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Abstract 15 

In this study, the performance of three exponential decay models in estimating intensity 16 

change of tropical cyclones (TCs) after landfall over China is evaluated based on the best-track 17 

TC data during 1980–2018. Results indicate that the three models evaluated can reproduce the 18 

weakening trend of TCs after landfall, but two of them (M1 and M2) tend to overestimate TC 19 

intensity and one (M3) tends to overestimate TC intensity in the first 12 hours and underestimate 20 

TC intensity afterwards. M2 has the best performance with the smallest errors among the three 21 

models within 24 hours after landfall. M3 has better performance than M1 in the first 20 hours 22 

after landfall, but its errors increase largely afterwards. M1 and M2 show systematic positive 23 

biases in the southeastern China likely due to the fact that they have not explicitly included any 24 

topographic effect. M3 has better performance in the southeastern China, where it was originally 25 

attempted, but shows negative biases in the eastern China. The relative contributions of different 26 

factors, including landfall intensity, translational speed, 850-hPa moist static energy, and 27 

topography, to model errors are examined based on classification analyses. Results indicate that 28 

the landfall intensity contributes about 18%, translational speed, moist static energy and 29 

topography contribute equally about 15% to the model errors. It is strongly suggested that the TC 30 

characteristics and the time-dependent decay constant determined by environmental conditions, 31 

topography and land cover properties, should be considered in a good exponential decay model of 32 

TC weakening after landfall. 33 

Key words: landfalling tropical cyclones, exponential decay model, model performance.  34 
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INTRODUCTION 35 

Tropical cyclones (TCs) can exert severe destructive potential and impacts on human 36 

activities and often cause substantial property damage and loss of life after their landfall, 37 

particularly in a well-populated area with high economic development. The disaster potential 38 

caused by extremely strong winds, torrential rainfall, and storm surge is largely related to the 39 

intensity of a TC during and after its landfall. Therefore, understanding and predicting the 40 

weakening rate of TCs after landfall are of critical importance for disaster prevention by 41 

estimating the potential inland penetration of the TC-induced hazards. Although TCs mostly 42 

experience a rapid weakening after landfall, the rate of the weakening is determined by many 43 

factors, including the large-scale atmospheric circulation, the internal dynamics of the TC itself 44 

(such as size and intensity, etc.), the near-shore sea surface temperature (SST), and the land 45 

surface properties (such as the land cover, soil moisture and temperature, orography, etc.). These 46 

processes may interact nonlinearly with each other, leading to large variability in the weakening 47 

rate of TCs during and after landfall. This also makes the intensity forecasts of landfalling TCs 48 

even more challenging than the intensity forecasts of TCs over open oceans (e.g., Duan et al., 49 

2019).  50 

In the last three decades or so, considerable efforts have been devoted to understanding the 51 

processes that lead to TC weakening after landfall. The basic principle behind the TC weakening 52 

after landfall is known to be mainly due to the decrease in sensible and latent heat fluxes and the 53 

increase in surface friction over land (Tuleya and Kurihara, 1978; Tuleya et al., 1984; Tuleya, 54 
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1994). However, the detailed dynamic and thermodynamic processes involved are multiple, 55 

highly nonlinear, and varying in both time and space. Nevertheless, still considerable progress 56 

has been made to quantify the weakening rate of landfalling TCs. One of the efforts is to 57 

construct empirical models to fit the decay rate of maximum sustained near-surface wind speed 58 

(MSSW) of a TC after landfall (Schwerdt et al., 1979; Batts et al., 1980; Georgiou, 1985; Ho et 59 

al., 1987; Kaplan and DeMaria, 1995, 2001; Vickery and Twisdale, 1995; Knaff et al., 2005; 60 

Colette et al., 2010). Schwerdt et al. (1979) first showed that the decay of a TC after landfall in 61 

terms of central sea level pressure depended on the region where the TC made landfall. Batts et 62 

al. (1980) proposed a decay model for a TC over land with a decaying constant that varies with 63 

the angle at which the TC crosses the coastline. Georgiou (1985) modeled the decay of a TC after 64 

landfall as a function of the distance from the landfalling point. Ho et al. (1987) found that the 65 

decay rate was a function of the TC intensity at landfall.  66 

The most promising decay models are the so-called exponential decay models, which are 67 

shown to be better than other decay models and will be evaluated in this study. Kaplan and 68 

DeMaria (1995) developed a simple empirical decay model to estimate TC intensity change after 69 

landfall over the United States, which is an exponential decay equation in terms of the MSSW as 70 

a function of time after landfall. The model was later extended and refined for TCs making 71 

landfall in the New England area (north of 37oN) by Kaplan and DeMaria (2001) and for TCs 72 

making landfall over narrow landmasses by DeMaria et al. (2006). This decay model of 73 

landfalling TC intensity is used in the Statistical Hurricane Intensity Prediction Scheme (SHIPS, 74 

DeMaria and Kaplan, 1994, 1999) for TC intensity forecasts over the North Atlantic and the 75 
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Eastern Pacific (DeMaria et al., 2005), and have been shown to have good skills in predicting TC 76 

intensity after landfall. Bhowmik et al. (2005) further improved the decay model of Kaplan and 77 

DeMaria (1995) for TCs making landfall over India by considering different decay constants for 78 

two periods: the first 6 h after landfall and the remaining 12 h over land. Vickery (2005) 79 

proposed a decay model of TC intensity in terms of the increase in central sea level pressure after 80 

landfall over the United States by considering the exponential decaying constant as a function of 81 

three factors: the landfall intensity, the radius of maximum wind, and the translational speed of 82 

the TC at landfall. These factors are believed to considerably affect the TC weakening rate after 83 

landfall. Wong et al. (2008) constructed an empirical decay model for estimating TC intensity 84 

change after landfall along the South China coast. In this empirical decay model, the exponential 85 

decay constant is a function of TC intensity, the landward translational speed of the TC, and the 86 

850-hPa moist static energy at the time of landfall.  87 

Because all existing decay models of TC intensity change after landfall were developed for a 88 

particular region, it is unclear how well these models estimate TC intensity after landfall in 89 

regions beyond the region they were originally attempted. To address this issue, in this study we 90 

evaluated and compared the performance of three previously developed decay models in 91 

estimating TC intensity change in terms of the MSSW after landfall over China (namely, those 92 

developed, respectively, by Kaplan and DeMaria, 1995; Bhowmik et al., 2005; Wong et al., 93 

2008). We paid special attention to the relative contributions of various factors to the model 94 

errors and to identify the error sources and their regional dependence and various parameters, 95 

including the TC intensity at landfall, translational speed at landfall, and landfall latitude. Results 96 
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from this study can help future improvements of the decay models for estimating and predicting 97 

TC intensity change after landfall over China. The rest of the paper is organized as follows. 98 

Section 2 describes the data and exponential decay models evaluated in this study. The 99 

performances of the three decay models are evaluated in section 3. Section 4 examines the impact 100 

of different factors on the weakening rate of TC intensity after landfall and model errors. Major 101 

conclusions and a brief discussion are given in the last section. 102 

DATA AND DECAY MODELS 103 

Data 104 

The best-track TC data during 1980–2018 used in this study were acquired from the China 105 

Meteorological Administration–Shanghai Typhoon Institute (CMA/STI), which include latitude 106 

and longitude of the TC center, TC intensity in terms of the MSSW (2-min mean), and minimum 107 

sea level pressure at 6-h intervals. Note that the 6 hourly best-track data were linearly 108 

interpolated into 1-h intervals in the following analyses. The CMA/STI best-track data were used 109 

as the primary TC data because relatively more observational data were available over mainland 110 

China when the postseason TC analysis was conducted to generate the best-track TC data (see 111 

Ying et al., 2014 for more details). The European Centre for Medium-Range Weather Forecasts 112 

(ECMWF) interim reanalysis (ERA-Interim) data at the horizontal resolution of 0.75o×0.75o 113 

(Dee et al., 2011) were used to calculate the parameters in the decay models as described in the 114 

next subsection. 115 
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We only considered TCs making landfall over mainland China (excluding those making 116 

landfall over Taiwan or Hainan Islands) during 1980–2018. A landfalling TC is referred to a TC 117 

whose center crossed the coastline of mainland China at least once during its lifetime. Only TCs 118 

that made landfall and remained over land for at least three subsequent hours during the peak TC 119 

season (June–October) were included. If a TC re-entered the sea after landfall, we only 120 

considered the time period when the TC moved over land. The data period includes 135 cases of 121 

landfalling TCs over mainland China, with the average post-landfall duration of 32.6 h per TC. 122 

The tracks of these TCs are depicted in Fig, 1. Here the track density is defined as the occurrence 123 

frequency of TCs that made landfall over mainland China and passed through a 2o×2o grid box. 124 

Note that when two time (1 hourly) points from one TC that occurred in one grid box, we counted 125 

them twice in the track density. 126 

Description of three decay models 127 

As mentioned in section 1, the performance of the most recent three exponential decay 128 

models for estimating the time evolution of MSSW of TCs after landfall are evaluated and 129 

compared in this study. They are developed by Kaplan and DeMaria (1995), Bhowmik et al. 130 

(2005), and Wong et al. (2008), respectively, and named in short M1, M2, and M3 for convenient 131 

discussions below. Each of the three decay models is briefly described below to allow readers to 132 

know the similarities and differences among these models. 133 

The first model (M1) is that developed by Kaplan and DeMaria (1995), which is a simple 134 

exponential decay model for estimating the MSSW for TCs after landfall south of 37oN over the 135 
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United States. Kaplan and DeMaria (1995) found that the decay rate of MSSW of a TC after 136 

landfall is proportional to the MSSW of the TC at the time of landfall, and the MSSW decreases 137 

with time to a background wind speed. The decay model is mathematically expressed by 138 

V(t) = 𝑉𝑏 + (𝑉0 − 𝑉𝑏) exp(−𝛼𝑡),                     (1)  139 

where V is MSSW of the TC after landfall and 𝑉0 is V at the time of landfall, 𝛼 is the decay 140 

constant, 𝑉𝑏 is the background wind speed, t is the time after landfall. The background wind 141 

speed, 𝑉𝑏, is assumed to be 12 m s-1 in this study. The TC intensity at the time of landfall of each 142 

TC was provided by the National Meteorological Center (NMC) of CMA. The landfall intensity 143 

dataset is consistent with the CMA/STI best-track dataset. The decay constant 𝛼 in Eq. (1) was 144 

determined by minimizing the errors of the estimated against the observed values of V using the 145 

method of least squares from all samples of landfalling TCs in the study period, which resulted in 146 

the values of 𝛼 of 0.0768 h-1. In Kaplan and DeMaria (1995), the intensity at landfall was 147 

assumed to be the MSSW at the time closest to but proceeding landfall. Powell et al. (1991) noted 148 

that the rapid decrease in MSSW of a landfalling TC occurs within a few kilometers of the 149 

coastline as onshore winds quickly adjust to the increased roughness of the underlying land 150 

surface. Therefore, a reduction factor R was considered into the decay model by Kaplan and 151 

DeMaria (1995). However, in our study, the intensity at landfall is defined as that at the time 152 

when the TC center crossed the coastline of mainland China. Therefore, the factor R is not 153 

necessary here. The decay constant α for TCs making landfall over China is smaller than that of 154 

0.95 h-1 for TCs making landfall over the United States (Kaplan and DeMaria 1995). The 155 

difference in the decay constant could be partly due to the small samples of landfalling TCs in 156 
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Kaplan and DeMaria (1995) and partly due to the different large-scale environmental conditions 157 

in the two basins.  158 

The second model (M2) is the empirical decay model developed by Bhowmik et al. (2005) 159 

for estimating TC intensity crossing the east coast of India. They found that the decay rate during 160 

the first 6 hours after landfall is more than doubled than that of the next 6 hours in the region. 161 

Therefore, they used the same exponential decay model of Eq. (1) but they allowed the decay 162 

constant to be different in the two time periods. The decay constant becomes,  163 

𝛼 = {
{ln⁡[(𝑉0 − 𝑉𝑏)/(𝑉6 − 𝑉𝑏)]}/6, 𝑡 ≤ 6⁡ℎ,
{ln⁡[(𝑉6 − 𝑉𝑏)/(𝑉18 − 𝑉𝑏)]}/12, 𝑡 > 6⁡ℎ,

    (2) 164 

where V6 and V18 are MSSWs at 6 h and 18 h after landfall, respectively. The decay constant 𝛼 165 

was calibrated based on the mean decay curve from all samples of landfalling TCs. The decay 166 

constant 𝛼 in M2 is 0.09 h-1 in the first 6 h and 0.084 h-1 in the following 18 h for TCs making 167 

landfall over China. It is worth noting that we didn’t take the correction procedure as done in 168 

Bhowmik et al. (2005) for simplicity.  169 

The third model (M3) is the intensity decay model for TCs making landfall along the south 170 

coast of mainland China (110.5oE–117.5oE) developed by Wong et al. (2008). Different from the 171 

above two decay models, based on an analysis of various factors, Wong et al. (2008) found that 172 

the landfall intensity, landward translational speed, and 850-hPa moist static energy of the TC at 173 

landfall had significant impact on the decay constant. They constructed the following decay 174 

model 175 

V(t) = 𝑉0exp⁡(−𝛼𝑡),                                  (3) 176 

α = 𝛼0 + 𝛼1𝑉0 + 𝛼2𝑐 + 𝛼3/∆∅𝑚,                       (4) 177 



9 
 

where c is the landward translational speed of the TC at landfall, and ∅𝑚 is the 850-hPa moist 178 

static energy (∆∅𝑚 = ∅𝑚 − 335) at the time of landfall, which is defined as the 9-point average 179 

(i.e., a square box with sides of 7.5 latitudes) around the TC center as used by Wong et al. (2008) 180 

and was calculated using the ERA-Interim data. The constant coefficients of 𝛼0, 𝛼1, 𝛼2 and 𝛼3 181 

in the decay constant α are determined using the method of least squares from all samples of 182 

landfalling TCs over mainland China in the study period. The average α obtained for M3 is 183 

0.042 h-1, with 𝛼0 of -0.01495, 𝛼1 of -0.00085, 𝛼2 of -0.00012, and 𝛼3 of 2.9319. Different 184 

from M1 and M2, M3 includes the possible effects of environmental conditions and TC 185 

characteristics at the time of landfall on the decay rate of the TC weakening rate after landfall. 186 

Note that 𝛼 in M3 is much smaller than that in M1 and M2, this is mainly because there is no 187 

𝑉𝑏 in the decay equation of M3.  188 

EVALUTION OF MODEL PERFORMANCE 189 

We first examine the averaged intensity of landfalling TCs as a function of time after landfall 190 

(black curve in Fig. 2). We can see from Fig. 2 that rapid weakening of TCs occurs during the first 191 

12 hours after landfall. The weakening slows down afterwards. Eventually, the MSSW weakens to 192 

the background wind speed (about 30–40 hours after landfall). Consistent with previous studies 193 

(Kaplan and DeMaria, 1995; Bhowmik et al., 2005; Vickery, 2005; Wong et al., 2008), TCs after 194 

landfall weaken roughly exponentially with time in terms of the MSSW. This explains why the 195 

existing decay models are based on the exponential function of time as summarized in section 2b.  196 

The performances of the three decay models in estimating TC intensity change within 24 hours 197 
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after landfall are evaluated based on the basic statistical analysis of the model errors applied to all 198 

samples of landfalling cases over China during 1980–2018. Figure 2 compares the overall 199 

performances of the three models in terms of the mean intensity evolution after landfall against the 200 

CMA best-track data during 1980–2018. All three models can produce the overall weakening of 201 

TCs after landfall, but with considerable mean errors. In M1, the decay constant is assumed to be 202 

independent of time (Kaplan and DeMaria, 1995). Therefore, it can only roughly model the overall 203 

weakening trend of landfalling TCs but with relatively larger mean errors. On average, M1 204 

overestimates the intensity of landfalling TCs in the first 24 hours after landfall. This is similar to 205 

the result in Kaplan and DeMaria (1995), who also found that on average the decay model tends to 206 

overpredict the MSSWs of TCs inland. Different from M1, M2 uses two decay constants for two 207 

different time periods after landfall (Bhowmik et al., 2005). The use of different decay constants 208 

largely improves the model performance in estimating the weakening of TCs after landfall, 209 

especially during the first 12 hours after landfall. Particularly, the overall rapid weakening of TCs 210 

in the first 6 hours after landfall is well captured by M2. Although the mean error from M2 increases 211 

for the following 18 hours (Fig. 3a), the mean errors are much smaller than those from M1. 212 

Different from those in M1 and M2, the decay constant in M3 is determined by considering the TC 213 

intensity, landward translational speed, and 850-hPa moist static energy of the TC at the time of 214 

landfall. As a result, in M3, different TCs possess different decay constants determined by different 215 

environmental conditions and characteristics of the landfalling TCs. In this sense, M3 can reflect 216 

the different characteristics of each TC to some extent. On average, M3 overestimates the intensity 217 

of landfalling TCs in the first 12 hours after landfall while underestimates the intensity after TCs 218 
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move further inland. The mean error increases largely as TC move further inland.  219 

In addition to the mean intensity evolution, we also analyzed biases and mean absolute errors 220 

(MAEs) of the three decay models in estimating intensity of landfalling TCs after landfall during 221 

1980–2018 with the results shown in Fig. 3. Here, bias is defined as the estimated intensity minus 222 

the observed intensity in terms of the MSSW. On average, M1 and M2 tend to overestimate the 223 

intensity of landfalling TCs with positive biases during the whole period, while M3 tends to 224 

overestimate the intensity with positive biases during the first 12 hours after landfall and 225 

underestimate the intensity with negative biases afterwards (Figs. 3a, b). The average biases of M1 226 

are generally larger than those of M2, with the mean bias of 0.82 m s-1 for M1 versus that of 0.05 227 

m s-1 for M2. The errors of the two models initially increase with time, reach the peak of 1.17 m s-228 

1 at 9 hours after landfall for M1 and 0.24 m s-1 at 19 hours after landfall for M2, and then turn to 229 

decrease with time for both models. As a result, the smallest biases of M1 and M2 occur in the 230 

beginning and at the end of the evaluated time period, with larger errors in between. M3 has the 231 

moderate biases of -0.56 m s-1 during the first 24 hours after landfall, but the bias of M3 increases 232 

with time afterwards. The large increase in model error was consistent with the results in Wong et 233 

al. (2008), who mentioned that the MAE error and root-mean-square error (RMSE) increase with 234 

time after 12 hours after landfall. 235 

Compared the MAEs among the three decay models (Figs. 3c, d), the increasing MAEs with 236 

time after landfall is similar. Among them, M2 has the lowest averaged MAE of 3.02 m s-1 during 237 

the whole period, while M1 has the highest averaged MAE of 3.16 m s-1. M3 has the better 238 

performance during the first 20 hours after landfall than M1 and M2. However, after 20 hours after 239 
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landfall, the MAE of M3 significantly increases with time, resulting in the largest RMSE among 240 

the three models during 24 hours after landfall (Table 1). In Wong et al. (2008), the averaged MAE 241 

and RMSE are 1.8 m s-1 and 2.67 m s-1 at 12 h after landfall, which are a little bit lower than 2.66 242 

m s-1 and 3.66 m s-1 in ours. This is mainly because M3 was originally developed for estimating 243 

intensity change of TCs making landfall along the southern coast of China (Wong et al., 2008), 244 

while here we considered all samples of TCs making landfall over both southern and eastern coasts 245 

of mainland China. In additions, the rapid increase in the MAE of M3 with time is likely because 246 

the decay coefficient in M3 is determined with factors at the time of landfall, but the changes in 247 

both dynamic and thermodynamic processes after landfall are not considered. This strongly 248 

suggests that the time independent decay coefficient can’t reflect the intensity change after TCs 249 

move further inland, thus leading to the rapid error growth for M3.  250 

The method proposed by Aberson (2008) was adopted to further evaluate the model skills in 251 

estimating the landfalling TC intensity. By this method, all estimates and observations of the 252 

MSSWs are binned by certain intervals. At each forecast (estimate) time, a contingency table (or 253 

matrix) is filled with the count of each forecast-verification pair in the sample. The row and column 254 

in the table represent the number of times in intensity during certain intervals. Perfect 255 

forecasts/estimates are along the contingency table’s diagonal. The farther each forecast is from the 256 

diagonal, the larger the forecast error is. The skill score (S) is then calculated using the following 257 

equation,  258 

S = (C − E)/(T − E), 259 

E = ∑(𝑅𝑖𝐶𝑖)/𝑇, 260 
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where C is the number of correct forecasts, T is the total number of forecasts, and E is the number 261 

of forecasts expected to be correct, which is calculated for each contingency table. Ri and Ci are 262 

the total counts of cases in the ith row and ith column, respectively. Based on this equation, the skill 263 

scores of the three decay models are calculated. Here, we choose 3 m s-1 as intervals instead of 5 264 

knots used in Aberson (2008). The skill score is 1.0 if all forecasts are correct and equals to zero or 265 

negative if the forecasts have no skill.  266 

Figure 4 illustrates the skill scores of the three decay models for the period 1980–2018. The 267 

skill scores of all models almost decrease linearly with time, with the highest skill score of 268 

approximately 0.36 in the beginning, and become nearly zero or negative by 24 hours after landfall 269 

and afterwards. This means that the effective forecast time of the three decay models are 270 

approximately 24 hours, especially for M3. Note that the skill score of M2 and M3 decreases 271 

steadily during the whole period with relatively higher values than M1, indicating that M2 and M3 272 

outperforms M1 during this period, especially the period between 6 hours and 18 hours after 273 

landfall. This is consistent with the above conclusion.  274 

We further examine the spatial distribution of biases of the three decay models with the results 275 

shown in Fig. 5. To help see any orographic dependence of model errors, the topographic map of 276 

China is given in Fig. 5d. The distributions of biases of M1 and M2 are similar (Figs.5a, b), with 277 

large positive biases primarily in the southeastern China, where the Wuyi Mountains in Fujian 278 

Province are located (Fig. 5d), and slightly negative biases in the eastern China. The large positive 279 

bias is likely due to the topographic effect, which may enhance the weakening of a TC when it 280 

moves inland. The rough surface and the blocking effect of mountains in the southeastern China 281 
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can impose considerable effects on TC motion, structure, precipitation, and intensity (Duan et al., 282 

2019; Lin et al., 2018). These effects often enhance the weakening of a TC and slow down the TC 283 

motion, leading to the enhancement of local torrential rainfall (e.g., Li et al., 2019; Dong et al., 284 

2019). Because the decay constants in the decay models are obtained based on the fitting of 285 

landfalling TC samples, the orographic/terrain effects are not explicitly considered in the current 286 

decay models.  287 

Both M1 and M2 can’t reflect the effect of mountains along the coastal areas and, thus, 288 

overestimate TC intensity after landfall with positive biases over the southeastern China (Figs. 5a, 289 

b). By contrast, M3 performs relatively better in the southeastern China with a small area of positive 290 

biases, but it shows large negative biases in the eastern China (Fig. 5c), where the land is dominated 291 

by flat plain (Fig. 5d). This is mainly because M3 was originally developed for estimating intensity 292 

change of TCs making landfall along the southern coast of China (Wong et al., 2008). Since 293 

mesoscale mountains exist in the southern coastal regions of China and the effect of atmospheric 294 

environmental conditions along the southern coast of China at the time of landfall are partly 295 

considered. This explains why M3 performs the best for the intensity change of TCs making 296 

landfall in the southeastern China. However, the environmental atmospheric conditions with 297 

negligible terrain effects in the eastern China are different from those in the southern China. As a 298 

result, M3 overestimates the weakening rate of landfalling TCs in the eastern China with negative 299 

intensity biases.  300 

MODEL ERROR ANALYSIS 301 
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To identify the main error sources in the three decay models discussed above, we further 302 

analyzed three critical factors, namely TC intensity and translational speed, and the 850-hPa moist 303 

static energy for landfalling TCs, all at the time of landfall, to quantify contributions by different 304 

factors to the model errors. Since the topography may affect the model performance as well, the 305 

topography is also selected as the fourth critical factor for our analysis. Figure 6 illustrates the 306 

distributions of the key variables, including the landfall intensity, the landfall translational speed, 307 

and the 850 hPa moist static energy ⁡∆∅𝑚⁡ at the time of landfall. The majority of landfall TC 308 

intensity is between 20 m s-1–45 m s-1, with the mean landfall intensity of 31.82 m s-1. The 309 

translational speed at the time of landfall is mainly between 14 km h-1 and 32 km h-1 with the mean 310 

value of 22.3 km h-1. The mean⁡∆∅𝑚⁡is primarily between 6×103 J Kg-1 – 10×103 J Kg-1, with the 311 

mean value of 6.8×103 J Kg-1.  312 

We then examine the dependences of TC weakening rate after landfall on the four critical 313 

factors mentioned above. Firstly, we classified landfalling TCs into strong TCs (STCs, with MSSW 314 

≥32 m s-1) and weak TCs (WTCs, with MSSW <32 m s-1) at the time of landfall. The weakening 315 

rate of STCs is much higher than that of WTCs (Fig. 7a). The difference in the decay rates between 316 

STCs and WTCs is statistically significant over 99% confidence level during the whole period up 317 

to 24 hours after landfall (Table 2). After 24 h after landfall, the intensity of landfalling TCs 318 

continue to weaken but more slowly. Secondly, we classified the landfalling TCs into fast moving 319 

TCs (Fast, with translational speed ≥ 20 km hr-1) and slow moving TCs (Slow, with translational 320 

speed < 20 km hr-1) at the time of landfall. Here, the translational speed of a TC at the time of 321 

landfall was calculated as the distance traveled between 3 hours prior to landfall and 3 hours after 322 
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landfall. The slow-moving TCs are generally weaker at the time of landfall and, thus, show lower 323 

weakening rate than the fast-moving TCs (Fig. 7b). Such a difference is significant over 90% 324 

confidence level (Table 2) during the first 12 hours after landfall. This means that the slow moving 325 

TCs at the time of landfall is more favorable for the maintenance of their intensity after landfall. 326 

Thirdly, we classified the landfalling TCs into high moist static energy (Em_h, with⁡∆∅𝑚≥ 7.5 103 327 

J Kg-1) and low moist static energy (Em_l, with ∆∅𝑚< 7.5 103 J Kg-1) at the time of landfall. 328 

Although the initial intensity at landfall shows little difference between high and low ∆∅𝑚 groups 329 

(Fig. 7c), landfalling TCs in the Em_h group weaken more slowly than those in the Em_l group, 330 

especially during the first 12 hours after landfall. The difference in the weakening rate between the 331 

Em_h and Em_l groups is statistically significant over 90% confidence level in the first 12 hours 332 

after landfall (Table 2). This indicates that TCs with high moist static energy at landfall is more 333 

favorable for the maintenance of TC intensity after landfall. Finally, according to the topographic 334 

distribution along the coastal regions of mainland China given in Fig. 5d, we divided landfalling 335 

TCs into those making landfall in regions with visible topography (Topo, between 22oN and 29oN) 336 

and those without visible topography (No_topo, south of 22oN or north of 29oN). TCs in the two 337 

groups show little difference in intensity at the time of landfall, however, TCs in the Topo group 338 

weaken more rapidly during the first 18 hours after landfall than those in the No_topo group (Fig. 339 

7d, Table 2). These results strongly suggest that the topographic effect is an indispensable factor 340 

affecting the decay rate of landfalling TC over China.  341 

We see in section 3 that M1 and M3 have relatively larger errors than M2 and both show 342 

geographical dependences of model errors, where we speculated the larger errors could be related 343 
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to terrain effect for M1 and the time-independent decay coefficient for M3. To confirm those 344 

speculations, we did some further analyses. We separately analyzed TC samples making landfall 345 

north of 29oN over China, where there are no visible terrains, and compared the errors with those 346 

for all simples of TCs making landfall over China (Fig. 8). As expected, the decay rate for all TC 347 

samples is larger than that for TCs making landfall north of 29oN in the first 10 hours after landfall 348 

and then becomes smaller afterwards (Figs. 8a, b). Both MAE and bias (Figs. 8c, d) for TCs making 349 

landfall north of 29oN are much smaller than those for all samples of landfalling TCs over China 350 

in the whole period, with MAE of 3.16 m s-1 and bias of 0.82 m s-1 for all samples and 2.98 m s-1 351 

and 0.4 m s-1 for TCs making landfall north of 29oN, especially when TC moved farther inland. 352 

This indicates that errors for TCs north of 29oN with little terrain effect are close to or even smaller 353 

than those in Kaplan and DeMaria (1995). Therefore, the relatively large errors in M1 results 354 

partially from the ignorance of terrain effects as mentioned above.  355 

Since M3 was originally attempted for TCs making landfall over the South China coast, we 356 

show in Fig. 9a the MAEs for all TCs samples and samples of TCs making landfall along the South 357 

China coast (110.5o-117.5o), and in Fig. 9b the spatial distribution of biases and tracks for TCs 358 

making landfall along the South China coast. MAE for TCs making landfall along the South China 359 

coast is much smaller than that for all TC samples, with MAE of 3.16 m s-1 for all TC samples and 360 

MAE of 2.25 m s-1 for TC samples making landfall along the South China coast. Compared with 361 

the MAE of 1.8 m s-1 and RMSE of 2.67 m s-1 at 12 h after landfall in Wong et al. (2008), the MAE 362 

of 2.08 m s-1 and RMSE of 2.7 m s-1 in our study are very close to those at 12 h after landfall. 363 

Nevertheless, although the error for TCs making landfall along the South China coast increase mor 364 
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slowly with the time after landfall than that for all samples of landfalling TCs over China, the error 365 

still grows rapidly after TCs move further inland. This suggests that the rapid error growth in M3 366 

can be largely attributed to the fact that the decay coefficient in M3 is determined by factors at the 367 

time of landfall only. As TCs move further inland, the decay rate should be adjusted with changes 368 

in both dynamic and thermodynamic environmental conditions after landfall. This suggests that the 369 

time independent decay coefficient can’t reflect the intensity change of TCs that move further 370 

inland, thus leading to the rapid error growth for M3. Note that the error evolution in Fig. 9a is very 371 

similar to that in Wong et al. (2008, see their Fig. 10b). The above analysis confirms that the terrain 372 

effect and the time independent decay coefficient are two essential factors responsible for the 373 

relatively large errors in M1 and M3. 374 

To further examine the relative contributions of different key factors to model errors, we 375 

compared the mean relative errors (MREs) of different groups (STC/WTC, Fast/Slow, Em_h/Em_l, 376 

Topo/No_topo) and the percentage of difference in the model errors between different groups and 377 

all TCs. Here, the relative error is defined as the absolute error divided by the TC intensity at the 378 

evaluation time. We used the relative errors instead of the absolute errors to reduce the influence 379 

of TC intensity on model errors because strong TCs often have larger absolute errors than weak 380 

TCs. The percentage of difference is defined as the percentage of the difference in the MREs 381 

between one group and all landfalling TCs divided by the MRE of all landfalling TCs. The solid 382 

curves in the upper and middle parts of different panels in Fig. 10 represent the MREs of TCs in 383 

different groups, and the dashed curves represent the MREs of all samples of landfalling TCs from 384 

M1, M2 and M3, respectively. The dashed curves in the lower parts of different panels in Fig. 10 385 
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indicate the percentages of differences between MREs for TCs in different groups and MREs for 386 

all landfalling TCs, and the corresponding solid portions indicate the differences that are 387 

statistically significant over 90% confidence level between different groups.  388 

Compared MREs of all TC samples among M1, M2 and M3 (dashed lines in the upper part of 389 

each panel in Fig 10), MREs of M2 and M3 are relatively smaller than that of M1 during the whole 390 

period, and the averaged MRE of M3 is the smallest. In Figs. 10a, the MREs of M1, M2 and M3 391 

are significantly larger for STCs than for all TC samples during the whole period after landfall. On 392 

the contrary, the MRE for WTCs is significantly smaller than that for all samples of TCs. This 393 

indicates that all three models have larger relative errors for strong TCs than weak TCs. Note that 394 

the difference in MREs between STCs and WTCs becomes statistically significant during 3–10 395 

hours after landfall, with the largest contribution of about 18% from the initial TC intensity. Among 396 

them, the difference percentage in M1 is the largest, indicating that M1 is less stable than other two 397 

models. The MREs of the three models are larger for fast moving TCs than for all sample TCs 398 

during the first 16 hours after landfall and are smaller for slow moving TCs, especially during the 399 

first 2–6 hours after landfall, with the largest contribution over 15% (Figure 10b). This means that 400 

the forecast errors for landfalling TCs with faster translational speeds would be larger in the early 401 

stage after landfall. However, the MREs are similar between fast TCs/slow TCs and all samples of 402 

TCs in the later stage. This indicates that the impact of translational speed at the time of landfall 403 

on model errors is negligible except for the period shortly after landfall. The MREs for landfalling 404 

TCs with high moist static energy are smaller than landfalling TCs with low moist static energy in 405 

all three models (Fig. 10c), which is statistically significant for about 10–15 hours after landfall, 406 
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with the largest contribution over 15%. The MREs of M1 and M2 are larger for TCs in the Topo 407 

group than in the No_topo group almost for the whole period after landfall (Fig. 10d), with the 408 

largest contribution up to 15% between 4 and 8 hours and after 18 hours after landfall. However, 409 

the MRE of M3 is slightly lower for TCs in the Topo group and slightly higher for TCs in the 410 

No_topo group than that for all landfalling TCs with no significant difference between the Topo 411 

and No_topo groups, suggesting that the topography has some minor effects on the performance of 412 

M3 (Figs.10d).  413 

CONCLUSIONS AND DISCUSSION 414 

In this study, the performances of three exponential decay models (M1, M2, and M3) in 415 

estimating the intensity change in terms of the MSSW of TCs after landfall over China are 416 

evaluated and compared. The three models are developed by, respectively, Kaplan and DeMaria 417 

(1995), Bhowmik et al. (2005), and Wong et al. (2008). The decay constants in M1 and M2 are 418 

obtained by fitting the mean MSSWs of all TC samples making landfall over mainland China. 419 

The difference between M1 and M2 is in that only one decay constant is fitted in M1 but two 420 

different decay constants are fitted in M2 for different time periods after landfall. The decay 421 

constant in M3 is determined by several factors, including the TC intensity, landward 422 

translational speed, and 850-hPa moist static energy, all at the time of landfall. The performances 423 

of the three models are evaluated based on all TC samples making landfall over mainland China 424 

during 1980–2018. 425 
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Results indicate that these models can reproduce the weakening trend of TCs after landfall 426 

and have reasonable skills in estimating/predicting TC intensity change after landfall. On 427 

average, M1 and M2 tend to overestimate TC intensity after landfall, while M3 overestimates the 428 

TC intensity in the first 12 hours after landfall and underestimates the intensity after TCs moving 429 

further inland. M2 has the best performance with the smallest mean errors among the three 430 

models within 24 hours after landfall, which is mainly due to the fact that two decay constants are 431 

fitted for two different time periods in M2 based on the mean intensity change of all TC samples 432 

after landfall. M3 shows relatively better performance than M1 in the first 20 hours after landfall, 433 

but its errors increase largely after TCs move further inland. This is because M3 considers several 434 

environmental factors and/or the characteristics of the TCs only at the time of landfall in 435 

determining the decay constant. 436 

M1 and M2 have similar spatial error distributions with large positive biases primarily in the 437 

southeastern coastal regions of China, where the Wuyi Mountains in Fujian Province are located. 438 

Because the possible orographic effects are not explicitly considered in M1 and M2, both models 439 

overestimate TC intensity with positive biases in the southeastern China. M3 performs better in 440 

the southeastern China, but shows negative biases in the eastern China. This is because M3 was 441 

originally developed to estimate the intensity change of TCs making landfall along the southern 442 

coast of China (Wong et al., 2008). Since both the terrain and the environmental conditions in the 443 

eastern China coast are different from those in the southeastern China coast, it is not surprising 444 

that M3 performs better over the southeastern China than over the eastern China. The 445 

classification analyses based on landfall intensity, translational speed, and 850-hPa moist static 446 
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energy of the TCs at the time of landfall, and topography of the landfalling region are conducted 447 

to examine the relative contributions of different factors to model errors. Results demonstrate that 448 

these four factors all contribute to model errors of M1, M2 and M3, with the maximum 449 

contribution of about 18% by landfall intensity, and about 15% equally by translational speed, 450 

moist static energy and topography during different periods after landfall.  451 

Although the three exponential decay models evaluated in this study can reproduce the 452 

weakening trends of TCs after landfall, their performances are not perfect. Based on results from 453 

this study, we can recommend several aspects for future development/improvement of the decay 454 

model of landfalling TC intensity. First, topography could have a significant effect on the model 455 

performance as inferred from the spatial error distribution. However, such an effect has not been 456 

explicitly considered in the current intensity decay models. Second, different performances of M1 457 

and M2 indicate the importance of the time-dependent decay constant in a decay model. TCs 458 

often have a larger decay rate in the first period than in the second period after landfall. Third, 459 

including the effects of environmental conditions and TC characteristics as factors in determining 460 

the decay constant has some benefits to the performance of a decay model. However, only the 461 

conditions at the time of landfall might be not enough. Future efforts may consider changes in the 462 

environmental conditions based on predictions of numerical weather prediction models and also 463 

the land surface properties, such as the effect of large lakes and so on. In addition, the inner core 464 

size of a TC at the time of landfall may affect the decay rate of the TC intensity after landfall as 465 

well (Vickery, 2005). Therefore, the time-dependent decay constant determined by environmental 466 

conditions, topography and land cover properties, and the TC characteristics (including the inner 467 
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core size) is necessary to further improve the exponential decay models for estimating TC 468 

intensity change after landfall. Efforts in this direction are under way and the results will be 469 

reported in a future publication in due course. 470 
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TABLE 1. The decay rate, mean absolute error (MAE), bias and root-mean-square error 572 

(RMSE) from M1, M2 and M3 during the first 12 h or 24 h after landfall. 573 

Decay 

rate 

(m s-1 h-1) 

α 

(h-1) 

MAE Bias RMSE 

12h 24h 12h 24h 12h 24h 

M1 0.0768 2.72 3.16 0.81 0.82 3.74 4.15 

M2 0.09 0.084 2.60 3.02 0.06 0.05 3.6 4.02 

M3 0.042 2.66 3.16 0.57 -0.56 3.66 4.29 

  574 
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TABLE 2. Decay rates (m s-1 h-1) during different periods (0–6 h, 0–12 h, 0–18 h, 0–24 h) after 575 

landfall for different classification groups (STC/WTC, Topo/No_topo, Fast/Slow, Em_h/Em_l). 576 

Boldface and italic fonts indicate the differences being statistically significant over the 90% 577 

and 99% confidence level, respectively, based on the Student’s t test. 578 

Decay 

rate 

(m s-1 h-1) 

Intensity Topography Speed ∆∅𝑚 

STC WTC Topo No_topo Fast Slow Em_h Em_l 

6 h -1.89 -0.94 -1.69 -1.11 -1.55 -1.29 -1.24 -1.56 

12 h -1.48 -0.73 -1.24 -0.92 -1.18 -0.98 -1.01 -1.16 

18 h -1.18 -0.6 -0.98 -0.79 -0.93 -0.83 -0.83 -0.92 

24 h -0.96 -0.47 -0.76 -0.65 -0.77 -0.66 -0.67 -0.73 

  579 
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 580 

FIGURE 1. Track density of landfalling TCs. The white lines represent the tracks of landfalling 581 

TCs.   582 
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 583 

FIGURE 2. The mean decay curves of maximum sustained near surface wind (m s-1) for 584 

landfalling TCs over China during 1980–2018 from CMA dataset (black), and from M1 (red), 585 

M2 (blue) and M3 (green).   586 
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 587 

FIGURE 3. Distribution of biases (a, b, m s-1) and mean absolute errors (MAE, c, d, m s-1) of M1 588 

(red), M2 (blue) and M3 (green) for TCs making landfall over China during 1980–2018. The 589 

top (bottom) of each vertical line means the 95th (5th) percentile, the upper (lower) bound of each 590 

box means the 75th (25th) percentile, and the horizontal line in each box means the median. The 591 

solid curve denotes the average intensity in (b, d). The bold curves show the 3-point running 592 

average in (a, c).  593 
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 594 

FIGURE 4. Skill score of M1 (red), M2 (blue), and M3 (green) for TCs making landfall over China 595 

during 1980–2018.  596 
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 597 

FIGURE 5. The spatial distribution of biases (m s-1) in (a) M1, (b) M2, and (c) M3 for TCs making 598 

landfall over China during 1980–2018. (d) Topographic map of China. 599 

600 
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 601 

FIGURE 6. Distribution of (a) the landfall intensity (m s-1), (b) the translation speed at landfall 602 

(km h-1), and (c) the mean 850 hPa moist static energy at landfall (∆∅𝑚, 103 J Kg-1).  603 
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 604 

FIGURE 7. As in Fig. 3b, but for (a) STC (blue) vs WTC (red), (b) Fast (blue) vs Slow (red), (c) 605 

Em_h (blue) vs Em_l (red), and (d) Topo (blue) vs No_topo (red), see text for details. 606 
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 607 

FIGURE 8. The mean decay curves of maximum sustained near-surface wind (m s-1) (a) for all 608 

samples of landfalling TCs, and (b) for TCs making landfall north of 29oN over China. 609 

Distribution of (c) MAE (m s-1) and (d) biases (m s-1) of all samples of landfalling TCs (red 610 

lines) and TCs making landfall north of 29oN (black lines) over China during 1980–2018.   611 
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 612 

FIGURE 9. (a) Distribution of MAE (m s-1) of M3 for all samples of landfalling TCs (red line) 613 

and for TCs making landfall along the South China coast (110.5o-117.5o, black line). (b) The 614 

spatial distribution of biases (m s-1) in M3 for TCs making landfall along the South China 615 

coast. The black lines in (b) represent the tracks of landfalling TCs.  616 
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 617 

FIGURE 10. Mean relative errors (MRE) of all samples of landfalling TCs (dashed) and the 618 

MREs of different classification groups (solid) in the upper and middle part of each panel, and 619 

the percentage of difference in MREs between different groups and all TCs in the lower 620 

panels. The solid portions in the lower panels indicating the difference being statistically 621 

significant over 90% confidence level, for (a) landfall intensity, (b) translation speed, (c) moist 622 

static energy, (d) topography.  623 


