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ABSTRACT: While computational screening with first-principles density functional theory 
(DFT) is essential for evaluating candidate catalysts, limitations in accuracy typically prevent 
prediction of experimentally relevant activities. Exemplary of these challenges are homogeneous 
water oxidation catalysts (WOCs) where differences in experimental conditions or small changes 
in ligand structure can alter rate constants by over an order of magnitude. Here, we compute 
mechanistically relevant electronic and energetic properties for 19 mononuclear Ru transition-
metal complexes (TMCs) from three experimental water oxidation catalysis studies. We discover 
that 15 of these TMCs have experimental activities that correlate to a single property, the 
ionization potential of the Ru(II)-O2 catalytic intermediate. This scaling parameter allows 
quantitative understanding of activity trends and provides insight into rate-limiting behavior. We 
use this approach to rationalize differences in activity with differing experimental conditions, 
and we qualitatively analyze the source of distinct behavior for differing electronic states in the 
other four catalysts. Comparison to closely related single-atom catalysts and modified WOCs 
enables rationalization of the source of rate enhancement in these experimental WOC catalysts.  
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1. Introduction. 

 Improved catalysts are essential for meeting the goals of renewable energy, for instance 

in the production of renewable solar fuels through the water oxidation reaction.1 Homogeneous 

catalysts have attracted significant interest as water oxidation catalysts (WOCs) because the 

properties of transition-metal complexes (TMCs) can be finely tuned though ligand 

modification.2-4 Water oxidation has been demonstrated at a single metal site in a TMC5,6, 

motivating efforts to optimize their catalytic properties. Experimental efforts to determine the 

ligands compatible with water oxidation7-9 or identify design criteria for more active WOCs10-14 

have often consisted of trial-and-error synthesis of a set of TMCs and measurement of their 

activity.7-14 This approach has led to significantly improved homogeneous WOCs, the most 

active of which contain Ru metal centers.15,16 However, many of these improved catalysts rely on 

through-space interactions16-19 such as pendant bases18,19 to achieve an increase in catalytic 

activity. Ligand modifications that improve catalytic activity via through-bond effects are 

desirable, because they are more robust to changes in reaction conditions, and also provide a 

complementary approach to increasing activity. Rational WOC design would benefit from first-

principles modeling, but changes in activity either due to subtle ligand variation or modification 

of experimental conditions can be challenging to predict a priori. As a result, demonstrations of 

first-principles ligand design have only been recent and limited in scope.20  

 A number of mechanisms for water oxidation have been proposed. We focus on the water 

nucleophilic attack (WNA)21 mechanism, which is thought to be responsible for the most active 

catalyst identified thus far16 (Scheme 1). Although there is strong support for the WNA 

mechanism, water oxidation is also believed to be possible via the dimerization of two metal-oxo 

units.22-24 Experimental methods have revealed specific details of this mechanism,25-27 but 
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accurate computational modeling is expected to be critical to gain a more complete 

understanding of the intermediates and competing pathways.28 The WNA mechanism has been 

characterized computationally,29,30 with particular emphasis on the electronic structure and 

reactivity of the high-valent Ru(V)=O species,31-33 the O2 release step,34 and 

photoisomerization.35 However, it is not yet known which fundamental properties predict 

catalytic activity, a key piece of information for computationally guided design.  

Scheme 1. The water nucleophilic attack (WNA) mechanism for water oxidation. Steps are 
colored based on the type of each reaction. Oxygen dissociation is shown in blue. Proton-coupled 
electron transfer steps (PCET) are shown in black. Electron transfer steps are colored yellow. 
The key O–O bond formation step is shown in green.  

 

 Computation is an effective tool for accelerating the discovery of novel catalysts,36,37 but 

it is necessary to obtain accurate properties which correlate to experimentally measured catalytic 

activity. Many ligand modifications are thought to function by changing the identity of the rate-

determining step in water oxidation catalysis.38-42 These ligand designs have included oxygen 

atom transfer to a pendant base,39 nucleophilic attack by a carboxylate group,40,41 and additional 

elementary steps related to reversible changes in ligand conformation.42 The ability of the precise 
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rate-determining step within the WNA framework to be tuned is typical of homogeneous 

catalysis43-45 and computation has been essential in identifying this variability.46-48 While 

changes in mechanism and catalytic activity can be quantified directly through microkinetic 

modelling49 or through formalisms such as the degree of rate control50,51 or the energetic span 

model52,53, direct prediction of experimental rates remains challenging.  

 While more frequently exploited in heterogeneous catalysis54-56, linear correlations (i.e. 

scaling relationships) can simplify catalyst screening, an approach which has been demonstrated 

fruitfully on related metal–organic frameworks,57,58 single-atom catalysts,59,60 and homogeneous 

systems.61-63 Further, scaling relationships predict the relative activity of catalysts, which benefits 

from cancellation of some of the systematic error64 present in density functional theory (DFT)65-

69 and particularly in TMCs.65,70-72 While universal scaling relationships for WOCs have been 

proposed,73,74 recent work (e.g., in C–H activation) suggests75-78 that scaling relationships in 

homogeneous catalysis need to be tailored for specific ligand types79 and should account for the 

influence of reaction conditions.45 

 In this work80, we compare the computed properties of a set of closely related 

homogeneous WOCs to previously reported rate constants from three experimental studies 

(Figure 1 and Supporting Information Table S1).8,12-14 To demonstrate the utility of scaling 

relationships for reducing errors in computational catalyst screening, we select only WOCs 

which are thought to be active via the WNA mechanism, avoid through-space interactions with 

the catalytic intermediate, and contain a ruthenium metal center. Even then, the set of catalysts 

we study have different absolute and relative experimental rates as a result of distinct conditions 

in each study (Figure 1 and Supporting Information Table S1).8,12-14 As a result, we must both 

develop independent scaling relations to explain these differing experimental results and also 
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devise an approach to confirm comparable electronic structure across the catalysts being 

compared. For the homogeneous catalysts obtained from these experimental data sets, we 

propose a metric for identifying similar and dissimilar electronic states. We demonstrate that 

effective scaling relationships can be constructed for catalysts with similar electronic states, but 

that these do not readily extend to all WOCs. We show that our scaling parameter accurately 

predicts the relative activity of catalysts within these closely related TMCs and that different 

slopes in these scaling relations prevail when experimental conditions are varied. 

 
Figure 1. The 19 TMCs considered in this work from three literature sources, data sets 18, 212, 
and 313,14. Each TMC consists of a ruthenium metal center complexed with a tridentate ligand 
(left) and a bidentate ligand (right). Experimentally measured rate constants for the water 
oxidation reaction are available for each TMC, from at least one of three literature sources (i.e., 
where each source tested multiple catalysts under the same experimental conditions), as 
indicated in the grid at bottom. 
 

2. Computational Details. 

 All geometry optimizations and single-point calculations were performed using density 

functional theory (DFT) and a developer version of TeraChem v1.9.81,82 The B3LYP83-85 
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functional was employed with the LANL2DZ86 effective core potential for Ru and the 6-31G* 

basis set87 for all elements. This modest basis set choice is justified by recent observations88 that 

trends in relative energetics of ionization energies and spin-state dependent properties from this 

basis set are of equivalent quality to larger triple-z (i.e., def2-TZVP) basis sets. Similarly, it is 

known that it is challenging to model triplet O2 accurately with generalized gradient 

approximations55, but a focus on relative energetics has motivated our calculation of properties 

involving O2 intermediates (e.g., ligand dissociation energies) in our catalytic cycle as has been 

previously carried out.30,89  

Solvent corrections, ∆Gsolv, were added using the conductor-like polarizable continuum 

implicit solvent model90,91 implemented92,93 in TeraChem with a dielectric constant of 80. Singlet 

calculations were carried out in a spin-restricted formalism, while all other calculations were spin 

unrestricted, and the lowest-energy spin multiplicity is always reported for each intermediate 

(Supporting Information Table S2 and Figure S1). Level shifting was applied with the virtual 

orbitals shifted by 0.25 Ha.94 Geometry optimization in translation rotation internal coordinates95 

using the L-BFGS algorithm were carried out on molecules in implicit solvent. Default geometry 

optimization convergence thresholds of 4.5 x 10-4 Ha/bohr and 10-6 Ha were used for the gradient 

and change in the total energy between steps, respectively. For each optimized geometry, we 

computed the Hessian to confirm the absence of any imaginary frequencies and to obtain energy 

corrections for the zero-point energy and vibrational entropy at a temperature of 300 K. Entropic 

terms from other (i.e., rotational, translational, and electronic) degrees of freedom were 

neglected. We made this choice because the double-z calculations were efficient with GPU-

accelerated quantum chemistry in TeraChem and force field pre-optimization with molSimplify, 

but an alternative approach would have been to use semi-empirical structures in a hierarchical 
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scheme96-98, as has been recently proposed for WOCs.99 Population analysis was carried out with 

an interface between TeraChem and Natural Bond Orbital analysis (NBO) v6.0.2  

 Initial structures for each unique TMC and each intermediate of the WNA catalytic cycle 

were either generated using molSimplify100-102 which uses OpenBabel103,104 as a backend or by 

modifying a previously converged structure (Supporting Information Table S3). As in prior 

work, the successful completion of each calculation was judged based on two criteria.105 First, 

the final structure was required to pass a series of geometric health checks to ensure that the 

calculation converged to the expected octahedral geometry as introduced in prior work105 

(Supporting Information Table S4). For all open-shell calculations, the deviation from the 

expected value of <S2> (i.e., S(S+1)) was required to be less than a 1 μB2 cutoff for spin 

contamination, established in prior work106 (Supporting Information Table S5). As described 

previously and validated against correlated wavefunction theory benchmarks106, this cutoff 

ensures that only cases where spin states differ by at least one unpaired electron from the 

expected value are excluded. 

 In this work, we developed strategies to recover jobs that failed to pass the <S2> check or 

for which the self-consistent field (SCF) calculation failed to converge. For spin-contaminated 

cases, the geometry optimization was attempted with the fraction of Hartree–Fock (HF) 

exchange set to 0% (i.e. BLYP). For cases with SCF failures, level-shifting values were adjusted 

to 1.0 Ha for the majority-spin virtual orbitals and 0.1 Ha for the minority-spin virtual orbitals. 

When these recovery strategies were successful in addressing the original failure, their final 

structures and wavefunctions were used as inputs to a new geometry optimization using the 

B3LYP (i.e., 20% HF) functional and the original level-shift values of 0.25 Ha (Supporting 

Information Table S6). 
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 To validate our choice of DFT functional, we compared results to B3LYP with modified 

amounts of HF exchange (i.e., (0–30% in increments of 5%) and three range-separated hybrid 

functionals, CAM-B3LYP,107 ωB97X,108 and LRC-ωPBEh109 (Supporting Information Text S1). 

We observed the linear correlation between computed Gibbs energy values and experimentally 

measured benchmarks to be insensitive to functional choice, with the linear correlation 

comparable (R2: 0.84–0.90) regardless of the functional selected (Supporting Information Figure 

S2). Although direct simulation of external oxidant has recently been attempted in modeling of 

WOCs110, we do not explicitly model the external oxidant and instead add -1.6 VSHE to steps 

involving oxidation to avoid challenges of DFT in accurate treatment of highly charged 

systems.68 We expect that since the chemical structures of the catalysts in this work are all 

roughly comparable, the explicit modeling of the oxidant would not significantly alter trends 

reported in this work. However, explicit modeling of oxidant could be useful if more varied 

catalyst structures were evaluated in the future. 

 Three types of properties were calculated in order to capture trends in the WNA 

mechanism that could predict the overall rates of the experimentally measured catalytic cycle. 

We calculated the Gibbs energy of reaction, ∆G, at pH = 0 (i.e., to reflect the acidic conditions 

common in experiments) and 300 K for each step while incorporating corrections for zero-point 

vibrational energy, entropy, and the solvation environment. The energetics of the rigid ligand 

dissociation energy, ∆ELD, of oxygen from the Ru(II)-O2 and Ru(III)-O2 intermediates as well as 

the vertical ionization potential, ∆EIP, of the Ru(II)-O2 and Ru(IV)=O intermediates were 

determined based on single-point calculations (Supporting Information Text S2). The calculation 

of ∆ELD and ∆EIP neglected the corrections for zero-point vibrational energy and entropy. This 

approximation was motivated by the nearly constant (std. dev. < 1 kcal/mol) value of these 
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corrections in the computation of ∆ELD (Supporting Information Table S7).   

3. Results and Discussion. 

3a. Energetics of a Representative WOC. 

 We first focus on TMC 1a, a well-known WOC5,8,12-14,21,30,31,34, to quantify baseline 

reaction energetics (Figure 1). As 1a was among the first mononuclear WOCs discovered5, it is 

included in all of the experimental data sets considered in this work and is expected to be broadly 

representative of TMCs that catalyze the WNA mechanism (Scheme 1). The 1a structure 

contains motifs common among most of the catalysts in this work (Figure 1). Specifically, the 1a 

structure has an octahedral coordination geometry with nitrogen atoms from tridentate and 

bidentate ligands that coordinate the metal in a way that constrains ligating atom positions 

(Figure 1). The WNA mechanism that 1a participates in is believed to include three proton-

coupled electron transfer (PCET) steps,111 two electron transfer steps, one of two possible O2 

dissociation steps, and an O–O bond formation step, which can each have different degrees of 

control over overall catalytic activity (Scheme 1).  

 To determine potential rate-limiting steps in the WNA catalytic cycle, we computed the 

reaction coordinate for TMC 1a (Figure 2). For each PCET step, the reaction is exergonic when 

we account for an oxidant (e.g., Ce(IV))12 with a redox potential of 1.6 V,112 suggesting these 

steps are unlikely to be rate limiting. Nevertheless, it has been suggested113 that the potential 

limiting step may not necessarily be the same as the rate determining step. In comparison, the 

other two electron transfer steps, Ru(IV)=O to Ru(V)=O and Ru(II)-O2 to Ru(III)-O2, require 

0.67 eV and 0.15 eV, respectively, even after accounting for an oxidant (Supporting Information 

Table S8 and Figure S3). For the two O2 dissociation steps, we note that each is included in a 

different possible reaction pathway (Scheme 1). Because which pathway dominates is influenced 
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by the rate of electron transfer from Ru(II)-O2, either O2 dissociation step has the possibility of 

being overall rate-limiting step. Water exchange with Ru(II)-O2 becomes more competitive when 

an external oxidant is not accounted for in the energetics (Supporting Information Figure S3). 

Finally, the O–O bond formation step is strongly exergonic (i.e., DG = -1.06 eV) in the presence 

of external oxidant, but this thermodynamic favorability does not guarantee favorable kinetics a 

priori (Supporting Information Table S8 and Figure S3). After eliminating the three PCET steps 

as candidate rate-limiting steps based on our calculations, the remaining options, i.e., two 

electron transfer steps, the O–O bond formation step, and two possible O2 dissociation steps, are 

consistent with those that have been identified as rate limiting in experimental studies.8,14,21,31 

Alternative treatment of PCET steps has been proposed (i.e., direct from III to V)114, but 

considering that would not change our conclusions. 

 
Figure 2. Energetics of the WNA catalytic cycle for TMC 1a. The labeling of intermediates is 
shown inset (top right) and corresponds to the catalytic cycle shown in Scheme 1. For steps 
involving the transfer of an electron (I to II, II to III, III to IV, V to VI, and VI to VII), we add -
1.6 eV to the step's energetics to account for the presence of an external (i.e., Ce(IV)) oxidant. 
Energetics are shown for both the reaction path where O2 directly dissociates (green) and the 
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path where an electron transfer precedes O2 dissociation (blue). For most intermediates, the two 
paths are identical (gray). 
 

 To aid interpretation and accelerate screening, we identify electronic properties that we 

can easily compute with DFT, are related to each of the five candidate rate-limiting steps, and 

thus could correlate with the overall experimentally measured reaction rate. To avoid explicit 

calculation of time-consuming transition states, we rely on the Bell–Evans–Polanyi (BEP) 

principle115,116 and compute quantities related to reaction free energies, ∆G. We compute the 

Gibbs energy to complete a full catalytic cycle accounting for external oxidant, which we refer to 

as ∆G WNA. Additionally, to model the rate of O–O bond formation or electron transfer steps, 

we use the DFT-computed ∆G of these steps. For the two O2 dissociation steps, we compute only 

the rigid ligand dissociation energy, ∆ELD, of O2, which provides an upper bound on the 

energetics of O2 dissociation. In addition to BEP relations, Marcus theory117 suggests that the 

kinetics of electron transfer processes should be related to vertical ionization potential, ∆EIP 

(Supporting Information Table S9 and Text S3). We thus also compute the ∆EIP for both electron 

transfer steps, bringing to seven the number of DFT properties that could capture catalytic 

activity (Supporting Information Table S10). This approach contrasts with computational scaling 

relations typically derived for heterogeneous catalysts that instead focus on adatom adsorption 

energies. 

3b. Electronic Structure Similarity Defines a Subset of WOCs.  

 The electron configuration of a molecular WOCs is expected to influence its catalytic 

activity118, limiting our ability to understand and predict differences in activity from geometric 

structure and chemical composition alone. To detect distinct electron configurations among the 

catalysts in our data set, we quantified differences based on the population of localized natural 
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bond orbitals (see Computational Details). Using the closed-shell singlet Ru(II)-OH2 

intermediate, we collected the occupations of orbitals that localized to the 5s and 4d subshells of 

Ru(II) (i.e., six orbitals) or to the 2s and 2p subshells of the axial-coordinating O atom (i.e., four 

orbitals) into a 10-dimensional feature vector. Visualization of the first two principal components 

(95% of the variance) from principal component analysis (PCA) indicates that the 19 TMCs 

cluster into three distinct groups, with the largest group containing most (i.e., 15) of the TMCs 

(Figure 3 and Supporting Information Figure S4). These three groups are consistently present if 

alternate intermediates are chosen for analysis, although more overlap between groups is 

observed for the oxidized (i.e., Ru(IV)=O/Ru(V)=O) species (Supporting Information Figure 

S5).  

 
Figure 3. Plot of the natural orbital populations for intermediate I that distinguish electronic 
states of the 19 TMCs studied: difference between the O 2px and 2py orbital populations vs Ru 
dz2 orbital total population. Fifteen catalysts (blue circles) have qualitatively similar populations, 
and smaller clusters have enhanced dz2 populations (red) or distinct relative occupation in the p 
orbitals (green). Insets illustrate representative structures, and an electron configuration diagram 
provides a cartoon of the formal electron configuration (black solid arrows) and distinguishes 
which states are differentially populated for catalysts in the red cluster (red dashed arrows). 
 

 Relative to the majority cluster, the differences in the other clusters can largely be 
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attributed to either the Ru 4dz2 or O 2px/2py orbitals, as the occupations of the remaining seven 

orbitals are nearly constant (Figure 3 and Supporting Information Table S11). Specifically, one 

cluster has additional electron density (ca. 0.2 e-) in the Ru 4dz2 orbital, whereas electron density 

(ca. 0.3 e-) shifts from the oxygen 2px to the 2py orbital in the other cluster (Supporting 

Information Table S11). It may at first be surprising that a formally d6 metal center has 

significant occupancy in the dz2 orbital, but this can be attributed to bonding interactions between 

the metal and water. When electrons are shared, they will lead to occupancy in orbital 

populations, even if the metal is oxidized.119 For the more oxidized intermediates (i.e. Ru(III)-

OH, Ru(IV/V)=O, and Ru(III)-OOH), there is naturally less distinction between this second 

group and the 15-TMC majority group (Supporting Information Figure S5).  

 Because we expect scaling relationships to hold most optimally when similar electronic 

states are compared, we focus our analysis of the relationship between DFT and experimental 

properties to this subset. For these 15 TMCs, most of the DFT properties are well correlated (R2 

> 0.85) with each other, indicating that a single scaling relationship likely applies for all 

properties (Figure 4). The four electron transfer properties correlate positively to each other but 

negatively to the ∆G of the O–O bond formation step and ∆ELD for Ru(II)-O2 (Supporting 

Information Figure S6). The single uncorrelated property, ∆ELD of O2 from Ru(III), does not 

correlate well with other steps in part because it is uniformly small (ca. 6 kcal/mol) for all 

catalysts in our data set (Figure 4 and Supporting Information Table S10). Because Ru(III)-O2 

∆ELD is an upper limit for ligand dissociation, we conclude it is unlikely to be rate limiting over 

these 15 TMCs and exclude it from further consideration. Notably, dissociation of O2 estimated 

by Ru(III)-O2 ∆ELD is lower than that for Ru(II)-O2 because differences in the spin states (i.e., 

singlet vs doublet) and electron configuration lead to a longer initial Ru-O bond length by over 
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0.1 Å on average (Supporting Information Table S10 and see Supporting Information .zip file). 

 
Figure 4. Coefficient of determination (R2) between seven pairs of quantities calculated using 
DFT that might be expected to influence catalytic activity. Six of the parameters are well 
correlated to each other (blue, R2 > 0.85), as indicated by the numerical values and colors in the 
inset legend. 
 

 Overall, most correlations are intuitive, e.g., a higher Ru(IV)=O ∆EIP corresponds to 

more favorable WNA (i.e., because the WNA DG is expected to be more favorable for a more 

stable Ru(IV)=O), whereas others, e.g., the negative correlation between ∆EIP and ∆ELD in 

Ru(II)-O2, are less obvious (Supporting Information Table S12). While such correlations may not 

hold across a broader set that has greater structural or chemical diversity, they suggest consistent 

reactivity trends should be observable over the 15 TMC subset of molecular WOCs obtained 

from the three distinct experimental data sets. Overall, this analysis suggests a single scaling 

parameter can be used to estimate relative catalyst activity from DFT, whereas if the correlations 

were weaker, it would mean that tuning one property may have inconsistent effects on different 

portions of the catalytic cycle. We select Ru(II)-O2 ∆EIP as this scaling parameter because it has 

the largest average correlation (R2: 0.86) and requires only a single geometry optimization to 
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compute (Figure 4). The applicability of a single property to describe a full catalytic cycle is well 

established in both heterogeneous or homogeneous catalysis, but direct calculation of ionization 

potentials is not straightforward in the solid state where frontier orbital energies have instead 

been favored.  

Since all descriptors correlate similarly well, the analysis carried out can be expected to 

be invariant to the choice of descriptor, and in solid state water oxidation, a focus on a step that 

does not involve change in formal charge (e.g., Ru(II)-O2 DELD) may instead be preferred. 

Additionally, some of our descriptors involve relaxation of multiple intermediates (i.e., DG 

WNA), but they correlate just as well to the vertical ionization potentials we have selected. As 

we also optimize intermediates in multiple oxidation states, we can compare the adiabatic 

ionization potential to the vertical ∆EIP. For the representative case of 1a, the Ru(IV)=O ∆EIP is 

0.1% lower than the adiabatic IP while Ru(II)-O2 ∆EIP is 4% lower. These relative magnitudes 

can be rationalized by the slight increase in Ru-O bond observed for Ru(III)-O2 (see Supporting 

Information). Similarly, adiabatic ligand dissociation energies are within 1 kcal/mol of the rigid 

dissociation energies, which can be expected due to limited change in the catalyst structure with 

O2 binding (see Supporting Information). 

3c. Thermodynamic Properties Predict Activity. 

 After having shown that the seven DFT properties that we expect to influence catalytic 

activity are correlated to each other, our primary goal now is to determine if our chosen scaling 

parameter also correlates to experimentally measured rate constants. Differences in rate constants 

even for the same catalyst due to differences in conditions experimentally means that we cannot 

obtain a single fit through all of the data (Supporting Information Table S1).8,12-14 Instead, we 

focus on obtaining a best-fit line for each of the catalysts in the three experimental studies that 
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belong to the 15 TMC subset. After distinguishing the catalyst subsets and pruning to the 15 

TMC subset, predicted rate constants, based on a best-fit line with the B3LYP Ru(II)-O2 ∆EIP, 

match experimental rates to within a factor of three in all cases (Figure 5 and Supporting 

Information Tables S13–S14). This good performance (i.e., beyond typical hybrid DFT 

accuracy) is due to error cancellation possible only because we have curated a set of catalysts 

with comparable geometry and electronic structure. TMC 7a in experimental data set 1 is the 

only outlier in this analysis, with first-order dependence on oxidant concentration in its rate law 

whereas all other catalysts in this subset are zero-order in oxidant, preventing direct comparison 

to our descriptor on an equal footing. This is somewhat expected, as the 1.78 eV value of the 

Ru(II)-O2 ∆EIP descriptor for this catalyst is the lowest in data set 1 and on the lower end for the 

majority cluster of 15 TMCs (Supporting Information Tables S10–S11). For large changes in the 

descriptor such as this, we expect commensurate changes to the rate of underlying elementary 

steps, potentially influencing which step is rate limiting. Even though we have taken steps to 

ensure consistency of the electronic structure for the complexes studied, our approach is not 

immune to changes in the identity of the rate-limiting step. This change in rate law could also 

mean that TMC 7a may evolve O2 via an alternate reaction mechanism (e.g., I2M with a catalyst 

dimer). For example, the sacrificial oxidant Ce(IV) ammonium nitrate has also been reported to 

be involved in capturing and releasing O-O containing species.120 Nevertheless, we included 7a 

in our study because it was present in experimental data set 1, and the goal of the present work is 

to determine the extent to which computational descriptors can predict experimental activity.  
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Figure 5. The experimentally measured rate constant (s-1) vs the computationally derived scaling 
parameter, Ru(II)-O2 ∆EIP, (in eV). The data is separated based on the source of the experimental 
data, as indicated in the inset label in each pane. The Ru(II)-OH2 intermediates of the 1a and 1b 
TMCs are shown as insets in data set 1, and 1a and 1i are shown as insets in data set 2 in ball-
and-stick representation colored as: C in gray, O in red, N in blue, H in white, and Ru in teal. 
One catalyst (7a) from data set 1 has a second-order rate law and thus the rate constant cannot be 
visualized on this plot. 
 

 We have established that only a subset of the data fits a single scaling relationship with 

our DFT-based descriptors, and within each experimental set, different best-fit lines are observed 
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due to differences in experimental conditions and measured rates even for the same catalyst 

structure (Figure 5). Thus, we can use the slope of the correlation between our descriptor and 

experimentally measured rate constant to interpret possible differences in rate-limiting steps with 

a change in experimental conditions. Computationally determined volcano plots are one way to 

reduce to a single dimension the trade-offs between competing steps. Here, our approach differs 

slightly because we are comparing similar tuning effects on catalyst structures but under distinct 

conditions. Based on this analysis, we conclude that the rate-limiting step in data set 1 is either 

O2 dissociation or O–O bond formation, both of which become more energetically favorable as 

our descriptor increases (Supporting Information Table S12). In stopped-flow kinetic 

experiments, ligand dissociation was assigned as the rate-limiting step for these catalysts, 

consistent with our observation.21 Nevertheless, since we have only three data points that we 

correlate in data set 1, more data would be useful to corroborate this observation. A potential 

limitation of the present work is that we cannot guarantee the DEIP descriptor will be useful to 

predict the activity of catalysts for which experimental rate constants are not known and for 

which another state (e.g., PCET in WNA) could be the rate determining step.   

 Conversely, in experimental data sets 2 and 3, one of the electron transfer steps could be 

rate limiting, as these become more favorable as the descriptor decreases (Supporting 

Information Table S12). We hypothesize these differences in rate-limiting steps derive from 

differences in reaction conditions across experiments. For example, the concentration of oxidant 

(CeIV) was 30 equivalents in experimental data set 1 and only qualitative excess in data sets 2 

and 3 (Supporting Information Table S1).8,12-14 This additional oxidant potentially activates path 

2 for O2 release (i.e., by oxidation first to Ru(III)-O2), enabling the catalyst to circumvent slower 

O2 dissociation from Ru(II)-O2. Electrochemical data might be easier to correlate than those with 
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external oxidants, but in the present work we specifically aimed to rationalize and study 

differences in reported experimental data sets based on external oxidant choices. An alternative 

explanation for the observed differences between the data sets with differences in oxidant 

concentration is that the oxidant may not be in true excess but instead is required for an 

additional step for O2 release via one electron oxidation (i.e., as in pathway 2). 

 We can understand the effect of changes in rate-limiting steps on trends in catalytic 

activity by examining two additional representative TMCs (i.e., 1b and 1i along with 1a).  Both 

are differentiated from 1a by the addition of peripheral electron-withdrawing groups that 

increase (by 0.12–0.17 eV) the Ru(II)-O2 ∆EIP scaling parameter (Figure 5). In data set 1, this 

modification (i.e., 1a to 1b) increases catalytic activity by nearly threefold (295%) due to more 

favorable dissociation of dioxygen from Ru(II)-O2. This observation is alternatively consistent 

with our descriptor-based analysis indicating that O–O bond formation is more favorable. In data 

set 2, the similar modification (i.e., 1a to 1i) decreases catalytic activity (by 61%) due to the 

decreasing favorability of electron transfer steps (Supporting Information Table S13). Therefore, 

modifications to the catalyst that would result in increased activity under one set of reaction 

conditions can lead to diminished activity under different reaction conditions.  

3d. Understanding the Activity of Dissimilar WOCs. 

 In comparison to the 15 TMCs with similar electronic structure, there is experimental 

evidence8 that the other four catalysts do not share the same rate-limiting step. Instead of zero-

order dependence on the oxidant concentration, experimental rates for three out of four 

remaining TMCs are first-order in oxidant. The rate order of the fourth TMC, 1f, can be either 

zero- or first-order in oxidant depending on the progress of the reaction (Supporting Information 

Table S1). While the experimental rate appeared correlated to properties relevant to O2 
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dissociation or O–O bond formation for the other catalysts from data set 1 (see Sec. 3c), the 

dependence of the rate on oxidant concentration suggests that the slowest step may involve 

electron transfer for these outlier TMCs. While we already noted that a shift in the Ru(II)-O2 

∆EIP descriptor (1.39–1.89 eV) in comparison to the majority TMCs (1.96–2.22 eV) can 

influence the rate law, this analysis suggests that a change in the catalyst’s preferred electronic 

state can also alter the identity of the slowest step in the catalytic cycle.  

 Unsurprisingly, the developed scaling relationships between computational properties 

that applied to the 15 TMCs does not simultaneously apply to the four outlier TMCs (Supporting 

Information Figure S7). While for the 15 TMCs, deviations from scaling relations of energetic 

properties were small (ca. 0.5 kcal/mol), large deviations (ca. 4 kcal/mol) are observed when 

predicting the O–O bond formation and O2 dissociation (i.e., WNA ∆G and Ru(II)-O2 ∆ELD) 

energetics of the outlier TMCs. Intermediate deviations (ca. 2 kcal/mol) are observed for 

prediction of the electron transfer steps (e.g., Ru(IV)=O ∆EIP) for these four catalysts 

(Supporting Information Table S15). While the Ru(II)-O2 ∆EIP scaling parameter explains 

relative catalyst performance among 15 TMCs with similar electronic states in similar 

experimental conditions, it does not generalize across multiple electron configurations. While 

additional scaling relations could be built for these outlier catalysts, it would likely require more 

data (i.e., more than four catalysts) than is available from these three experimental sets.  

 Because quantitative analysis of the outlier catalysts is challenged by differences in rate 

order and scaling relations, we instead carry out a qualitative assessment. We focus on the 

Ru(II)-O2 ∆EIP versus Ru(II)-O2 ∆ELD scaling relationship that applies to the 15 TMCs for the 

majority cluster but from which the outlier TMCs deviate strongly (Figure 6 and Supporting 

Information Figure S7). For the TMCs with increased 4dz2 orbital occupation (i.e., 1d and 1e), 
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Ru(II)-O2 ∆ELD values are lower (ca. 7 kcal/mol) than expected from the scaling relationship, 

suggesting more rapid O2 dissociation (Figure 6 and Supporting Information Table S15). We 

would therefore expect increased catalytic activity and rate-limiting electron transfer. Consistent 

with our expectations, 1d and 1e were approximately two orders of magnitude more active than 

1a in the original experimental study.8 The decreased Ru(II)-O2 ∆ELD in 1d and 1e is likely due 

to the strong s-donor ligand that can be expected to reduce the barrier to O2 dissociation via the 

trans effect (Figure 1).  

 
Figure 6. Ru(II)-O2 ∆EIP (in eV) vs Ru(II)-O2 ∆ELD (in kcal/mol) for the majority cluster of 15 
TMCs (blue circles) through which a best-fit line (gray) is shown. Four TMCs excluded from the 
fit are colored according to whether they have an increase in Ru dz2 occupation (red circles) or 
shifted relative O 2px and 2py occupations (green circles). Representative Ru(II)-OH2 
intermediates are shown in ball-and-stick representation and colored by element as: carbon in 
gray, nitrogen in blue, hydrogen in white, oxygen in red, and ruthenium in teal.  
 

 For the other two catalysts with shifted O 2px and 2py occupations (i.e., 1f and 8a), 

Ru(II)-O2 ∆ELD is instead increased (ca. 2 kcal/mol) relative to the scaling relationship (Figure 6, 

Supporting Information Table S15). Although this analysis might lead us to conclude that these 

two catalysts should undergo slower O2 dissociation and have lower overall catalytic activity, 
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experiments suggest they are both two orders of magnitude more active than 1a.8 This 

discrepancy can be rationalized by noting multiple paths for oxygen dissociation are possible in 

the WNA mechanism (Scheme 1). Because O2 dissociation from Ru(II)-O2 is somewhat less 

favorable for these TMCs without an observed decrease in activity, O2 dissociation from Ru(III)-

O2 could instead be favored. 

3e. Ligand Rigidity Improves Catalytic Activity. 

 All of the experimental catalysts studied in this work contain rigid multidentate ligands 

common among homogeneous Ru WOCs. To understand why this motif has emerged in this 

class of catalyst, we investigate the effect of lifting such constraints on catalyst energetics. By 

constructing lower-denticity, monodentate analogues of the ligands in the multidentate 1a WOC, 

we isolate the effect of conformational flexibility (Figure 7 and Supporting Information Table 

S16). First, we note that both standard 1a and its unconstrained form have fairly consistent 

reaction energetics (i.e., within 0.2 eV) for all but one step. The exception is the oxidation of 

Ru(IV)=O to form Ru(V)=O, which is less favorable in the unconstrained TMC by 0.53 eV, 

suggesting rigidity is essential for stabilizing Ru(V)=O in TMC 1a.  
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Figure 7. Comparison of energetics of the WNA catalytic cycle (in eV) when the TMC ligands 
are conformationally constrained (blue) or unconstrained (red). Inset structures (top) show the 
bonds that are removed to construct an unconstrainted equivalent. Each step is identified as an 
intermediate labeled between I and VI, with the labels matching the intermediates in Scheme 1, 
and the Ru(V)=O intermediate is also annotated in green. The alternative pathway 2 
(intermediate VII) has been omitted for clarity due to the similarity of closely related, reduced VI 
for both constrained and unconstrained SACs. 
 

 Given the emerging relevance of N-doped graphene single-atom catalysts (SACs)59 as a 

heterogeneous analogue to molecular catalysts for oxidation37, we also investigated whether 

rigidity plays a role in the increased activity of SACs. We constructed a minimal SAC model, 

consisting of Ru in a planar tetradentate structure reminiscent of an N-doped graphene sheet with 

a distal axial water, as well as a monodentate, unconstrained form of the SAC model (Supporting 
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Information Figure S7 and Table S16). When the denticity is reduced in the flexible model, we 

observe a similar shift (by 0.52 eV) upward of the energetics for Ru(IV)=O oxidation to form 

Ru(V)=O, suggesting the effect of rigidity is indeed general (Supporting Information Table S17). 

Another role that the rigid ligands could be playing is in reducing steric hindrance to the binding 

axial moiety (Figure 7). Thus, we expect that rigidity in homogeneous WOCs or graphitic SACs 

will play a key role in stabilizing the key Ru(V)=O intermediate for the WNA mechanism to lead 

directly to O–O bond formation. While the benefit of the rigid nature of N-doped graphitic SACs 

and its molecular mimics is well established37,59,121,122, there have been cases of enzyme mimic 

WOCs (i.e., cubanes) where monodentate ligands that enable dynamic rearrangement have 

instead been preferred.123 Thus, while our observations of beneficial rigidity are outside the 

margin of error in the hybrid DFT calculations, they cannot necessarily be extended to all 

WOCs.   

 To predict the activity of the graphene SAC for water oxidation, we make qualitative 

comparisons to those of the 15 experimental TMCs but do not expect it to follow the same 

scaling relationship as the majority set of TMCs due to differences in electronic state and 

coordination. For five of the seven properties we identified to influence catalytic activity, the 

rigid (i.e., standard) SAC model properties reside within the range of values obtained on the 15 

TMCs (Supporting Information Tables S10 and S16). For the other two properties, i.e., ∆ELD and 

∆EIP of the Ru(II)-O2 intermediate, the SAC properties are significantly less favorable. The ∆ELD 

of 20 kcal/mol is significantly higher (10–13 kcal/mol in the 15 TMCs) and the Ru(II)-O2 ∆EIP of 

2.5 eV is also increased (1.8–2.2 eV in the 15 TMCs). These observations suggest that this SAC 

model is unlikely to efficiently catalyze a WNA mechanism because it disfavors both O2 

dissociation from Ru(II)-O2 and formation of an Ru(III)-O2 intermediate. Rather, SAC activity 
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for water oxidation using Ru124 or other metals122,125-127 is likely the result of a modified 

mechanism involving an additional oxygen atom124 or components of the extended SAC material 

that have an influence beyond rigidity alone. Future work could further delineate the extent to 

which differences in SACs are due to rigidity or differences in the electronic state, for example 

by repeating the rigidity analysis on 1a and by carrying out principal component analysis on both 

the SACs and molecular catalysts. 

4. Conclusions. 

 Small changes in catalyst structure and/or reaction conditions can lead to significant 

changes in catalytic rates in a manner that is challenging to predict from first principles. We 

demonstrated an approach to building scaling relationships between efficiently computed first-

principles (i.e., with DFT) properties and experimentally measured rates across three studies of 

water oxidation catalysts. First, using a representative WOC, we identified the most likely rate-

limiting steps in the WNA catalytic cycle and computed several properties that correlated both to 

each other and the key steps in WNA. From the relative activity of experimentally characterized 

WOCs obtained from three different experimental studies reported in literature, we identified the 

ionization potential of a Ru(II)-O2 intermediate to correlate well to the majority of catalyst 

activities across these experimental studies.  

 Because catalysts with distinct electronic structure could not be expected to follow the 

same scaling relationships, we devised a strategy for distinguishing the electronic state favored 

by the catalyst based on the electron population in the natural bond orbitals of the metal center 

and axial oxygen atom. Using this metric, we confirmed that 15 of the TMCs had similar 

electron configurations for the Ru(II)-OH2 intermediate, whereas two TMCs had increased 

electron density in the 4dz2 orbital of the ruthenium center and two TMCs had electron density 
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shifted from the 2px to the 2py orbital of oxygen. Across the studies where correlations could be 

obtained between experiment and computed properties, the slope of the correlation could be used 

to infer whether the experimental rate-limiting step of the reaction was O2 dissociation, O–O 

bond formation, or electron transfer. While by design we used experimental data sets with 

differing conditions to understand real world challenges when comparing results from different 

sources,  future steps could focus on reducing these sources of uncertainty. For example, in some 

cases, the 2,2’-bipyridine ligand (bidentate a in Scheme 1) in the TMCs have been reported12 to 

dissociate or undergo oxidation in reaction conditions. While most cases (i.e., except 7a from 

source 18) this ligand fit our correlations, further examination of our study could identify if it 

should be excluded in future scaling relation analysis.  

 While scaling relationships do not easily generalize quantitatively to WOCs with distinct 

electronic states, qualitative inferences about the activity of possible TMCs were possible based 

on the sign of deviations from the scaling relationships. These observations motivated 

predictions of the role of rigidity in a Ru complex with more flexible ligands and a Ru SAC 

analogue. This approach reveals properties that govern the activity of homogeneous WOCs and 

provides a route toward computational design of improved catalysts for water oxidation.  
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