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Section 1 — Using machine learning to accelerate computational materials
design

Heather J. Kulik, Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, MA 02139

Status

Computational materials discovery efforts with density functional theory (DFT) and machine learning
{ML) have matured in the past decade. Here, | focus on open-shell transition-metal complex
discovery, which has unigue challenges, owing to the vastness of compound space spanned by their
ligand chemistry, isomers, coordination number, spin/oxidation state, and charge.’ Specialized
workflows for DFT high-throughput screening of transition-metal chemistry (e.g., molSimplify,
https://molsimplify.mit.edu) are key for data generation. For this class of materials, semi-empirical

and force field methods are not predictive. Tailored representations’ are also essential for predictive
ML (artificial neural network, ANN) models on modest data sets (ca. 300=1000 camplexes). Sparse,
graph-based, metal-focused representations encode the metal-dominanceof transition-metal
complex properties for properties such as spin splitting, redox potential, and catalyst energetics.” For
closed-shell complexes, standard whole-molecule descriptors used in organic chemistry may also be
suitable.* Once trained, both ML model exploitation® and exploration®® can accelerate chemical
discovery efforts (Figure 1). Trained models can be exploited to enumerate or optimize properties
with a genetic algorithm (GA) in a discrete chemical space by leveraging uncertainty guantification
(UQ) metrics such as ensemble variance or distances in the madel’s latent/feature space.” The GA
fitness function can be the combined property score/with @ penalty for high-uncertainty, distant
points, This approach ensures the prediction errors on discovered complexes are close to test set
errors by only making predictions where the maodels is confident, and lead compuds can be
validated with DFT. Alternatively, in active learning with ML model exploration (see also Section 5.1),
we acquire points that are both promising andwuncertain for model retraining, for example, with
expected improvement in efficient global optimization (EGO).® This approach is useful when multi-
objective optimization requires a large (ca. millions of complexes) search space and the best leads
are unknown. These methods enhanee ML model accuracy at an improving Pareto front at each
generation. Because DFT calculations are earried out at each step, the improvement of the mode|
can be assessed as can its optimism, about the compound space. With this approach, design rules
and leads are discovered in weeks instead of decades that a parallelized, random search with DFT
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Figure X. Approach showing data generation and ANN ML model training for exploration and expleitation in computational materials
discovery.

Current and Future Challenges
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Despite the promise and rapid progress in this field, compelling materials spaces with correlated
electronic structure in open-shell transition metal complexes introduce additional concerns:

1. Electronic structure method accuracy. The hierarchy of systematically improvable accuracy
established for small-molecule organic chemistry fails for transition-metal chemistry. Although DFET is
widely applied, imbalances in delocalization and static correlation error make the choice of
exchange-correlation functional® system-dependent (Figure 2). Single-reference correlated gliantum
chemistry methods can fail due to the multi-determinantal nature of open-shell systems.? Detectian
of multi-reference character in screening (e.g., with Multirefpredict,
https://github.com/hikgrp/MultirefPredict) is necessary. However, multi-reference methads require

careful parameter selection, including active space and orbitals. Robust data for benchmarking may
be unavailable due both to uncertainty in experimental measurements and differences between the
computational and experimental setup.

2. Efficient and robust dato ocquisition, Calculations may fail to converge, to optimize'to a stationary
point, or to produce a robust result, leading to wasted computational effort.? Automated workflows
should avoid generating erroneous data that hinder the learning task for ML models. Given the
nuanced computational cost and performance considerations /in transition-metal chemistry,
automated tools must be imparted with the expert knowledge to finestune electronic structure
method parameters, choices, and cost vs accuracy trade-offs.

3. Anthropogenic bias in dataset construction. The set of compounds that have been synthesized,
characterized, and reported in the experimental literature carries significant human biases and omit
failed outcomes. Given the array of choices for enumerating inorganic materials, hypothetical sets
can introduce their own biases and are sensitive' to the rules or building blocks used for
enumeration. ML models that learn design principles from these sets, whether generative in nature
or through exploration of a discrete set of compounds, will be influenced by these biases.

4. Multi-faceted criteria in materials design. Computational materials design frequently focuses on
optimization of one energy-based criterionysuch as aband gap or descriptor of catalytic activity. In
practice, a large number of other criteria such_as cost, stability, synthesizability, solubility, and
toxicity are equally important but'have received less attention. This is both because these quantities
are harder to predict and because it-may be challenging to identify o priori the biggest impediment

to experimental realization of a computationally designed material.

Figure 2. Dimensionality reduction of candidate mononuclear octahedral spin crossover (S00) complexes (i.e., with near-degenerate
high- and low-spin states) with mid-row (i.e., Cr—Co) 34 transition metals. The leads (discrete circles] change with functional choice (%
exact ghchange, colored as in inset). Adapted with permission from Ref, 1. Copyright 2019 the American Chemical Society.

Advances in Science and Technology to Meet Challenges
ML-accelerated computational discovery is expected to benefit most from synergistic integration of
advancements in artificial intelligence with related areas of computational chemistry. Although
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electronic structure method accuracy is system-specific, statistical models of optimal parameter
choice, including DFT functionals, multi-reference character®, or active spaces in multi-reference
theories' will enable improvement. ML models that encode more flexible parameters in current
theories or supersede analytical forms have the potential to advance accuracy beyond curpent
methads. The integration of uncertainty guantification” and sensitivity analysis into both the
electronic structure and ML predictions will bring robustness to computational discovery. Semi-
supervised models that leverage a combination of labelled and unlabelled data will address the
challenge posted by divergent property landscapes with varying theory choice® ® (Figure 2). Natural
language and image processing extraction of large experimental data sets will provide bath larger
benchmark sets and knowledge of the repeatability/uncertainty from independent experimental
property measurements (see also Section 4.1). Continued increases in algorithmic and hardware
efficiency will also increase how much data can be generated and improve the fidelity of this data.
Mevertheless, models that can recapitulate expert decisions will guide how to best use
computational resources, including prediction of when calculations will succeed or fail. Increased
development and use of human-guided ML will be important. While biasis challenging to overcome,
critical assessments of the relationship between synthesized and hypothetical materials, including
through improved representations that adeguately encode  similarity’ and data distribution
characteristics will enable biases to be recognized and acknowledged. Tight integration between
experiment and computation driven by autonomous tools and improved generative models will
enable ML-accelerated discovery to address the multitude of unknowns associated with the design
of practical materials.

Concluding Remarks

Initial efforts of integrating ML into computational workflows suggest substantial promise for
augmenting and accelerating the traditional trial-and-error approach to computational materials
discovery. Certain regions of chemical spaee, such as.those that contain the correlated open-shell
transition-metal centers in coordination complexes and metal-organic frameworks, are both the
most promising for functional materials design and the most fraught with outstanding challenges.
Tighter integration between computational scientists and experimental efforts as well as
incorporation of advanced artificial intelligence into software workflows are expected to enable
extension of the current efforts to tacklerealistic, multi-faceted design challenges. In doing so, it is
anticipated that it will become/increasingly feasible to carry out autonomous discovery of new
functional materials in daysto weeksinstead of years or decades.
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Section 1.2 - Machine learning for material-property prediction
Thomas Hammerschmidt, ICAMS, Ruhr-Universitat Bochum, Germany

Status

Many aspects of our society rely on highly optimized materials. The demands on the materials range
from structural stability in extreme conditions to high functional performance with long life time.
Common goal of the materials design is to optimize the performance by tuning material chemistry and
processing. The immediate questions are: (i) Which crystal structure and microstructure form for a
given chemical composition under which conditions? (ii) Which performance can be expeeted? (iii)
How stable is the performance during service? (iv) How can processing optimize performance and life
time? Traditional empirical optimization leaves vast regions of chemical space and processing
unexplored. The promise of machine-learning for material-property prediction is to aptimise known
materials and to design new materials for specific target properties.

The most fundamental material property is the equilibrium crystal structure that a combination of
chemical elements will form. Early attempts to predict compound formation used one-dimensional
descriptors that arrange the elements of the periodic table along a string [1]. Compounds can then be
represented as structure maps that cast the data set of experimentally observed compounds in low-
dimensional representations, an approach later confirmed by mining DFTdata [2]. More fine-grained
information of the chemical elements like electronic configuration, covalent radius, or electro-
negativity, can be utilized for classification of structural stabilitywith more complex structure maps
[3] or in feature vectors for regression learning of DFT data. A further refinement is to utilize also
information of the interatomic interaction, eitherin terms of the mere geometric arrangement of the
atoms or e.g. in terms of electronic-structure based descriptors [4] based on bond-order potentials
(BOP). Current machine-learning of material properties typically combines atom/bond infarmation
with chemistry information, see Fig.1 as example [S5). Such atomic-scale descriptors can be upscaled
to some degree, e.g, to complex entities like grain boundaries [6]. However, for predicting
macroscopic material properties like plastic defarmation, many length and time scales need to be
bridged. Machine learning at these scales is based on information from, e.g., micromechanical
simulations [7].

| original features

Gmmetrhm l!

ring and
@M aggregation

Per-stmuciure features

Band gap

Figure LoExample @fmachine-learning architecture for predicting structural and functional material properties of transparent
conductors, adapted from Ref. [5], httos://doi.org/10.1103/PhysReviaterials.5. 02380, The feature engineering constructs a feature
vectol with information on chemistry and atomic structure at a per-atom and at a per-structure level. The feature vecter i contracted in
the featuréselection step and separate models are trained for the formation energy and the bandgap.
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Current and Future Challenges

The prediction of material properties by machine learning has enormous potential to deliver a wealth
of materials for the benefit of our society, particularly for the energy, environment and
communication sectors, The possibilities range from optimized known materials over unexpected new
material classes to inversely-designed materials. Still, the challenges are manifold:

(1) At the atomic level we have witnessed enormous progress in the last years regarding the
application of data-science technigues to results of guantum-mechanical calculations. Mast ML
models, however, use descriptors that are agnostic of the underlying physics, i.e. of the interatomic
bond between the chemical elements. This is instead picked up implicitly by extensive sampling of the
potential energy surface. The consequence is a degree of data hunger that poses a.considerable
challenge for the exploration of high-dimensional chemical and structural spaces.

{2} Machine-learning macroscopic material properties requires different concepts. Taking structural
materials as example, the relevant information units are the microstructure elements and their
formation and evolution during fabrication, processing and operation. Thisinvolves the combinatorial
diversity of chemical compositions and the geometrical complexity of the microstructure. From an
electronic-structure perspective, a main challenge is the extrapolation from calculations for
comparably small simulation cells to microstructure elements (e.g, dislocations, interfaces,
precipitates} with sufficient chemical and geometrical complexitys At the macroscopic level the
challenges are the representation of microstructure elements and the identification of suitable
descriptors as well as the generation of meaningful artificial data for learning the time evolution.

(3) A related challenge is the gap between the data from electronic-structure calculations and the data
from experiments on macroscopic material properties. Taking mechanical deformation as example, it
is known that the modification of stacking-fault energies by alloying elements affects the macroscopic
plastic deformation, see e.g. Ref. [8]. However, itis not clear at the moment how to join data of
electronic-structure calculations of stacking-fault energies with experimental stress-strain data in
order to machine-learn the influence of chemical .composition on the mechanical strength of a
microstructured material.

Advances in Science and Technology toMeet Challenges

Meeting the above challenges for predicting material properties by machine learning requires
advances in the combinationof correlative data science with causative physical models, This requires
methodological develapments of physical models and of their connection to data-science technigues.

Major impact on the efficiency, robustness and interpretability of ML models can be expected from
advances in the construction.of chemistry/physics-aware descriptors, in the biasing of sampling
technigques towards the chemically/physically relevant phase-space, in the implementation of ML
constraints/guidance from domain knowledge (available as physical parameters or as physical
models), and in the development of ML models with robust transferability.

This may include, e.g., extensions of the periodic table of the elements towards dictionaries of local
building blocks of chemistry as developed in molecular sciences [9]. For predicting the properties of
bulk materials, such schemes would need to be advanced to handle long-ranged effects of crystalline
andymicrostructured systems. Another potentially viable route to utilize domain knowledge of the
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interatomic interaction would be to equip electronic-structure based descriptors of the local atomic
environment with parameters that are specific for the chemical bond, e g., pairwise Hamiltonians from
down-folding DFT eigenstates to a tight-binding minimal basis [10] (Fig.2).

A prerequisite for combining the results of electronic-structure calculations with experimental data
on macroscopic material properties is the ML-ready preparation of the data sets in a common logical
framework. This will allow further advances in identifying correlations in the joint data at different
time and length scales.

[
=4

( 1,]. ;'. I } :' |:|l-

Figure 2. Parameters of a tight-binding bend-motel cbtained by downfolding DFT eigenstates of two-atomic molecules to a minimal
basis across the periodic table, adapted from Ref. [100RCC BY 4.0, £ 2019 The Author(s). The combination with electronic-structure
based descriptors of the local atomic enviranment [4], eMfeetively encodes domain-knowledge of the interatomic interaction in the
descriptor that can be exploited for machine-leaming material praperties acrass chemical space,

Concluding Remarks

The application of machine learning for the prediction of materials properties has just started but
already now the tremendoussuccess is revolutionizing the design of materials. High precision and vast
chemical screenings havé been demonstrated for properties that are directly linked to time- and
length scales of electronic-structure calculations. Some of the central challenges at the moment are
the combination of physical insight and data-science techniques, the up-scaling of the electronic-
structure calculations to macrescopic material properties and the joint learning with experimental
data. Taking these steps will enable us to switch gear from computing the property of a material to
computing the material for a property,
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37 of stable materials that can he synthesi alab. A curacy in calculating hoth formation energy and distance
38 particularly important concept in m# Mgu wthe  totheconvex hmll. Itis important to note, however, that
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47 Morcover, most of - resulting ounds are highly  tions learned by deep newral networks is not surprising,
48 unstable, l-'l-ﬂd there Hllc or uo interest. There are as this can be expected from expericnee gathered in other
49 two opposite ﬁm o tackle the problem of ther-  fieldsof science [ |. Thissecond generation of prediction
50 modynamic stahility i) One can scarch for the most models ean again he split into composition-hased and
51 stable ery "[3} at a given chemical composi structure-based models, Diflerent works benefit from dif-
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Structure-based models stem from the crystal-graph
convolutional ncural nctworks of Ref. [ ]. These message
passing networks [/ 7] rely on representing crystals as a
graph where each atom forms a node and the edges con-
tain a rcprescntation of the bonds. Periodicity results in
loops in the graph. After the publication of the original
idea (] a large number of works [0, 7] have applied
message passing nctworks with different update func-
tions to predict several material properties. Structure
bascd deep learning models not only profit from the ad-
ditional training data but also from the complete knowl-
edge of the crystal structure. Therefore while the accu-
racy of thesc networks and their prediction ability is su-
perior [], the reported errors are not directly pertinent to
high-throughput scarches. For example, Park et al. [10]
reports roughly 8 times larger errors when using non-
relaxed structures as input. Nevertheless, the speed-up
achieved during high-throughput scarches based on the
improved crystal-graph convolutional ncural networks of
Ref. [17] is excellent and around onc order of magnitude
better than in earlier composition-based works.

One rccent development is the mclusion of uncertainty
in the prediction [7]. Uncertainty estimates allow for ac-
tive learming and for an informed decision on the candi-
date materials predicted by the models. Goodall et al ]
also reports an improvement in the prediction error wi
using a loss function that includes information on the
alecatoric variance.

by using an ensemble of models or by mcludmg achvn
dropout layers. There is one large group

The cpistemic variance is usually:-___
approximated through a Monte-Carlo cstimategueither

“during the last 70 years.
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are not fully compatible with one another due to dif-
ferent calculation parameters. The former’is relatively
small and includes mostly stable or alumsﬁ‘stablg ma-
terials. The latter is larger and contains a TOOre var-
ied distribution of materials. The !mgmt Watabase is
by far the AFLOW database [1¢] with 3.3 willion cow-
pounds. There are ﬁ)rther'morqje 1iblicl§ available
dat asctscach contai ningscveral’ hundred theusands en-
trics [/, 1¢]. Cowbining all lhebc data shoulz(rallo“ for
the use of datasets that will'be one order of magnitude
larger than current ones, ennhlmgoonsequently more re-
liable predictions of thm‘mod\ namics stability. This is a
timely, but unflortunatcly far fronutrl\'lal task. Concern-
ing the algorithmi j;devdopment the obvious challenge
is to harness the decurag of message-passing models to
predict stable mmtm;iuls—@-dcvclopmg versions that do

not rely on reléxed geomefries.

ADVANCES 1N SCIENCE AND TECHNOLOGY
- Tb NEET CHALLENGES

"Thc lopments in machine learning algorithms to
dis new stable matcrials [ollow a path similar to
e one of nearly all other fields of artificial intelligence
In fact, modecls that leverage
computation morc cficicntly and are able to learn from

_uarge amounts of data have replaced, and by now dom-

based on experimental instcad of theoretical data. Unfor-gf

tunately, the number of experimentally vealized system
isvery limited, and is dwarfed hy the availlaBaéithcoretical
data.

CURRENT AND FUTURE|CHALEENGES

All theoretical solid-state dasabases, and consequently
all discussed machine learning ‘madgls, rely on the
Perdew-Burke-Ernzerhof functional [7]. Since the de-
velopment of this densitysfunctional, ‘2  years of research
have brought progress that ha largely unnsed. Up-
grading to a new functio ul ;uch as SCAN [ ], that pro-
vides better format wzn nergies, reqlnres recalculating all
convex hulls, a comnut,ntmnally expensive but perfectly
feasible task with fod@\r s supercomputers.

So far, we dlacussed various algorithmic appronches
to prodact the' themgd\ namic stability. Of course, the

amount And quuhmf data also plays a major role in
machine\learningg Early works [2, 7] usually used custom
training s 1lated for mch high-throughput study.

Nowadays, most models are trained cither on the materi-

“als projeetidétabasc [16] or the open quantum materials

databmae (OQMD) ['7]. Unfortunately, these databases

12

inate, algorithms based on human intuition and under-
standing. This is truc in the ficlds of image rccognition,
natural language processing, strategy games (Go, chess,
Starcraft II), ctc. Richard Sutton called this the “hitter
lesson™ [20]. Conscquently, we should focus on develop-
ing methods and datasets that let us use effectively the
enormous potential that modern computing offers. On
the one hand, this requires maximizing the amount of
data. Unfortunately, at the moment, the majority of cal-
culations performed in high-throughput studies is thrown
away. For example, DFT rcsults for unrelaxed structures
can and should also be kept [or training machine lcarning
models. This would require developing structure sensi-
tive models that can take advantage of the extra data and
circumvent calculations of relaxed crystal structurcs.

CONCLUDING REMARK

Finally, and maybe most. importantly, we have to re-
alize that all developed models are just tools that should
be combined and further applied to explore the chemical
space of possible compounds, instead of being left unused
after being developed.
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Section 1.4 -

Learning Rules for Materials Properties and Functions

Mario Boley' and Matthias Scheffler®
Department of Data Science and Al, Monash University, Melbourne, Australial, The NOMAD
Laboratory at the FHI-MPG and HU, Berlin, Germany*

Status

In materials science and engineering, one is typically searching for materials that éxhibit exceptional
performance for a certain function, and the number of these materials is extremely small. Thus,
statistically speaking, we are interested in the identification of “rare phenomena”, and the scientific
discovery typically resembles the proverbial hunt for the needle in a haystack. Let us.illustrate this

I" example, i.e. searching for materials that are very robust, highly transparent, and at

with a “classica
the same time have a high heat conductivity. In the immense space of structural and chemical
materials, there is one strong high-performance candidate: carbon in the'diamond structure. Hardly
any other material comes close. And from a thermodynamic perspectivey this material is not even
stable but metastable. As we understand the mechanisms behind the'mentioned properties, we trust
the conclusion that diamond is the exceptional champion of the jssued search. But how can we
reliably find materials that exhibit exceptional performance for functions.in general, for example, for

catalysis, photovoltaics, or batteries? All searches face the followingsituation®:

* The number of possible materials is practically infinite.

* The electronic and atomistic processes that rule a desired materials function are many, and their
concerted action is typically highly compléx and“intricate, resulting an immense number of
possibly relevant mechanisms.

* The number of data that are “clean” (comprehensively characterized and high-guality) and
relevant for the function of interest are typically verylow.

Under these daunting conditions we aim tovidentify the rules that govern the rare phenomena
corresponding to particularly exceptional materials. Such rules describe regions in materials spaces
that are relevant for the function of interest (see Fig. 1). In analogy to biology, the basic physico-

- g1 E[35.6]Ag: € s
= dilg, gz} +dal
4
= u
@ E]
: 3
£ g
% 22
E exceptionalll e
material
n 1
L
6 a 1

materials gene gy

Figure 1. By mapping materials (depicted as squares) into spaces defined by relevant “materials genes” we can identify
regions where materials exhibit desired exceptional properties. Depending on the employed Al methods, such regions
can begiven by simple Boolean conditions [dashed line) or in terms of more complex analytic “descriptor” funetions
[here, d,, d,] of the genes (solid line]. Typically, the space of relevant genes will have a much higher dimensionality than
twn.
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chemical parameters entering these rules may be called “materials genes”, as they are related to
processes that trigger, actuate, or facilitate, or hinder the property of interest. In particular, we are
interested in such regions that 1) contain exclusively or at least predominantly materials with desired
properties and 2} are described in a way that allows us to efficiently sample from them new
synthesizable materials. Publicly shared materials databases and Al methods have enabled
encouraging progress' towards this goal (see Fig. 2 as an example)’. However, critical challenges
remain.

Current and Future Challenges

Most available data science and machine learning methods are fundamentally, unsuited for the
required identification of rare phenomena. Firstly, they typically aim to fit a global model to the
available data by minimizing the “regularized” average error. This focus on average global
performance not only puts importance on accurately modelling the hay instead of the needles. Even
worse, regularization means to deliberately avoid modelling the extra-ordinary for the sake of
avoiding overfitting. Secondly, as pointed out by Ghiringhelli et al.?, off-the-shelve methods cannot
reliably identify meaningful and trustworthy rules that describe exceptional materials, because they
implicitly or explicitly rely on descriptors (also called representatiogns) of materials that are either too
restrictive (because they are hand-picked) or too unrestrictive (e.g., in the case of deep learning) and
thus model “non-physical” relations likely unrelated to the materialsgenes of relevance.

Using symbolic regression and compressed sensing, the S15580 (sure independence screening and
sparsifying operator) approach® alleviates this problem by identifying descriptors consisting of
typically only a few analytical functions of relevant materials genes. Based on its physical plausibility
and robust empirical performance, we can say with.some confidence that this approach successfully
identifies rules satisfying our first criterion: the description of regions that predominantly contain
desired materials. A remaining problem liesin the second requirement: our ability to efficiently sample
interesting novel materials. Rejection’ sampling can .be employed to generate candidates if the
considered materials class is small, e.g., binary systems restricted to a few crystal structures. However,
this does not scale to the vast design spaces relevant for general searches. The central challenge is

& g% eV mol
dy v
Spnyhc acil 1 {96

VPP

20/ MovO, Aavep
Vo0

o == 0
250 300 350 400

Temperature (°C)

Figurea2, Map oficatalysts given by the 51550 model for the selectivity of propane canversion to acryic acid. For details see Ref, 2, The
desired high selectivity situation is colored dark blue. The materials used for deriving the descriptors are indicated by the black lines. The
function dy* is quite complex, identifying the macroscopy material, i.e. its basic properties (e.z. composition) as well as its porosity etc.
VP Preaes iz 8 suggested material that would result by changing some materials parameters of the VPP material. In general, however, the
relationzhip “real materials” = d4¥is not efficiently invertible,
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that SISSO similar to other commonly used descriptors are not efficiently invertible. While
representing materials through their genes enables us to discover reliable rules, many points in gene
space do not correspond to real materials, and this complicates the direct generation of new
candidates from a specific region.

Advances in Science and Technology to Meet Challenges

Animportant alternative approach to rule identification is subgroup discovery (SGD)®. Similar to SISSO,
SGD also describes non-linear relations between materials genes and properties. However, ingontrast
to SIS50, the SGD rules are given as Boolean conjunctions of conditions on individualgenes. This
means that the described regions in gene space are simple axis-parallel (hyper-)rectangles,which
makes it easier to generate novel materials from them: While, as above, most combinations of the
gene values may not correspond to real materials, axis-parallel conditions allow to decompose the
generation process into simpler steps by considering conditions on decoupled genes independently.
Unfortunately, currently available SGD methods are, not designed to describe rargphenomena. They
are based on ideas from confirmatory statistics (significance testing) to derivé final conclusive results
from a given dataset. To assure results that are significant for the data at hand, they prioritize the
detection of relatively frequent phenomena. Fortunately, in the.context ef materials science, this
extremely conservative approach of one-shot correctness can he relaxed. Since we have
computational methods that can obtain accurate new data with reasonable efficiency, we can aim for
an approach where pattern discovery and first-principles methods werk in unison to facilitate rapid
scientific discovery.

Borrowing ideas from Thompson sampling and Bayesian optimization®, such rule discovery methods
should propose rules that are reasonable candidates to describe the rare material champions and then
obtain new simulated data from the proposed regions toe validate or falsify this proposal. By repeating
this process, we iteratively arrive at new regions where desired materials are more and more likely to
be found. Instead of one-shot correctness, this approach aims to identify the desired rare
phenomenon as soon as possible in this iterative process by optimizing an exploration/exploitation
trade-off*,

This compelling vision provides a clear agenda of statistical and algorithmic problems to tackle: Firstly,
we need a sound selection mechanism for hypotheses about rare phenomena that appropriately
compromises between the value of @rule and the likelihood that it can be confirmed by future data.
Secondly, we need efficient algorithms that find optimal regions based on this selection mechanism.

Concluding Remarks

In summary, publicly shared materials data and Al code, as pravided by the NOMAD Al Toolkit”, as
well as physically plausible representations based on materials genes (like the ones used in 51550 and
SGD) have facilitated progress towards identifying rules that describe desired materials. So far,
however, all approaches are lacking either the ability to consistently describe only promising materials
or the ability to efficiently generate them = at least at the ultimately required scale. To advance
further, challenging statistical and algorithmic problems have to be solved, but there are promising
starting peints: The combination of Bayesian approaches to multiple hypothesis testing® as well as the
versatile branch-and-bound approach? to discrete optimization stands a good chance to enable the

# Here, “exploration” refers to sampling from regions where one is still uncertain about materials performance,
and “exploitation” refers to sampling from regions with relatively strong and certain materials performance.
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envisioned methods. However, due to their reliance on adaptively generated new data, their
development will require a concentrated interdisciplinary effort between materials and data science.,
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Section 1.5 - Deep Learning for Spectroscopy
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Status

Spectroscopy is a fundamental tool in materials research, characterisation and discovery, and has
consequently become a major objective of machine learning tasks. Here, deep learning based on
neural networks (NNs) is a particularly powerful approach. NNs are universal approximators since they
have the ability to represent almost arbitrarily complex relationships, asfound in spectroscopy
between materials properties and spectra, given the right architecture, Enough neurons, layers
{depth) and training data. Deep learning has celebrated first successes inspectroscopy by correlating
the electronic structure and spectral properties of materials te'their atomic structure® [1,2,3],
functional properties [4,5] and synthesis parameters [6,7].

Deep learning for spectroscopy pursues two parallel goals (Figure 1a): spectra prediction (typical in
computational studies) and property inference (typical in experimental approaches). Successful NN
spectra predictions allow us to cut down on the time ‘and resources behind computational or
experimental spectroscopy. Trained on available input (e.g.,-atomic structure or materials attributes)
and output (e.g., spectra or spectroscopie.guantities) pairs, the NN can make output predictions for
new input instantaneously, without furtherresource requirements [1,2,3] and directly, without first
computing the potential energy surface as discussed.in Section 2.3 of this Roadmap.

In property inference tasks, data input and output are reversed to echo spectroscopic applications.
NMNs predict materials structure and propertiés from spectral input, or classify the inputs into different
categories. Spectroscopy input can come.in the form of spectra or spectral images. This approach to
deep learning spectroscopy has, for example, been applied to extract structure information from core
level [6,7], nuclear magnetic resanance [8], vibrational [9] and Raman [10] spectroscopy, to identify
cancerous cells or microbial pathogens from Raman and infrared spectra [4,5] and to detect faulty
photovoltaic modules from electroluminescence images [11].

The first deep learning spectroscopy attempts were made 30 years ago [12,13], but the influx of
modern deep NN architectures has provided a notable research boost in the last 3 to 4 years. To unlock
the full potential of deep |earning for spectroscopy, several challenges have to be overcome. Neural
networks could ‘then become a staple in theoretical spectroscopy for fast and accurate spectra
generation enabling high-fidelity and high-throughput excited state research. They could be directly
integrated into spectroscopic hardware from workbench instruments to large scale infrastructures
{e.g. synchrotrons) to aid diagnostics and data analysis and facilitate data-driven science [14].

1 Atomic motion can be included by incorporating it in the spectral training data through, e.g.,
molecular dynamics or electron-phonon coupling.

18

Page 1B of 92



Page 19 of 92

[F=T - 4 (R, Q- PR N

AUTHOR SUBMITTED MANUSCRIPT - EST-100236.R1

Electronic Structure (2020) H#H i Roadmap

Current and Future Challenges

Atypical deep learning spectroscopy workflow is shown in (Figure 1b). Each step from data acquisition,
choice of materials representation, neural network design and training, to testing and prediction,
presents its own challenges. To advance the current state-of-the-art, we must address the issues of
raw data avoilability, material representation and its invertibility, as well as model interpretability,
uncertainty and scalability (Fig. 2.

Deep learning networks typically contain a large number of neurons, with parameters that must ke
learned during training. Although deep architectures provide the NNs with the flexibility to learn the
complex relationships encountered in spectroscopy, parameter fitting requires extensive training
data. Open data sets and data infrastructures are emerging in the natural sciences and engineering
[11], but spectroscopy data is scarce. The challenge of data-hungry neural networks.needs to be
addressed by data availability (or better data abundance), as well as more data efficient network
architectures and training protocols,

A more conceptual challenge is related to materials representations, data frameworks that encode
material microstructure and properties into the NN. While representationdesignis an active research
field, it is unclear which representation types produce the most accurate and transferable deep
learning models. Further invertibility problems arise when a représentation’is inferred from spectra
instead of materials properties [7,8)]. This presents an obstacle to inverse prediction tasks, which now
require an additional reconstruction step to retrieve the desired preperties from the deep learned
representation.

From the technical viewpoint, model scalability, interpeétability and uncertainty stand in the way of
rapid development. Deep learning spectroscepy requires big data, placing a burden on our
computational infrastructures in both data computation and mode| fitting tasks. The learning process
in NMNs is arithmetical and abstract, interpretability relatesto the human desire to extract physical
insight from NN models, and gain a betterunderstanding of deep learning so we can make systematic
improvements. NNs are also lacking an‘intrinsic measure of model uncertainty to indicate confidence
in any individual prediction. Equipping deep learming approaches with additional information about
the model, such as uncertainty, would allow us to systematically improve both spectroscopy datasets
and learning quality.

Advances in Science and Technology toMeet Challenges

Emerging solutions to the outstanding problems are illustrated in (Figure 2). To overcome the current
data scarcity in deep learning spectroscopy, ongoing simulation waork is contributing open-access
datasets [15], with experimental data delivered by open-source digitalization workflows developed
for, e.g. multidimensignal.photoemission spectroscopy [16]. In the future, curated spectroscopy
datasets should be made available to the community by open-science data infrastructures [14], and
data acquisition workflows should be directly integrated into the instrumentation to facilitate routine
data digitization in spectroscopy.

Multi-fidelity machinedearning technigues, including transfer learning, have the potential to address
both data availability and scalability issues. In these hierarchical approaches, learning is based on
ample but approximate low fidelity data and refined with costly high quality data points. Advances in
multifidelity applications [17] promise to accelerate spectroscopy research: abundant data from a
data-rich spectroscopy technique could be used to reduce the number of required acquisitions from
a resourcesintensive experiment or computational method.
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The challenges associated with materials representation and the invertibility of deep learning can be
mitigated by feature engineering. Feature engineering refers to the design of data representations for
optimal learning, a subject of active research. Incorporating domain knowledge and constraints (e.g.
invariances, uniguenesses or invertibilities) into this process would facilitate smaller network
architectures and faster learning. Moreover, automated feature generation (by, e.g., 2 preceding
neural network) could produce even more compact representations or reveal features that were
previously hidden to human researchers.

From the technical viewpoint, model scalability, interpretability and uncertainty quantification can be
addressed by innovative NN design. TensorFlow or PyTorch for Python or Flux for Julia provide
examples of well-developed deep learning libraries that can facilitate the implementation of more
complex learning frameworks. These deep learning software libraries, coupled with .upcoming GPU
architectures and hybrid GPU/CPU computing platforms, will allow us to build on current studies
towards larger datasets and novel applications.

With the help of ensemble learning, we are finally gaining insight into deep learning. Using the same
data to train multiple models at the same time reveals model variability.and thus uncertainty, which
can be exploited to improve datasets and enhance learning. Ensemble learning, feature engineering,
NN architecture design and multi-fidelity learning provide us with a method portfolio for tracking
information uptake and processing in NNs, ultimately facilitating theuinterpretability of deep learning
models.

Concluding Remarks

Deep learning spectroscopy has become an exciting research field, brimming with innovative ideas
and approaches that are employed across different types of spectroscopy. We are fast approaching
generalised and transferable pre-trained-models for fast predictions and industrial pre-screening.
Through ongoing work, we will be able te.correlate computational spectra to experimental data,
facilitating the interpretation of spectroscopy signals and accelerating applications.

In the future, robust, possibly pre-trained and easy to use deep learning spectroscopy software needs
to be developed for non-experts and.integrated into data infrastructures or spectroscopy instruments
or facilities. In time, the accumulatign of studies across different research fields could make it possible
to establish correlations between different types of spectroscopies. All spectroscopic responses of
materials are governed by the 'same quantum mechanical foundations. Accessing this
complementarity with deep learning will allow us to combine the strengths of different spectroscopy
technigues and usher in a new era in materials characterisation.

Acknowledgements

We acknowledge support from the Academy of Finland via the Novel Applications of Artificial
Intelligence in Physical Seiences and Engineering Research program (project Mo. 316601} and the
Flagship programme Finnish'Center for Artificial Intelligence (FCAl) as well as from COST Action 18234,
supported by COST (European Cooperation in Science and Technology).

References

[1] Ghesh, K, Stuke, A, Todorovic, M, lergensen, P. B, Schmidt, M. N, Vehtari, A, & Rinke, P. (2019)
Deep learning spectroscopy: MNeural networks for molecular excitation spectra. Adv. Sci. 6,
1801367,

20

Page 20 of 92



Page 21 of 92 AUTHOR SUBMITTED MANUSCRIPT - EST-100236.R1

1 Electronic Structure (2020) H#H i Roadmap

; [2] Chandrasekaran, A, Kamal, D, Batra, R, Kim, C, Chen, L, & Ramprasad, R. (2019) Solving the

4 electronic structure problem with machine learning. npj Comput. Mater. 5, 22.

5 [3] Westermayr, ] & Marquetand, P. (2021) Machine learning for electronically excited states of

? molecules. Chem. Rev. 121, 16, 9873

8 [4] Bagcioglu, M, Fricker, M, lohler, 5, & Ehling-Schulz, M. (2019) Detection and identification of

0 bacillus cereus, bacillus cytotoxicus, bacillus thuringiensis, bacillus mycoides and . bacillus

10 weihenstephanensis via machine learning based ftir spectroscopy. Front. Microbiol. 10, 902.

11 [5] Rehman, I. U, Khan, R. S, & Rehman, 5. (2020) Role of artificial intelligenge and vibrational

12 spectroscopy in cancer diagnostics. Expert Rev. Mol. Diagn. 20, 749-755.

13 [6] Toyao, T, Maeno, Z, Takakusagi, S, Kamachi, T, Takigawa, |, & Shimizu, K.-i.4{2020)sMachine

:g learning for catalysis informatics: Recent applications and prospects. ACS Catali 10, 2260-2297,

16 [7] ). Timoshenko, D. Lu, Y. Lin, A |. Frenkel (2017), Supervised Machine-Leéarning-Based

17 Determination of Three-Dimensional Structure of Metallic Nanoparticles; ]. Phys, Chem. Lett. 8,

18 5091.

19 [8] M. Cordova, M. Balodis, B. Simdes de Almeida, M. Ceriotti, and k~Emsley (2021), Bayesian

20 probabilistic assignment of chemical shifts in organic solids, Science Advances 7 (48), eabk2341

21 [9] H.Ren, H. Li, Q. Zhang, L. Liang, W. Guo, F. Huang, Y. Luo, and J. liang (2021), A machine learning

22 vibrational spectroscopy protocol for spectrum prediction "and spectrum-based structure

ii recognition, Fundamental Research 1, 4, 488

25 [10]M. H. W. N. Jlinadasa, A. C. Kahawalage, M. Halstensen, N, O. Skeiegyand K. J. Jens (2021), Deep

2% Learning Approach for Raman Spectroscopy, in IntechOpen, DOk 10.5772/intechopen.99770

37 [11]Zhao, Y, Zhan, K, Wang, Z, & Shen, W. (2021) Deep learning-based automatic detection of

28 multitype defects in photovoltaic modules and application’in real production line. Prog.

29 Photovolt. Res. Appl. 29, 471—-484.

30 [12)Zhaochun, Z, Ruiwu, P, & Nianyi, C. (1998) Artificial neural network prediction of the band gap

;12 and melting point of binary and ternary compound semiconductors. Mater, Sci. Eng. B 54, 149-
152.

;i [13]Paul, 5, Johann, G, Henrik, T, & Reiner, 5. (2000) Rapid access to infrared reference spectra of

35 arbitrary organic compounds: Scope and limitations of an approach to the simulation of infrared

6 spectra by neural networks. Chem. Eur. J.'6, 920-927.

37 [14]Himanen, L, Geurts, A, Foster, A. 5, & Rinke, P. (2019) Data-driven materials science: 5tatus,

38 challenges, and perspectives. Adw, Sci. 6, 1900808,

39 [15] Stuke, A, Kunkel, C, Golze, D, Todorowic, M, Margraf, J. T, Reuter, K, Rinke, P, & Oberhofer, H.

40 (2020) Atomic structures and orbital energies of 61,489 crystal-forming organic molecules. Sci.

41 Data 7, 58.

:’; [16] Xian, R. P, Acremann, ¥, Agustsson, 5. Y, Dendzik, M, Blhlmann, K, Curcio, D, Kutnyakhov, D,

44 Pressacco, F, Heber, M, Dang, 5, Pincelli, T, Demsar, J, Wurth, W, Hofmann, P, Wolf, M, Scheidgen,

45 M, Rettig, L, & Ernstorfer, R. {2020} An open-source, end-to-end workflow for multidimensional

46 photoemission spectroscopy. Sci. Data 7, 442,

47 [17]G. Filania, . Gubernatis; T. Lookman (2017}, Multi-fidelity machine learning models for accurate

48 bandgap predictions of solids, Comput. Mater. 5ci. 129, 156.

49

50

51

52

53

54

55

56

57

58

50

21



[F=T - 4 (R, Q- PR N

AUTHOR SUBMITTED MANUSCRIPT - EST-100236.R1

Electronic Structure (2020) H#H i

Roadmap

Inference

01110011

Checks

Properties Prediction Spectra
b Data Representation
10010010
01001001 N
ml]I]!l[ul Prediction

Design/Training

Inference

Figure 1: Deep learning spectroscopy paradigm a) and workflow b)

22

Page 22 of 92



Page 23 of 92

[F=T - 4 (R, Q- PR N

Electronic Structure (2020) H#H i

AUTHOR SUBMITTED MANUSCRIPT - EST-100236.R1

Roadmap

Digitalisation Workflow

BE
—0
Data Efficiency * 2%

Scalability

,".
-
1
i
[
v
L

'l
L
Hardware 5
‘i
* -
R

*

-

"

| |

L

[ . |

L
-

Multi-fidelity

Figure 2: Deep learning spectroscopy challenges (in yellow) and scientific and fechnological

advances (in white) to address them

Bl Interpretability &
< Uncertainty

'l

Data Infrastructures

10010010
01001001
10111011
011104011

Feature
Engineering

“-
. ~
~
L
L]
Y
* L1
3
. .
-

L]

- —

23



[F=T - 4 (R, Q- PR N

AUTHOR SUBMITTED MANUSCRIPT - EST-100236.R1

Electronic Structure (2020) H#H i Roadmap
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Status

Disordered materials—characterized by extreme structural and chemical disorder—remain a
critical focus for research and development. Metallic glasses couple enhanced ‘mechanical
properties—such as greater strength and corrosion resistance than their crystalline janalogs —with
plastic-like processability, advancing applications such as precision gears, sporting goods, and medical
devices [1-3]. Chalcogenide glasses can exhibit rapid amorphous-crystalline transitions, with
corresponding optical contrast changes that are useful for phase-change memory devices [4]. High-
entropy solid-solutions, having several components near eguimolar concentrations, offer excellent
strength/ductility combinations, robust thermodynamic stability, and often properties surpassing
those of the constituents [5].

Machine learning (ML) and data-driven surrogate modeling have«enabled many recent
discoveries in disordered systems. Perim et al. proposed a spectral glass-forming-ability descriptor
based on the energy distribution of distinct structural phases (Figure 1{a)), inspired by Greer's ansatz
of necessary structural confusion during cooling [1]. The work was extended in two other studies: i. a
generalization of the descriptor for ternary compositions (Figure 2(a)} [2] and ii. the creation of an
automatic phase diagram reader analyzing the eutectic.angle—a proxy for its depth—for 200
chemistries with 385 eutectics (Figure 2(c)) [6]. Ren et al. employed the feedback between ML and
high-throughput experiments, incorporating synthesis path.information, to guide the discovery of
metallic glasses (Figure 2(d)) [3]. Recently, Kusne et al.combined databases, ML, and experiments
through a closed-loop autonomous framework and directed it to the Ge-5b-Te ternary system,
resulting in the discovery of a new phase-change memory material [4].

Another spectral descriptor, the entropy-forming-ability, was proposed by Sarker et al. to
quantify accessibility of random configurations in/'solid solutions, It led to the discovery of six high-
entropy, high-hardness carbides [7]. The descriptor was extended within the Lederer-Toher-Vecchio-
Curtarolo approach incorporating random g¢onfigurations into a mean-field statistical model where
order parameters predict the order-disarder transitions [8]. Rickman et al. used canonical-correlation
analysis and a genetic algorithm to find new high-hardness multi-component alloys (Figure 2{b}} [9].
Grabowski et al. developed an approach to compute vibrational free energies of multi-component
systems accounting for anharmonicity that combines thermodynamicintegration and an ML potential,
outperforming existingapproaches in efficiency and accuracy [10].
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Figure 1. lllustration of the thermodynamic density of states motivating the glass-forming-ability and entropy-forming-ability descriptors
as formulated in References 1 and 7, respectively. (a) The thermodynamic density of states isthe energy distribution of unigue structural
phases having a fixed composition, (b) If the set of structural phases arg of différent lattices [off-lattice), the distibution captures
structural "confusion” during solidification, quantifying the glass-fafming-ability [1). Alternatively, if the structural phases are enumerated
derivative structures (on-lattice), representing e.g. random ordered approximates,the distribution captures the accessibility of these
canfigurations, guantifying the entropy-forming-ability [7].

Current and Future Challenges

The search space for disordered systems is ever-growing. The “N+1” theorem demonstrates
that, statistically, the tendency to form ordered compounds is overtaken by the configurational
entropy associated with a rising number.of species, making disorder unavoidable [5]. Because the size
of the search space renders trial-and-errerexperimentation and computational analyses difficult
{even in the most efficient and high-throughput workflows [3=5, 7, 9, 10], see for example AFLOW in
Section 4.2), there is a need for effective and interpretable entropy-, kinetic- and synthesizabilty
descriptors. Glasses are particularly challenging, as their formation is strongly influenced by processing
[3] and they lack an underlying |attice on which to build configurational thermodynamics [1].

Understandingproperties at operating conditions is also critical [4, 8, 9]. Overcoming a zero-
temperature formalism requires calculation of the vibrational free energy [1]. The increasing chemical
complexity is a major.obstacle for computational accuracy (=1 meV/atom) as the number of
parameters neaded to fit reliable ML potentials quickly becomes prohibitively large [10].

The quality and availability of data controls the rate at which predictive models can be
constructed. Much of the relevant data is published in non-standard tables and graphs, such as phase
diagrams having labels difficult to interpret in an automatic fashion (Figure 2(c)) [6]. Beyond
accessibility, approaches relying on experimental data, while valuable, are often limited in scope,
having narrow domains of applicability with regards to chemistry and stoichiometry [1, 7, 8].
Experimental data is also biased toward positive results (e.g. formation of a single phase), whereas
“negative” results (phase decomposition) are often not published [7]. Generally, ML models are
excellent interpolators and poor extrapolators, calling into question whether they are suitable for the
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task of true-knowledge discovery. For the vast search space of glass formers and high-entropy
materials, the construction of sufficiently trained and interpretable ML models remains an ambitious
challenge considering the abundance of data required to capture the full set of chemistries,
stoichiometries, and kinetic processes.

Advances in Science and Technology to Meet Challenges

Construction of open-access databases, both experimental and computational, will aceelerate
the development of ML and surrogate models, improving accuracy and widening applicability. Data
accessibility and content are crucial. Application programming interfaces (APls) enable automatic
retrieval of data, allowing for rapid (re)training of models as algorithms and parameters are pptimized
and new data is made available. Standardization of simple query syntax and data, structures will
facilitate integration of data from multiple sources, Metadata provides necessary context for
measurements and calculations—allowing researchers to integrate datasets—and should include
details such as temperature/pressure/compaositional ranges, classification eriteria, models/equations,
grid densities, and calculation parameters, Efforts should be made teward exposing graphical data in
machine-processable formats (e.g., phase diagrams, x-ray diffraction patternas), and making available
data not typically published (“negative” results) that would help validatemodels.

The curse-of-dimensionality—a reference to the owverwhelming number of feature
combinations conceivable—ensures that intelligent descriptor. development (e.g., via surrogate
features) will continue to play a vital role in modeling aver brute-force feature enumeration.
Quantifying concepts/insights such as Greer's “structurabconfusion” and Turnbull’s “deep eutectic” in
glasses, while also incorporating thermodynamic descriptions, will expedite discoveries,

Above all, integration of active-learning workflows is expected to have the biggest impact in
modeling. A bidirectional feedback meghanism between ML models and experiments/calculations
has shown great promise in accelerating materizls discovery and property calculation [3,4-10]. In one
case, a science-over-the-network infrastructure automates most aspects of the prediction-to-
experimental-validation workflow [4], allowing for each trial to inform the next until the target is
achieved. In another case, a model predicting properties of a material (e.g., an interatomic potential)
employs an extrapolation-grade toassess whether a new input (configuration) deviates too far from
the training set, indicating the need to expand the training set and triggering a subsequent rebuilding
of the model [10]. The approach/offers a systematic path to discovery and desired predictive power
while avoiding the needto build.arbitrarily large training sets.
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Concluding Remarks

Structural and chemical disorder p unexpected properties, useful for many valuable
technological applications. Still, its direct modeling remains challenging. Yet, advancements in ML are
narrowing the gap. A combinat h pmation, development of databases/APls, and new
infrastructure linking ML mode roughput experiments have given rise to active-learning
workflows. Human input is re d to optional expert intervention, critical as delocalization becomes

prominent. Active-learning i overcomes the extrapolation limitations of ML, exposing

each step and self-correcting with new measurements/calculations.
most effective way of generating new data, improving models, and
ose where future, better-performing glass formers and high-entropy
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Section 2.1 — Machine Learning for Molecular Quantum Simulations
Alexandre Tkatchenko, Department of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg

Status

The employment of machine learning (ML) approaches is transforming the field of maolecular
simulations (MS). This is particularly true for quantum-mechanical (QM) modelling, given the high
computational cost of explicit first-principles calculations for solving the Schridinger equation. for
systems of interacting nuclei and electrons. The widely quoted dilemma of M5 consists/of selecting an
approximate QM method that provides sufficient accuracy and yet is computationally tractable to
carry out sufficiently long molecular dynamics simulations for a system of interest. The ultimate goal
of developing quantum machine learning (QML) approaches is to abolish thisdilemma and achieve
the accuracy of high-level QM methods in MS at the computational cost comparable to classical
mechanistic force fields. As a community, we are still far from achieving this goal, nevertheless many
seminal contributions in the past decade have pushed the QML field to the forefront of molecular
simulations [1,2]. For example, QML methods can now identify new phases in amorphous materials
[3], allow carrying out molecular dynamics of medium-sized molecules withpessentially exact QM
forces [4], and offer unprecedented statistical insights into chemical environments [5,6,7]. Up to now,
most of these applications were done under idealized conditions [smallmaolecules in vacuum or solids
under controlled conditions of temperature and pressure}s/ Flture work should concentrate on
enabling tighter embedding of melecular simulations and ML methods [8], combining QM and
statistical mechanics via ML algorithms, developing universal ML approximations for covalent and
non-covalent molecular forces, and developing algorithms for targeted exploration of large chemical
spaces of reactants, products, and transition states. Dbviously, all of these advances should be
continuously assessed on growing community-curated ' datasets of validated microscopic and
macroscopic properties. The most remarkable aspect of ML techniques is that their statistical view on
molecular properties often enables asking new guestions and obtaining novel insights into MS. For
example, ML analysis of large swaths @f chemical space leads to discoveries of molecules with
unexpected properties [6], offers hints for new chemical reaction mechanisms [9], or even suggests
new physicochemical relations [10]. Such novel discoveries are often made by interdisciplinary teams
of researchers that are able to combine their knowledge of physical laws and constraints, chemical
intuition, and sophisticated ML algorithms.

Current and Future Challenges

The main challenge of QML is to develop universal models that are able to predict arbitrary QM
properties of molecules and solids (total energy, atomic forces, multipoles, polarizabilities, gaps) while
being as data efficient ‘as possible. The traditional ML approach of using big data to increase
performance is helpfubbut insufficient given that nucleoelectronic systems have many symmetries
and invariances that need to be satisfied, and in fact substantially help, when predicting their QM
properties, For examplé,many existing QML models are rather successful when predicting extensive
properties (atomization/cobesive energy or polarizability), but they are much less accurate for
predicting intensive electronie properties (electronic gaps, excitation energies). This creates a new
dilemma forfurther development of QML methods: the ML models need to incorporate more physical
knowledge (“quantumness”), while also being fast to evaluate and applicable to increasingly larger
and mare complex systems, as well as to a wider set of electronic properties.

Another pressing challenge is that ML-driven molecular simulations should strive toward achieving
realistic.complexity. Investigations using highly accurate GM methods normally require overly
simplified model systems while more realistic model systems necessitate less accurate but
computationally efficient MS methods. This compromise should no longer be necessary. We are due
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for a paradigm shift in how thermodynamics, kinetics, and dynamics of systems in complex chemical
environments (e.g. for multiscale biological processes like drug design and/or catalytic processes at
solid liquid interfaces under photochemical excitations, etc.) can be treated more faithfully with less
approximations.

Many further challenges exist that have led or will lead to mutual bidirectional cross-fertilization
between ML and MS. The power of this path is that solving a burning problem in MS with @ navel
crafted ML model may also result in unforeseen insights in how to better design core ML methods.
Interestingly, the exploratory usage of ML for knowledge discovery in natural"sciences typically
requires novel ML models and unforeseen scientific innovations, and this can lead to interesting
insights that are not necessarily limited to maolecular simulations.

Advances in Science and Technology to Meet Challenges

Machine learning is a relatively new technology compared to decades of develapments of QM and
statistical mechanics technigues in the field of MS. Hence, many complementary directions are being
explored at the moment, some of which lead to important advances. For example, hundreds of
different representations (a necessary input to any ML model) have been proposed to model
interatomic interactions in molecules and solids. Most of the availablerepresentations trade efficiency
vs. quality of the description. This situation can be compared ta the proliferation of different density-
functional approximations (DFA) for electronic-structure calculations. Eventually, the community
should agree on a reasonably small set of useful.and practical representations.

An emerging idea is to directly learn computationally efficient model Hamiltonians for electronic
interactions based on correlated wavefunctions, DFA, tight-binding, molecular orbital technigues,
and/or the many-body dispersion methed. ML can predict Hamiltonian parameters and the QM
observables would be calculated via diagonalization of the corresponding Hamiltonian. The challenge
is to find an appropriate balance between prediction accuracy and computational efficiency to
dramatically enhance larger scale simulations.

One important aspect that QML appreaches enable is providing a novel perspective on exploring
increasingly larger chemical spaces for designing molecules and materials with desired properties.
However, any such exploration reguiressreliable QM data for a larger set of systems of interest, The
recent emergence of comprehensive datasets (such as NOMAD, Materials Project, GDB, among
others) is very welcome,and this path of creating validated, easily accessible, and trustworthy data
should be further pursued.

Concluding Remarks

Include brief concluding remarks. This should not be longer than a short paragraph. {150 words max)
Molecular simulations have been significantly advanced with ML approaches. Howewver, many
challenges remain and solving them will require coming up with creative interdisciplinary approaches
combining quantum and statistical mechanics, chemical knowledge, and sophisticated ML tools, firmly
based on growing datasets that cover increasingly broader domains of the vast chemical space,
Many adwances in this field required mixed teams with members educated in different aspects of
physics, chemistry, mathematics, and computer science. Going forward, this field also brings the need
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to solve the new educational challenge of developing new generations of researchers with an
academic curriculum that interweaves chemistry, physics and computer science to enable a
meaningful research contribution to the exciting and emerging field of ML-driven molecular quantum
simulations.
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Section 2.2 — Bayesian machine learning for microscopic interactions

Albert P. Bartok, Department of Physics and Warwick Centre for Predictive
Modelling, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
Status

A long-held promise of atomic simulation has been to serve as the ultimate toolset to predict physical
properties and interpret experimental phenomena, thus capable of ab initio materials and molecule
design. While methodological, software and hardware developments have significantly increased the
capabilities of quantum mechanical packages, time and length scales necessary to capture multiscale
phenomena are still out of the boundaries of first-principle calculations. Traditionally, interatomic
potentials have been proposed to represent microscopic interactions in a computationally efficient
way. The design of such potentials is typically based on theoretical considerations, containing a small
number of free parameters, which can be found from matching the behaviour of the model to limited
experimental or computed data. However, predictive capabilities of simulations based on the fixed
functional forms employed by traditional interatomic potentials, have provedseverely limited in all
but the simplest cases, necessitating more flexible approaches.

The demand for adaptive models, capable of describing multiple bonding situations of the same
material simultaneously, suggests a significantly expanded parameterspace, which necessitates larger
amount of data to determine the parameterisation. Thanks to the availability of reliable and efficient
ab initio software packages, microscopic data, as opposed to maeroscopic observables, can be
generated in abundance and utilised in fitting flexible interatomic potential models. This had been
recognised well before machine learning (ML) has became ubiguitous, and formulated, for example,
as the force-matching embedded atom modelfl], the ReaxFF force-field[2], or potential energy
surfaces for molecular systems.

ML interatomic potentials pushed this idea to the extreme; by disposing of most of the physics-based
considerations of the functional form, replacingitwith a non-parametric regressor that imposes little
or no constraints on the mathematical formuaf the interaction, and relies chiefly on data. Gaussian
Process Regression (GPR) is a Bayesian technique'that imposes a prior in the form of a distribution of
functions and uses data as evidence to provide predictions[3]. Gaussian Approximation Potentials
(GAP, see Fig. 1)[4] represent a practical realisation of a ML potential, based on a combination of
sparse GPR and a purpose-built kernel called Smooth Overlap of Atomic Positions[5], which have
proved highly successful in molegular and materials science modelling.
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Figure 1. Schematic representation of the GAP framework. Ab initio data collected on systems tractable by quantum mechanical
calculations and Gaussian process regression are used to fit models which can be evalbategfor significantly larger configurations

without loss of accuracy.

Current and Future Challenges

The highly flexible form of GAP is both a blessing and'a curse.in that the physical behaviour of the
model is derived from data, therefore adequate data coverage is essential to constrain the interaction
function at all atomic environments that are sampledat conditions of the simulator’s interest. Even
though it has been demonstrated that general-purpose potentials for single-component systems can
be generated[6], multicomponent systems remain challenging due to the significantly increased
complexity of the configurational space. To autamate the data collection, iterative and active learning
approaches have been investigated, but it is important to note that the computational cost of fitting
GAPs increases linearly with database sizes. Although the cost of evaluating a GAP is controlled by the
sparsification applied on the data set, the number of representative points necessary to achieve an
accurate fit is also expected to increase with the complexity of the potential energy surface. It is
reasonable to assume that generating GAP models of more complex materials, and especially
disordered phases, may becomé impractically expensive due to the i) amount of ab initio data that
needs to be computed; il) GAP fitting procedure; iii) GAP evaluation; or a combination of these,

Long range electrostatic and dispersion interactions, resulting from charge transfer and polarisation,
pose another challenge to ML potentials that are primarily optimised to capture the energetics of
localised, chemical/bonding. Due to screening effects, the effective range of electrostatics may be
significantly reduced, and therefore the majority of the interaction may be captured by a local model,
but this approach’is, in general, detrimental to transferability.

GPR has theradvantage that the posterior distribution of the model is available, providing not only a
prediction for the:mean, but the variance as well. In practice, however, the error estimate computed
from the predicted variance has only been found to be quantitative for simple, low-dimensional fits,
such as two-and three-body interaction terms[7]. A robust error prediction would significantly aid the
reliability of GAP and other GPR based potentials, and also enable further automation of the potential
generation process. Further studies are required to understand the failure of the error prediction.
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Advances in Science and Technology to Meet Challenges

Methodological improvements will need to address the current performance limitations of the GAP
framework when applied on complex, multicomponent materials. Recent studies demonstrated that
feature selection techniques can greatly reduce the computational cost of the evaluation of ithe
potential, at a cost of a modest and controllable loss of accuracy. The general ML community has
achieved significant advances in sparsification technology[8], which should be evaluated in the €ontext
of interatomic potentials and adopted where the advantages are evidenced.

Fitting GAP potentials is computationally expensive, and for larger data sets memory requirements
necessitate specialised hardware, Developments, either methodological or concerning the software
implementation, should be directed to utilise standard parallel architectures, thereby speeding up fits
and eliminate the need for large memory machines. Not only would this democratise the fitting
process, but it would allow exhaustive hyperparameter optimisation, resulting in more robust and
transferable potentials.

Currently two aspects of potential energy surfaces, locality and smoothness, are explicitly built into
the Bayesian prior of the GAP framework. Neither is fully general, nor do they capture all the common
features of atomic interactions. Incorporation of more physical priors would improve transferability
of ML potentials, reduce the amount of data that is required for training and potentially increase the
computational efficiency of evaluating the models. A unified Bayesian model for long-range
electrostatics would incorporate such a prior, resulting in improved efficiency, accuracy and
transferability. Similarly, short range repulsion from the Pauli exclusion principle is a fundamental
property of atomic interactions, but currently it is eithefléarned from the data or treated via a pair
term, which is fitted separately. A prior encoding our physical understanding would be the Bayesian
solution,

Finally, these improvements of the GAP methodology and software would also revolutionise the
workflows for database generation. Currently a lengthy iterative process is required to generate the
necessary data[9], often exploring highly unphysical canfigurations. Elimination of incorrect bias from
suboptimal hyperparameters also depends on using large amounts of fitting data. A more restrictive,
but physical prior would alleviate this reliance on large databases, leading to quicker and more reliable
fitting protocols.

Concluding Remarks

Much beyond a proof-of-principle concept, machine learning interatomic potentials have matured to
be utilised as tools to gain, hitherto impossible, quantitative understanding of microscopic processes
and to make accurate macrescopic predictions[10]. Challenges posed by complex potential energy
landscapes can be addressed by further developments of the machine learning framework, leading to
more transferable and cheaper models that can be fit from a small amount of data in an automated
way. Closer integration ef physical priors into the formalism can be viewed as a step towards
traditional interatomic, potentials, but without the loss of generality and rigorous mathematical
treatment of regularisation,
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Section 2.3 - Spectroscopically accurate potential energy surfaces (SAPES)
from Machine Learning

Sergei Manzhos,! Manabu lhara® and Tucker Carrington’

Tokyo Institute of Technology, “Queen’s University

Status

Solving the Schrédinger equation (SE) describing the motion of the nuclei, and in particular calculating
vibrational (e.g. infrared) spectra, presents a stringent test for ML potentials, as spectraare sensitive
to the global quality of the potential energy surface (PES). Comparing computed and experimental
observables is the ultimate test of the quality of a PES, and thereby the usefulness ML fitting methods.
Errors at test points are less informative. To compute spectra with the desired sub-cm ™ ageuracy, PES
errors must be much smaller (on the order of a cm') than those admissible in MD and quantum
reaction dynamics calculations (where PES errors of hundreds of cm™ are not ungemmon) [1].

Some methods of solving the 5E require a potential in sum-of-products (S0P} form [2, 3]. Neural
networks (NN, see Chapter 2.4 for a more general account of NN potentials) allow achieving a SOP
naturally by using exponential neurons [4]. The accuracy is competitive with alternative SOP schemes
such a potfit [2], even when using fewer terms [5]. The first NN spectroscopically accurate potential
energy surfaces (SAPESs) were produced by Manzhos and Carfifigton in 2006 and the methods can
now be used routinely [1, 6, 7]. NN {and other methods) have been combined with permutationally
invariant polynomials (PIP) to ensure symmetry. It is important to_ensure the correct symmetry to
achieve a SAPES, although symmetry can always be restored by averaging at symmetrically equivalent
points. In Ref, [6], for the first time, SAPESs far CHa were constructed from the same ab initio data
with different ML methods (NN, PIP-NN, interpolating moving least squares) and full-dimensional
variational calculations were used to assess the spectroScopic accuracy of the PES. All methods
resulted in PES errors (at test points) apd spectrum errors of the same order of magnitude (both on
the order of several cm™). PIP-based methods.gave a lower PES error whereas NN gave a spectrum
slightly closer to the experiment. Structures and harmonic frequencies were practically the same.
More recently, Gaussian process regressions (GPR) were shown to produce spectroscopically accurate
PESs from less data than required by a NN for the same accuracy [8]. Combining both NN and GPR
with a n-mode representation / high.dimensional model representation (HDMR) [9] can improve ML
fits from sparse data and achieve SAPES.

Current and Future Challenges

Today, several ML methods (Rotably NN, GPR) can achieve SAPESs, with similar errors, in a routine
and black-box way for molegules with 5 or more atoms. However, truly comparative (using the same
data and computing spectra with accurate methods) studies of SAPESs are still scarce and more such
studies are neededs SAPES for larger systems remain a challenge but the challenge is shifting from
building the PES to developing methods for accurately computing spectra. The comparative study on
methane [6lshowed good accuracy of the PES and the spectrum with all methods, but comparative
data on other and less symmetric 5-atomic molecules are still outstanding. The comparative study of
MM vs GPR also suggests that the PES error may be much (by a factor of 50) larger than the spectrum
errar [8]. Judging the quality of a PES on the basis of errors at a set of test points can be misleading.
More comparisons of not only PES errors achieved with different methods but of resulting spectra are
needed to determine the best way of fitting a PES and typical required test point errors.
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This is related to another challenge - data distribution (sampling). Smart point selection schemes have
brought significant advantages to reactive PESs [1]. There are indications that significant benefits can
be reaped from point optimization when computing spectra [10, 11], but for SAPES this is yet to be
explored and used in applications. As sampling of multidimensional PESs is necessarily sparse,
methods to avoid or detect "holes” (that significantly deteriorate the spectrum) are desirable.

A major challenge for SAPES construction remains molecules on surfaces or nanoparticles, which.are
of importance to technologies such as fuel cells, industrial and photo-catalysis ete. Accurate
computational spectroscopy has been largely absent from this field notably because of the lack of
SAPESs, even though it is desired, in particular, for accurate species assignment. Reported PES fitting
errors for molecules on surfaces are relatively high (>>10 cm), which are compounded with the low
accuracy of the underlying ab initio methods (typically DFT with a GGA functional).

Recently, powerful black-box NN based methods have emerged that allow mapping between structure
{including atom types as well as positions) and properties that can afso be used for PES construction
[12]; however, their performance for spectroscopy is still not explored.

Advances in Science and Technology to Meet Challenges

To fully utilise the potential of ML in constructing SAPESs, further developments in methods of
computational spectroscopy are needed that will allow calculations om 5 and more-atom systems
with exact kinetic energy operators (KEOs) and arbitrary coupling.:To, construct SAPESs from very
sparse data, combining a PES representation with lower-dimensional functions, either via HDMR or
via dimensionality reduction, and ML are very promising [9],in particular, to reduce the risk of “holes”.
GPR has recently emerged as a powerful tool with several advantages over NN, achieving better
accuracy with fewer data (or requiring fewer data for the same accuracy). Being a non-parametric
method with which it is much easier to avoid overfitting (and “holes”), it also can deal with high-
dimensional data (although it becomes costly with more than ~10,000 training data). Expanding the
use of GPR can help address the challenge of SAPES for. molecule-surface systems precisely because it
allows using fewer, and therefore higher-accuraey, data.

In the next several years, ML combined with more accurate vibrational spectroscopy computational
methods will be applied in solid state and on interfaces. Collocation [13] will make it possible to get
accurate spectra by considering a number of degrees of freedom without any limitations on the degree
of coupling and the KEO, and VSCF (vibrational self-consistent field), because it is easy to apply, will
provide more accurate spectfa than & harmonic approximation, in particular, by using an n-mode
representation of the PES. WL will be used either to build the entire PES or component functionsin an
HDMPR representation. Experimental spectra of molecules on surfaces are poorly resolved (~1 em™)
and probe only low-lying states, which reduces the required accuracy of the PES. It is also possible to
avoid building SAPESs for surfaces and other difficult cases and instead to use collocation and compute
the potential at all the cellocation points [13]. Most ML SAPESs used supervised ML. Unsupervised
approaches are promising especially in the area of selecting optimal sampling points and are awaiting
in-depth exploration when applied for SAPES,

Concluding Remarks

PES fitting is the bridge between the calculation of ab initio points and the application of a method for
computing avibrational spectrum. Having a fitted PES significantly reduces the number of required ab
initio paints. It is now possible, and more importantly, easy to make SAPESs using black-box ML fitting
methoads: Previously, it was necessary to develop physically motivated fitting functions for each

7



[F=T - 4 (R, Q- PR N

AUTHOR SUBMITTED MANUSCRIPT - EST-100236.R1

Electronic Structure (2020) H#H i Roadmap

problem. This requires knowing much about the molecule for which one wants to fit a PES. Using ML
methods obviates the need to tinker with a fitting function and makes it almost trivial to build the
bridge. This reduces the task of computing a spectrum to choosing an ab initio method, running
quantum chemistry calculations and then choosing a dynamical method and computing the spectrum.
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Section 2.4 - High-Dimensional Neural Network Potential Energy Surfaces in
Chemistry and Materials Science
Jérg Behler, Universitdt Gottingen

Status

Machine learning potentials (MLP} have become an important tool for atomistic simulations.in
chemistry and materials science, because they can provide energies and forces with the accuracy of
electronic structure methods at a small fraction of the computational costs. The first MLPs have been
introduced about 25 years ago by Doren and co-workers [1] employing artificial neural netwiorcks. This
first generation of neural network potentials, which has been explored by several groups in the
following decade, demonstrated the high accuracy of MLPs but was still restricted to low-dimensional
systems depending only on a few degrees of freedom. Machine learning potentials became applicable
to high-dimensional condensed systems containing thousands of atoms through. the introduction of
high-dimensional neural network potentials (HDNNP) by Behler and Parrinella in 2007 [2], which
represented the first example of a second-generation MLP. In this approach, which is common to
many modern MLPs, the total energy is constructed as a sum of environment-dependent atomic
energies that in case of HONMPs are delivered by a set of atomic neural networks. The underlying
assumption about the locality of the atomic interactions workssurprisingly well for many systems, as
long as the considered chemical environments are sufficiently large. 5till, in many cases long-range
electrostatic interactions are important. These have been included.in the third generation of MLPs by
making use of environment-dependent atomic charges, forinstance expressed by a second set of
atomic neural networks [3]. These charges are then used to compute long-range electrostatic
interactions by explicitly evaluating Coulomb’s law. Nevertheless, third-generation HDNNPs are still
local and do not allow to take global dependencies af the glectronic structure such as non-local charge
transfer or even changes in the total charge of the system into account. These phenomena can be
included in the fourth generation of MLPs employing global charge equilibration techniques. A first
method applicable to ionic systems has been the'charge equilibration neural network technique [4],
which has recently been combined with HDNNPs to yield a fourth-generation 4G-HDNNP [5] that is
applicable to a wide range of systems,
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Figure 1. Generations of Neural Metwork Potentials

Current and Future Challenges

In the past two decades, methodical advances have substantially extended the applicability of high-
dimensional neural network potentials. 5till, several challenges remain. A first challenge is the further
incorporation of physical knowledge, with theJinclusion of electrostatic interactions in third- and
fourth-generation HDNNPs being a first step.For instance, currently a lot of work is in progress to also
incorporate dispersion interactions, which represent a comparably small but important contribution
to the potential-energy surface of ymany systems and can also be rather long-ranged. Several
approaches are possible to include dispersion,interactions, which can either be assigned to the third-
or fourth-generation. It should be noted that both of these generations include long-range
interactions without truncationyWwhile the central gquantities like charges, or dispersion coefficients,
have a local or non-local dependence, respectively. Further interesting extensions could involve the
charge density or atomie Spins, which might in the long-term perspective open the possibility to
construct HDMNPs for the simultaneous description of several electronic states.

Anather challenge is the validation of HDNNPs and MLPs in general. While machine learning methods
can reproduce available data very accurately, they often have very limited extrapolation capabilities,
and thus the knewledge akbout the range of validity of a given potential is of vital importance. The
central problem is that the validation is most challenging in the absence of reliable reference data,
while just in.this situation quality control is essential. Therefore, improved methods for detecting
unreliable predictions are needed. Estimates of the reliability and the relevance of novel atomic
configurations encountered in atomistic simulations can be made based on ensembles of neural
networks [6]. Such active learning strategies are a very important field of research [7], and connect
the wvalidation challenge to the challenge of constructing suitable reference data sets. These sets
should be as small as possible to enable an efficient construction of the potential, while a large
diversity of structures is needed to achieve transferable potentials. The identification of the atomic
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configurations needed to cover the relevant part of the potential-energy surface remains a crucial
aspect of the development of all types of MLPs.

Advances in Science and Technology to Meet Challenges

The construction of MLPs is a very interdisciplinary field, which benefits from advances. if many
different areas. Along with the progress in the construction of more reliable potentials as outlined
above, the accuracy of the underlying electronic structure calculations is becoming increasingly
important, since MLPs cannot be more accurate than the underlying data. While density=functional
theory (DFT) calculations at the level of the generalized gradient approximation are still dominant for
condensed systems, it has been recognized that the level of hybrid functionals would be desirable for
many systems. The substantially higher costs of these functionals require further advances in the
efficiency of modern DFT codes as well as in computer hardware. Hence, the construction of the
reference data sets will remain the computational bottleneck in the development of HDNNPs,

In contrast to the comparably mature field of electronic structure calcdlations, the technology of
machine learning algorithms, which are nowadays penetrating every aspect oflife, is advancing very
rapidly. Many modern software tools and libraries are now availableand lower the barrier for entering
the field of MLP development by facilitating the construction of potentials. In this context it is
important to note that the classification scheme of MLPs into generations is not fully applicable to all
types of MLPs, including also some flavors of neural network patentials. An example is represented by
message passing neural networks like AIMNet [8], shich pass information about the atomic
environments through the system. Consequently, the interaction range that can be described is
related to the number of passing steps does not depend on a fixed cutoff radius as employed for
instance in HDNNPs,

Another challenge concerns the development of suitable descriptors to characterize the atomic
configurations, which has been a fundamental problem of early neural network potentials. With the
introduction of second-generation MLPs a breakthrough has been achieved [9], which resulted in
descriptors compatible with the mandatory rotational, translational and permutational invariances of
the potential energy surface. Although many different types of descriptors are available nowadays
meeting these requirements, some fundamental limitations like the unfavourable scaling with the
complexity of configuration space in terms of the number of chemical elements remain unsolved.
Therefore, with increasing possibilities to construct large data sets, a general solution of this scaling
problem is now becoming more.and more urgent.

Concluding Remarks

In summary, the develapment of high-dimensional neural network potentials, like the development
of MLPs in general, is a rapidhy growing field which has not yet reached its peak. Starting with first
potentials suitable forrather small molecular systems, over the years neural network potentials have
been extended to high-dimensional systems containing thousands of atoms, now including long-range
interactions based on atomic charges taking non-local charge transfer and even different global charge
statesinto account. All these developments have enabled simulations of increasingly complex systems
in almost all fields of chemistry, materials science, and even biomolecular systems. Several challenges
remain, like the construction of representative and high-level reference data, the validation of the
obtained potentials, and the derivation of improved descriptors for chemically more diverse systems.
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In particular the inclusion of physical knowledge recently has received a lot of attention, and many
new interesting developments can be expected in the coming years.

Acknowledgements
Funding by the Deutsche Forschungsgemeinschaft (Be3264/12-1, project number 405479457).is
gratefully ocknowledged.

References (separate from the two page limit)

(1]

[2]

[3]

[4]

[5]

(6]
[7]
(8]

(9]

T. B. Blank, 5. D. Brown, A. W. Calhoun and D. 1. Doren, Neural Network models of potential
energy surfaces, J. Chem. Phys, 103 (1995) 4129.

1. Behler and M. Parrinello, Generalized Neural-Network Representation of High-Dimensional
Potential-Energy Surfaces, Phys. Rev. Lett. 98 (2007) 146401.

M. Artrith, T. Morawietz and J. Behler, High-dimensional neural-network  potentials for
multicomponent systems: Applications to zinc oxide, Phys. Rev. B 83(2011) 153101.

S. A. Ghasemi, A. Hofstetter, 5. Saha and 5. Goedecker, Interatomic potentials for ionic systems
with density functional accuracy based on charge densities obtained byamneural network, Phys.
Rev, B 92 (2015) 045131,

T. W. Ko, 1. A. Finkler, 5. Goedecker and J. Behler, A Fourth-Generation High-Dimensional Neural
Metwork Potential with Accurate Electrostatics Including Non-local Charge Transfer, Nat.
Commun, 21(2021) 3928,

M. Artrith and 1. Behler, High-dimensional neural netwark potentials for metal surfaces: A
prototype study for copper, Phys. Rev. B 85(2012),045439,

E. V. Podryabinkin and A. V. Shapeev, Active learning of linearly parametrized interatomic
potentials, Comp. Mater. Sci. 140 (2017) 171,

R. Zubatyuk, J. 5. Smith, ). Leszczynski and O, lsayev, Accurate and transferable multitask

prediction of chemical properties with an atoms-in-molecules neural network, Sci. Adv, 5 (2019)
eaavbd90.

J. Behler, Atom-centered symmetry funetions for tonstructing high-dimensional neural network
potentials, J. Chem. Phys. 134 (2011) 074106

42

Page 42 of 92



Page 43 of 92

[F=T - 4 (R, Q- PR N

AUTHOR SUBMITTED MANUSCRIPT - EST-100236.R1

Electronic Structure (2020) H#H i Roadmap

Section 2.5 - Transferable neural network force fields
Olexandr Isayev, Department of Chemistry, Carnegie Mellon University

Status
In the area of ab initio molecular simulations, DFT calculations have become a workhorse of
computational organic chemistry. But we face a dilemma: standard computational algorithms far N-
electron systems require O{N?) storage and O[N?) arithmetic operations. This O(N*) complexity is a
critical bottleneck that limits capabilities to study larger realistic chemical systems and longer time
scales relevant to the biological experiments. One solution to these problems is the.development of
empirical potentials built with machine learning (ML) methods.[1] The ML potentials have seen
remarkable progress during recent years and have proven their ability to accurately predict energies
and forces of molecules when trained on a properly developed dataset.

Behler and Parrinello introduced the idea of High-Dimensional Neural Network Potentials
{HDNNPs).[2] In HDNMNPs, the total energy of the system is computed based onatomic contributions:

Eror = Yootom NN;(G; ) where G; depends on the atomic coordinates and the local environment
within a given cutoff distance. The cutoff distance limits the interatomic interactions with the
neighboring atoms that are contributing to the structural fingerprints in the form of many-body
symmetry functions G;. The G; are constructed for every atomi @nd are used as input vectors to the
atomic neural network (NN}, which computes the energy contribution of the atoms to the total energy
Eior- HONNPs are trained to describe one molecular system at a time. Therefore, one of the main
issues of HONMPs is transferability. The potential needs to be retrained for every new application.
This problem has been addressed with.the development of new methods that provide
general-purpose models like ANAKIN-ME |Accurate NeurAl network englMe for Molecular Energies)
or ANL In the ANI model, Smith et al. developed.a madified symmetry functions G; {Justin Smith
Symmetry Functions or J55Fs) that allowed @wercoming these limitations for organic molecules.[3]
ANI-1x model uses iterative active learning precedure with training to a large and diverse dataset of
molecules.[4] The initial ANI models were developed for neutral organic molecules consisting of four
elements (HNCO). Subsequently, ANI-2x models were extended to seven elements ([CHNOSFCI)[5] and
even nine.[6] Overall, the ANI methodology provides a systematic approach for generating atomistic
potentials (Figure 1). It drastically reduces the human effort required for fitting a force field and
automates their development, Wsing an NNP does not require one to choose a functional form.
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Figure 1. An example of the accuracy of the ML potential energy surface (PES) scans. Relaxed 2D torsion profiles for ANI-2x {left] and

OFT iright). Two dihedrals (shown in bold] were rotated about one another to generate the cogfésgonding confirmations, The bonds
composing the scanned dibedrals are highlighted in bold. The middle columns show the MAE and RMSE respectively, of the relative
energies in kcal/mol between ANI and DFT. Reprinted with permission from ref. 5 Copyright 2020 Ameriean Chemical Society.

Current and Future Challenges

Most NNPs, including ANI models (Figure 2a), are inherently local'inhow they describe chemistry.
Adding missing long-range interactions is needed for an accurate description of realistic chemical
systems. One route to do this is to predict atomic point charges farmodeling the long-range Coulomb
potential.

Using multi-modal training, one can predict atomic charges together with energies and forces.
The AIMNet “Atoms-in-Molecules Network” architecture (Figure 2b) was inspired by the quantum
theory of atoms in molecules. The AlMNet lifts.multiple limitations in NNPs. It encodes long-range
interactions and learnable representations ofighemical elements, Several alternative approaches were
also proposed in SchNet[7] and HIPNN[3] models. The AlMMNet model utilizes the idea of multi-modal
learning, making a simultaneous prediction of different atomic properties based on one common
layer. This layer is enforced to capture the relationships across multiple learned modalities and serves
as a joint latent representation of atems in the molecule,

Most NNPs have so fapbgen trained on only either closed-shell or open-shell structures and
therefore cannot correctly describe effects of spin and multiplicity. As the first step in this direction,
recent work introduced the AIMNet=NSE (Neural Spin-charge Equilibration, Figure 2¢) architecture to
learn a transferrable potentiabfor organic molecules in arbitrary charge states.[9] Conceptually the
NSE module serves as a nedral charge- and spin- equilibration scheme by redistributing spin-charges
through the iterative procedure and making energy prediction based on the distribution of alpha and
beta spin densities. In contrast to the standard geometric descriptors, the AIMMNet-NSE mode|
incorporates adaptable electronic information into ML models. It could be applied as a fast and reliable
method to_compute multiple properties like ionization potential, electron affinity, spin-polarized
charges, and a wide variety of Conceptual DFT indexes.

Anptherdirection of NNPs model development is focused on capturing the correct physical
behavior by combining physical models with ML.[10] This so-called physics-aware Al models promise
to improve generalization by forcing ML models to obey physical laws and symmetries. The simplest
of such models could be ML combined with the extended Hiickel method or ML-EHM (Figure 2d). ML-
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EHM predicts a set of molecule- and environment-dependent Hamiltonian elements to predict frontier
orbitals and energies approaching DFT accuracy,

ANl AlMINet AlMMat-NSE ML-EHM

Figure 2. Several NM architectures for atomistic force fields. a) ANI; b) AlMMNet [Atoms-in-Molecules Neural Network); £) AIMNet-NSE
[Meural Spin Equilibration]; and d] ML-EHM (Extended Huckel Maodel). The yellow blocks show input data, (coordinates R, atomic
numbers Z, total molecular charge 0) and output (energies E, spin-polarized charges q, EHM diagonal matsigelem ents, o and empirical
fitting coefficient K]. The green blocks indicate NN blocks for training and the blue blocks show mathematical transformations, Adapted
with permission from ref. 10, Copyright 2021 American Chemical Society.

Advances in Science and Technology to Meet Challenges

One of the major concerns of ML force field development.is the reference data used for
training. The quantity of data that can be used for training’is limited due to the high computational
cost of QM. Therefore, many models are developed to address one specific application. This severely
hinders the applicability of NNPs in practice. This issug might be mitigated with advanced training
strategies that take advantage of active learning [AL).and transfer learning (TL). These algorithms can
help not only to decrease required reference data but alse improve the accuracy of NNPs, Training ML
models for every QM method is also impractical. Developing multi-theory ML models and data fusion
is a critical bottleneck in constructing robust ML-aceelerated QM methods. TL can be used to retrain
an existing model with additional training data teextend the domain of applicability.

Most of the NMNPs availablein the literature provide only deterministic predictions and cannot
model uncertainties. It is important distinguishing between at least two different types of uncertainty,
often referred to as aleatoric and epistemic. Epistemic uncertainty results from the lack of knowledge
about the system and could be addressed with the accumulation of more training data. In contrast,
the aleatoric or statistical uncertainty is associated with a model. The incorporation of probabilistic
methods and Bayesian neural networks (BNN) will help to capture inheriting model uncertainty.

An explainable MU madel s also essential to understand, appropriately trust, and effectively
develop a proper physical model, Thus ML/AI models are expected to incorporate physics knowledge
in their design and architecture. This includes conservation laws, causality, symmetry, geometrical and
topological properties, constraints, and more. We envision that novel approaches will be able to
interpret and highlight. those physical priors learned by the models. Mext-generation analysis and
design tools will help domain scientists think about new ideas and find underlying physical laws in
visual and'straightforward, yet interpretable ways,

Concluding Remarks

Recent years showed substantial progress in MNP development and their applications toward a variety
of malecular systems. They are promising to change the way how force fields are constructed.
Atomistic ML potentials offer accuracy comparable with QM methods but many orders of magnitude
fasterin many cases. NNPs are already used to find reliable conformational energies for molecules,
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re-parametrizing existing force fields, protein-ligand free energy calculations. But this power comes
with great responsibility. Reflecting on the famous quote attributed to Derek Lowe, “it is not that
machines are going to replace chemists. It’s that the chemists who use machines will replace those
that don’t”. We are currently witnessing a transformation of chemical sciences into a novel data-
driven field. This reguires deep methodological and cultural change coupled to educational and
workforce development programs at the professional, graduate, undergraduate, and even high'school
levels.
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Status

Electronic structure calculations have progressed to a level of accuracy” which makes modeling of
atomic-scale systems from first principles truly predictive. By computing energy and forces
corresponding to the ground-state Born-Oppenheimer potential energy surface (PES) they enable
molecular dynamics simulations that explore the structural landscape, and assess the stability of
different configurations. What is more, electronic structure methods provide a wide spectrum of
properties available either as a by-product of the calculation ar as a post-processing step, so that the
prediction of functional properties, electronic responses, and experimental observables are available
with similar accuracy and transferability to those achieved for the ground-state energetics.

Unfortunately, the high computational cost, and its steep scaling with the number of electrons
included in the simulation, limit the time and length scales that are accessible to simulations. The last
decade has witnessed the emergence.of machine learning (ML) techniques to address these
limitations, and to bring the accuracy of first-principles methods to the conditions that are needed to
simulate complex materials and molecules in realistic conditions. Using the atomic identities and
positions as inputs, appropriately processed to incorporate fundamental symmetries and physical
insights, machine-learning techniques make it possible to fit structure-property relations using a very
flexible functional form and a limited number of reference calculations. Once trained, the model can
be used to inexpensively predict the same kind of properties for any set of new, yet similar, structures,
paving the way to the calculationof thermodynamic observables that can directly be compared with

experiments.

Most of the established approaches, including the ones discussed in Sections 2.1-2.5 of this
Roadmap,focus on the prediction of interatomic potentials [1]. As ML potentials are employed to
make predictions of more and more experimentally accessible materials observables, however, it is
becoming increasingly important to predict properties beyond just the PES. Without access to the full
spectrum of electronie and functional properties, machine learning falls short of being a complete
replacement for electronic-structure calculations.

Current and Future Challenges

The'most successful ML schemes share several common ideas. The use of translation and rotation
invariant descriptors of the local configurations mimics the invariance of the potential to these
symmetry operations. Furthermore, an additive decomposition of the energy in contributions from
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atom-centered environments, localized by a relatively short-ranged cutoff, enables transferability
between different system sizes and improves greatly the data efficiency of the training step. This
decomposition, although justifiable in light of the nearsightedness of electronic matter, undermines
their ability to capture classical long-range effects such as electrostatic interactions and polarization
phenomena, as well to describe non-local quantum effects such as dynamical electronic correlations.

Overall, it is still very difficult for ML models to replicate the ability of first-pringiples methods to
predict properties beyond the potential. One major challenge is that the common wisdom that the
community has developed to guide the construction of a good ML potential may not apply te-other
properties. Another, more fundamental issue is that several properties have structure beyond that of
a rotationally-invariant scalar. Tensors and scalar fields, for instance, require a framework that reflects
their covariance with respect to rotations and/or translations. Likewise, spectral properties such as
the electron density of states (DOS) or the dielectric response (see also Section 1.5) require
simultaneous learning of multiple target cbservables, which also calls for a model that is adapted to
the structure of the target data. Being able to predict properties with non-trivial geometric and
algebraic nature opens the way to make better use of the ingredients of the electronic-structure
calculation, either as a learning target or as an integral part of the learning architecture.

In addition to the theoretical hurdles, there are still many technical challenges still hindering
widespread adoption of ML for general properties. A main priofityis the development of software
packages that treat all properties on an equal footing and allow fitting and predicting them in tandem
with the potential. The generation of training data.and the optimization of the computational cost of
these calculations, are closely related issues that willreguire a concerted effort across the community.

Advances in Science and Technology to'Meet Challenges

Many active research lines aim to close thesgap between the capabilities of electronic structure
calculations and their data-driven, counterparts. The main strategy that they have in common is to
adapt either the atomistic features that are used as input, or the mathematical structure of the model
itself to reflect the underlying physics of the.problem and the specific structure of the target property.

Rotationally covariant quantities, sich as tensors and scalar fields, can be decomposed into a minimal
basis of irreducible spherical tensors, which can be learned with a corresponding set of covariant
structural features [2] or by building models endowed with a covariant architecture [3]. The efficient
evaluation of equivariant features that describe high-orders of interatomic correlations [4], and can
achieve remarkable levels of accuracy even using a simple linear model, is a promising research
direction.
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Figure 1. Prediction of the heat capacity of nickel by integrating o machine learning PES, to sample the
nuclear motion, with a machine learning model of the electronic DOS. The model gives experimentally-
accurate predictions by including both nuclear andelectranic degrees of freedom. Note, however, that
the heat capacity peak at the Curie temperature isnot reproduced -- showing that the ML model could
be further improved by including magnetic effects. Adopted with permission from ref. [9]. Copyright
2021 by the Americal Physical Society.

A second trend involves using electronic properties both as regression targets and as inputs - blurring
the lines between electronic-structurécalculations and data-driven models. Not only has it become
possible to obtain accurate predictions ofthe ground-state electron density [5]: a new generation of
orbital-free density-functional approaches has been proposed using the density as an input to learn
accurate electronic energies [B]. The data-driven treatment of other ingredients of an electronic
structure calculation, such as the two-center Hamiltonian matrix elements [7] (see also Section 3.1) or
the functional ansatz for the wavefunction [8] (discussed in Section 3.4), incorporates machine
learning into methods that span the whole spectrum of quantum chemical technigues. These
predictions are also (useful to compute physical observables: the electronic contributions to the
thermophysical properties of materials [9] (Figure 1) and the electrostatic potential and the
interaction between molecular fragments [5] can be easily obtained from the electronic DOS and the
charge density.

To increase the accuracy of both potentials and property models, one can no longer avoid
incorporatinglong-range physics. This can be done by using models with an explicit physical structure,
e.g. by computing the electrostatic energy of the system based on the prediction of local charges and
multipeles {10]. Such approaches have the advantage of including long-range electron correlation by
virtue of enforcing the correct physics, as was recently shown in the case of the molecular dipole
moment [11], or indeed by the charge equilibration approach discussed in Section 2.4. An alternative
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strategy to reach the same goal involves including long-range correlations directly into the
featurization. These models based on long-range features have the advantage of being more flexible,
without restriction to any particular model or target property. For example, the multi-scale long-
distance equivariants (LODE [12]) use simultaneously an atom-density to describe the |local structure
and an artificial potential generated by it (Figure 2) to capture non-local behaviour with an
interpretable asymptotic limit.

Last but not least, software and data repositories must also be adapted to this new generation of
integrated models, providing better interoperability with electronic-structure packages, efficient
implementations of increasingly complicated featurizations and regression schemes, and standardized

storage of properties such as electron density and wavefunctions.

NN ANANAN

(ax|p} = 2; Saa g(x — 11) (ax| W = J'-tf—ji‘}—dx"
Figure 2: Construction of a long-range representation of an atormic structure. Left: An atomic density
is constructed by smearing atoms into Gaussian fumctions; the resulting density is expanded on a basis
within o given localized cutoff abouteach atom, missing long-ranged interactions. Right: The field to
be expanded is instead constructed from the Coulomb potential generated by the (fictional) smeared
atomic density, bringing true long-range information directly into the structural representation,
Adapted with permission from refof12]. Copyright 2020 Royal Society of Chemistry.

Concluding Remarks

Machine learning models have made great strides in reproducing and predicting the thermodynamic
properties of materials at finite-temperature by approximating and sampling the quantum mechanical
PES. Integrated sechemes that predict any property accessible from electronic-structure calculations,
and that unify ML predictions and physics-based steps, combine the best characteristics of the two
approaches, further extending the reach of atomistic simulations. The fundamental challenge consists
in finding the balance between the level of physical information that is incorporated directly in the
model and the data-driven flexibility needed to capture unexpected effects. The description of long-
range physics and of complex properties such as densities, tensors and matrix elements, provide
compelling examples of the potential of generally applicable, physics-inspired, and mathematically
sound machine-learning schemes for atomic-scale modeling.
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Status

The prediction of potential energy surfaces and chemical properties with machine learning (ML) has
become an established procedure for accelerating electronic structure methods. While those models
do not explicitly capture the electronic degrees of freedom of the system, there has been a recent
surge of ML being used in all aspects of quantum chemistry, such as predicting the electron density,
Hamiltonians and wavefunctions. These developments unlock the potential for unified approaches
that use ML as an integral part of electronic structure methods [1].

Physical knowledge is increasingly being built into atomistic ML models.~This includes not only
fundamental constraints, such as rotational and translational symmetries and energy conservation,
but also representations adopted from electronic structure methods. Examples for the latter include
the use of Hartree-Fock molecular orbitals for the prediction of higher levels of theory [2]. Similarly,
MP2 features have been used for the prediction of coupled-cluster amplitudes [3]. In this instance,
ML provides a starting guess to accelerate convergencesat the higher level of theory. Beyond that,
incorporating physical regularities in ML models facilitates the representation of electronic structure.,
For example, the neural network SchMNOrb (Fig. 1) prediets Hamiltonians in local atomic orbital
representations common to most quantum chemistry cades [4]. Thus, electronic structure data can
serve as input to ML and the predictions can be fed back into quantum chemistry software. Density-
functional tight-binding has been fused with ML to learn Hamiltonians [5, 6] and repulsive energy
contributions with improved accuracy and transferability [7].

Finally, there have been several approaches to solve the Schrodinger equation using a neural
network representation of the wave function. For example, PauliNet [8] yields highly accurate
correlation energies by using variational guantum Monte Carlo in combination with the neural
network potential SchNet (see Section3.4)i These examples demonstrate the potential of hybrid ML-
electronic structure methods to not only accelerate but enable calculations at high accuracy, without
requiring unattainable amaunts of training data.
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Figure 1: The 5chNOrb neural network predicts ground-state Hamiltonians in
atemic orbital representations from atomic configurations. This can be used to
predict mobkecular orbital energies, wave functions and to provide input to
guantum chemistry software. [4]

]

Current and Future Challenges

The development of ML-enhanced electronic structure methods requires a thorough understanding
of the capabilities and limitations of both components for optimal . symbiosis. In order for neural
networks to benefit from incorporating physical knowledge, it needs to be represented
appropriately. For example, while nuclear charges appear to be helpful to characterize atom types,
high-dimensional embeddings have turned outto be more effective in practice. Currently, the two
major challenges of unifying ML and electronie structure methods are obtaining efficient ML
representations of electronic structure and generating suitable reference data.

To overcome the main bottlenecks of gléctronic structure codes, ML surrogates must be able to
represent central quantities such as electrgn density, wave functions and multi-centre / multi-
electron integrals. Future ML representations of these quantities may depart from commaon existing
basis representations due to the differing requirements of ML models compared to electronic
structure theory [2]. For example, while ¢alculated properties such as orbital or state energies can be
non-smooth with respect to nuclear positions, this is highly problematic for ML approaches and
requires careful consideration.of.représentations that deliver smooth functions in configuration
space. Other issues arise when/properties are calculated from wavefunctions of different states.
Since the wavefunctionyis only determined up to an arbitrary phase, sign changes need to be
controlled against a reference [10].

Another challenge is the prohibitive cost of computations to generate accurate reference data. In
such cases, divide and conguer approaches need to be used, partitioning the system using, e.g., a
combination of different levels of theory in a multi-scale strategy or by breaking the large system
down into more’ manageable fragments. Local atom or fragment-centred representations of
electronic structure synergize well with such schemes and offer the possibility of transferability and
linear scaling with system size. However, it is not yet clear how they can account for long-range,
collective, ar symmetry effects on system scales not accessible to the reference method. The latter
aspect is particularly problematic for the representations of systems that exhibit different electronic
and spin configurations, for example transition metal complexes or excited states [10].
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Advances in Science and Technology to Meet Challenges

A necessary condition for the deep integration of ML and electronic structure codes is the definition
of fast, compatible interfaces with formalised communication and data standards. In this cantext,
the modularization of quantum chemistry packages is a recent development that needs to be further
pursued (Fig 2) [1]. While guantum codes are often implemented in Fortran, deepdéaming
frameworks such as PyTorch or TensorFlow rely on C++ backends and the flexibility of Python. To
achieve complete integration, automatically differentiable electronic structure codes will be
required for end-to-end optimization of ML components,

A promising route towards more transferable and scalable electronic structure codes is their
combination with basis representations predicted by ML. Those can be constructed either by pre-
processing electronic structure reference data [2,9], or by performing integrated ,representation
learning. Previous design choices need to be revisited and explored in combination with ML. This
relates particularly to the trade-off between basis set size and the complexity of interaction
integrals. Decisions that would have previously been discarded due to@omputational infeasibility
may be enabled by ML and lead to faster, more accurate solutions,/New MU wethods must be able
to better deal with the non-smoothness of certain properties, slich as excited-state potentials, or
non-unique properties with arbitrary phase. These steps may eliminate the need for manual pre-
processing and enable the seamless integration of ML algorithms inte electronic structure code.

For the efficient acquisition of reference data, further improvements are required in so-called life-
long learning, i.e., the continued training of models, whichcan be prone to overfitting or forgetting
of previously acquired knowledge. Ideally, data acquisition happens transparently, i.e., explicit
calculations are carried out automatically when the training domain of the ML component is left.
This necessitates further development of methods for fast.and reliable error estimates. Finally, the
whole procedure should be integrated with_global data repositories, to optimally use computing
resources. To overcome system size restrictions of the electronic structure reference, new multi-
scale approaches must be developed, e.g., by embedding local ML representations into physically
motivated global frameworks. Here, expertise from established fragmentation methods and multi-
scale strategies will prove invaluable;

Modular hybrid ML/QM code

materials
druglike molaculas
Data curation
organic molecules

- Property
prediction

Algebra
) angirl'le . 9
J|¢-.u|m..11_,1—__- = Aw - ix

el {207 dry |

Figure 2. Schematic layour of highly madular electronic structure
codes that are deeply integrated with elements of machine learning.

it
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Concluding Remarks

Recent developments have shown that ML methods are able to model fundamental properties of
electronic structure, either in real-space or in abstract basis representations. The challenges for.the
coming years relate to finding physically meaningful representations within ML models that gan
break through the scaling limitations of conventional electronic structure theory. To achievethis; ML
methods will need to go beyond the reference electronic structure basis by constructing efficient
representations that correctly capture physical boundary conditions while retaining favourable
computational scaling properties. Finally, fast and transferable unified approaches. need to
incorporate physical constraints into ML models while staying flexible enough te learn expressive
representations from data.
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Status

Density functional theory [DFT} has provided low-cost alternatives to direct solution of the
Schradinger equation for almost a century [1]. The Kohn-Sham (KS) scheme [2],/in which only the
exchange-correlation (XC) energy needs to be approximated as a functional of the density, has greatly
improved accuracy while maintaining low computational cost. Today, about 20% of supercomputer
use is devoted to solving these equations, but there are hundreds of different human-designed XC
approximations in use, each producing different predictions. Almost all’ begin using the density and
its gradient (semilocal approximations). Materials science is dominated by simple standard
functionals, often designed using exact conditions, while chemistry mostly uses approximations
designed only for molecules, but often achieving higher accuracy.

Four prominent limitations come to mind. Most DFT calculations arefor weakly correlated systems,
and there is tremendous desire to improve their accuracy without significant computational cost.
Second, DFT has well-known generic failures, such as/selfsinteraction error or poor energetics for
strongly correlated systems, such as a stretched H; molecule [3]. Most XC approximation fail to
produce a realistic binding energy curve without breaking spin. As one goes from two atoms to four
and many, the difficulties grow and can be related to the failure of DFT approximations to capture
Mott-Hubbard physics [4]. Third, theorémssprove that, /in principle, one can avoid solving the KS
equations if one has a sufficiently accuratesapproximation for the KS kinetic energy, but here the
limitations are even greater, due to the need to extract accurate densities and total energies. Finally,
ground-state DFT yields only groundsstate energies and densities, but there is also tremendous need
to predict response properties. Here'we fiocus only on the ground state.

Machine learning (ML) has alreadyhelpéd with functional development. In prescient work a quarter-
century ago, Tozer et al [5] found a semilocal approximation by training a neural network to optimize
a fit to KS potentials. Morecdver, Bayesian methods were used to analyse DFT errors in 2005 [6]. More
recently, Snyder et al [7] used kernel ridge regression (KRR) combined with a principal component
analysis of training densities, to create a KS kinetic energy functional reaching chemical accuracy,
albeit in a very simple model. And Magai et al [8] showed that, by training a neural network (NN} on
both the densities.and energies of just a few molecules, one could create semilocal approximations
comparable in@ccuracy to thasé of humans and generalizing to a broad range of molecules.

The field of using machine learning to design functionals is in its infancy, and improvements in speed,
accuracy, and applicability of DFT are beckoning. Any such improvements that can be implemented

in standard codes will have enormous scientific impact.

Current and Future Challenges
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Machine learning is promising for improving density functional approximations to overcome the
limitations listed above, and progress is likely in all three areas,

First, there are many ingredients already in use for making XC approximations, including dispersion
corrections, fractions of exact exchange (both global and range separated), random phase
approximation, etc. Can ML be used to find the ‘best’ combination of these ingredients?  More
fundamentally, how do we define 'hest'?

Second, ML allows the possibility of constructing completely non-local functionals, using information
about the density at every point in space, either with KRR or NN's. This can be used to find the exact
functional for strongly correlated systems, as in Ref. [9], especially if full differentiable programming
technigues are used. Here, by using the KS equations as a regularizer, a full dissociation curve for (one-
dimensional} H: was constructed from just two data points alone, suggesting tremendous potential
for generalizability. However, such a functional, defined on the whole R/5pace, cannot be applied to
arbitrary systems, so what features must be included to make it work more generally?

Third, ML can produce pure density functionals, which could bypass the need to solve the KS
equations. This was demonstrated for small molecules, praducing aneML functional that yields
accurate densities and energies for malonaldehyde and resorcinol MB simulations [10], and for water
in condensed phase [11]. But, as above, such functionals cannot be expected to generalize well, and
s0 must be retrained for each new species, unlike standard DFT.

In Figure, 1, we employ the KS regularizer (KSR) fram Ref, [9] to calculate the binding curve of 1D H;
and show its attributes at R= 4 Bohr. The K5R is chemically accurate even when the bond is stretched
and predicts the density with negligible error. "A recent study [12] provides an example of
implementation of differentiable DFT in 3004 similar extension of the work in Ref. [9] can effectively
provide a stable solution for strongly correlatedunatter. However, much work remains to test these
algorithms to answer what would be the degree of generalization and what could be done to improve
them further.
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Figure 1. [a} One dimensional Hy dissociation energy curve created with the KSR-glabal function from Ref. [9]. This model was trained
with just twa configurations. The changes in predictions as the model evolves fram underfitted to overfitted are shown by the darkening
shades of grey. The optimal parameters, determined from a single validation configuration, yield the chemically accurate blue curve. By,
is the nuclear interaction energy, DMRG [density matrix rencrmaligtion groug) is essentially exact, and LSDA is the result of the lecal spin
density approximation. (b) The density, XC energy and XC potential of Ha at 4 Bohrgealculated using the optimal parameters.

Advances in Science and Technology to Meet Challenges

ML has revolutionized many aspects of everyday life, from movie selection to facial recognition. Over
the past 10-15 years, there have been significantattempts to use it in physical sciences and especially
in electronic structure theory. The most notable success has been the development of force fields,
both in chemical and configuration space [13].

But the development of density functional approximations is still a black art, requiring an unholy
alliance of physical (or chemical) intuition, deep knowledge of theory, and some very carefully chosen
data. A major difficulty,isto build ML models that respect all the implicit (and explicit} rules in
DFT that humans know (often only intuitively) so that the models extrapolate appropriately to new
materials and new malecules. 'With our traditional XC approximations, when we run a K5 calculation
on an entirely new problem, we have a strong sense of how accurate we expect it to be, and certain
intuitive consistency tests, such as trying a different functional, even if we cannot put guantitative
error bars on gur predictions.df we can use ML to design better functionals, overcoming any of the
three challenges mentioned ‘previously, such ML-designed functionals will permanently alter the

computational landscape.
Much'has been said and written about the potential for quantum computers to transform electronic

structure calculations. It is certainly true that, once a sufficiently large error-correcting machine is
widely available, there are several strongly correlated problems that they might solve for us, But
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unless there are extreme speedups in routine classical computations, DFT will long continue as the
workhorse for the 99% of problems (or aspects of these problems) that DFT works well for,

Concluding Remarks

The applications of ML to functional design are still in their infancy. There is no general-purpose XC
approximation designed by ML in use or available in most codes. It will take more effort and research
to understand what the best way is to apply ML technigues (likely NN's) to develop better
approximations, including ones that can be systematically improved with increases in training data.
ML could produce either faster or more accurate functionals for present applications or extend the
reach of practical DFT calculations to encompass strongly correlated systems. The future looks bright

but has not arrived yet.
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Status

The method of Kohn-Sham (KS) density functional theory (DFT) [1] is the current standard for the first
principles calculation of electronic structures for its reasonable computational cost: Improvement of
the exchange-correlation (XC) functional, which governs the accuracy of results, has long been a
challenging issue, Being a functional of the distribution of charge density, its exact form is beyond
calculable expression. Its practical approximate forms have so far been constructed using the physical
conditions, such as asymptotic behavior and scaling relations, as a guiding principle, but the accuracy
has still been a problem [2,3]. This is due to the lack of physical conditions needed for the construction
of complex functionals beyond the local or semilocal ones and is also due to difficulty in analytically
interpolating the asymptotes inside the nonuniform density region typical of real materials. There is
much room for improvement if one can directly refer to the nanuniform density and use a powerful
interpolation scheme for functional development,

The machine learning (ML) scheme is expected to overcome this difficulty. By using the extremely
flexible ML model for the XC functional and tuning the model parameters to reproduce the density-
to-energy relation of real materials, one can obtain a computable form that applies to the nonuniform
density cases. The data to be reproduced (training data)are, for example, those from the accurate
and costly calculation. The modern ML@ppreach te DFT has been first initiated for an orbital-free
formalism [4], whereas it has later been extensively applied to the more familiar KS method [5-8]
(Fig.1). In the latter case, the use of the kinetic engrgy operator has been shown to suppress numerical
instahility when applied to systems not included in the training data [6]: We here focus on this.

Current and Future Challenges
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20 Figure 1. Schematic figures of ML ¥C functional (left) and its usage in KS equation (right). The sama ML projection i repeatedly

7 substituted for the self-consistent K5 cycle.

22

23

24 The ML maodels such as NN in principle enable us to implement the fully nonlocal exact functional
25 with arbitrary accuracy, but in practice, we are faced with'abstacles. To train the XC potential
gg applicable to real three-dimensional materials, one may use electronic structure data (energy and
58 density) of representative systems such as molecules and solids. However, gathering accurate data is
20 a demanding task. Precise experimental observation of electronic density is still difficult, and
30 therefore one has to employ theoretical calculations for generating the training data. Since our goal
312 is to improve accuracy over the existing functionals; the training data should be generated from
13 methods that are more accurate than those of the standard functionals. Some wavefunction theory
34 methods such as the coupled-cluster and guantumsMente Carlo methods meet this requirement at an
;2 affordable computational cost. However, the cost of their application to large systems like solids
37 becomes yet formidable.

38 Even if an accurate electronic structure dataset is obtained, another class of difficulty arises in
ig designing the training scheme. Usuyal supervised learning uses pair of input and output data for the
41 training. For the training of XC potential, the “input” and “output” correspond to the density and XC
437 potential, respectively. To prepare the training XC potential with the training electronic density, we
43 need to solve the numerically difficult inverse K$ problem [9]. Furthermore, the XC potential thus
j: obtained has a difficult property to treat in the training. Since it is close to the exact one, the value of
46 the potential at any spatial point is dependent on the whole density distribution; the exact XC hole is
47 fully nonlocal. Though training of the fully nonlocal ML potential has been demonstrated in 1D model
48 systems [6], such a form is not applicable to other systems; when the sizes of target systems are
;g different, the density distribution cannot be input into the same trained ML model. Transferrable
51 design of (semi)local XC potential is thus desirable. Moreover, determining the nonlocal functional
52 with many parameters requires a large amount of training data.

53

54

55

56 Advances in Science and Technology to Meet Challenges
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With the limited availability of the training dataset, a recent study [5] have demonstrated an efficient
way to train the ML functional. It showed that the semilocal form trained with accurate electronic
density data in a few molecules can yield practical accuracy for various molecules, This transferability
is due to the fact that the electronic state at a point is mainly affected by those within a short-range.
By limiting the functional form to semilocal, every spatial point gives different density-potential
relation. A large amount of data is, especially in 3D, thus available even in a single molecule, thanks to
which the training of the huge number of model parameters is enabled. Furthermore, the kinetic
operator term in the KS equation is shown to suppress the error coming from the non-smooth shape
of the trained ML functional [8]. Utilizing those properties enables efficient extraction of the essential
properties of the XC functional from a limited number of molecules, which is computationally
desirable.

In the same study [5], a novel approach has been initiated which avoids the'problem of getting the
training XC potential data. There, each training iteration consists of thewhole solving procedure of
the K5 equation, and the obtained energy and density are compared with the reference density data.
The ML parameters are optimized to decrease the loss function defined by thesdensity and energy. In
this procedure, the XC potential is not directly referred to. Optimization was executed with the
simulated annealing, which is basically a random walk and does not use agradient of the loss function.
Later, Li et al. have implemented the solution of the KS equationitself as a differentiable program,
where back-propagation of the loss function, i.e. differentiationaf the KS procedure, is implemented
[7]. The indirect training of XC potential with the density'paves a feasible way to improve ML density
functionals exceeding conventional ones.

Concluding Remarks

The ML methods open a novel approach for constructing the XC potential referring to the realistic
density regime, in contrast to the conventional functional construction that refers to the asymptotes.
For further improvement, there are challenges to overcome: efficient collection of electronic structure
data and development of effective training methods. To overcome them, insight into the frontier
technology of ML is important as.well asaccumulated knowledge of materials science. The semilocal
property of electronic effect, the kinetic operator as “regulator [6]", and integration of the KS equation
into the training can be listed as effective ways for further advances toward the functional with
ultimate accuracy. As DFT has advanced as a general framework for studying interacting many-body
systems, it will be fruitful to exchange knowledge independently developed in other fields such as
classical particles [10)].
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Section 3.4 - Deep-learning quantum Monte Carlo for molecules
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Figure 1. Deep quanturm Monte Carlo solves the Schridinger equation by alternating between optimizingthe parameters of the neural
network ansatz via the variational principle (blue] and sampling from the square of the wave function to generate data (yellow).
[Reproduced from Hermann, Schatzle, Nog, Nat. Chem. 12, B91-897.)

Maost chemical and physical properties of molecules and materials are accurately described by the
nonrelativistic and time-stationary electronic Schridinger equation. As the computational cost of its
exact solutions increases exponentially with the number of electrons, N, the main challenge is finding
approximations that strike a good balance between accuragy and computational cost.

The past decade has seen a surge in machine learning (ML) approaches to predict the outcome of
quantum chemistry calculations by training kernel machines or neural networks on datasets of
molecules (see Sections 2.1-2.6). In contrast, thissection focuses on ab-initio ML, which aims to find
the solution of a problem specified by self-consistency relations or a variational formulation.

In a seminal paper, Carleo and Troyer [1] made@aconnection between ML and gquantum mechanics
by modeling wave functions as neuralnetworks and interpreting the energy expectation value as a ML
loss function, which is minimized agcording to the variational principle of the Schrédinger equation.
By self-consistently sampling from the square of the wave function with guantum Maonte Carlo (QMC),
this approach generates its owndata onthe fly (Figure 1). The initial applications of the novel approach
targeted spin systems on lattices! Generalizations to electrons and to real space followed shortly after,
starting with electrons onlattices asin the Hubbard model [2], through the first exploratory work for
electrons in real space [3].

Recently, PauliNet [4] and FermiNet [5] have been proposed as two highly accurate yet affordable
deep-learning architectures that solve the Schrédinger equation using antisymmetric neural networks,

Py .o Ty) = Zk det[@f (h;(ry, ..., o)) @i (17)]
where h; is an output of a permutation-equivariant neural network for the j-th electron, while
d);!‘ and q},!': are many- and one-electron functions, respectively, for the i-th generalized orbital in a k-
th Slater determinant. PauliNet and FermiNet differ in how h;, ¢, and @F are constructed. In
certain characteristics they both outperform well-established methods, such as the coupled-cluster
method, with a computational cost that scales only as N* to N*. While the exponential scaling of the

exact solution of the electronic Schrédinger equation is fundamental and will dominate at large N,
the aimof deep QMC is to push the onset of this exponential scaling to large enough N so as to offer

fi4
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an electronic structure method for intermediate-sized atomic systems with a few hundreds of

electrons with unprecedented compromise between accuracy and computational cost (Figure 2).
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Figure 2. Pople diagram of quantum chemistry with density functional theory and deep gquantum Maonte CarleShown asaffering
exceptional compromise between acouracy and cost

Current and Future Challenges

To date, the largest systems to which deep QMC has been applied have around 30 electrons, and
the excellent results obtained so far provide no indication that it cannot.be scaled up. This leaves an
order of magnitude in system size to be bridged in the near future for deep QMC to become highly
practical. Besides the sheer number of electrons, the higher nuclear Aumbers and the associated
difficulties that plague all QMC approaches will present another obstaele in going to complex chemical
systems such as transition-metal complexes.

The accuracy of any polynomial electronic structure method must inevitably deteriorate with
increasing system size, owing to the computational complexity of the electronic many-body problem.
This is, however, a theoretical asymptotic consideration—what matters in practice is what is the onset
and the rate of this deterioration for relevant system sizes: While full characterization of this accuracy
decay remains unresolved even for wellsestablished methods [6], their modes of failure are well-
known. Although first results of this kind fordeep QMC have been already published [7], most of the
waork in this area remains to be done,

By far the most applications of standard OMC/are not to molecules but to solids, because unlike
for molecules, there is essentially noother electronic structure method practical for solids that would
match the accuracy of QMC. Being an explicitly many-body method, QMC uses a supercell approach
to treat periodic systems, which.again translates to the demand on treating larger numbers of
electrons, but extending deep OMC to'solids also presents other challenges, such as the ability of the
neural networks to capture’long=range electron interactions.

Does deep OMC have anything more to offer than just highly accurate variational QMC? While this
achievement would already. make deep OMC a worthwhile endeavor, one can naturally ask whether
the use of deep neural networks in QMC might open entirely new avenues that would be simply
impossible without them. For instance, deep autoregressive models for quantum lattice systems avoid
the need to run lengthy Markov-chain Monte Carlo simulations by directly generating samples of
electron configurations [8], and it remains to be seen whether such an approach can be transferred
to electronic real-space systems.

Advances in Science and Technology to Meet Challenges

Standard, OMC is a well-established electronic structure method that has been implemented in
several mature, high-performance software codes, which use numerous advanced technigues to make
the calculations more efficient. Pseudopotentials enable efficient treatment of heavier atoms.
Diffusion Monte Carlo substantially increases the accuracy of the energy that can be obtained from a
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given, already optimized ansatz. Such technigues, and many others, can be transferred to deep QMC,
while carefully considering how is their cost=benefit ratio changed by the use of neural networks in
the ansatzes.

On the deep learning side, novel neural network architectures should be considered, such as graph
networks whose convolutions incorporate not only distance but also angular information. Another
important aspect is to explore where the optimum lies in constructing the ansatz between largé-scale
deep learning architectures (such as FermiNet) and architectures that incorporate more physical
knowledge (such as PauliNet). The evaluation of the Laplacian of the wave function in the kinetic
energy term is by far the biggest computational bottleneck in deep QMC, but automaticdifferentiation
in popular deep learning frameworks has not been optimized with such terms in mind, so advances in
this area could yield high gains in efficiency. Finally, we must develop benchmarks to test the
performance of the learning system in a practically relevant manner—while the pioneering works used
the variational (absolute) energies as benchmarks, these are less informative for large molecules
where energy differences matter more.

The real-space formulation of the electronic Schrodinger equation, as'used in deep QMC, is also
referred to as first quantization. Second quantization is an alternative formulation that uses one-
electron basis sets to transform this differential equation into/an algebraic problem, and is the
foundation of quantum chemistry. Second quantization has been also subjected to improvement via
neural networks [9], which opens the question of marrying the twi alternative approaches, which
might result in a more robust method that would combine the advantages of both,

Using deep neural networks for the sampling part.of QMC would reguire entirely new
architectures, that would be able to encode antisymmetry in an autoregressive fashion. At present,
this seems beyond the reach of existing technigues in deep learning.

Concluding Remarks

Standard electronic structure methods have been developed for decades to get to the point where
they are now, with numerous methodological and computational techniques and tricks under their
belt. Deep OMC has only been recently developed; yet it is already competing with those standard
methods. This suggests a promising future for this novel approach once it receives maore attention and
efficient codes are developed. We believe that deep QMC will provide chemists and materials
scientists with a new powerful computational tool.
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Section 3.5 — Disordered Quantum Systems
Sebastiano Pilati, University of Camerino and INFN-Sezione di Perugia

Status

In textbooks on condensed-matter physics, solid-state systems are usually described as clean and
periodic structures, On the contrary, disorder is ubiguitous in real materials, and it drastically affects
the system properties, It induces consequential phenomena such as Anderson localization, which
causes insulating behavior even when the band is not full, in contrast to textbook band-structure
theory. Disordered systems may also undergo so-called many-body localization, meaning that in
isolation they fail to reach thermodynamic equilibrium. As a consequence, even the'basic assumptions
of (equilibrium) statistical mechanics are not applicable. For these reasons, disarder challenges the
conventional top-down approach to condensed-matter theory, whereby material \properties are
predicted from fundamental equations and basic principles. On the other hand, disordered systems
may lend themselves to a data-driven approach, whereby bottom-up inference is performed by
identifying regular patterns from large experimental or synthetic (i.e., computer generated) datasets.
In fact, when disorder is included in the theoretical modelling, many randam realizations of the same
underlying model have to be considered. In conventional approaches, abservable properties are
predicted from averages over these random datasets. In recentyears, physicists started exploring the
use of machine-learning techniques to exploit such datasets more fruitfully. The goal is twofold: on
the one hand, researchers aim to develop computational technigues more adequate for disordered
systems than conventional top-down theories. On the other hand, they are investigating whether
randomness can be introduced on purpose to enable the utilization of machine learning techniquesin
the domain of condensed-matter theory. For example, deep neural networks have been trained to
predict the ground-state energies of quantum particles.in disordered potentials [1]. After being
trained on datasets including many random realizatians, the networks provided accurate predictions
for previously unseen instances, bypassingithe direct solution of the Schrodinger equation. Such
studies pave the way to different strategies to solve’both clean and disordered guantum many-body
problems, but they also present researchers with new challenges that need to be addressed.

Current and Future Challenges

Disordered models are being used.as a challenging testbed to evaluate the performance of machine
learning technigues in solving condensed-matter problems. In Ref. [1], supervised learning was used
to map disordered potentials formed by randomly placed gaussians to the corresponding ground-state
energies. The adopted comwolutional neural network demonstrated capable of automatically
extracting the relevant features, avoiding recurse to ad-hoc engineered descriptors. Ref, [2]
performed an analogous mapping, considering as input a model for ultracold atoms in disordered
optical speckle figlds. Sincethese two studies addressed non interacting particles, sufficiently copious
training databases{order of 10*instances or more) could be generated at an affordable computational
cost. Addressinginteracting many-body systems is more challenging, since producing so many training
instances/is impractical. While this prablem is encountered in most applications of supervised learning
to quantum many-body systems, it is particularly relevant for disordered systems, since the number
of descriptors required for their characterization has to scale with the system size and, as a
consequence, larger datasets are needed for training.

Meural networks are also being used to implement compact representations of many-body wave-
functions [3] (see Section 3.4). A recent application to disordered quantum spin models highlighted
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the need of further exploring which network connectivity (e.g., all-to-all versus sparse) is optimal for
guantum many-body problems [4].

Machine-learning algorithms are being applied also to density-functional theory (DFT) (see Sections
3.2 and 3.3). Ref. [5] employed kernel ridge regression to reconstruct the kinetic-energy functional of
Hamiltonians with randomly placed gaussians, opening new paths to build orbital-free theories, The
appealing feature of kernel ridge regression is that training requires only order of 100 instances.
However, accurately computing the functional derivatives is a challenging problem [5],still under
intense investigation [6]. Also convolutional neural netwaorks have been applied to DFT data_for
disordered models [7], showing that they allow bypassing the Kohn-Sham scheme,

Interacting many-body systems have been addressed within DFT in Refs. [8,9], tonsidering one-
dimensional lattice models with on-site disorder. The training sets were produced via exact-
diagonalization and wvia density-matrix renormalization group techniques; However, addressing
realistic higher-dimensional models still represents a challenging task, due ta the cost of creating
suitable training databases.

—raf ! ! ! ! ! ! ] 0006
l‘.‘.'
—1.r *" - (0005
K
—1.25( ,./ — 0,004
o
R o i i
S 'y
~18f .."'“ e 0,002
F
»
"
=13 . . T n.anL
.
—1.37F = — 0000

Figure 1. Transfer learning for a disordered quantum lsing chain with nearest-neighbour and far-neighbour (10 sites) couplings. The
ground-state energy per spin @...q predicted by a'scalable nBural network is shown as a function of the exact value €., The network is
trained on small chains with N = 15 spinsgwhich can be solved via exact diagonalization. It is tested on larger chains with N = 50 spins,
which are simulated via unbiased quantum Monte Carlo simulations. The random couplings are unifermly sampled in the interval [0, 1],
the transverse-field intensity is 2 0.36992], andthe energy unit & the maximum coupling J. Adapted with permission from

hrtps:/ fdolorg/10, 1103/ PhysRevE 102 033300 (Ref, [11]).

Advances in Science and Technology to Meet Challenges

The supervised training of the currently available neural netwarks for disordered quantum systems
requires massive datasets. This.is a critical problem, since this many instances can be generated only
for small quantum systems, unless uncontrolled approximations are accepted. Most network
architecture adopted so far have been adapted from those already is use in the fields of image analysis
and speech recognition. Hopefully, novel architectures specifically designed for quantum matter will
reachSuperior learning speeds,

Transfer learning is emerging as an alternative strategy to accelerate the training process. In the field
of image-@nalysis, it is standard practice to adopt pre-trained networks, previously optimized on
generic databases, to then transfer the learned parameters to more specific classification tasks. An
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analogous strategy has recently been applied also to quantum matter. Specifically, it has been used
to transfer knowledge from small to larger system sizes. For example, Ref. [10] introduced size-
extensivity by combining identical parallel networks, each one addressing a small tile of the whole
input system. A small overlap between adjacent tiles was allowed to account for spatial correlations.
In Ref. [11], size scalability has been implemented by including global pooling layers in a convolutional
model, Ref. [12] considered an ad-hoc descriptor for the particle number, allowing the fietwork
operating with heterogeneous datasets including different densities. Notably, these architectures
have also been tested in extrapolations tasks, i.e., in making predictions for system sizes |arger than
those included in the training set, The obtained results for a disordered quantum Ising chainare shown
in Fig. [1]. However, the regime of validity of these extrapolation techniques needs to be further
investigated, especially in the presence of long-range or frustrated interactions [11].

Since massive training sets will be required to develop novel network architectures, the community
will benefit if they will be shared in public repositories. It is also worth mentianing that the training
with (slightly) noisy data has recently been tested, showing that the prediction accuracy does not
dramatically degrade [2]. This led to the speculation that, in the future, traifing sets could be produced
using {inevitably noisy) cold-atom quantum simulators or other quanturm devices.

Concluding Remarks

Disordered quantum systems are proving to be particularly suitable for data-driven approaches based
on machine-learning algorithms. Various successful studies focusing on paradigmatic testbed models
have been performed, and promising applications alse™t@ more complex electronic systems have
recently been reported [10,13]. The key enabling factoris the pessibility to generate copious datasets
of random realizations. Still, various challenges need to be addressed. The learning speed of neural
networks must be increased by designing architectures specifically tailored to gquantum systems.
Furthermore, massive databases need to-be generated and shared among researchers in the field.
Certain transfer learning protocols have already been used to accelerate the learning process, but the
applicability of pre-trained models to different kinds of disorder must be further explored. In the long
term, one can envision the use of quantum simulators as generators of suitable training datasets for
intractable quantum many-body systems.
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Section 4.1 - Challenges and Perspectives for Interoperability and Reuse of
Heterogenous Data Collections

Claudia Draxl, Martin Kuban, Santiago Rigamonti, and Markus Scheidgen,
Humboldt-Universitat zu Berlin (HU Berlin)

Status

Many or most of our colleagues may now agree that data-centric approaches wilbcomplement and
change the way how research is currently performed. As a matter of fact, we are experiencing an
atmosphere of departure in several aspects. Data-analytics and machine-learning approaches are
being developed and applied to various problems, and high-throughput screening is.going ‘hand in
hand with the establishment of small- and large-scale data collections. The NOMAD Laboratory [1] is
quite orthogonal to all of them as it was never dedicated to a particular research topic or material
class, but rather aimed at being an open platform for sharing data withinthe entire community. It
allows users to upload computational results from all major electronic-structuré codes, now hosting
{as by March 2021) more than 100 mio. calculations from individual researchers as well as from other
databases [see Ref. 1 for details].

Such a huge and FAIR (findable, accessible, interoperable, reusable).[2] data repository is a wonderful
playground for being explored in view of (i) comparing the performance of different methodologies
for one and the same material, (ii) finding trends in the data, e.g.; by unsupervised learning, or (iii)
using the data pool for developing and applying novel artificial<intelligence (Al) tools. As such, we can
consider these data as a gold mine of the 21% century. Turning it into gold, however, can only be
realized if we fully control and understand this raw material. Among the four characters of FAIR, the |
(interoperability) is the most critical and largely unresolved issue when bringing together data from
different sources. So far, in contrast to quantum chemistry, there exist only a few efforts geared
towards reproducibility [3] and benchmarking.[4,5] which hampers the assessment of data quality.
Even more critical, on the experimental side, the situation is much worse. Needless to say, a balanced
picture, where experimental and thearetical characterization of materials go hand in hand with each
other, will be crucial for realizing the 4" paradigm of materials research.

Current and Future Challenges

As mentioned above, interoperability may be the biggest obstacle, hampering the wider usage of
inhomogeneous data. In fact, the most innovative Al method is of little value if data can be mis-
interpreted because th@if gualityis either not known or not considered. Thus, our future research not
only concerns powerful Al tools but also in-depth analysis and understanding of the data.

How can we cantrol data and assess their quality? Staying within the realm of computational ab initio
results, the major content of the NOMAD Laboratory, ground-state calculations — in particular the
energetics of materials — are likely to be controlled first. Here, first examples of data assessment [6]
and error estimates [7] are underway. Excited states, in turn, are a true challenge. As an example of
the complexity we mention the GW approach of many-body perturbation theory which is sketched in
Figure 1. Arguably, only experts who have enough insight into the implemented algorithms and
approximations, are able to fully judge the guality of the output of such computationally heawvy

calculations. To address just a few aspects: On the technical side, we may need an auxiliary basis set

71



W00 =~ Oh W B k=

AUTHOR SUBMITTED MANUSCRIPT - EST-100236.R1

Electronic Structure (2020) H#H i Roadmap

coming with various parameters. Likewise, there are various ways for doing the analytical continuation
of the Green function, as there are various ways for carrying out the required frequency integration;
and there are different ways to screen the Coulomb potential, etc. GW studies are typically (unless
done self-consistently) based on a particular ground-state calculation which also may largel t
the results. Hence, to make GW calculations comparable and to be able to distinguish betwe
accuracy of an approach and the precision of a numerical implementation, an urgent
convince code developers to fully document their codes, providing informatio
approximations, algorithm and related numerical parameters. ®

N
X9y
Q'

Q

RPA apprommation
= Sum-over-slales

‘Starnhaimer equation
‘Space-tima akgonthm
Paadel diedactnc funciion

Freguency convoludion

*  Rea-eguencies
technigues

= Analytcal conlinuation

Figure 1: Complexity of excited-states calculations éxemp approach,
Likewise, particle-based methods r-dynamics) not only suffer from huge volumes
but also from very many different fo eld implementations in a large variety of codes.

as made first steps to include results from different probes. A
ce, describing how data from experiment and synthesis shall
federated data infrastructure is described elsewhere [8].

MNevertheless, the NOMAD La
concept based on the NOMA
be processed and incorp

Advances in Scienc nology to Meet Challenges

Overall, the m owards FAIR handling of all materials-science data is the establishment
of a metadat ema for each synthesis route, experimental probe, and theoretical approach,
connecte a als ontology. Importantly, the metadata must be as complete as possible to
allow for the assessment of the data quality, i.e, they need to capture all parameters that may
influ t ts. Here, we introduce a data-analysis tool that is capable of megsuring the impact
meters on ab initio calculations. It is based on an implementation that follows the spirit
of th -of-states (DOS) fingerprint by Isayev and coworkers [9]. We take the simple example of
silicon to demonstrate the basic idea. In Fig. 2, we show that among the 2625 single-point

ons hosted by NOMAD, the biggest share has been obtained from FHI-aims (1525),
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followed by VASP (519), octopus (306), and exciting (174). Obviously, several exchange-
correlation functionals, basis sets of different quality, etc. have been employed to create the data. The
top and bottom panel show two examples for how (dis)similar the results are. On the top, we see two
calculations by exeiting, one with the local-density approximation (LDA), another one with GaWg
on top. We clearly see the well-known effect of GoWy, rigidly shifting up the conduction bands inthis
material. These deviations cause the similarity coefficient to be only moderate (Tc=0.73). In contrast,
using the same functional as is the case in the bottom panel, the results are more similap{Tc=0.83).
Here the differences stem from the usage of different codes (at equal lattice parameter), increasing
at lower energies. This example is, of course, only a rough assessment. The method can, however, be
refined by including considerations of basis-set quality, k-mesh, and various other computational
parameters on the one hand or structural differences on the other hand. All this is currently studied
in more detail and will be published elsewhere.

Tc=0.73 exciting LDA
= gxciting GWW

% )
1

DOS [states/ev]
()

-10 -5 0 5
Energy [eV]

. exclting

FHI-alms
VASP
Quantum ESPRESS0
ocbopus

3
5 Tc=0.83 VAS A
[ I- GGA
£
L
4,
w1
2
(]

[*]

=10 -5 u 5

Energy [BY]

Figure 2, Center: Pie chart showingehe distribution of bulk 5i calculations in the NOMAD Laboratory computed by different codes: FHI-
aims [1525), VASP (519), actopus [I06)pexciting (174), Quantum ESPRESSD (86), others (25). Top: Density of states (DOS5) cbtained by
GWELDA and LDA with exciting. Bottom: DOS obtained by PBE with WASP and FHI-aims. Tc indicates the similarity coefficient [9]

between the two respective caleulations. It reflects the entire energy range between <10 and +5 eV, For the corresponding data see Ref.
[10].

Our strategy is toinvestigate first the origin of discrepancies on the basis of dedicated data sets (e.g.,
thosg'used in Refs. [3,7]) before exploring the entire NOMAD data space.
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Concluding Remarks

Reaching full interoperability of data from different sources represents a huge challenge for fully
exploiting the enormous data space created by the community. Also benchmark results are largely
missing so far. To close this gap, we not only create reference data for prototype materials but also
aim at assessing the impact of various approximations and computational parameters. Here, we have
shown a tool that enables the assessment of methods and data in terms of the DOS, In the futlre; our
investigations will be expanded to other materials properties of interest, and will be furthendeveloped
towards inclusion of experimental data. Moreover, our tools can be used to search for materials that
exhibit features that are similar to those of other materials but are superior with respeet to other
criteria. A first version is already implemented in the NOMAD Encyclopedia, providing the most similar
materials to a chosen reference.
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Section 4.2 - The AFLOW framework for computational materials data and
design

Marco Esters, David Hicks and Cormac Toher*

Dept. Mechanical Eng. and Materials Sclence and Center for Autonamous Materials Design, Duke University, Durhom NC 2 7708, LI8A
*cormac. toher@duke.edu

Status

The creation and curation of large, reliable, and standardized data sets to train and validate models
poses a significant challenge in applying machine learning to materials science, Largerepositaries such
as the Automatic FLOW (AFLOW) database provide an excellent opportunity to combine automated
frameworks with data science and artificial intelligence [1].

Figure 1 demonstrates the AFLOW data generation workflow. Input structures are based on
experimentally observed materials or are generated from the over 1,100 crystallographic prototypes
spanning all 230 space groups in the prototype encyclopedia [2]. Integrated within the AFLOW
software, the encyclopedia automatically decorates these prototypes with different elements to
generate new hypothetical compounds. Starting with these structures, AFLOW performs density
functional theory (DFT) calculations via a standardized set of parameters.

The AFLOW software calculates a variety of structural, thermadynamic, electronic, and thermo-
mechanical properties that can be used for training and wvalidating machine learning models.
Structures are characterized with the AFLOW-SYM module, a toalto determine common symmetry
descriptors [3]. The routines are self-consistent. and adaptive, freeing users from needing to tune
tolerance thresholds, and real- and reciprocal-space isometries are guaranteed to be commensurate.
Thermodynamic properties are calculated via the AFLOW-CHULL module, which can be used to
determine phase stability, phase coexistence, decamposition reactions, and the synthesizability of
materials [4]. Thermo-mechanical properties such as bulk and elastic moduli, thermal expansion, and
vibrational thermodynamics can be determinéd using the AFLOW-GIBBS and elasticity libraries [1].

At over 3.5 million entries with over 200 properties each, the resulting database is one of the largest
of its kind. It is available to the ‘public through various web applications and data application
programming interfaces (APls) on aflow.org. The generated data have been used to develop property
descriptors and to train machine-learning models, such as the Property-Labelled Materials Fragments
{PLMF) model, to predict thermo-mechanical and electronic properties [5]. PLMF and other models
are available through the AFLOW-ML web application and Python module [6].

75



[F=T - 4 (R, Q- PR N

gmmmmmmmmmmhh-ﬁhhﬁhh-ﬁ-lhwwwwwwwwwwMMMMMMNMMN—I—I—I—I—I—l—l—l—l—l
OO0 s Oholn B W ke — OO 00 s G [ = = T v I i O T W e e R T+ N B N o Y R N A L= B = B~ I I (R R S T A ]

AUTHOR SUBMITTED MANUSCRIPT - EST-100236.R1

Electronic Structure (2020) H#H i Roadmap

A

Input File
Generation

Properties
Calculation

Data
Storage

i
\_ T e -

Figure 1. Schematic representation of the AFLOW framework, Starting from a large set of pratatypes, properties are calculated from ob
initio methods and served to the public via web applications and data APIs.

Data
Applications

Current and Future Challenges

Programmatic access to the vast quantity of materials data in the AFLOW database is necessary to
maximize its usefulness for training machine learning madels. Materials APls such as the AFLOW-REST-
APl simplify the retrieval of properties from a specific entry by querying a uniform resource locator
{URL), but only allow access to one database entry.at a time and require users to know in advance
which materials to request. To generate datafor machine learning, a database needs to be searchable
by properties without advance knowledge of its structure and format, while also being code-base
agnostic.

In addition to high-volume data, machine learning models rely on diverse data sets that are free from
duplicates to prevent training bias.  [dentifying distinct crystalline compounds is a considerable
challenge due to varying represéntations of the structure. Standard conversion technigues are error
prone as similar structures may be cast into different representations, and symmetry descriptors alone
do not determine structural eguivalence. Unique prototype designations are also necessary to
distinctly label structures and enable searches for certain structure-types in materials repositories.
Since by-hand duplicate removal and structure labelling are intractable given the growth rate of
materials data, rigorous structural similarity metrics and classification algorithms are required to
remove duplicate’compounds to improve model prediction and identify unigue structure-types.

Developing reliably predictive machine learning algorithms requires accurate training data. DFT has
shortcomings, that can skew machine learning results: band gaps tend to be underestimated, and
formation enthalpies for polar materials such as oxides are unreliable. Meanwhile, high-entropy alloys
and ‘eeramics, 2 newly emerging class of materials, are difficult to model directly, and their
synthesizability cannot be sufficiently described using enthalpy alone. They are often represented
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using large supercells, making it expensive to generate large data sets. New theories and correction
schemes are thus required to provide accurate data sets for machine learning algorithms.

Advances in Science and Technology to Meet Challenges

The domain-specific AFLUX language provides programmatic access to the AFLOW database [7]alt
combines the accessibility of a data APl with the features of a search interface without réguiring
knowledge of the database structure. Searches can be performed using the query part of the URL with
only a minimal set of logical operators. For example,

http://aflow.org/API/aflux/?species(!Pb),Egap(1*,*3),paging(0)

returns all lead-free entries with a band gap of 1 eV to 3 eV. Requests can be arbitrarily complex, giving
users control over the data they receive without requiring pruning. AFLUX outputs data in JavaScript
Object Notation (JSON) or in plain text for languages without native JSON capabilities. Using AFLUX,
AFLOW can be easily integrated into machine learning workflows as shawn in Figure 2. Materials
properties can be extracted from the AFLOW repositories via the/AFLUX API. From the data and
through use of the AFLOW modules, descriptors and feature vectors.can be féed into machine learning
algorithms to train and validate models.

To enhance the diversity of the database, the AFLOW-XtalFinder.module identifies and classifies new
prototype structures and maps compounds into their‘ideal prototype designation [B]. Similarity
metrics distinguish isopointal and isoconfigurational structures regardless of their representation via
internal symmetry routines, local geometry analyses, and atom mapping procedures. Unigue
prototypes are added to the AFLOW prototype encyclopedia, and distinct compounds are prioritized
for inclusion in the database. Comparisens. can bea performed on user data sets to group similar
compounds or structures, removing duplicates to save computational resources, and to eliminate
training bias for machine learning models. AIFAFLOW entries have been mapped into their ideal
prototype designation, enabling users to search the database by structure type.

Mew models have been developed to describe materials that are challenging for DFT. For polar
compounds, the Coordination Corrected Enthalpy method corrects formation enthalpies based on
bonding environments, significantly improving accuracy [9]. To investigate configurational disorder
[see Section 1.6 for discussion.of disordered materials), the AFLOW Partial Occupation module
generates ensembles of ordered configurations [10]. Calculated properties of the configurations are
weighted according tothe Boltzmann distribution to model the behaviour and energy spectrum of the
disordered material:
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Figure 2. Workflow far training machine learning models. Materials properties in the AFLOW database can be queried via AFLUX to

build descriptors and features. The AFLOW-ML web application and APl can begased to predict’thermo-mechanical, electronic, and
vibrational properties.

Concluding Remarks

The AFLOW ecosystem provides an opportunity to'combine big data with artificial intelligence to
discover new materials. With over three million entries, its database is the largest of its kind, offering
a variety of structural, electronic, thermodynamic, and thermo-mechanical properties. The data can
be programmatically accessed and filtered using the AFLUX language. New structures are continuously
identified with AFLOW-XtalFinder, and similarity metrics ensure compounds are unique, improving
database diversity and reducing training bias for machine learning models. Methods developed within
the ab-initio AFLOW-workflow improve formation enthalpy predictions for polar materials and enable
modelling of disordered compounds, groviding avenues to research new classes of materials. AFLOW
can be easily integrated intoymachine learning workflows, making it a valuable tool for artificial-
intelligence based materials rasearch,
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Section 5.1 - Adaptive Learning Strategies for Electronic Structure Calculations
Prasanna V. Balachandran, University of Virginia, Charlottesville, VA, USA

Status

Adaptive learning is an emerging paradigm in materials informatics for rapid and efficient navigation
of the vast parameter space'™ The basic idea behind adaptive learning is that a supervised machine
learning (ML) algorithm can achieve improved performance with fewer training data points, provided
the learning task is carried out by allowing the algorithm to autonomously choose data points from
the vast unknown or unexplored space®. Any supervised ML method needs training data ta build the
models. The choice of the training data should be such that it is diverse and regresentative of the
problem of interest. A poor choice will impair the predictive and generalizable capability of the trained
ML models. Therefore, it is critical to optimally sample the search space. The reason why adaptive
learning is particularly well-motivated in electronic structure calculations is'due to the expensive
nature of the calculations, where a brute-force approach is not efficient or practical. Surrogate models
that approximate the predictions of the expensive electronic structure codes with little computational
cost has the potential to accelerate the design and discovery of new materials.

We can broadly classify adaptive learning into two categories; active learning and Bayesian
optimization. In both active learning and Bayesian optimization, we start from a small number of
labelled instances to train ML models, but have a massive number of unlabelled instances. In active
learning, the trained models are programmed to choose an instance from the massive unlabelled
dataset that they are least confident in predicting, thus reducing the overall uncertainty or error.
Whereas in Bayesian optimization, the interest isin rapidly finding the optimum of a function that are
costly to evaluate and lack gradient information. Both ‘'methods employ utility (or acquisition)
functions that query each unexplored data point.in the search space. Promising data points (that
satisfy a well-defined constraint) are recommended for the next iteration of validation and feedback.
Learning from data is formulated as an itefative process until convergence is reached. We can run
these calculations either sequentially (where weiselect one data point at a time for validation and
feedback) or in a batch mode (where several data points are selected at a time for validation and
feedback). There are growing examplés inelectronic structure calculations, where active learning and
Bayesian optimization approaches are finding increasing use®®. As high-performance computing
capabilities improve and databases.growin number and complexity (e.g., complex interfaces, surfaces
and heterostructures), integrating massively parallel electronic structure codes with adaptive learning
will be critical for efficient exploration of the vast search space.

a0

Page 80 of 92



Page 81 of 92

[F=T - 4 (R, Q- PR N

AUTHOR SUBMITTED MANUSCRIPT - EST-100236.R1

Electronic Structure (2020) H#H i Roadmap

largest mean
(exploitation)

best so far

large
uncertaimty
(exploration)

Property (arb. units)

v

Feature space

Figure 1. A schematic describing the purpose of a utility function in evaluating the trade-off between gxploitation and exploration, The
selid red curve is the respoense surface from a trained ML model. The blue data peint isthe best data paint in the training data. The green
and red data points represent unexplored data points in the design space. Figure reproducedérom the published work of Balachandran
etal.

Current and Future Challenges

There are two necessary ingredients for implementing ‘adaptive learning: (1) An ML method that
will allow for quantifying uncertainties in every explored and unexplored data point in the search
space. It is common to use either posterior probability. distributions from Bayes' theorem or
parametric confidence intervals for uncertainty quantification®3. |2) A utility function that will take the
expected value and the associated uncertainties fram the trained ML models as input to setup the
query, and rank each data point in an order of value, representativeness, and/or diversity.

Off-the-shelf methods such as the random forests and Gaussian Process Regression (GPR) are the
workhorses for active learning and_Bayesian optimization, respectively. These methods provide a
probabilistic measure of the output quantity. However, there are many other state-of-the-art ML
methods such as the kernel ridge regression (KRR), support vector machines (SVM) and artificial neural
networks (ANN). But they do not have the intrinsic capability to quantify uncertainties. Application of
ensemble learning and Bayesian inference-based approaches to KRR, SVM, and ANN can overcome
these limitations. This will eguip the community with more tools to build ML models for a given
dataset. There are two'reasons Why we should think beyond GPR and random forests models: (1) A
priori we do not kngw which ML algorithm will be better suited for a given data set. No-free-lunch
thearems states that there are no universal ML algorithms that will work for every prablem®, The GPR
and random forests are conwvenient choices, but are not optimal in all settings. (2) Not all ML
algorithms have stropg scaling performance with the number of training samples and input
dimensionality.

Utility functions evaluate the trade-off between exploration and exploitation of the search space
on the basis af the current performance of the trained ML models (Figure 1), Some of the popular
utility functions include uncertainty sampling, expected improvement, knowledge gradient,
probability of improvement, upper confidence bound and mean objective cost of uncertainty (to name
afew)’. If adaptive learning is operated in batch mode, then we need additional strategies to select
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diverse data points such that the model performance will be improved®. Another promising
application of Bayesian optimization is in accelerating reinforcement learning algorithms through
efficient hyperparameter optimization.

Advances in Science and Technology to Meet Challenges

There is a sufficient body of published research in the literature that demonstrate the efficacies of the
adaptive learning methods in computational and experimental materials science. Yet, thefield is still
in its infancy requiring key advancements to accelerate the pace of scientific discoveries. We listsome
of the primary challenges, along with the advances needed to meet them. (1) At the ML level, thereis
a need to develop an improved understanding of the response surface that capture the quantitative
input-output relationships. The ML methods work well when the training data points that are located
in close proximity to one another in the input space also have similar output properties. Presence of
“property cliffs,” where two similar inputs have a large difference in the responseés can have an
adverse effect on the performance’. Post hoc model interpretability methods (local and global) can
provide clues by opening the complex black-box models and making it easier for the domain experts
to comprehend why certain predictions are made in order to tackle the property cliff problem. (2)
There is also a growing trend to combine classification learning with.regression methods to address a
common overarching goal™. The training data for classification learningand regression may (or may
not) be different, but there is a vast unexplored search space thatis common to both methods for
efficient navigation. It is unclear how the uncertainties will propagate between the two independent
models to inform the decision-making process. (3) The role of domain experts-in-the-loop is also vital
to advance the adaptive learning paradigm. A vast majority of the current approaches rely on off-the-
shelf methods that do not readily incorporate domain knowledge. One of the current trends where
domain experts have had an overwhelming influence is wigr the choice of meaningful descriptors or
representations. Advances are needed inthe domain knowledge-informed kernel design, uncertainty
guantification, and utility functions. (4] Given that there are many choices for selecting ML methods
and utility functions, it is unclear how a particular M L-utility function pair will perform on a given data
set. Currently, there are no heuristies that can guide us to select an informed pair for a given problem.
We need benchmark datasets (similarto.the MNIST dataset in computer science) to reliably test the

performances of various adaptive l@arning strategies™".

Concluding Remarks

The excitement surrounding the adaptive learning research is palpable. The success of adaptive
learning will be key to enable autonomous computing of materials properties and on-the-fly closed-
loop high-throughput.€omputations and experiments. We envision that many research groups will
continue to creatively integrate these strategies into their design scheme, which will positively impact
its growth. However, to sustain the excitement, several outstanding research challenges remain to be
addressed. Some of the urgentneeds are discussed in this article. Future developments will rely on
advances in building jinterpretable ML models, uncertainty quantification methods, and utility
functions that will take advantage of the unique properties of the problems under investigation.
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Status

Reinforcement learning (RL) is a branch of machine learning that focuses on an agent
repeatedly interacting with an environment for the purpose of maximizing a reward
(Figure 1). More formally, these are defined as sequential decision making problems.
Inspired by animal learning and behaviour, the field of RL dates back to ideas
developed at the beginning of the 20" century in the field of human behaviour and
learning. Edward Thorndike transformed cognitive psychelogy with the notion that
behaviour could be shaped through the iterative application of reward and punishment.
This concept soon became doctrine and was shown to be a crucial part of biological
learning. B. F. Skinners 'boxes and animal training experiments in the 1940s made
explicit the connection between learning through repéetition and reinforcement. These
ideas were then codified within the computer science literature by a number of
contributors [1].

In recent years, when coupled with the flexible representation and capacity of deep
neural networks, EL has seena renaissance, solving problems such as video games,
the ancient game of Go, and the navigation and stationkeeping of autonomous craft [2].
Dedicated silicon (e.g. GPU, TPU, and FPGA) coupled with modern neural architectures
have made it practical for RL agenis to learn directly from visual input.

Compared to other machine leaming (ML) approaches, RL has not yet seen widespread
use within the fields of physiecs and chemistry. Examples thus far include molecular
design tasks [3, 4], mnavigation of chemical synthesis pathways [5], scientific discovery
[6, 7] and experimental control [8]. However, we believe that RL has considerable
promise for future applications in the field of material science and in science more
generally.

RL algorithms learn, through experience, how to achieve an optimal control policy for a
dynamical system. They can also be used to solve problems of optimization, but the
same is true of other machine-learning approaches. RL excels at control of dynamics.

Generally speaking, if a system or environment is one which can respond to external
stimuli (e.g. increase the temperature of a reaction vessel, apply an electric field, etc),
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permits sequential interaction, and there is some way to quantify a notion of success,
RL can be applied.

WO 0 s T LA s e k=

1 Agent

8 state & reward action
19 — —_—

20 S r da

26 Envitonment

29 \- \

3 Figure 1 In reinforcement learning, anagent interacts with an environment through a
series of actions which give rise to changes of its state. The agent seeks to maximize
34 the discounted sum of rewards it receives as feedback.

Current and Future Challenges

39 Given the broad range of RL algorithms which exist, we highlight here some general
iIssues, rather than these specific to a particular approach. The large number of RL

42 algorithms which exist is infact one issue in the field. There is general agreement within
43 the community that we have not yet witnessed the “Imagenet” moment of EL; no single
algorithm is broadly applicable and competitive in all cases. Most algorithms are sample
46 inefficient [9],/meaning that a large number of training examples (episodes) must be

47 played in order for an algorithm to learn. Like many machine learning sub-disciplines,
interpretable models that scale to real-world problems are still not common. Results can
50 also be guite sensitive to the choice of model hyper-parameters, and often require

51 manual tuning.

54 Sparse-reward problems are particularly challenging to learn. When success is only
55 defined by the end goal, there is essentially no leaming signal for the agent to work
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with. This can exacerbate the problem of sample inefficiency. Reward shaping is auwvay
to address this, however, if a problem does not have an intrinsic and reliable reward
signal, designing one which achieves the desired agent behaviour can be time-
consuming and error prone. There are many humorous examples of agents displaying
untended behaviour while chasing a poorly designed reward function.

Curriculum learning appears to offer both an effective and intuitive solution to learning,
however, determining a curriculum is itself a difficult problem. Indeed, this'is something
that even our own education systems struggle with regularly. Withinthe domain of games,
self-play has been used as an effective form of curriculum” generation, although this
approach is not suited to all problems.

Advances in Science and Technology to Meet Challenges

Within the current paradigm, RL algorithms require.an accurate and efficient mechanism
to approximate either the policy, value function or both.. Recent progress in the field has
been strongly linked to using neural networks for this purpose as they have been shown
to be good general functional approximators. Unfortunately, deep networks tend to be
“data hungry” and suffer from catastrophic fargetting.

The limitations (and benefits) of neural networks directly impact the performance and
characteristics of RL implementations'which are built with them. A major improvement in
RL performance would therefore be achieved simply with algorithmic or hardware
acceleration which can produce accurate approximate functions with less training data
(and can efficiently incorporate new data). Improvements to function approximators
used in RL would have high impact. Meta-learning (algorithms which learn based on the
behaviour of other learning algorithms), improvements in off-line training, and better
sim-to-real [10] are all areas which offer potential areas for improvement.

More generally, representations are again an area where there is significant room for
improvement, particularly in the domain of physics and chemistry. As with supervised
learning, when alearning algorithm is provided data without any prior knowledge, a
significant amount of signal is required simply to learn the relevant features. This is in
contrast to a scientist when they first enter the laboratory; they already have a great
deal of experience and expertise for operating in 3d environments.

FL algorithms ¢an be broadly categorized as either model-based or model-free
(although there are cases where the line becomes blurred). The former category
consists of algorithms which use the model for a variety of tasks: planning, obtaining
analytic.gradients, value-equivalence prediction, and data generation [ref_categories].
An area for improvement could be the incorporation of hierarchies of models into such

BE



Page 87 of 92

LF= T I I R, R N

AUTHOR SUBMITTED MANUSCRIPT - EST-100236.R1

agents. Currently this is not standard practice, and stands in stark contrast to physics
and chemistry which are strongly based on hierarchies of models which describe
different effects across a wide-range of length and time scales. Strong physics-based
priors (e.g. energy conservation, momentum conservation) are also generally not built
into RL models in the way that is typically done in material science.

Intrinsic rewards will likely continue to be a fruitful area of methodological development.
Concepts such as novelty and surprise have begun to be applied with promising initial
results.

Concluding Remarks

Reinforcement learning is a powerful way of solving control problems. Thus far, it has
seen less use within the materials science literature.than ether ML methods such as
supervised learning (e.g. image classification) and unsupervised learning (e.g. finding
patterns within data). We believe that RL is poised to. make significant breakthroughs
within materials science, judging by its success with game-playing and autonomous
control.
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Section 5.3 - Interpretability of machine learning models in physical sciences
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Status

Training a supervised machine-learning (ML) model that yields satisfactory predictions (i.e., that maps
input features into values of the target property, with errors below a threshold perceived as tolerable)
on test data that are driven from the same distribution as the training data, is a task that is howadays
almost routinely accomplished. However, the crucial interest is in that the trained model can
generalize, i.e., it can yield trustable predictions also for test data that are significantly different from
the training data. As human beings, i.e., users who are asked to judge and/or trust predictions of a ML
model, we need to understand what the model has learned. Such innate need isrelated to the notion
of interpretability of the ML model. The literature on interpretability is vast [1-7], but'the field is pre-
paradigmatic, i.e., it has not reached a consensus on what are the fundamental guestions and what
are the quantities to be measured. Two somewhat contrasting aspects are typically associated to
interpretability [1-3]: transparency of the model and its (post hoc) explainability. Transparency
connects to scientific practice, where a phenomenon is felt as understood when a predictive
mathematical law is formulated, which is expected to work with no exception, at least in a well-
defined domain of applicability. Such law is expected to be simpléyso that our brains can process most,
if not all, of its consequences. Explainability refers to the possibility tolinspect a perceived "black-box",
i.e., a model that is in general too complex to be grasped by the human mind, but that can be
investigated, in order to reveal, for instance, which part efthe input mostly affected the output,
Incidentally, understanding a decision made by.ahuman refers to the post hoc explainability of what
happens in our brains, whose detailed mechanics are beyond current grasp, while we can provide
reasons on how a decision was reached, typically based on "similar cases" [2]. Understanding
interpretability and in particular devising one.ar a set of consensual metrics for assessing the
generalizability and trustability of ML modelis one crucial next step, or the field might face another
“winter” due to a consequent lack of trust in ML applicability.
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Figure 1, Summearized view of interpretability in machine learning,
elucidating what determines the users' need for interpretabilty ond
how the meaning of the word adapts to the complexity of the
learned model. Not mentioned in the text, the ethicallegal aspects
are felt impartant when ML-bosed decisions impoct individuols or
COoMmmunities.

Current and Future Challenges

The tools for addressing the interpretability of ML models vary with the complexity of the models [1-
6] (see Fig. 1). For simpler models, transparency is evaluated,i.e., the ability to read and inspect the
model. Sparse models [8] and in particular symbolic inference [9] naturally provide transparent models
as they appear as equations (or inequalities) in terms.of functions of input features, which are selected
out of a possibly large number of candidates. The. interpretation is therefore provided by the
identification of which input features goverrnthe modeled phenomenon. Here, the notions of
simulatability and decomposability have been introduced. These are the ability to follow step-by-step
how the ML model produces an output from the input and the ability to assign a meaning to each part
of a model (e.g., the sign and magnitude of regression coefficients), respectively. An outstanding
challenge is to define a rigorous metricof transparency, so that models can be objectively compared,
similarly and complementarily to the routinely performed, but insufficiently informative, comparison
in terms of predictive accuracy,

For more complex model, where transparency is lost, a plethora of pest hoc explanation tools have
been developed [4-7],;which are commonly divided into local (explanation on how a given single
output is obtained) er global {typically, visual analysis of how the dataset is represented internally by
the model). The focus isin general on a statistical analysis on how input features affect the results,
The challenge is here to properly account for the (typically nonlinear) relationship among the input
features.

It is highly unsatisfactory that two different interpretability concepts exist depending on the
complexity of the trained model. In facts, there is a continuum of complexity between sparse, symbolic
models and complex ones (e.g., deep neural networks); the challenge is to seamlessly adapt the
complexity of the learned model, and the related interpretability tools, to the intrinsic complexity of
the underlying input-features — target-property relationship.

&0
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Finally, the importance of outliers, datapoints not conforming to the model being learned, needs to
be understood. In physical sciences, a wrongly predicted datapoint may be a signal that a different
mechanism from the so-far identified features—property relationship is at work.

Advances in Science and Technology to Meet Challenges

ML is urgently requested to undergo a paradigm change. Together with prediction accuracy, strategies
for assessing the correct model complexity and interpretability metrics, need to be developed. [f a
simple, symbolic law is the underlying model, a correct ML strategy must be able to recover such exact
model, When a more complex, less transparent model is necessary, then the interpretability metric
needs to seamlessly adapt to the increased complexity. It should become therefore.common practice
to compare models in terms not only of their predictive accuracy, but also of theirinterpretability
metric. When applied to the development of scientific (e.g., physical) laws, the purpose of this
farmidable task is to provide reasons to accept an ML-learned features—property relationship in terms
of its consistency with the existing bulk of knowledge, so that the ML maodelis not felt as a surrogate,
until "something better" is found, but as a new scientific law.

In this respect, it is crucial to be able to treat the nonconforming datapoints. Most current ML
approaches are built to neglect such datapoints, a.k.a. outliers, while in physical sciences even ane
single datapoint not complying with the general law is treated with utteérmost care, as it could be the
harbinger of "new physics". It is therefore desirable that, together with the complexity-aware strategy
sketched above, a nonconforming-datapoints strategy is deweloped (see also Section 1.4). For
instance, one may wish to detect different domains of applicability of more complex, general models,
vs specialized but simpler models. A useful analogy could be thinking at general relativity, which is
more general and more complex than classical gravitation. The latter is however very accurate in a
well-specified and understood domain of applicability. In.turn, general relativity is expected to be a
special, somewhat simpler, case of a (yet-to be developed) quantum-gravity theory. Similarly, in ML
the level of complexity of the learned models might need to be adapted to well-defined domains of
applicability [10], preferably defined by ML algorithms in a data-driven fashion.

Concluding Remarks

In conclusion, ML might have reached its maturity in terms of predictive ability, on data that are
statistically similar to the training data. However, it is still in its infancy when it comes i} to
generalizability to data significantly different from training data, ii) treatment of "outliers"”, i.e., data
do not conform to the.model being trained, iii) having a unified concept of interpretability that
seamlessly applies from the ebvious transparency of sparse, symbolic models, to the explainability of
complex deep neuralinetworks, and iv) adapting the trained model complexity to the intrinsic
complexity of the underlying input feature—property relationship. Hopefully, framing the objective in
clear terms will stimulatea focused development of ML technigues, which could promote ML tools to
become valuable companionsof a scientist, in order to foster future scientific discoveries.
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