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ABSTRACT:  Machine learning (ML)-accelerated discovery requires large amounts of high-
fidelity data to reveal predictive structure–property relationships. For many properties of interest 
in materials discovery, the challenging nature and high cost of data generation has resulted in a 
data landscape that is both scarcely populated and of dubious quality. Data-driven techniques 
starting to overcome these limitations include the use of consensus across functionals in density 
functional theory, the development of new functionals or accelerated electronic structure theories, 
and the detection of where computationally demanding methods are most necessary. When 
properties cannot be reliably simulated, large experimental data sets can be used to train ML 
models. In the absence of manual curation, increasingly sophisticated natural language 
processing and automated image analysis are making it possible to learn structure–property 
relationships from the literature. Models trained on these data sets will improve as they 
incorporate community feedback. 
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Introduction 

 High-throughput computation or experiment coupled with machine learning (ML) has 

begun to address combinatorial challenges in materials discovery.[1-3] ML-accelerated 

discovery requires a large, high-fidelity data set. Data generation has benefited from recent 

advances in computing power and algorithms as well as the development of flow reactors, 

parallel experiments, and lab automation.[1,3] Computational (e.g., the Materials Project[4]) and 

experimental (e.g., Cambridge Structural Database (CSD)[5]) databases have made large data 

sets accessible for community use.[2] 

 Interest in materials discovery has moved toward harder targets and a focus on robust 

materials, where challenges arise for generation and curation strategies (Figure 1). For example, 

there is a trade-off between enumerating hypothetical materials versus studying those that have 

already been synthesized but perhaps not yet studied for the property of interest (Figure 1). 

Although density functional theory (DFT) is widely used for virtual high-throughput screening 

(VHTS), properties computed from DFT can be sensitive to the density functional approximation 

(DFA) used.  DFA errors are often highest in promising functional materials classes that exhibit 

challenging electronic structure, instead requiring cost-prohibitive wavefunction theory (WFT) 

calculations.[6,7] Moreover, some properties of interest may be difficult to obtain from 

computation (e.g., synthesis outcomes[8,9] or materials stability[10-12]). High-throughput 

experimentation remains time-intensive relative to low-cost calculations and is often limited in 

scope to a single class of materials amenable to automated synthesis and characterization. With 

the exception of structural data, experimental properties are seldom reported by multiple sources 

in a standardized format. As a result, the source of data (e.g., DFT computed vs experimentally 
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measured) and its quality may limit the complexity and accuracy of any data-driven models 

(Figure 1). 

 
Figure 1. Overview of approaches to generate data for accelerated materials discovery. A 
depiction of the different data sources for structures and properties that can be derived from 
computation, experiments, or both to build large-scale databases for accelerated materials 
discovery. 
 

In this Opinion, we describe how researchers are addressing challenges in data scarcity 

and data quality in ML-accelerated discovery as follows. The topics discussed in this Opinion are 

as follows. We introduce how researchers address electronic structure method sensitivity in data 

for ML models, how ML can be used to develop models that go beyond conventional (i.e., DFT) 

accuracy, and how experimental data can be used in combination with ML to overcome 

limitations from conventional physics-based modeling. We then discuss how ML models can be 

trained to predict synthesis conditions, properties from either a single data set source or obtained 

from the literature. Finally, we discuss how community feedback has been solicited and 

incorporated to improve ML models.    
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Addressing electronic structure method sensitivity 

Properties obtained with DFT depend on the choice of DFA, with no single DFA 

universally predictive for all materials.[7] DFAs are instead selected based on intuition or 

computational cost, thus introducing bias in data generation and reducing the quality of the data 

in a way that degrades utility for discovery efforts. To address this challenge, McAnanama-

Brereton and Waller developed an approach[13] to identify optimal DFA-basis set combinations 

using game theory. They devised a three-player game addressing accuracy, complexity, and 

similarity of DFA-basis set combinations and solved the Nash equilibrium to yield the optimal 

combination. Gastegger et al.[14] applied a genetic algorithm (GA) to explore a space of popular 

DFAs and confirm that the GA is capable of identifying key components of a DFA that will be 

accurate on a benchmark dataset.  

An alternative to choosing the functional most applicable to a given problem is to 

leverage consensus among predictions from multiple DFAs. Duan et al. computed[15] three 

properties for over 2,000 transition-metal complexes (TMCs) with 23 representative DFAs 

spanning multiple correlation families and “rungs” (e.g., semi-local to double hybrid). This study 

uncovered universal design rules that were invariant to DFA, basis, or data set choice from 

feature importance analysis of kernel ridge regression (KRR) models. They applied 23 ANNs, 

each fit to data from a single DFA, to discover spin-crossover (SCO) complexes, which have 

near-degenerate high-spin and low-spin states that are disproportionately sensitive to variations 

in DFA parameters.[16] By comparing hypothetical lead complexes to experimental SCO 

complexes, they noted that the leads recommended by a single-DFA-trained ANN (e.g., the 

B3LYP hybrid DFA) occupied a larger region of chemical space, indicating that many were false 

positives (Figure 2a). By requiring consensus among predictions of more than half of the DFA 
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ANNs, they overcame this limitation of the single-DFA approach, producing robust (i.e., in 

agreement with experiment) candidate materials. However, a consensus-based approach may not 

be ideal for property prediction that benefits from error cancelation. Bartel et al.[10] compared 

seven ML models to predict formation energy and stability on 85,014 Materials Project Database 

compounds. They found that although these models have good accuracy on predicting formation 

energies comparable to a DFA, they lacked the error cancellation present in a standard DFA for 

predicting relative properties, suggesting caution in applying data-driven models blindly in 

materials discovery.  

 
Figure 2. Machine learning approaches addressing fidelity limitations in quantum chemistry. a) 
uniform manifold approximation and projection (UMAP) visualization of SCO complexes from 
187 200 TMCs reported by Duan et al.[15]: the entire design space (gray), leads predicted by a 
single NN trained on B3LYP data (red), by the consensus approach of NNs trained on 23 DFAs 
(blue), and experimental observation (green) with approximate convex hulls shown as solid lines. 
b) Performance of MR/SR classification on a set of 3165 equilibrium or distorted organic 
molecules using different methods reported by Duan et al.[17]: k-means clustering (red), a 
cutoff-based approach (green), and a semi-supervised learning method named virtual adversarial 
training (VAT, blue). c) Schematic of a fully differentiable KS-DFT framework reported by 
Kasim et al.,[18] with NNs representing a trainable exchange-correlation functional that yields 
both the electron density and energy. d) Illustration of the network architecture of SchNOrb 
developed by Schutt et al.[19], starting from initial representations of atom types and positions 
(top), continuing with the construction of representations of chemical environments of atoms and 
atom pairs (middle) before using these to predict energy and Hamiltonian matrix respectively 
(bottom). Reproduced with permission from studies reported by Duan et al. [15] and [17], Kasim 

a)

b)

c) d)
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et al.[18], and Schutt et al. [19], published by The Royal Society of Chemistry 2021, the 
American Chemical Society 2020, the American Physical Society 2021, and the Nature 
Publishing Group 2019, respectively. 

 

Data-driven methods have augmented and supplanted the conventional approaches of 

trial and error or local fitting of parameters to revisit the search for a universal exchange-

correlation functional.[20] Using Bayesian inference, a new DFA can be assembled as a linear 

combination of functional forms with statistically inferred coefficients, accelerating DFA design 

using known functional forms and alleviating the risk of overfitting during DFA 

parameterization.[21] ANNs have been used as an ansatz for designing DFAs due to their ability 

to represent any function. Brockherde et al. developed ML models that directly learn the ground-

state density of a system, reducing the computational cost of solving the Kohn–Sham (KS) DFT 

equations iteratively.[22] By incorporating the KS equations as a regularization term in the loss 

function and providing feedback to ANNs in each training iteration, Nagai et al.[23] and Li et 

al.[24] demonstrated that the ANN functional can be learned with very few training molecules. 

Kasim et al. recast KS-DFT in a fully differentiable framework, enabling a density functional 

expressed as an ANN to be optimized with backpropagation, which demonstrated transferability 

to other small molecules containing elements and bond types not in the training set (Figure 

2c).[18] Beyond explicitly encoding KS equations in the framework of ML models, other efforts 

have focused on directly learning the energy mapping using electron densities.[25,26] These 

studies highlight the importance of imposing physical constraints during ML-based DFA design. 

Other emerging efforts in ML for DFT have extended to improving orbital-free DFT[27] and 

multiconfiguration pair-DFT.[28]  

Beyond DFT with ML 
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 Due to the use of a single Slater determinant of the non-interacting system in KS-DFT, 

DFT can fail to describe the electronic structure of systems that contain strong multireference 

(MR) character. Diagnostics to detect the degree of MR character using quantities of the 

wavefunction are often used to decide whether it is necessary to carry out a MR wavefunction 

theory (WFT) calculation. By investigating 3,000 equilibrium or distorted small organic 

molecules[29], Duan et al. found that different MR diagnostics seldom agree with each other (i.e., 

poor linear correlations), with high-cost WFT-based diagnostics better able to predict MR 

character than low-cost DFT diagnostics.[30] They observed consensus among MR diagnostics 

for the most extreme MR or single-reference (SR) points, motivating ML approaches that use 

only partially labeled data (i.e., semi-supervised learning).[17] A semi-supervised ANN classifier 

outperformed approaches typically used by experts to classify MR character (Figure 2b). 

Additionally, MR/SR classifiers were used to identify “DFT-safe” islands for chemical discovery, 

areas of chemical space where SR DFT predictions were expected to be of reasonable quality.[31]  

 In cases where strong MR character is detected, MR WFT methods are usually needed. 

These methods, however, are computationally demanding, despite some promising accelerations 

demonstrated by GPU-based parallel computing[32]. MR WFT also typically requires manual 

intervention. This challenge has started to be addressed by automated tools for active space 

selection using orbital entanglement analysis from loosely converged WFT calculations,[33] 

generalized valence bond orbitals,[34] a ranked orbital approach,[35] and ML models.[36]  

 ML has been used to accelerate WFT methods from an algorithmic perspective. For 

example, ANNs[37] and restricted Boltzmann machines[38] were applied to directly predict the 

coefficient of a configuration state function (CSF) in the iterative configuration interaction 

process to identify which CSFs could be pruned. Similarly, ANNs were used to initialize the 
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guessed coupled cluster (CC) excitation amplitudes of a system using MP2-level molecular 

orbitals and one-electron integrals as inputs, reducing the number of iterations required.[39] In 

addition, ANNs[19] and KRR models[40] have been used to learn new representations of 

wavefunctions, enabling calculations of electron density, density of states, and dipole moments 

without explicit WFT calculations (Figure 2d). Hermann et al.[41] used ANNs as a wavefunction 

ansatz in quantum Monte Carlo, parameterizing a multi-determinant Slater-Jastrow-backflow 

type wavefunction. By applying the variational principle on this ANN wavefunction ansatz, they 

showed that the correlation energy can be quickly recovered (ca. 99%) for most of their test 

systems using very few (i.e., 10) determinants. To date most approaches have only been 

demonstrated on small systems with paired electrons, where MR WFT calculations can be 

performed easily. It is imperative to extend these developments to large systems with challenging 

electronic structure (e.g., metal–organic bonding) in order to impact ML-accelerated discovery of 

novel materials.  

ML with insight from experiments  

Many fundamental electronic properties, such as the ground-state spin of a TMC, remain 

challenging to determine by computation due to strong dependence on the method used.[3,6] In 

some cases, a combination of experimental data and computation can overcome these 

limitations.[42,43] One of the largest sources of data is the CSD[5], which contains over 100,000 

TMCs[16,44] and 90,000 metal–organic frameworks[45,46] (MOFs). Taylor et al. used an 

ANN[16] trained on DFT bond lengths to assign ground spin states to TMCs based on their CSD 

structures.[42] They confidently assigned spin states to around 90% of a large (ca. 2000) set of 

CSD Fe(II/III) TMCs by leveraging the relative DFA-invariance of DFT bond lengths in 

comparison to energetics.[42] This combined experiment-computation ML approach accelerated 
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spin state assignment by orders of magnitude, avoiding decades of experimental effort (e.g., 

Mössbauer spectroscopy) that would otherwise be necessary.  

 Selectivity of a TMC catalyst is also difficult to predict solely by computation, because 

small barrier height differences (i.e., 1 kcal/mol) lead to divergent selectivity.[47] Santiago et al. 

built multiple linear regression (MLR) models combining descriptors from DFT calculations 

with experimental enantioselectivity data.[48] They demonstrated that DFT-derived physical 

organic descriptors[49] could predict experimental enantioselectivity. Maley et al. generalized 

this approach by using random forest[50] models trained on descriptors derived from DFT 

geometries to predict experimental selectivity and demonstrated the model for iterative ligand 

design.[51] Thus, ML models that integrate experiment and computation overcome cost or 

accuracy limitations that are present when using one of these approaches in isolation. 

ML for synthesis conditions  

 The subtle and complex relationships that determine the optimal reaction conditions to 

achieve a desired chemical transformation[8,9,52,53] are a poor fit for the predictive capabilities 

of low-cost first-principles computation. Intense effort has therefore focused on using ML to 

extract information on how conditions[54-56] such as temperature, time, and pH alter synthesis 

outcomes. The ChemDataExtractor toolkit[57,58] automates literature data extraction from 

thousands of manuscripts, including for use in generative models.[59] Kim et al. combined the 

ChemDataExtractor workflow with natural language processing (NLP) to identify how 

temperature and base concentration affect carbon nanotube formation.[9] For inorganic 

materials, Kim et al. and Jensen et al. have studied how precursor identities, precursor ratios, or 

additives[60] affect perovskite[56], oxide[9], and zeolite[61] formation. Thus, data driven 
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machine learning models trained on either a single data set or on extracted literature are poised to 

provide critical new insights into the relationship between reaction conditions and synthesis 

outcomes. 

Insights from single-source experimental data 

 Negative results are often underrepresented in the literature, and this positive publication 

bias creates a data imbalance in models trained on literature data. This has motivated single labs 

to carry out large experimental screens that generate both successful and failed experiments. 

Raccuglia et al. harnessed 3,955 completed reactions consisting of both successful and failed 

experiments and used this data on reaction conditions to inform future reactions.[62] Jia et al. 

curated a set of 548 experiments[63] on inorganic materials with randomly sampled synthesis 

conditions to demonstrate that the most popular synthesis conditions are not the most optimal. 

Instead, optimizing synthesis conditions increased the surface area of the HKUST-1 MOF[53], 

consistent with observations that reported MOF surface areas generally increase as synthesis 

recipes are improved over time.[52] Demonstrating the benefits of curating a large data set under 

consistent conditions, Batra et al. investigated stability in the presence of water for 207 

systematically synthesized MOFs and used ML to determine that metal ionization potential and 

ligand-to-metal ratio were predictive of MOF stability in water.[11] Yang et al. collected 

compositional and optical data on over 350,000 three-cation metal oxides to find materials that 

were stable in acidic conditions and active for electrocatalytic oxygen evolution, and they used 

statistical modeling to create maps between composition and optical properties.[64] While such 

studies ensure control over data quality and provide essential insight into the role of researchers 

in data curation, these studies are necessarily limited by what data can be generated by a single 

laboratory. 
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Leveraging community data in ML  

 When high-throughput, automated tools[53,64] are unavailable or incompatible with the 

quantity being curated, data collection can be limited in scope due to the effort required to 

perform each experiment, motivating instead a focus on community data resources like the 

CSD.[11,62,63] Taylor et al. curated[65] a set of bimetallic complexes from the CSD with 

emergent metal–metal interactions that are challenging to predict with first-principles DFT 

modeling. They used a subset of graph-based revised autocorrelation (RAC) descriptors to 

predict metal–metal bonding with KRR models, and they fit MLR models trained on RAC inputs 

to predict experimental redox potentials. Analysis of the most important features in the models 

revealed the overriding importance of metal group (i.e., electron configuration) rather than 

period in determining the properties of these complexes.  

For MOFs, it is challenging to leverage all of the characterized structures in the CSD due 

to poor crystal structure quality and the presence of in-pore solvents. These limitations motivated 

the development of the Computation-Ready Experimental[66] (CoRE) MOF database, which 

contains sanitized experimental structures of nearly 12,000 MOFs (Figure 3). Moosavi et al. 

analyzed the chemical diversity of CoRE[66] MOFs and observed that experimental MOFs had 

significantly greater diversity in the metal secondary building unit (SBU) chemistry than was 

present in large (i.e., 100–300k) hypothetical MOF data sets[67] (Figure 3). They concluded that 

ML models built from limited hypothetical MOFs do not generalize for property prediction on 

diverse experimental structures. In another study, Jablonka et al. used user-assigned formal 

oxidation states of MOF SBU metals deposited in the CSD record to train a soft voting classifier 

ML model and identify where CSD oxidation states are likely incorrectly assigned[46]. 
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Figure 3. Data curation, analysis, and model prediction on MOFs. Data curation procedure for 
the CoRE MOF 2019[66] database. Experimental crystal structures were restored for subsequent 
analysis (top left). Diversity analysis of hypothetical MOF spaces (colored in purple or red) 
relative to the full design space (gray) as t-SNE plots. Radar charts show three diversity metrics: 
variety (V), balance (B) and disparity (D), for three databases, CoRE MOF 2019[66], BW-
DB[68], and ToBaCCo MOFs[69] (top right). Dot plots showing predicted activation stability 
(probability, no units from 0 for unstable to 1 for stable) vs actual class labels for MOFs in the 
test set for the solvent-removal stability data set. Data points are represented as translucent 
circles to depict data density and colored by the classification correctness: correct (green) and 
incorrect (red). Example structures and corresponding CSD refcodes for correct classifications 
are shown with blue outlines for two unstable MOFs: XEJTIR and MEGBAD, and two stable 
MOFs: UKIQOV and AVILEY (bottom left). Parity plots for predicting thermal decomposition 
temperatures in the thermal stability data set colored by kernel density estimation (KDE) density 
values, as indicated by inset color bars. In all cases, a black dashed parity line is shown (bottom 
right). Reproduced with permission from studies reported by Moosavi et al.[67], Chung et 
al.[46], and Nandy et al.[12], published by the Nature Publishing Group 2020, the American 
Chemical Society 2019, the American Chemical Society 2021, respectively.  
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 Nandy et al. expanded on this approach by using over 5,000 structures from the CoRE 

MOF database[66] and extracting data from the associated manuscripts rather than relying on 

information deposited as part of the CSD record.[12] They used NLP to determine material 

stability with respect to solvent removal (i.e., for activation) and trained ANN classifiers on this 

data set. They also automated the extraction of decomposition temperatures from 

thermogravimetric analysis (TGA) traces and trained an ANN regression model on these 

temperatures (Figure 3). At odds with existing heuristics[70], a MOF with a large pore volume 

was correctly predicted by the ML models to be stable.[12] Nandy et al. used the ML models to 

suggest alterations (e.g., linker fluorination or metal substitution) that should imbue stability in 

previously unstable MOFs.[12] NLP-based property extraction from the MOF literature is 

limited by the challenges of associating a measured property with a unique MOF name or 

structure.[71] Park et al. used heuristics[71] to identify MOF names without resorting to named-

entity recognition.[72-75] 

Although some properties present in the scientific literature can be extracted with NLP, 

spectra are reported in figures that cannot be parsed by NLP tools. Jiang et al. and Schwenker et 

al. have built ML models from hand-labeled data to identify subfigures within compound figures 

and classify their figure type (i.e. microscopy images, graphs, or illustrations).[76,77] Other 

work has automated identification of image length scales[77,78] to quantify particle distribution 

sizes or materials length scales. Thus, advances in both text and image recognition as well as 

community standards for more systematic naming and reporting of data is expected to further 

enhance the data quantity and quality needed for predictive deep learning models.  

Community feedback on ML predictions 
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 Soliciting community feedback for ML models is essential for improving data fidelity 

and user confidence in model predictions, especially where subjectivity can be expected in the 

data. An effort to design organic light-emitting diodes used voting through a web interface to 

quantify synthetic accessibility of candidate materials.[79] The game theory density functional 

recommender by McAnanama-Brereton and Waller was incorporated into a web interface as a 

Turing test, collecting community feedback.[13] Similarly, Bennett et al. collected 12,553 data 

points on porous organic cage (POC) precursors labeled by three expert chemists to quantify 

synthesizability. They used this data to construct random forest ML classifiers to predict 

synthesizability of new POCs, replicating decisions made by expert synthetic chemists[80] 

(Figure 4).  
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Figure 4. Examples of community feedback interfaces. Sections of the MOFSimplify 
interface[81] for selecting a MOF for analysis and predicting properties using ANNs trained on 
experimental literature data (top left). Feedback interface of MOFSimplify for evaluating ANN 
model predictions (bottom left). Community survey questionnaire for quantifying MOF 
colors[82] (top right). Web interface for determining precursor synthesizability for POCs 
(bottom right). Reproduced with permission from studies reported by Nandy et al.[83], Jablonka 
et al.[84], and Bennett et al.[80], published by the Nature Publishing Group 2021, the Royal 
Society of Chemistry 2021, the American Chemical Society 2021, respectively. 
 

Jablonka et al.[84] used a survey to quantify colors in CSD MOF descriptions. They 

gathered 4,184 quantitative RGB assignments for 162 qualitative colors used to describe MOF 

crystals (Figure 4).  They analyzed this feedback and determined that colors such as beige 

corresponded to widely varying RGB values from different scientists, motivating a more 

quantitative scale for CSD color descriptions. Nandy et al. released a web interface[81] for 

improving the fidelity of NLP-derived data and testing user confidence in ML models that 

predict stability[12] of new MOFs.[83] To promote community-based active learning, the 

website solicits feedback on model predictions and encourages deposition of data (Figure 4). 

This feedback can improve the fidelity of NLP-extracted data and enrich data-poor regions of 

MOF chemical space.[83]   

Conclusion 

 Although faster computational chemistry and robotic laboratory instrumentation have 

made it possible to obtain materials properties on a kilo-compound scale, the quest for novel and 

robust materials by ML-accelerated discovery poses new challenges for the scale and quality of 

data required from simulation and experiment. Recent efforts to address these limitations for 

high-fidelity VHTS have included using consensus among multiple DFAs,[15,16] applying ML 

to design new DFAs,[21,22] and accelerating WFT methods.[19,37] Researchers are using high-
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throughput experimentation and including failures to reduce bias when generating ML model 

training data,[53,64] parsing the literature with NLP tools to extract properties[9,12,60], and 

developing tools to automate analysis of graphical data.[76,77] As central tools for discovery of 

new materials, ML-accelerated workflows will deliver the greatest utility by soliciting and 

incorporating community feedback to enrich the underlying data and improve user 

confidence.[46,83] 
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