP533

in the active set generator to 0.5 to encourage query repetitions. (Each query is repeated534

approximately 57 times on average in our final dataset.)535

We then generated 50 million queries using the power-law generator, which generates536

queries using a power-law distribution. This dataset had each query repeated many times;537

each query was repeated 584 times on average.538

In our tests we vary the size of the stored set S (each uses the same input, so |A| is539

constant). The results are shown in Figure 2; all data points are the average of 10 experiments.540

ACF1, ACF2, and ACF3 represent the Cyclic ACF with s = 1, 2, 3 respectively.541

For the active set generated data, the TAF is the best data structure for moderate542

A/S. Above A/S ≈ 20, rebuilds become frequent enough that TAF performance degrades543

somewhat, after which its performance is similar to that of the Cyclic ACF with s = 2544

(second to the Swapping ACF). This closely matches the analysis in Section 4.545

For the power law data, the TAF is competitive for most A/S values, although again it546

is best for moderate values.547
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Figure 2 False positive rates on the firehose benchmarks. The plot on the left uses the active set
generator; the plot on the right uses the power-law generator.

Notably, in both cases (and particularly for the active set data), the exAF performs548

substantially worse than the TAF. This shows that given the space amount of extra bits per549

element on average, the TAF uses them more effectively towards adaptivity than the exAF.550

Network Traces. We give experiments on three network trace datasets from the CAIDA551

2014 dataset, replicating the experiments of Mitzenmacher et al. [25]. We use three network552

traces from the CAIDA 2014 dataset, specifically:553

equinix-chicago.dirA.20140619 (“Chicago A”, Figure 3)554

equinixchicago.dirB.20140619-432600 (“Chicago B”, Figure 3), and555

equinix-sanjose.dirA.20140320-130400 (“San Jose”, Figure 4).556

On network trace datasets, most filters are equally effective at fixing false positives, and557

their performance is determined mostly by their baseline false positive rate, that is, the558

probability with which a first-time query is a false positive. If s bits are used for adaptivity,559

that increases the baseline FP rate by 2s, compared to when those bits are used towards560

remainders. This gives the Cuckooing ACF an advantage as it uses 0 bits for adapting.561

The TAF and exAF perform similarly to the Swapping ACF and ACF1 (Cyclic ACF562

with s = 1) on these datasets.563
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Figure 3 False positive performance of the filters on network trace data. The Chicago A dataset
is used on the left, and the Chicago B dataset is on the right.

Adversarial tests. The main advantage of the TAF and exAF is that both are adaptive in564

theory—even against an adversary. Adversarial inputs are motivated by security concerns,565

such as denial-of-service attacks, but they may also arise in some situations in practice. For566

example, it may be that the input stream is performance-dependent, and previous false567

positives are more likely to be queried again.568
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Figure 4 On the left is the network trace San Jose dataset. On the right is adversarial data,
where we vary the size of the initial query set, and plot the proportion of elements in the final set
that are false positives.

We test our filter against an “adversarial” stream that probabilistically queries previous569

false positives. This input is significantly simpler than the lower bounds given in [21] and [5],570

but shares some of the basic structure.571

Our adversarial stream starts with a set of random queries |Q|. The queries are performed572

in a sequence of rounds; each divided into 10 subrounds. In a subround, each element of Q is573

queried. After a round, any element that was never a false positive in that round is removed574

from Q. The filter then continues to the next round. The test stops when |Q|/|S| = .01, or a575

bounded number of rounds is reached.576

The x-axis of our plot is |Q|/|S|, and the y-axis is the false positive rate during the final577

round (after the adversary has whittled Q to only contain likely false positives). We again see578

that the TAF does very well up until around |Q|/|S| ≈ 20. After this point, the adversary is579

successfully able to force false positives. This agrees closely with the analysis in Section 4.580

The Cyclic ACF with s = 3 (ACF3) does surprisingly well on adversarial data even581

though it is known to not be adaptive. This may be in part because the constants in the582

lower bound proof [21] are very large (the lower bound uses 1/ε8 ≈ 264 queries). However,583

this adaptivity comes at a significantly worsened baseline FP rate, as this filter struggles on584

network trace data.585

6.2 Throughput586

In this section, we compare the throughput of our filters to other similar filters.587
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Figure 5 The throughput for inserts (left) and queries (right) on the active set Firehose data.

For the throughput tests, we introduce several new filters as a point of comparison.588

The vacuum filter [32] is a cuckoo filter variant designed to be space- and cache-efficient.589
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We compare to the “from scratch” version of their filter [34]. We also compare to our590

implementation of the RSQF [29]. The RSQF does not adapt, or perform remote accesses.591

Finally, to isolate the cost of the arithmetic coding itself, we compare to our implementa-592

tion of an uncompressed telescoping adaptive filter (uTAF). The uTAF works exactly593

as the TAF, except it stores its hash-selector values explicitly, without using an arithmetic594

coding. This means that the uTAF is very space-inefficient.595

For the throughput tests, we evaluated the performance on the active set Firehose data596

used in Figure 2. Our filters used 224 slots. We varied the load factor to compare performance.597

All data points shown are the average of 10 runs.598

The throughput tests show that the TAF achieves similar performance in inserts to599

the other filters, though it lags behind in queries at high throughput. The exAF performs600

significantly better for queries, likely due to skipping decodes as discussed in Section 5.601

The uTAF is noticeably faster than the TAF, but is similar in performance to exAF.602

This highlights the trade-offs between the two ways to achieve adaptivity: the exAF scheme603

of lengthening remainders has better throughput but worse adaptivity per bit; while the604

TAF scheme of updating remainders has better adaptivity per bit but worse throughput.605

Overall, while the query-time decodes of TAF do come at a throughput cost, they stop short606

of dominating performance.607

7 Conclusion608

We provide a new provably-adaptive filter, the telescoping adaptive filter, that was engineered609

with space- and cache-efficiency and throughput in mind. The TAF is unique among adaptive610

filters in that it only uses a fractional number of extra bits for adaptivity (0.875 bits611

per element). To benchmark the TAF, we also provide a practical implementation of the612

broom filter. To effectively compress the adaptivity metadata for both filters, we implement613

arithmetic coding that is optimized for the probability distributions arising in each filter.614

We empirically evaluate the TAF and exAF against other state-of-the-art filters that615

adapt, on a variety of datasets. Our experiments show that TAF outperforms the exAF616

significantly on false-positive performance, and frequently matches or outperforms other617

heuristically adaptive filters. Our throughput tests show that our adaptive filters achieve a618

comparable throughput to their non-adaptive counterparts.619

We believe that our technique to achieve adaptivity through variable-length fingerprints620

is universal and can be used alongside other filters that stores fingerprints of elements (e.g.,621

a cuckoo or vacuum filter). Thus, there is potential for further improvements by applying622

our ideas to other filters, taking advantage of many years of filter research.623
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