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ABSTRACT: Machine learning (ML)-accelerated discovery requires large amounts of high-
fidelity data to reveal predictive structure—property relationships. For many properties of interest
in materials discovery, the challenging nature and high cost of data generation has resulted in a
data landscape that is both scarcely populated and of dubious quality. Data-driven techniques
starting to overcome these limitations include the use of consensus across functionals in density
functional theory, the development of new functionals or accelerated electronic structure theories,
and the detection of where computationally demanding methods are most necessary. When
properties cannot be reliably simulated, large experimental data sets can be used to train ML
models. In the absence of manual curation, increasingly sophisticated natural language
processing and automated image analysis are making it possible to learn structure—property
relationships from the literature. Models trained on these data sets will improve as they
incorporate community feedback.

Short title: Addressing data limitations in materials discovery
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Introduction

High-throughput computation or experiment coupled with machine learning (ML) has
begun to address combinatorial challenges in materials discovery.[1-3] ML-accelerated
discovery requires a large, high-fidelity data set. Data generation has benefited from recent
advances in computing power and algorithms as well as the development of flow reactors,
parallel experiments, and lab automation.[1,3] Computational (e.g., the Materials Project[4]) and
experimental (e.g., Cambridge Structural Database (CSD)[5]) databases have made large data

sets accessible for community use.[2]

Interest in materials discovery has moved toward harder targets and a focus on robust
materials, where challenges arise for generation and curation strategies (Figure 1). For example,
there is a trade-off between enumerating hypothetical materials versus studying those that have
already been synthesized but perhaps not yet studied for the property of interest (Figure 1).
Although density functional theory (DFT) is widely used for virtual high-throughput screening
(VHTS), properties computed from DFT can be sensitive to the density functional approximation
(DFA) used. DFA errors are often highest in promising functional materials classes that exhibit
challenging electronic structure, instead requiring cost-prohibitive wavefunction theory (WFT)
calculations.[6,7] Moreover, some properties of interest may be difficult to obtain from
computation (e.g., synthesis outcomes[8,9] or materials stability[10-12]). High-throughput
experimentation remains time-intensive relative to low-cost calculations and is often limited in
scope to a single class of materials amenable to automated synthesis and characterization. With
the exception of structural data, experimental properties are seldom reported by multiple sources

in a standardized format. As a result, the source of data (e.g., DFT computed vs experimentally



measured) and its quality may limit the complexity and accuracy of any data-driven models

(Figure 1).
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Figure 1. Overview of approaches to generate data for accelerated materials discovery. A
depiction of the different data sources for structures and properties that can be derived from
computation, experiments, or both to build large-scale databases for accelerated materials
discovery.

In this Opinion, we describe how researchers are addressing challenges in data scarcity
and data quality in ML-accelerated discovery as follows. The topics discussed in this Opinion are
as follows. We introduce how researchers address electronic structure method sensitivity in data
for ML models, how ML can be used to develop models that go beyond conventional (i.e., DFT)
accuracy, and how experimental data can be used in combination with ML to overcome
limitations from conventional physics-based modeling. We then discuss how ML models can be
trained to predict synthesis conditions, properties from either a single data set source or obtained
from the literature. Finally, we discuss how community feedback has been solicited and

incorporated to improve ML models.



Addressing electronic structure method sensitivity

Properties obtained with DFT depend on the choice of DFA, with no single DFA
universally predictive for all materials.[7] DFAs are instead selected based on intuition or
computational cost, thus introducing bias in data generation and reducing the quality of the data
in a way that degrades utility for discovery efforts. To address this challenge, McAnanama-
Brereton and Waller developed an approach[13] to identify optimal DFA-basis set combinations
using game theory. They devised a three-player game addressing accuracy, complexity, and
similarity of DFA-basis set combinations and solved the Nash equilibrium to yield the optimal
combination. Gastegger et al.[14] applied a genetic algorithm (GA) to explore a space of popular
DFAs and confirm that the GA is capable of identifying key components of a DFA that will be

accurate on a benchmark dataset.

An alternative to choosing the functional most applicable to a given problem is to
leverage consensus among predictions from multiple DFAs. Duan et al. computed[15] three
properties for over 2,000 transition-metal complexes (TMCs) with 23 representative DFAs
spanning multiple correlation families and “rungs” (e.g., semi-local to double hybrid). This study
uncovered universal design rules that were invariant to DFA, basis, or data set choice from
feature importance analysis of kernel ridge regression (KRR) models. They applied 23 ANNS,
each fit to data from a single DFA, to discover spin-crossover (SCO) complexes, which have
near-degenerate high-spin and low-spin states that are disproportionately sensitive to variations
in DFA parameters.[16] By comparing hypothetical lead complexes to experimental SCO
complexes, they noted that the leads recommended by a single-DFA-trained ANN (e.g., the
B3LYP hybrid DFA) occupied a larger region of chemical space, indicating that many were false

positives (Figure 2a). By requiring consensus among predictions of more than half of the DFA
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ANNS, they overcame this limitation of the single-DFA approach, producing robust (i.e., in
agreement with experiment) candidate materials. However, a consensus-based approach may not
be ideal for property prediction that benefits from error cancelation. Bartel et al.[10] compared
seven ML models to predict formation energy and stability on 85,014 Materials Project Database
compounds. They found that although these models have good accuracy on predicting formation
energies comparable to a DFA, they lacked the error cancellation present in a standard DFA for
predicting relative properties, suggesting caution in applying data-driven models blindly in

materials discovery.
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Figure 2. Machine learning approaches addressing fidelity limitations in quantum chemistry. a)
uniform manifold approximation and projection (UMAP) visualization of SCO complexes from
187 200 TMCs reported by Duan et al.[15]: the entire design space (gray), leads predicted by a
single NN trained on B3LYP data (red), by the consensus approach of NNs trained on 23 DFAs
(blue), and experimental observation (green) with approximate convex hulls shown as solid lines.
b) Performance of MR/SR classification on a set of 3165 equilibrium or distorted organic
molecules using different methods reported by Duan ef al.[17]: k-means clustering (red), a
cutoff-based approach (green), and a semi-supervised learning method named virtual adversarial
training (VAT, blue). ¢) Schematic of a fully differentiable KS-DFT framework reported by
Kasim ef al.,[18] with NNs representing a trainable exchange-correlation functional that yields
both the electron density and energy. d) Illustration of the network architecture of SchNOrb
developed by Schutt e al.[19], starting from initial representations of atom types and positions
(top), continuing with the construction of representations of chemical environments of atoms and
atom pairs (middle) before using these to predict energy and Hamiltonian matrix respectively
(bottom). Reproduced with permission from studies reported by Duan et al. [15] and [17], Kasim
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et al.[18], and Schutt et al. [19], published by The Royal Society of Chemistry 2021, the
American Chemical Society 2020, the American Physical Society 2021, and the Nature
Publishing Group 2019, respectively.

Data-driven methods have augmented and supplanted the conventional approaches of
trial and error or local fitting of parameters to revisit the search for a universal exchange-
correlation functional.[20] Using Bayesian inference, a new DFA can be assembled as a linear
combination of functional forms with statistically inferred coefficients, accelerating DFA design
using known functional forms and alleviating the risk of overfitting during DFA
parameterization.[21] ANNs have been used as an ansatz for designing DFAs due to their ability
to represent any function. Brockherde et al. developed ML models that directly learn the ground-
state density of a system, reducing the computational cost of solving the Kohn—Sham (KS) DFT
equations iteratively.[22] By incorporating the KS equations as a regularization term in the loss
function and providing feedback to ANNSs in each training iteration, Nagai et al.[23] and Li et
al.[24] demonstrated that the ANN functional can be learned with very few training molecules.
Kasim et al. recast KS-DFT in a fully differentiable framework, enabling a density functional
expressed as an ANN to be optimized with backpropagation, which demonstrated transferability
to other small molecules containing elements and bond types not in the training set (Figure
2¢).[18] Beyond explicitly encoding KS equations in the framework of ML models, other efforts
have focused on directly learning the energy mapping using electron densities.[25,26] These
studies highlight the importance of imposing physical constraints during ML-based DFA design.
Other emerging efforts in ML for DFT have extended to improving orbital-free DFT[27] and

multiconfiguration pair-DFT.[28]

Beyond DFT with ML



Due to the use of a single Slater determinant of the non-interacting system in KS-DFT,
DFT can fail to describe the electronic structure of systems that contain strong multireference
(MR) character. Diagnostics to detect the degree of MR character using quantities of the
wavefunction are often used to decide whether it is necessary to carry out a MR wavefunction
theory (WFT) calculation. By investigating 3,000 equilibrium or distorted small organic
molecules[29], Duan et al. found that different MR diagnostics seldom agree with each other (i.e.,
poor linear correlations), with high-cost WFT-based diagnostics better able to predict MR
character than low-cost DFT diagnostics.[30] They observed consensus among MR diagnostics
for the most extreme MR or single-reference (SR) points, motivating ML approaches that use
only partially labeled data (i.e., semi-supervised learning).[17] A semi-supervised ANN classifier
outperformed approaches typically used by experts to classify MR character (Figure 2b).
Additionally, MR/SR classifiers were used to identify “DFT-safe” islands for chemical discovery,

areas of chemical space where SR DFT predictions were expected to be of reasonable quality.[31]

In cases where strong MR character is detected, MR WFT methods are usually needed.
These methods, however, are computationally demanding, despite some promising accelerations
demonstrated by GPU-based parallel computing[32]. MR WEFT also typically requires manual
intervention. This challenge has started to be addressed by automated tools for active space
selection using orbital entanglement analysis from loosely converged WFT calculations,[33]

generalized valence bond orbitals,[34] a ranked orbital approach,[35] and ML models.[36]

ML has been used to accelerate WFT methods from an algorithmic perspective. For
example, ANNs[37] and restricted Boltzmann machines[38] were applied to directly predict the
coefficient of a configuration state function (CSF) in the iterative configuration interaction

process to identify which CSFs could be pruned. Similarly, ANNs were used to initialize the
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guessed coupled cluster (CC) excitation amplitudes of a system using MP2-level molecular
orbitals and one-electron integrals as inputs, reducing the number of iterations required.[39] In
addition, ANNs[19] and KRR models[40] have been used to learn new representations of
wavefunctions, enabling calculations of electron density, density of states, and dipole moments
without explicit WFT calculations (Figure 2d). Hermann et al.[41] used ANNs as a wavefunction
ansatz in quantum Monte Carlo, parameterizing a multi-determinant Slater-Jastrow-backflow
type wavefunction. By applying the variational principle on this ANN wavefunction ansatz, they
showed that the correlation energy can be quickly recovered (ca. 99%) for most of their test
systems using very few (i.e., 10) determinants. To date most approaches have only been
demonstrated on small systems with paired electrons, where MR WEFT calculations can be
performed easily. It is imperative to extend these developments to large systems with challenging
electronic structure (e.g., metal-organic bonding) in order to impact ML-accelerated discovery of
novel materials.

ML with insight from experiments

Many fundamental electronic properties, such as the ground-state spin of a TMC, remain
challenging to determine by computation due to strong dependence on the method used.[3,6] In
some cases, a combination of experimental data and computation can overcome these
limitations.[42,43] One of the largest sources of data is the CSD[5], which contains over 100,000
TMCs[16,44] and 90,000 metal-organic frameworks[45,46] (MOFs). Taylor et al. used an
ANNJ16] trained on DFT bond lengths to assign ground spin states to TMCs based on their CSD
structures.[42] They confidently assigned spin states to around 90% of a large (ca. 2000) set of
CSD Fe(I/III) TMCs by leveraging the relative DFA-invariance of DFT bond lengths in

comparison to energetics.[42] This combined experiment-computation ML approach accelerated



spin state assignment by orders of magnitude, avoiding decades of experimental effort (e.g.,

Mossbauer spectroscopy) that would otherwise be necessary.

Selectivity of a TMC catalyst is also difficult to predict solely by computation, because
small barrier height differences (i.e., 1 kcal/mol) lead to divergent selectivity.[47] Santiago et al.
built multiple linear regression (MLR) models combining descriptors from DFT calculations
with experimental enantioselectivity data.[48] They demonstrated that DFT-derived physical
organic descriptors[49] could predict experimental enantioselectivity. Maley et al. generalized
this approach by using random forest[50] models trained on descriptors derived from DFT
geometries to predict experimental selectivity and demonstrated the model for iterative ligand
design.[51] Thus, ML models that integrate experiment and computation overcome cost or

accuracy limitations that are present when using one of these approaches in isolation.

ML for synthesis conditions

The subtle and complex relationships that determine the optimal reaction conditions to
achieve a desired chemical transformation[8,9,52,53] are a poor fit for the predictive capabilities
of low-cost first-principles computation. Intense effort has therefore focused on using ML to
extract information on how conditions[54-56] such as temperature, time, and pH alter synthesis
outcomes. The ChemDataExtractor toolkit[57,58] automates literature data extraction from
thousands of manuscripts, including for use in generative models.[59] Kim ef al. combined the
ChemDataExtractor workflow with natural language processing (NLP) to identify how
temperature and base concentration affect carbon nanotube formation.[9] For inorganic
materials, Kim ef al. and Jensen et al. have studied how precursor identities, precursor ratios, or

additives[60] affect perovskite[56], oxide[9], and zeolite[61] formation. Thus, data driven



machine learning models trained on either a single data set or on extracted literature are poised to
provide critical new insights into the relationship between reaction conditions and synthesis

outcomes.

Insights from single-source experimental data

Negative results are often underrepresented in the literature, and this positive publication
bias creates a data imbalance in models trained on literature data. This has motivated single labs
to carry out large experimental screens that generate both successful and failed experiments.
Raccuglia et al. harnessed 3,955 completed reactions consisting of both successful and failed
experiments and used this data on reaction conditions to inform future reactions.[62] Jia et al.
curated a set of 548 experiments[63] on inorganic materials with randomly sampled synthesis
conditions to demonstrate that the most popular synthesis conditions are not the most optimal.
Instead, optimizing synthesis conditions increased the surface area of the HKUST-1 MOF[53],
consistent with observations that reported MOF surface areas generally increase as synthesis
recipes are improved over time.[52] Demonstrating the benefits of curating a large data set under
consistent conditions, Batra et al. investigated stability in the presence of water for 207
systematically synthesized MOFs and used ML to determine that metal ionization potential and
ligand-to-metal ratio were predictive of MOF stability in water.[11] Yang et al. collected
compositional and optical data on over 350,000 three-cation metal oxides to find materials that
were stable in acidic conditions and active for electrocatalytic oxygen evolution, and they used
statistical modeling to create maps between composition and optical properties.[64] While such
studies ensure control over data quality and provide essential insight into the role of researchers
in data curation, these studies are necessarily limited by what data can be generated by a single

laboratory.
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Leveraging community data in ML

When high-throughput, automated tools[53,64] are unavailable or incompatible with the
quantity being curated, data collection can be limited in scope due to the effort required to
perform each experiment, motivating instead a focus on community data resources like the
CSD.[11,62,63] Taylor et al. curated[65] a set of bimetallic complexes from the CSD with
emergent metal-metal interactions that are challenging to predict with first-principles DFT
modeling. They used a subset of graph-based revised autocorrelation (RAC) descriptors to
predict metal-metal bonding with KRR models, and they fit MLR models trained on RAC inputs
to predict experimental redox potentials. Analysis of the most important features in the models
revealed the overriding importance of metal group (i.e., electron configuration) rather than

period in determining the properties of these complexes.

For MOFs, it is challenging to leverage all of the characterized structures in the CSD due
to poor crystal structure quality and the presence of in-pore solvents. These limitations motivated
the development of the Computation-Ready Experimental[66] (CoRE) MOF database, which
contains sanitized experimental structures of nearly 12,000 MOFs (Figure 3). Moosavi et al.
analyzed the chemical diversity of CoRE[66] MOFs and observed that experimental MOFs had
significantly greater diversity in the metal secondary building unit (SBU) chemistry than was
present in large (i.e., 100—300k) hypothetical MOF data sets[67] (Figure 3). They concluded that
ML models built from limited hypothetical MOFs do not generalize for property prediction on
diverse experimental structures. In another study, Jablonka et al. used user-assigned formal
oxidation states of MOF SBU metals deposited in the CSD record to train a soft voting classifier

ML model and identify where CSD oxidation states are likely incorrectly assigned[46].
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Figure 3. Data curation, analysis, and model prediction on MOFs. Data curation procedure for
the CoRE MOF 2019[66] database. Experimental crystal structures were restored for subsequent
analysis (top left). Diversity analysis of hypothetical MOF spaces (colored in purple or red)
relative to the full design space (gray) as t-SNE plots. Radar charts show three diversity metrics:
variety (V), balance (B) and disparity (D), for three databases, CoORE MOF 2019[66], BW-
DB[68], and ToBaCCo MOFs[69] (top right). Dot plots showing predicted activation stability
(probability, no units from O for unstable to 1 for stable) vs actual class labels for MOFs in the
test set for the solvent-removal stability data set. Data points are represented as translucent
circles to depict data density and colored by the classification correctness: correct (green) and
incorrect (red). Example structures and corresponding CSD refcodes for correct classifications
are shown with blue outlines for two unstable MOFs: XEJTIR and MEGBAD, and two stable
MOFs: UKIQOV and AVILEY (bottom left). Parity plots for predicting thermal decomposition
temperatures in the thermal stability data set colored by kernel density estimation (KDE) density
values, as indicated by inset color bars. In all cases, a black dashed parity line is shown (bottom
right). Reproduced with permission from studies reported by Moosavi et al.[67], Chung et
al.[46], and Nandy et al.[12], published by the Nature Publishing Group 2020, the American
Chemical Society 2019, the American Chemical Society 2021, respectively.
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Nandy et al. expanded on this approach by using over 5,000 structures from the CoRE
MOF database[66] and extracting data from the associated manuscripts rather than relying on
information deposited as part of the CSD record.[12] They used NLP to determine material
stability with respect to solvent removal (i.e., for activation) and trained ANN classifiers on this
data set. They also automated the extraction of decomposition temperatures from
thermogravimetric analysis (TGA) traces and trained an ANN regression model on these
temperatures (Figure 3). At odds with existing heuristics[70], a MOF with a large pore volume
was correctly predicted by the ML models to be stable.[12] Nandy et al. used the ML models to
suggest alterations (e.g., linker fluorination or metal substitution) that should imbue stability in
previously unstable MOFs.[12] NLP-based property extraction from the MOF literature is
limited by the challenges of associating a measured property with a unique MOF name or
structure.[71] Park et al. used heuristics[71] to identify MOF names without resorting to named-

entity recognition.[72-75]

Although some properties present in the scientific literature can be extracted with NLP,
spectra are reported in figures that cannot be parsed by NLP tools. Jiang ef al. and Schwenker et
al. have built ML models from hand-labeled data to identify subfigures within compound figures
and classify their figure type (i.e. microscopy images, graphs, or illustrations).[76,77] Other
work has automated identification of image length scales[77,78] to quantify particle distribution
sizes or materials length scales. Thus, advances in both text and image recognition as well as
community standards for more systematic naming and reporting of data is expected to further

enhance the data quantity and quality needed for predictive deep learning models.

Community feedback on ML predictions
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Soliciting community feedback for ML models is essential for improving data fidelity
and user confidence in model predictions, especially where subjectivity can be expected in the
data. An effort to design organic light-emitting diodes used voting through a web interface to
quantify synthetic accessibility of candidate materials.[79] The game theory density functional
recommender by McAnanama-Brereton and Waller was incorporated into a web interface as a
Turing test, collecting community feedback.[13] Similarly, Bennett ef al. collected 12,553 data
points on porous organic cage (POC) precursors labeled by three expert chemists to quantify
synthesizability. They used this data to construct random forest ML classifiers to predict
synthesizability of new POCs, replicating decisions made by expert synthetic chemists[80]

(Figure 4).
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Figure 4. Examples of community feedback interfaces. Sections of the MOFSimplify
interface[81] for selecting a MOF for analysis and predicting properties using ANNSs trained on
experimental literature data (top left). Feedback interface of MOFSimplify for evaluating ANN
model predictions (bottom left). Community survey questionnaire for quantifying MOF
colors[82] (top right). Web interface for determining precursor synthesizability for POCs
(bottom right). Reproduced with permission from studies reported by Nandy et al.[83], Jablonka
et al.[84], and Bennett et al.[80], published by the Nature Publishing Group 2021, the Royal
Society of Chemistry 2021, the American Chemical Society 2021, respectively.

Jablonka et al.[84] used a survey to quantify colors in CSD MOF descriptions. They
gathered 4,184 quantitative RGB assignments for 162 qualitative colors used to describe MOF
crystals (Figure 4). They analyzed this feedback and determined that colors such as beige
corresponded to widely varying RGB values from different scientists, motivating a more
quantitative scale for CSD color descriptions. Nandy et al. released a web interface[81] for
improving the fidelity of NLP-derived data and testing user confidence in ML models that
predict stability[12] of new MOFs.[83] To promote community-based active learning, the
website solicits feedback on model predictions and encourages deposition of data (Figure 4).
This feedback can improve the fidelity of NLP-extracted data and enrich data-poor regions of

MOF chemical space.[83]

Conclusion

Although faster computational chemistry and robotic laboratory instrumentation have
made it possible to obtain materials properties on a kilo-compound scale, the quest for novel and
robust materials by ML-accelerated discovery poses new challenges for the scale and quality of
data required from simulation and experiment. Recent efforts to address these limitations for
high-fidelity VHTS have included using consensus among multiple DFAs,[15,16] applying ML

to design new DFAs,[21,22] and accelerating WFT methods.[19,37] Researchers are using high-

15



throughput experimentation and including failures to reduce bias when generating ML model
training data,[53,64] parsing the literature with NLP tools to extract properties[9,12,60], and
developing tools to automate analysis of graphical data.[76,77] As central tools for discovery of
new materials, ML-accelerated workflows will deliver the greatest utility by soliciting and
incorporating community feedback to enrich the underlying data and improve user

confidence.[46,83]
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