10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Telescoping Filter: A Practical Adaptive Filter
David J. Lee =2
Cornell University, Ithaca, NY 14853 USA

Samuel McCauley &4
Williams College, Williamstown MA 01267 USA

Shikha Singh 24

Williams College, Williamstown MA 01267 USA
Max Stein =

Williams College, Williamstown MA 01267 USA

—— Abstract

Filters are small, fast, and approximate set membership data structures. They are often used to

filter out expensive accesses to a remote set S for negative queries (that is, filtering out queries
x ¢ S). Filters have one-sided errors: on a negative query, a filter may say “present” with a tunable
false-positive probability of €. Correctness is traded for space: filters only use log(1/e) + O(1) bits
per element.

The false-positive guarantees of most filters, however, hold only for a single query. In particular,
if x is a false positive, a subsequent query to x is a false positive with probability 1, not e. With this
in mind, recent work has introduced the notion of an adaptive filter. A filter is adaptive if each
query is a false positive with probability €, regardless of answers to previous queries. This requires
“fixing” false positives as they occur.

Adaptive filters not only provide strong false positive guarantees in adversarial environments
but also improve query performance on practical workloads by eliminating repeated false positives.

Existing work on adaptive filters falls into two categories. On the one hand, there are practical
filters, based on the cuckoo filter, that attempt to fix false positives heuristically without meeting
the adaptivity guarantee. On the other hand, the broom filter is a very complex adaptive filter that
meets the optimal theoretical bounds.

In this paper, we bridge this gap by designing the telescoping adaptive filter (TAF), a
practical, provably adaptive filter. We provide theoretical false-positive and space guarantees for
our filter, along with empirical results where we compare its performance against state-of-the-art
filters. We also implement the broom filter and compare it to the TAF . Our experiments show that
theoretical adaptivity can lead to improved false-positive performance on practical inputs, and can
be achieved while maintaining throughput that is similar to non-adaptive filters.

2012 ACM Subject Classification Theory of computation — Data structures design and analysis

Keywords and phrases Filters, approximate-membership query data structures (AMQs), Bloom
filters, quotient filters, cuckoo filters, adaptivity, succinct data structures

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.80

Funding David J. Lee: This author’s research is supported in part by NSF CCF 1947789.
Samuel McCauley: This author’s research is supported in part by NSF CCF 2103813
Shikha Singh: This author’s research is supported in part by NSF CCF 1947789.

Maz Stein: This author’s research is supported in part by NSF CCF 1947789.

© David Lee, Samuel McCauley, Shikha Singh, and Max Stein;
licensed under Creative Commons License CC-BY 4.0
29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 80; pp. 80:1-80:18
Leibniz International Proceedings in Informatics
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:djl328@cornell.edu
mailto:sam@cs.williams.edu
http://dept.cs.williams.edu/~sam/
mailto:shikha@cs.williams.edu
http://cs.williams.edu/~shikha/
mailto:Max.Stein@williams.edu
https://doi.org/10.4230/LIPIcs.ESA.2021.80
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

80:2

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

Telescoping Filter: A Practical Adaptive Filter

1 Introduction

A filter is a compact and probabilistic representation of a set S from a universe U. A filter
supports insert and query operations on S. On a query for an element € S, a filter returns
“present” with probability 1, i.e., a filter guarantees no false negatives. A filter is allowed to
have bounded false positives—on a query for an element = ¢ S, it may incorrectly return
“present” with a small and tunable false-positive probability &.

Filters are used because they allow us to trade correctness for space. A lossless represent-
ation of & C U requires Q(nlogu) bits, where n = |S|, u = |U|, and n < u. Meanwhile, an
optimal filter with false-positive probability e requires only ©(nlog(1/¢)) bits [11].

Examples of classic filters are the Bloom filter [7], the cuckoo filter [18], and the quotient
filter [6]. Recently, filters have exploded in popularity due to their widespread applicability—
many practical variants of these classic filters have been designed to improve upon throughput,
space efficiency, or cache efficiency [8,16,19,22,29,32].

A filter’s small size allows it to fit in fast memory, higher in the memory hierarchy than a
lossless representation of S would allow. For this reason, filters are frequently used to speed
up expensive queries to an external dictionary storing S.

In particular, when a dictionary for S is stored remotely (on a disk or across a network),
checking a small and fast filter first can avoid expensive remote accesses for a 1 — ¢ fraction
of negative queries. This is the most common use case of the filter, with applications in
LSM-based key-value stores [12,23,27], databases [13,15,17], and distributed systems and
networks [9,31].

False positive guarantees and adaptivity. When a filter is used to speed up queries to
a remote set S, its performance depends on its false-positive guarantees: how often does the
filter make a mistake, causing us to access S unnecessarily?

Many existing filters, such as the Bloom, quotient and cuckoo filters, provide poor
false-positive guarantees because they hold only for a single query. Because these filters do
not adapt, that is, they do not “fix” any false positives, querying a known false positive x
repeatedly can drive their false-positive rate to 1, rendering the filter useless.

Ideally, we would like a stronger guarantee: even if a query x has been a false positive in
the past, a subsequent query to x is a false positive with probability at most €. This means
that the filter must “fix” each false positive x as it occurs, so that subsequent queries to x
are unlikely to be false positives. This notion of adaptivity was formalized by Bender et
al. [5]. A filter is adaptive if it guarantees a false positive probability of ¢ for every query,
regardless of answers to previous queries. Thus, adaptivity provides security advantages
against an adversary attempting to degrade performance, e.g., in denial-of-service attacks.

At the same time, fixing previous false positives leads to improved performance. Many
practical datasets do, in fact, repeatedly query the same element—on such a dataset, fixing
previous false positives means that a filter only incurs one false positive per unique query.
Past work has shown that simple, easy-to-implement changes to known filters can fix false
positives heuristically. Due to repeated queries, these heuristic fixes can lead to reduction of
several orders of magnitude in the number of incurred false positives [10, 21, 25].

Recent efforts that tailor filters to query workloads by applying machine learning tech-
niques to optimize performance [14,24, 30] reinforce the benefits achieved by adaptivity.

Adaptivity vs practicality. The existing work on adaptivity represents a dichotomy
between simple filters one would want to implement and use in practice but are not actually
adaptive [21,25], or adaptive filters that are purely theoretical and pose a challenge to
implementation [5].

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

D. J. Lee, S. McCauley, S. Singh, and M. Stein

Mitzenmacher et al. [25] provided several variants of the adaptive cuckoo filter (ACF)
and showed that they incurred significantly fewer false positives (compared to a standard
cuckoo filter) on real network trace data. The data structures in [25] use simple heuristics to
fix false positives with immense practical gains, leaving open the question of whether such
heuristics can achieve worst-case guarantees on adaptivity.

Recently, Kopelowitz et al. [21] proved that this is not true even for a non-adversarial
notion of adaptivity. In particular, they defined support optimality as the adaptivity
guarantee on “predetermined” query workloads: that is, query workloads that are fixed ahead
of time and not constructed in response to a filter’s response on previous queries. They
showed that the filters in [25] fail to be adaptive even under this weaker notion—repeating
O(1) queries n times may cause them to incur 2(n) false positives.

Kopelowitz et al. [21] proposed a simple alternative, the cuckooing ACF, that achieves
support optimality by cuckooing on false positives (essentially reinserting the element).
Furthermore, they proved that none of the cuckoo filter variants (including the cuckooing
ACF) are adaptive. They showed that a prerequisite to achieving adaptivity is allocating
a variable number of bits to each stored element—that is, maintaining variable-length
fingerprints. All of the cuckooing filter variants use a bounded number of bits per element.

The only known adaptive filter is the broom filter of Bender et al. [5], so-named because
it “cleans up” its mistakes. The broom filter achieves adaptivity, while supporting constant-
time worst-case query and insert costs, using very little extra space—O(n) extra bits in total.
Thus the broom filter implies that, in theory, adaptivity is essentially free.

More recently, Bender et al. [4] compared the broom filter [5] to a static filter augmented
with a comparably sized top-k cache (a cache that stores the k most frequent requests). They
found that the broom filter outperforms the cache-augmented filter on Zipfian distributions
due to “serendipitous corrections”—fixing a false positive eliminates future false positives
in addition to the false positive that triggered the adapt operation. They noted that their
broom filter simulation is “quite slow,” and left open the problem of designing a practical
broom filter with performance comparable to that of a quotient filter.

In this paper, we present a practical and efficient filter which also achieves worst-case
adaptivity: the telescoping adaptive filter. The key contribution of this data structure is
a practical method to achieve worst-case adaptivity using variable-length fingerprints.

Telescoping adaptive filter. The telescoping adaptive filter (TAF) combines ideas from
the heuristics used in the adaptive cuckoo filter [25], and the theoretical adaptivity of the
broom filter [5].

The TAF is built on a rank-and-select quotient filter (RSQF) [29] (a space- and cache-
efficient quotient filter [6] variant), and inherits its performance guarantees.

The telescoping adaptive filter is the first adaptive filter that can take advantage of any
amount of extra space for adaptivity, even a fractional number of bits per element. We

prove that if the TAF uses (i + ﬁ) extra bits per element in expectation, then it is is

provably adaptive for any workload consisting of up to n/(by/c) unique queries (Section 4).
Empirically, we show that the TAF outperforms this bound: with only 0.875 of a bit extra per
element for adaptivity, it is adaptive for larger query workloads. Since the RSQF uses 2.125
metadata bits per element, the total number of bits used by the TAF is (n/a)(logs(1/€) + 3),
where « is the load factor.

The TAF stores these extra bits space- and cache-efficiently using a practical implement-
ation of a theoretically-optimal compression scheme: arithmetic coding [20,33]. Arithmetic
coding is particularly well-suited to the exponentially decaying probability distribution of
repeated false positives. While standard arithmetic coding on the unit interval can be slow,

80:3

ESA 2021

80:4

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

Telescoping Filter: A Practical Adaptive Filter

we implement an efficient approximate integer variant.
The C code for our implementation can be found at https://github.com/djslzx/
telescoping-filter.

Our contributions. We summarize our main contributions below.

We present the first provably-adaptive filter, the telescoping adaptive filter, engineered
with space, cache-efficiency and throughput in mind, demonstrating that adaptivity is
not just a theoretical concept, and can be achieved in practice.

As a benchmark for TAF, we also provide a practical implementation of the broom
filter [5]. We call our implementation of the broom filter the extension adaptive filter
(exAF). While both TAF and exAF use the near-optimal ©(n) extra bits in total to adapt
on O(n) queries, the telescoping adaptive filter is optimized to achieve better constants
and eke out the most adaptivity per bit. This is confirmed by our experiments which show
that given the same space for adaptivity (0.875 bits per element), the TAF outperforms
the false-positive performance of the exAF significantly on both practical and adversarial
workloads. Meanwhile, our experiments show that the query performance of exAF is
factor 2 better than that of the TAF . Thus, we show that there is a trade off between
throughput performance and how much adaptivity is gained from each bit.

We give the first empirical evaluation of how well an adaptive filter can fix positives
in practice. We compare the TAF with a broom filter implementation, as well as with
previous heuristics. We show that the TAF frequently matches or outperforms other
filters, while it is especially effective in fixing false positives on “difficult” datasets, where
repeated queries are spaced apart by many other false positives. We also evaluate the
throughput of the TAF and the exAF against the vacuum filter [32] and RSQF, showing
for the first time that adaptivity can be achieved while retaining good throughput bounds.

2 Preliminaries

In this section, we provide background on filters and adaptivity, and describe our model.

2.1 Background on Filters

We briefly summarize the structure of the filters discussed in this paper. For a more detailed
description, we refer the reader to the full version. All logs in the paper are base 2. We
assume that ¢ is an inverse power of 2.

The quotient filter and cuckoo filter are both based on the single-hash function filter [28].
Let the underlying hash function h output ©(logn) bits. To represent a set S C U, the filter
stores a fingerprint f(z) for each element z € S. The fingerprint f(z) consists of the first
logn + log(1/¢) bits of h(x), where n = |S| and ¢ is the false-positive probability.

The first logn bits of f(z) are called the quotient ¢(z) and are stored implicitly; the
remaining log(1/¢) bits are called the remainder r(z) and are stored explicitly in the data
structure. Both filters consist of an array of slots, where each slot can store one remainder.

Quotient filter. The quotient filter (QF) [6] is based on linear probing. To insert z € S,
the remainder r(z) is stored in the slot location determined by the quotient ¢(z), using linear
probing to find the next empty slot. A small number of metadata bits suffice to recover the
original slot for each stored element. A query for x checks if the remainder r(z) is stored
in the filter—if the remainder is found, it returns “present”; otherwise, it returns “absent.”

https://github.com/djslzx/telescoping-filter
https://github.com/djslzx/telescoping-filter
https://github.com/djslzx/telescoping-filter

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

D. J. Lee, S. McCauley, S. Singh, and M. Stein

The rank-and-select quotient filter (RSQF) [29] implements such a scheme using very few
metadata bits (only 2.125 bits) per element.

Broom filter. The broom filter of Bender et al. [5] is based on the quotient filter. Initially,
it stores the same fingerprint f(z) as a quotient filter. The broom filter uses the remaining
bits of h(z), called adaptivity bits, to extend f(z) in order to adapt on false positives.

On a query y, if there is an element x € S such that f(x) is a prefix of h(y), the broom
filter returns “present.” If it turns out that y ¢ S, the broom filter adapts by extending
the fingerprint f(z) until it is no longer a prefix of h(y).! Bender et al. show that, with
high probability, O(n) total adaptivity bits of space are sufficient for the broom filter to be
adaptive on ©(n) queries.

Cuckoo filters and adaptivity. The cuckoo filter resembles the quotient filter but uses
a cuckoo hash table rather than linear probing. Each element has two fingerprints, and
therefore two quotients. The remainder of each x € § must always be stored in the slot
corresponding to one of x’s two quotients.

The Cyclic ACF [25], Swapping ACF [25], and Cuckooing ACF [21]? change the function
used to generate the remainder on a false positive. To avoid introducing false negatives, a
filter using this technique must somehow track which function was used to generate each
remainder so that the appropriate remainders can be compared at query time.

The Cyclic ACF stores s extra bits for each slot, denoting which of 2° different remainders
are used. The Swapping ACF, on the other hand, groups slots into constant-sized bins, and
has a fixed remainder function for each slot in a bin. A false positive is fixed by moving
some = € S to a different slot in the bin, then updating its remainder using the function
corresponding to the new slot. The Cuckooing ACF works in much the same way, but both
the quotient and remainder are changed by “cuckooing” the element to its alternate position
in the cuckoo table.

2.2 Model and Adaptivity

All filters that adapt on false positives [5,21,25] have access to the original set S. This is
called the remote representation, denoted R. The remote representation does not count
towards the space usage of the filter. On a false positive, the filter is allowed to access the
set R to help fix the false positive.

The justification for this model is twofold. (This justification is also discussed in [5,21,25].)
First, the most common use case of filters is to filter out negative queries to S—in this case,
a positive response to a query accesses R anyway. Information to help rebuild the filter can
be stored alongside the set in this remote database. Second, remote access is necessary to
achieve good space bounds: Bender et al. [5] proved that any adaptive filter without remote
access to S requires Q(nloglogu) bits of space.

Our filter can answer queries using only the local state L. Our filter accesses the remote
state R in order to fix false positives when they occur, updating its local state. This allows
our filter to be adaptive while using small (near optimal) space for the local state.

Adaptivity. The sustained false positive rate of a filter is the probability with which a
query is a false positive, regardless of the filter’s answers to previous queries.

! These additional bits are stored separately in the broom filter: groups of ©(logn) adaptivity bits,
corresponding to log n consecutive slots in the filter, are stored such that accessing all the adaptivity
bits of a particular element (during a query operation) can be done in O(1) time.

2 We use the nomenclature of [21] in calling these the Cyclic ACF, Swapping ACF, and Cuckooing ACF.

80:5

ESA 2021

80:6

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

Telescoping Filter: A Practical Adaptive Filter

The sustained false positive rate must hold even if generated by an adversary. We use
the definition of Bender et al. [5], which is formally defined by a game between an adversary
and the filter, where the adversary’s goal is to maximize the filter’s false positive rate. We
summarize this game next; for a formal description of the model see Bender et al. [5].

In the adaptivity game, the adversary generates a sequence of queries Q = z1, s, ..., T¢.
After each query x;, both the adversary and filter learn whether x; is a false positive (that
is, x; ¢ S but a query on z; returns “present”). The filter is then allowed to adapt before
query x;+1 is made by the adversary. The adversary can use the information about whether
queries x1,...,x; were a false positive or not, to choose the next query z;1.

At any time t, the adversary may assert that it has discovered a special query %, that is
likely to be a false positive of the filter. The adversary “wins” if Z; is in fact a false positive
of the filter at time ¢, and the filter “wins” if the adversary is wrong and Z; is not a false
positive of the filter at time t.

The sustained false positive rate of a filter is the maximum probability & with which
the adversary can win the above adaptivity game. A filter is adaptive if it can achieve a
sustained false positive rate of ¢, for any constant 0 < & < 1.

Similar to [5], we assume that the adversary cannot find a never-before-queried element
that is a false positive of the filter with probability greater than €. Many hash functions
satisfy this property, e.g., if the adversary is a polynomial-time algorithm then one-way hash
functions are sufficient [26]. Cryptographic hash functions satisfy this property in practice,
and it is likely that even simple hash functions (like Murmurhash used in this paper) suffice
for most applications.

Towards an adaptive implementation. Kopelowitz et al. [21] showed that the Cyclic ACF
(with any constant number of hash-selector bits), the Swapping ACF, and the Cuckooing
ACF are not adaptive. The key insight behind this proof is that for all three filters, the
state of an element—which slot it is stored in, and which fingerprint function is used—can
only have O(1) values. Over o(n) queries, an adversary can find queries that collide with an
element on all of these states. These queries can never be fixed.

Meanwhile, the broom filter avoids this issue by allowing certain elements to have more
than O(1) adaptivity bits—up to O(logn), in fact. The broom filter stays space-efficient by
maintaining O(1) adaptivity bits per element on average.

Thus, a crucial step for achieving adaptivity is dynamically changing how much space is
used for the adaptivity of each element based on past queries. The telescoping adaptive filter
achieves this dynamic space allocation (hence the name “telescoping”) using an arithmetic
coding.

3 The Telescoping Adaptive Filter

In this section, we describe the high-level ideas behind the telescoping adaptive filter.

Structure of the telescoping adaptive filter. Like the broom filter, the TAF is based
on a quotient filter where the underlying hash function h outputs ©(logn) bits. For any
x € S, the first logn bits of h(z) are the quotient g(z) (stored implicitly), and the next
log(1/¢) bits are the initial remainder ro(x), stored in the slot determined by the quotient.
We maintain each element’s original slot using the strategy of the rank-and-select quotient
filter [29], which stores 2.125 metadata bits per element.

The TAF differs from a broom filter in that, on a false positive, the TAF changes its
remainder rather than lengthening it, similar to the Cyclic ACF.

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

D. J. Lee, S. McCauley, S. Singh, and M. Stein

For each element in the TAF, we store a hash-selector value. If an element z has
hash-selector value 4, its remainder r; is the consecutive sequence of log(1/¢) bits starting at
the (logn + ilog(1/e))th bit of h(z). Initially, the hash-selector values of all elements are
0, and thus the remainder r(x) is the first log 1/ bits immediately following the quotient.
When the hash-selector value of an element x € S is incremented, its remainder “slides over”
to the next (non-overlapping) log 1 /¢ bits of the hash h(x), as shown in Figure 1. Thus, the

fingerprint of x is f(x) = ¢(z)or;(x), where o denotes concatenation and 7 is the hash-selector

value of z.
each of size log(1/¢) bits
logn bits || T ;
F {1 i} e oo }b—bFb—bFH—FH—F—F—F—
h(x) = . q(x) r{x) if hash-selector value of x is i

clogn bits

Figure 1 The fingerprint of x € S is its quotient g(x) followed by its remainder r;(z), where i is
the hash-selector value of z.

On a false positive query y ¢ S, there must be some x € § with hash-selector value i,
such that ¢(z) = q(y) and r;(x) = r;(y). To resolve this false positive, we increment i. We
update the hash-selector value and the stored remainder accordingly.

We describe below how to store hash-selector values using an average 0.875 bits per
element. This means that the TAF with load factor a uses (n/«)(log(1/€) + 3) bits of space.

Difference between hash-selector and adaptivity bits. Using hash-selector bits, rather
than adaptivity bits (as in the broom filter), has some immediate upsides and downsides.

If fingerprint prefixes p(x) and p(y) collide, they will still collide with probability 1/2 after
each prefix has been lengthened by one bit. But adding a bit also reduces the probability
that = will collide with any future queries by a factor of 1/2. Such false positives that are
fixed (without being queried) are called serendipitous false positives [4].

On the other hand, incrementing the hash-selector value of an element = € S after it
collides with an element y ¢ S reduces the probability that y will collide again with x by a
factor of € <« 1/2. Thus, the TAF is more aggressive about fixing repeated false positives.
However, the probability that x collides with future queries that are different from y remains
unchanged. Thus, on average the TAF does not fix serendipitous false positives.

Our experiments (Section 6) show that the gain of serendipitous false positive fixes is
short-lived; aggressively fixing false positives leads to better false-positive performance.

Storing hash selectors in blocks. The TAF does not have a constant number of bits per
slot dedicated solely to storing its hash-selector value. Instead, we group the hash-selector
values associated with each ©(logn) contiguous slots (64 slots in our implementation) together
in a block. We allocate a constant amount of space for each such block. If we run out of
space, we rebuild by setting all hash-selector values in the block to 0. (After a rebuild, we
still fix the false positive that caused the rebuild. Therefore, there will often be one non-zero
hash-selector value in the block after a rebuild.)

Encoding hash-selector bits. To store the hash selectors effectively, we need a code that

80:7

ESA 2021

80:8

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

337

338

339

340

341

342

Telescoping Filter: A Practical Adaptive Filter

satisfies the following requirements: the space of the code should be very close to optimal;
the code should be able to use < 1 bits on average per character encoded; and the encode
and decode operations should be fast enough to be usable in practice.

In Section 5, we give a new implementation of the arithmetic coding that is tailored to
our use case, specifically encoding characters from the distribution given in Corollary 3. Our
implementation uses only integers, and all divisions are implemented using bit shifts, leading
to a fast and reliable implementation while still retaining good space bounds.

4 Telescoping Adaptive Filter: Analysis

In this section, we analyze the sustained false-positive rate, the hash-selector probabilities,
and the space complexity of the telescoping adaptive filter.

We assume the TAF uses a uniform random hash function h such that the hash can be
evaluated in O(1) time. In our adaptivity analysis of the TAF (Theorem 1), we first assume
that the filter has sufficient space to store all hash-selector values; that is, it does not rebuild.
Then, in Theorem 4, we give a bound on the number of unique queries that the TAF can
handle (based on its size) without the need to rebuild, thus maintaining adaptivity.

Adaptivity. We first prove that the telescoping adaptive filter is adaptive, i.e., it guarantees
a sustained false positive rate of e.

We say a query z has a soft collision with an element y € S if their quotients are the
same: ¢(x) = ¢q(y). We say a query z has a hard collision with an element y € S if both
their quotients and remainders are the same: ¢(z) = ¢(y) and r;(z) = r;(y), where i is the
hash-selector value of y at the time x is queried (see Section 3).

» Theorem 1. Consider a telescoping adaptive filter storing a set S of size n. For any
adaptively generated sequence of t queries Q = x1,xa,...,x; (possibly interleaved with
insertions), where each x; ¢ S, the TAF has a sustained false-positive rate of €; that is,
Pr[z; is a false positive] < e for all 1 <i < t.

Proof. Consider the i-th query x; € Q. Query z; is a false positive if there exists an element
y € S such that there is hard collision between them. Let h;(y) = q(y) o rx(y) denote the
fingerprint of y at time ¢, where y has the hash-selector value k at time i. Then, x; and y
have a hard collision if and only if h;(z;) = hi(y).

We show that for any y, regardless of answers to previous queries, ; and y have a hard
collision with probability €/n; taking a union bound over all elements gives the theorem.

We proceed in cases. First, if x; is a first-time query, that is, z; ¢ {z1,...,2;-1}, then
the probability that h;(x;) = h;(y) is the probability that both their quotient and remainder
match, which occurs with probability 2~ (esn+log1/e) — e/n.

Next, suppose that z; is a repeated query, that is, z; € {x1,...,2,_1}. Let j < i be the
largest index where z; = x; was previously queried. If ; did not have a soft collision with
y, that is, g(x;) # ¢(y), then x; cannot have a hard collision with y. Now suppose that
q(z;) = q(y). We have two subcases.

1. y’s hash-selector value has not changed since x; was queried. Note that, in this case, z;
must not have had a hard collision with y, as that would have caused y’s hash-selector
value, and thus its remainder, to be updated. Thus, h;(y) = hi(y) # hj(z;) = hi(z;).

2. y’s hash-selector value has been updated since x; was queried. Such an update could
have been caused by a further query to z; having a hard collision with g, or some other
query xp € T;,%jt1,...,%; having a hard collision with y. In either case, the probability
that the new remainder matches, i.e., 7;(y) = r;(2;), is 271081/ = ¢,

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

D. J. Lee, S. McCauley, S. Singh, and M. Stein

Therefore, the probability that x; has a hard collision with y is at most ¢ - Pr[g(z;) =
q(y)] = e/n. Finally, by a union bound over n possibilities for y € S, we obtain that
Pr[z; is a false positive] < e for all 1 <4 < ¢, as desired. <

Hash-selector probabilities. The telescoping adaptive filter increments the hash-selector
value of an element y € S whenever a false positive query collides with y. Here we analyze
the probability of an element having a given hash-selector value.

» Lemma 2. Consider a sequence QQ = x1,xa,...,xs of queries (interleaved with inserts),
where each x; ¢ S and Q consists of cn unique queries (with any number of repetitions),
where ¢ < 1/e —1. Then for anyy € S, if v(y) is the hash-selector value of y after all queries
in Q are performed, then:

B =(1-5)" ifk=0

Pru(y) = k] { <ef(1—e) Zf:l ((‘Zn)# ifk>0
Proof. First, consider the case k = 0: the hash-selector value of y stays zero after all the
queries are made if and only if none of the queries have a hard collision with y. Since there
are cn unique queries, and the probability that each of them has a hard collision with y is
g/n, the probability that none of them collide with y is (1 —e/n)".

Now, consider the case k > 1. Given that the hash selector value of y is k, we know
that there have been exactly k hard collisions between queries and y (where some of these
collisions may have been caused by the same query). Suppose there are i unique queries
among all queries that have a hard collision with y, where 1 <14 < k. Let k; be the number
of times a query j collides with y causing an increment in its hash-selector value, where
1<j<i. Thus, Y)'_ k; = k.

J=1

For a query z;, the probability that x; collides with y, the first time x; is queried, is e/n.

Then, given that z; has collided with y once, the probability of any subsequent collision

with y is . (This is because the log 1/e bits of the remainder of y are updated with each

€ kj—1

collision.) Thus, the probability that z; collides with y at least k; times is £ - ¢

£ .
n

The probability that a query x; collides with y at least k; times, is given by H;Zl
gki=l = fl—kl There are (CZ”) ways of choosing ¢ unique queries from cn, for 1 <14 < k, which

gives us

Prlv(y) > k] = ekg (CZ")J (1)

Finally, using Inequality 1, we can upper bound the probability that a hash-selector value
is exactly k.

i=1 i=1
k
ok cn 1 € cn 1
=) [Z<i)ni_1—e<k+1>nk+1]
i=1
1
<5’“(1—5)Z<Cin)m <
i=1

80:9

ESA 2021

80:10

379

380

381
382
383

384

385

386

387

388

389
390
391
392
393
394
395

396

397

398
399

400

401
402
403
404

405

406

407
408

409
410
411
412
413
414

415

416

Telescoping Filter: A Practical Adaptive Filter

We simplify the probabilities in Lemma 2 in Corollary 3. The probability bounds in Corol-
lary 3 closely match the distribution of hash-selector frequencies we observe experimentally.

» Corollary 3. Consider a sequence Q = x1,%a,...,x; of queries (interleaved with inserts),
where each x; ¢ S and Q consists of cn unique queries (with any number of repetitions),
where ¢ < 1/e — 1. For anyy € S, if v(y) is the hash-selector value of y after all queries in
Q are performed, then:

k .
1 & c'
Priv(y) =0] < et and Prv(y) = k] <e ;_1 Fl for k> 1.

Proof. To upper bound Pr{v(y) = 0], we use the inequality (1 — 1/2)* < 1/e for > 1. To
upper bound Pr[v(y) = k], we upper bound:

nt — 7! nt — ilnt 7!

(cn) 1 _ en-(en—1)---(ecn—i) 1 _ cin® ¢
i

Space analysis. Up until now, we have assumed that we always have enough room to store
arbitrarily large hash selector values. Next, we give a tradeoff between the space usage of
the data structure and the number of unique queries it can support.

We use the hash-selector probabilities derived above to analyze the space overhead of
storing hash-selector values. Theorem 4 assumes an optimal arithmetic encoding: storing
a hash-selector value k that occurs with probability py requires exactly log(1/py) bits. In
our implementation we use an approximate version of the arithmetic coding for the sake of
performance.

» Theorem 4. For any e < 1/2 and b > 2, given a sequence of n/(b\/e) unique queries (with

no restriction on the number of repetitions of each), the telescoping adaptive filter maintains

a sustained false-positive rate of € using at most (% + ﬁ) bits of space in expectation

per element.

Proof. Let ¢ = 1/(by/e); thus, there are cn unique queries. Consider an arbitrary element
y € S. The expected space used to store the hash-selector value v(y) of y is ZZOZO pr log 1/py,
where py, is the probability that v(y) = k.

We separate out the case where k = 0, for which py, is the largest, and upper bound the
polog 1/pg term below, using the probability derived in Lemma 2.

cn 1 1 € cn
polog1/py = (1 —¢/n) logm < o rlog(l+)

1 1
R @)

|
b
2
S
<}
g
=
|
3l
I

In step (2) above we use the fact that x/e® < 1/e for all z > 0.

We now upper bound the rest of the summation, that is, Y, prlog1/py for k > 1.
When upper bounding this summation we will be using upper bounds on px—but this is
a lower bound on log1/p;. To deal with this, we observe that the function zlogl/x is
monotonically increasing for x < 1/e. Therefore, if we show that the bounds in Corollary 3
never exceed 1/e, we can substitute both terms in py log 1/py in our analysis. We start by
showing this upper bound. In the following, we use b > 2 and £ < 1/2.

pk<5kéC Ci<5kck~k<5k'<1>k'k=k~€k/2<k'1 <1
0 2 3k/2 :
— il by/z b 23k/ e

417

418

4

hard
©

420

421

422

423

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

D. J. Lee, S. McCauley, S. Singh, and M. Stein

We now upper bound the sum .7, pylog 1/p) by replacing pj, with its upper bound
gkck .k (this replacement is an upper bound because we showed &* Zle ‘;—, < 1/e above).

Zpklogl/pk < Zkakc log . kk Zbﬁk . (5k/2~log1/ak) (3)
k=1

k>1
< Z ¥ = G @

We simplify step (3) above using the fact that /zlogl/x < 1 for all < 1; step (4) is a
known identity.

Thus, Y 7 o prlog1/py < 1/e+b/(b—1)2, which is the expected number of bits used to
store the hash-selector value of y. <

Theorem 4 implies that if the TAF is using a certain number of bits per element in
expectation to store hash-selector values, then there is a precise bound on the number of
unique queries it can handle in any query workload while being provably adaptive. For
example, if ¢ = 1/2% and we set b = 4 in Theorem 4, then a telescoping adaptive filter that
uses 4/9 4+ 1/e ~ 0.812 bits per element in expectation can handle 4n unique queries without
running out of space and having to rebuild. In Section 6, the TAF outperforms this bound,
retaining good performance with 0.812 bits per element for A/S < 20.

5 Implementation

In this section, we describe the implementation of the TAF and our implementation of the
broom filter [5], which we call the extension adaptive filter (exAF).
Recall that adaptive filters have a local state L and a remote representation R.

Rank-and-select quotient filter. The local state L of both the TAF and exAF is
implemented as a rank-and-select quotient filter (RSQF) [29]. The RSQF stores metadata
bits—one occupied bit and one runend bit for each slot. The occupied bit associated with
slot 7 indicates whether any elements with the quotient 7 have been inserted into the filter.
The runend bit associated with slot i tracks whether the remainder placed in slot ¢ is the
last remainder in a contiguous run of remainders with the same quotient. These metadata
bits are sufficient to find the original slot of an element, but processing them bit-by-bit can
be slow. The RSQF cleverly uses rank and select operations to quickly jump to the original
slot [6]. These operations are efficiently implemented using x86 instructions on 64-bit words.

To improve cache efficiency, the RQSF stores remainders (along with their 2 metadata
bits) in 64-element blocks. In particular, each block stores 64 contiguous remainders and two
64-bit metadata arrays. To search through the blocks efficiently, an offset (stored using at
most 8 bits) is stored for each block. The offset of a location i is the distance between ¢ and
i’s associated runend. Each block stores the offset of its first slot. In total, the RSQF stores
2.125 metadata bits per element in the filter.

Arithmetic coding on integers. Arithmetic coding can give theoretically optimal com-
pression, but the standard implementation that recursively divides the unit interval relies on
floating point operations. These floating point operations are slow in practice, and involve
precision issues that can lead to incorrect answers or inefficient representations. In our
implementation, we avoid these issues by applying arithmetic coding to a range of integers,
{0,...,2% — 1} for the desired code length k, instead of the unit interval. We set k = 56,

80:11

ESA 2021

80:12

458
459

460

461
462
463
464
465

466

467
468

469

470

471

472
473
474

475

476
477
478
479

480

481

482

483
484
485
486
487

488

489
490
491

492

493
494
495
496
497
498
499

500

501

502

Telescoping Filter: A Practical Adaptive Filter

encoding all hash-selector values for a block in a 56-bit word. When multiplying or dividing
integral intervals by probabilities in [0, 1], we approximate floating point operations using
integer shifts and multiplications.

Remote representation. We implement R for both filters as an array storing elements in
the set S, along with their associated hashes. We keep R in sync with L: if the remainder
r(x) is stored in slot s in L, then z is stored in slot s in R. This leads to easy lookups: to
lookup an element z in R, we simply check the slot R[s] where r(z) = L[s]. Insertions that
cause remainders to shift in L are expensive, however, as we need to shift elements in R as
well.

TAF implementation. The local state of TAF is an RSQF where each block of 64
contiguous elements stores the remainders of all elements, all metadata bits (each type stored
in a 64-bit word), an 8-bit offset, and a 56-bit arithmetic code storing hash-selector values.

TAF’s inserts are similar to the RSQF, which may require shifting remainders. The TAF
updates the hash-selector values of all blocks that are touched by the insertion.

Our implementation uses MurmurHash [3] which has a 128-bit output. We partition the
output of MurmurHash into the quotient, followed by chunks of size log(1/¢), where each
chunk corresponds to one remainder. Each time we increment the hash-selector value, we
just slide over log(1/¢) bits to obtain the new remainder.

On a query z, the TAF goes through each slot s corresponding to quotient ¢(z) and
compares the remainder stored in s to r;(y), where i is the hash-selector value of s, retrieved
by decoding the blocks associated with each s. If they match, the filter returns “present”
and checks R to determine if x € S. If x ¢ S, the filter increments the hash-selector ¢ of x
and updates the arithmetic code of the block containing z.

If the 56-bit encoding fails, we rebuild: we set all hash-selector bits in the block to 0,
and then attempt to fix the false positive again.

exAF implementation. Our implementation of the broom filter, which we call the exAF,
maintains its local state as a blocked RSQF, similar to the TAF . The main difference
between the two filters is how they adapt. The exAF implements the broom filter’s adapt
policy of lengthening fingerprints. To do this efficiently, we follow a strategy similar to the
TAF . We divide the data structure into blocks of 64 elements, storing all extensions for a
single block into an arithmetic code that uses at most 56 bits.

The exAF’s insertion algorithm resembles the RSQF and broom filter’s insertion al-
gorithms. However, while the broom filter adapts on inserts to ensure that all stored
fingerprints are unique, the exAF does not adapt on inserts, and may have duplicate finger-
prints.

During a query operation, the exAF first performs an RQSF query: it finds if there is a
stored element whose quotient and remainder bits match, without accessing any extension bit.
Only if these match does it decode the block’s arithmetic code, allowing it to check extension
bits. This makes queries in the exAF faster compared to TAF, which must perform decodes
on all queries. If the full fingerprint of a query y collides with an element x € S, the filter
returns “present” and checks R to determine if z € S. If x ¢ S, the exAF adapts by adding
extension bits to f(x) by decoding the block’s arithmetic code, updating z’s extension bits,
and re-encoding.

As in the TAF, if the 56-bit encoding fails, the exAF rebuilds by setting all adaptivity
bits in the block to 0, and then attempts to fix the false positive again.

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

D. J. Lee, S. McCauley, S. Singh, and M. Stein

6 Evaluation

In this section, we empirically evaluate the telescoping adaptive filter and the exAF.

We compare the false-positive performance of these filters to the Cuckooing ACF, the
Cyclic ACF (with s = 1,2, 3 hash-selector bits), and the Swapping ACF. The Cyclic ACF
and the Cuckooing ACF use 4 random hashes to choose the location of each element, and
have bins of size 1. The Swapping ACF uses 2 location hashes and bins of size 4.

We compare the throughput of the TAF and exAF against the vacuum filter [32], our
implementation of the RSQF, and a space-inefficient version of the TAF that does not
perform arithmetic coding operations.

Experimental setup. We evaluate the filters in terms of the following parameter settings.

Load factor. For the false-positive tests, we use a load factor of .95. We evaluate the
throughput on a range of load factors.

Fingerprint size: We set the fingerprint size of each filter so that they all use the same
amount of space. We use 8-bit remainders for the TAF. Because the TAF has three
extra bits per element for metadata and adaptivity, this corresponds to fingerprints of
size 11 for the Swapping and Cuckooing ACF, and size 11 — s for a Cyclic ACF with s
hash-selector bits.

A/S ratio. The parameter A/S (shorthand for |A|/|S]) is the ratio of the number of
unique queries in the query set A and the size of the filter’s membership set S. Depending
on the structure of the queries, a higher A/S value may indicate a more difficult workload,
as “fixed” false positives are separated by a large number of interspersed queries.

All experiments were run on a workstation with Dual Intel Xeon Gold 6240 18-core 2.6 Ghz

processors with 128G memory (DDR4 2666MHz ECC). All experiments were single-threaded.

6.1 False Positive Rate

Firehose benchmark. We measure the false positive rate on data generated by the Firehose
benchmark suite [1,2] which simulates a real-world cybersecurity workload. Firehose has two
generators: power law and active set; we use data from both.

The active set generator generates 64-bit unsigned integers from a continuously evolving
“active set” of keys. The probability with which an individual key is sampled varies in time

according to a bell-shaped curve to create a “trending effect” as observed in cyberstreams [2].

We generated 10 million queries using the active set generator. We set the value POW_EXP
in the active set generator to 0.5 to encourage query repetitions. (Each query is repeated
approximately 57 times on average in our final dataset.)

We then generated 50 million queries using the power-law generator, which generates
queries using a power-law distribution. This dataset had each query repeated many times;
each query was repeated 584 times on average.

In our tests we vary the size of the stored set S (each uses the same input, so |A] is

constant). The results are shown in Figure 2; all data points are the average of 10 experiments.

ACF1, ACF2, and ACFS3 represent the Cyclic ACF with s = 1,2, 3 respectively.

For the active set generated data, the TAF is the best data structure for moderate
A/S. Above A/S = 20, rebuilds become frequent enough that TAF performance degrades
somewhat, after which its performance is similar to that of the Cyclic ACF with s = 2
(second to the Swapping ACF). This closely matches the analysis in Section 4.

For the power law data, the TAF is competitive for most A/S values, although again it
is best for moderate values.

80:13

ESA 2021

80:14

548
549

550

551
552

553
554
555

556

557
558
559
560
561
562

563

564
565
566
567

568

Telescoping Filter: A Practical Adaptive Filter

-@- Cuckoo
Cuckooing
> TAF
=X~ exAF
P St ACF1
L e S e e e e S S Aok
/ T S T S

- ACF3
107 = ¥ v

4 K / x 5 7 - Swapping
o SO o
w ’ X &0 \

0 5 10 15 20 25 30 0 10 20 30 40 50
A/S A/S

Figure 2 False positive rates on the firehose benchmarks. The plot on the left uses the active set
generator; the plot on the right uses the power-law generator.

Notably, in both cases (and particularly for the active set data), the exAF performs
substantially worse than the TAF. This shows that given the space amount of extra bits per
element on average, the TAF uses them more effectively towards adaptivity than the exAF.

Network Traces. We give experiments on three network trace datasets from the CAIDA
2014 dataset, replicating the experiments of Mitzenmacher et al. [25]. We use three network
traces from the CAIDA 2014 dataset, specifically:
equinix-chicago.dirA.20140619 (“Chicago A”, Figure 3)
equinixchicago.dirB.20140619-432600 (“Chicago B”, Figure 3), and
equinix-sanjose.dirA.20140320-130400 (“San Jose”, Figure 4).

On network trace datasets, most filters are equally effective at fixing false positives, and
their performance is determined mostly by their baseline false positive rate, that is, the
probability with which a first-time query is a false positive. If s bits are used for adaptivity,
that increases the baseline FP rate by 2%, compared to when those bits are used towards
remainders. This gives the Cuckooing ACF an advantage as it uses 0 bits for adapting.

The TAF and exAF perform similarly to the Swapping ACF and ACF1 (Cyclic ACF
with s = 1) on these datasets.

10 -#- Cuckoo -4- Cuckoo
Cuckooing Cuckooing
> TAF ¢ TAF
- exAF - exAF
4 ®: ACF1 * - ACF1
S, POL ST W G PTL, & ACF2 A e A A ACF2
& - S S aut SEY) 1) oFs v T 2 ner
. s
E wapping ez o, I Swapping
[
107" 1074
0 10 20 30 40 50 0 10 20 30 40 50
AIS AIS

Figure 3 False positive performance of the filters on network trace data. The Chicago A dataset
is used on the left, and the Chicago B dataset is on the right.

Adversarial tests. The main advantage of the TAF and exAF is that both are adaptive in
theory—even against an adversary. Adversarial inputs are motivated by security concerns,
such as denial-of-service attacks, but they may also arise in some situations in practice. For
example, it may be that the input stream is performance-dependent, and previous false
positives are more likely to be queried again.

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

D. J. Lee, S. McCauley, S. Singh, and M. Stein

10 -~ Cuckoo —}- Cuckooing
Cuckooing 1.0 RN : Swapping
> TAF / / > TAF
X%~ exAF [/ - exAF
ACF1 08 7 ACF1
- S S e) ACF2 = [X ACF2
-0 D s -y ACF3 £ o6 [/I ACF3
x 1 Swapping 5 |
g 10’ g §
w i [
o 04 /!
w |1
|
[
- 02
I
]
!
00 -
107
0 10 20 30 40 50 0 5 10 15 20 25 30
AIS Initial Q/S

Figure 4 On the left is the network trace San Jose dataset. On the right is adversarial data,
where we vary the size of the initial query set, and plot the proportion of elements in the final set
that are false positives.

We test our filter against an “adversarial” stream that probabilistically queries previous
false positives. This input is significantly simpler than the lower bounds given in [21] and [5],
but shares some of the basic structure.

Our adversarial stream starts with a set of random queries |@|. The queries are performed
in a sequence of rounds; each divided into 10 subrounds. In a subround, each element of @ is
queried. After a round, any element that was never a false positive in that round is removed
from Q. The filter then continues to the next round. The test stops when |Q|/|S| = .01, or a
bounded number of rounds is reached.

The x-axis of our plot is |Q|/|S|, and the y-axis is the false positive rate during the final
round (after the adversary has whittled @ to only contain likely false positives). We again see
that the TAF does very well up until around |Q|/|S| & 20. After this point, the adversary is
successfully able to force false positives. This agrees closely with the analysis in Section 4.

The Cyclic ACF with s = 3 (ACF3) does surprisingly well on adversarial data even
though it is known to not be adaptive. This may be in part because the constants in the
lower bound proof [21] are very large (the lower bound uses 1/e% a2 254 queries). However,
this adaptivity comes at a significantly worsened baseline FP rate, as this filter struggles on
network trace data.

6.2 Throughput
In this section, we compare the throughput of our filters to other similar filters.

-8 Vacuum 3.5x107
). RSQF

> TAF

X~ exAF

1.4x107

12x107 el 3.0x107

-

o

el X
1.0x107 + 2.5x107 S,

Inserts/sec

8.0x10° 2.0x107

Queries/sec

6.0 x 108
1.5x 107

4.0x10°
1.0x107

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 05 0.6 0.7 08 0.9 1.0
Load Factor Load Factor

Figure 5 The throughput for inserts (left) and queries (right) on the active set Firehose data.

For the throughput tests, we introduce several new filters as a point of comparison.
The vacuum filter [32] is a cuckoo filter variant designed to be space- and cache-efficient.

80:15

ESA 2021

80:16

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

607

608

609
610
611
612
613
614
615
616
617
618
619
620
621
622

623

624

625
626
627
628
629
630
631
632

633

Telescoping Filter: A Practical Adaptive Filter

We compare to the “from scratch” version of their filter [34]. We also compare to our
implementation of the RSQF [29]. The RSQF does not adapt, or perform remote accesses.
Finally, to isolate the cost of the arithmetic coding itself, we compare to our implementa-
tion of an uncompressed telescoping adaptive filter (uTAF). The uTAF works exactly
as the TAF, except it stores its hash-selector values explicitly, without using an arithmetic
coding. This means that the uTAF is very space-inefficient.
For the throughput tests, we evaluated the performance on the active set Firehose data

224 slots. We varied the load factor to compare performance.

used in Figure 2. Our filters used
All data points shown are the average of 10 runs.

The throughput tests show that the TAF achieves similar performance in inserts to
the other filters, though it lags behind in queries at high throughput. The exAF performs
significantly better for queries, likely due to skipping decodes as discussed in Section 5.

The uTAF is noticeably faster than the TAF, but is similar in performance to exAF.
This highlights the trade-offs between the two ways to achieve adaptivity: the exAF scheme
of lengthening remainders has better throughput but worse adaptivity per bit; while the
TAF scheme of updating remainders has better adaptivity per bit but worse throughput.
Overall, while the query-time decodes of TAF do come at a throughput cost, they stop short
of dominating performance.

7 Conclusion

We provide a new provably-adaptive filter, the telescoping adaptive filter, that was engineered
with space- and cache-efficiency and throughput in mind. The TAF is unique among adaptive
filters in that it only uses a fractional number of extra bits for adaptivity (0.875 bits
per element). To benchmark the TAF, we also provide a practical implementation of the
broom filter. To effectively compress the adaptivity metadata for both filters, we implement
arithmetic coding that is optimized for the probability distributions arising in each filter.

We empirically evaluate the TAF and exAF against other state-of-the-art filters that
adapt, on a variety of datasets. Our experiments show that TAF outperforms the exAF
significantly on false-positive performance, and frequently matches or outperforms other
heuristically adaptive filters. Our throughput tests show that our adaptive filters achieve a
comparable throughput to their non-adaptive counterparts.

We believe that our technique to achieve adaptivity through variable-length fingerprints
is universal and can be used alongside other filters that stores fingerprints of elements (e.g.,
a cuckoo or vacuum filter). Thus, there is potential for further improvements by applying
our ideas to other filters, taking advantage of many years of filter research.

—— References

1 Karl Anderson and Steve Plimpton. Firehose streaming benchmarks. Technical report, Sandia
National Laboratory, 2015.

2 Karl Anderson and Stevel Plimpton. FireHose streaming benchmarks. www.firehose.sandia.
gov. Accessed: 2018-12-11.

3 Austin Appleby. Murmurhash. https://github.com/aappleby/smhasher, 2016. Accessed:
2020-08-01.

4 Michael A Bender, Rathish Das, Martin Farach-Colton, Tianchi Mo, David Tench, and Yung
Ping Wang. Mitigating false positives in filters: to adapt or to cache? In Symposium on
Algorithmic Principles of Computer Systems (APOCS), pages 16-24. STAM, 2021.

www.firehose.sandia.gov
www.firehose.sandia.gov
www.firehose.sandia.gov
https://github.com/aappleby/smhasher

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

D. J. Lee, S. McCauley, S. Singh, and M. Stein

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Michael A Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson, Samuel McCauley,
and Shikha Singh. Bloom filters, adaptivity, and the dictionary problem. In Symposium on
Foundations of Computer Science (FOCS), pages 182-193. IEEE, 2018.

Michael A Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C Kuszmaul,
Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P Spillane, and Erez Zadok. Don’t
thrash: how to cache your hash on flash. Proc. VLDB Endowment, 5(11):1627-1637, 2012.
Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422-426, 1970.

Alex D Breslow and Nuwan S Jayasena. Morton filters: faster, space-efficient cuckoo filters via
biasing, compression, and decoupled logical sparsity. Proc. VLDB Endowment, 11(9):1041-1055,
2018.

Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters: A survey.
Internet mathematics, 1(4):485-509, 2004.

J Bruck, Jie Gao, and Anxiao Jiang. Weighted bloom filter. In Symposium on Information
Theory. IEEE, 2006.

Larry Carter, Robert Floyd, John Gill, George Markowsky, and Mark Wegman. Exact and
approximate membership testers. In Symposium on Theory of Computing (STOC), pages
59-65. ACM, 1978.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A distributed
storage system for structured data. Transactions on Computer Systems, 26(2):4, 2008.

Saar Cohen and Yossi Matias. Spectral bloom filters. In International Conference on Manage-
ment of Data (SIGMOD), pages 241-252. ACM, 2003.

Kyle Deeds, Brian Hentschel, and Stratos Idreos. Stacked filters: learning to filter by structure.
Proc. VLDB Endowment, 14(4):600-612, 2020.

Fan Deng and Davood Rafiei. Approximately detecting duplicates for streaming data using
stable bloom filters. In International Conference on Management of Data (SIGMOD), pages
25-36. ACM, 2006.

Peter C Dillinger and Stefan Walzer. Ribbon filter: practically smaller than bloom and xor.
arXiv preprint arXiv:2103.02515, 2021.

David Eppstein, Michael T" Goodrich, Michael Mitzenmacher, and Manuel R Torres. 2-3
cuckoo filters for faster triangle listing and set intersection. In Principles of Database Systems
(PODS), pages 247-260. ACM, 2017.

Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D. Mitzenmacher. Cuckoo
filter: Practically better than bloom. In Conference on emerging Networking Experiments and
Technologies (CoNEXT), pages 75-88. ACM, 2014.

Thomas Mueller Graf and Daniel Lemire. Xor filters: Faster and smaller than bloom and
cuckoo filters. Journal of Experimental Algorithmics (JEA), 25:1-16, 2020.

Paul G. Howard and Jeffrey Scott Vitter. Practical Implementations of Arithmetic Coding,
pages 85-112. Springer US, Boston, MA, 1992. doi:10.1007/978-1-4615-3596-6_4.

Tsvi Kopelowitz, Samuel McCauley, and Eli Porat. Support optimality and adaptive cuckoo
filters. In Proc. 17th Algorithms and Data Structures Symposium (WADS), 2021. To appear.
Harald Lang, Thomas Neumann, Alfons Kemper, and Peter Boncz. Performance-optimal
filtering: Bloom overtakes cuckoo at high throughput. Proc. VLDB Endowment, 12(5):502-515,
2019.

Yoshinori Matsunobu, Siying Dong, and Herman Lee. Myrocks: LSM-tree database storage
engine serving Facebook’s social graph. Proc. VLDB Endowment, 13(12):3217-3230, 2020.
Michael Mitzenmacher. A model for learned bloom filters, and optimizing by sandwiching. In
Conference on Neural Information Processing Systems (NeurIPS), pages 462-471, 2018.
Michael Mitzenmacher, Salvatore Pontarelli, and Pedro Reviriego. Adaptive cuckoo filters. In

Workshop on Algorithm Engineering and Ezperiments (ALENEX), pages 36-47. SIAM, 2018.

80:17

ESA 2021

https://doi.org/10.1007/978-1-4615-3596-6_4

80:18

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

704

Telescoping Filter: A Practical Adaptive Filter

26

27

28

29

30

31

32

33

34

Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. In Annual Cryptology
Conference, pages 565—584. Springer, 2015.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-structured
merge-tree (LSM-tree). Acta Informatica, 33(4):351-385, 1996.

Anna Pagh, Rasmus Pagh, and S Srinivasa Rao. An optimal bloom filter replacement. In
Symposium on Discrete Algorithms (SODA), pages 823-829. ACM-SIAM, 2005.

Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. A general-purpose
counting filter: Making every bit count. In International Conference on Management of Data
(SIGMOD), pages 775-787. ACM, 2017.

Jack Rae, Sergey Bartunov, and Timothy Lillicrap. Meta-learning neural bloom filters. In
International Conference on Machine Learning (ICML), pages 5271-5280. PMLR, 2019.
Sasu Tarkoma, Christian Esteve Rothenberg, Eemil Lagerspetz, et al. Theory and practice of
bloom filters for distributed systems. IEEE Communications Surveys and Tutorials, 14(1):131—
155, 2012.

Minmei Wang and Mingxun Zhou. Vacuum filters: more space-efficient and faster replacement
for bloom and cuckoo filters. Proc. VLDB Endowment, 2019.

Tan H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data compression.
Communications of the ACM, 30(6):520-540, June 1987.

Mingxun Zhou. Vacuum filter. https://github.com/wuwuz/Vacuum-Filter, 2020. Accessed:
2020-12-01.

https://github.com/wuwuz/Vacuum-Filter

	1 Introduction
	2 Preliminaries
	2.1 Background on Filters
	2.2 Model and Adaptivity

	3 The Telescoping Adaptive Filter
	4 Telescoping Adaptive Filter: Analysis
	5 Implementation
	6 Evaluation
	6.1 False Positive Rate
	6.2 Throughput

	7 Conclusion

