

Tropical Cyclone Intensification Simulated in the Ooyama-type Three-layer Model with a Multilevel Boundary Layer

Rong Fei^{1,2,3} and Yuqing Wang^{3*}

¹State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

²College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

³International Pacific Research Center and Department of Atmospheric Sciences, University of Hawaii at Manoa, Honolulu, HI, USA

10

May 5, 2021 (submitted)

July 27, 2021 (revised)

Dateline

14 Submitted to *Journal of the Atmospheric Sciences*

15 * Corresponding author address:

Prof. Yuqing Wang

International Pacific Research Center

University of Hawaii at Manoa

404A/POST, 1680 East West Road,

Honolulu, HI 96822, USA.

Email: yuqing@hawaii.edu

22

Abstract

23

The first successful simulation of tropical cyclone (TC) intensification was achieved with a three-layer model, often named the Ooyama-type three-layer model, which consists of a slab boundary layer and two shallow water layers above. Later studies showed that the use of a slab boundary layer would produce unrealistic boundary layer wind structure and too strong eyewall updraft at the top of TC boundary layer and thus simulate unrealistically rapid intensification compared to the use of a height-parameterized boundary layer. To fully consider the highly height-dependent boundary layer dynamics in the Ooyama-type three-layer model, this study replaced the slab boundary layer with a multilevel boundary layer in the Ooyama-type model and used it to conduct simulations of TC intensification and also compared the simulation with that from the model version with a slab boundary layer. Results show that compared with the simulation with a slab boundary layer, the use of a multilevel boundary layer can greatly improve simulations of the boundary-layer wind structure and the strength and radial location of eyewall updraft, and thus more realistic intensification rate due to better treatments of the surface layer processes and the nonlinear advection terms in the boundary layer. Sensitivity of the simulated TCs to the model configuration and to both horizontal and vertical mixing lengths, sea surface temperature, the Coriolis parameter, and the initial TC vortex structure are also examined. The results demonstrate that this new model can reproduce various sensitivities comparable to those found in previous studies using fully physics models.

41 **1. Introduction**

42 Understanding the dynamics and thermodynamics of tropical cyclone (TC) boundary layer is
43 of great importance to both theoretical research and practical applications. Various boundary layer
44 models have been developed to deal with issues on different aspects of TCs, e.g., column model,
45 depth-averaged (slab) model, and height-resolving model, as summarized in Kepert (2010a).
46 Among these models, the slab model has been widely utilized in various applications because of
47 its simplicity and computational efficiency while it can capture some major features of TC
48 boundary layer. For example, slab boundary layer models have been used in wind engineering
49 (Vickery et al. 2000, 2009a; Williams 2015) and risk assessment of TCs (Powell et al. 2005;
50 Vickery et al. 2009b). The slab boundary layer is also used in understanding the asymmetric
51 structure of a moving TC boundary layer (e.g., Shapiro 1983) and in the three-layer model of TC
52 intensification (Ooyama 1969, hereafter the Ooyama-type model; Schecter 2009, 2011; Frisius and
53 Lee 2016; Lee and Frisius 2018). In addition, the TC potential intensity theory is also based on the
54 slab boundary layer assumption (Emanuel 1988; Bister and Emanuel 1998; Frisius et al. 2013).

55 Slab boundary layer models have some unavoidable weaknesses in simulating TC boundary
56 layer due to some unphysical simplifications that are inherent to their formation as pointed out by
57 Kepert (2010a,b). For example, in response to a prescribed distribution of pressure gradient force,
58 a slab boundary layer model produces too strong inflow, too strong eyewall updraft, and too great
59 departure from gradient wind balance in TC boundary layer compared to a height-resolving
60 boundary layer model (Kepert 2010a; Williams 2015). These discrepancies result primarily from

61 the use of the depth-averaged boundary layer wind instead of the near-surface wind in calculating
62 surface wind stress (Ooyama 1969; Shapiro 1983) and the ignored vertical structure of boundary-
63 layer winds (Kepert 2010b). The former may considerably overestimate the surface wind stress and
64 enthalpy flux because the near-surface wind speed is often weaker than the depth-averaged wind
65 speed in TC boundary layer (Kepert 2010a). The latter would cause large errors in the calculated
66 tendencies of both tangential and radial winds contributed by the nonlinear advection terms,
67 particularly in the region near and slightly inside the radius of maximum wind (Kepert 2010b).

68 Frisius and Lee (2016, hereafter FL16) compared the evolutions of TCs simulated in the
69 Ooyama-type three-layer model with a slab boundary layer and a parameterized height-dependent
70 boundary layer proposed by Kepert (2010b). They found that the TC simulated with the slab
71 boundary layer intensified too fast and reached a too strong final intensity compared with that
72 simulated with the parameterized height-dependent boundary layer. This seems to be consistent
73 with the findings of Kepert (2010a) based on a boundary layer model comparison mentioned above
74 because the slab assumption may produce too strong inflow and too strong eyewall updraft. FL16
75 speculated that the differences in the simulated TC behavior with the two boundary layers could be
76 due to the use of the depth-averaged boundary layer wind velocities in the slab boundary layer and
77 the near-surface wind velocities in the parameterized height-dependent boundary layer in
78 calculating surface wind stress and enthalpy flux.

79 Note that the parameterized height-dependent boundary layer of Kepert (2010b) was based on
80 some simplifications and was adopted to approximately diagnose the differences in the simulated
81 TC boundary layer between a slab boundary layer model and a fully nonlinear multilevel boundary

82 layer model. Therefore, for a more quantitative comparison of the simulated TC behaviors in the
83 Ooyama-type three-layer model with a slab boundary layer and a height-dependent boundary layer,
84 a fully nonlinear multilevel boundary layer should be used. In addition, since both the surface wind
85 stress and enthalpy flux were overestimated in the simulation with the slab boundary layer, it is
86 unclear whether the differences between the simulations with the slab boundary layer and the
87 parameterized height-dependent boundary layer in FL16 were due to the overestimated surface
88 enthalpy flux or the overestimated surface wind stress or both. In this study, a fully nonlinear
89 multilevel boundary layer is used in the Ooyama-type three-layer model to address the above-
90 mentioned issues.

91 The main objectives of this study are to extend the Ooyama-type three-layer model with the
92 slab boundary layer to a model with a fully nonlinear multilevel boundary layer, examine the
93 performance of the new model configuration in simulating TC intensification, and compare with
94 the performance with the use of a slab boundary layer. We will also demonstrate through sensitivity
95 experiments that because the multilevel boundary layer avoids some inherent weaknesses of the
96 slab boundary layer, as indicated by Kepert (2010a,b), the Ooyama-type model with the use of a
97 multilevel boundary layer can reproduce TC intensification process comparable with those
98 simulated in full-physics models. The rest of the paper is organized as follows. Model description
99 and experimental design are presented in section 2. In section 3, the TC evolution simulated in the
100 Ooyama-type model with a multilevel boundary layer are discussed and compared with that
101 simulated with a slab boundary layer. The sensitivities of the newly developed Ooyama-type model
102 with the multilevel boundary layer to model configurations, various physical parameters, and the

103 initial vortex structure are discussed in section 4. Finally, major conclusions are summarized and
104 discussed in section 5.

105 **2. Model description and experimental design**

106 The original Ooyama three-layer model Ooyama (1969) used a slab boundary layer and was
107 built under the assumption of gradient wind balance. An extended version with the gradient wind
108 balance assumption removed can be found in FL16, which was used in this study to perform
109 numerical experiments and compare with the simulations with a multilevel boundary layer
110 developed in this study. To facilitate the model description, we start with the version with a slab
111 boundary layer below, which is followed by an introduction of the new version with a multilevel
112 boundary layer and then a description of experimental design.

113 **a. The Ooyama-type model with a slab boundary layer (SBL)**

114 The Ooyama-type three-layer model (hereafter in brief, the Ooyama-type model) with a slab
115 boundary layer used in this study is the same as that described in FL16, which is an extended
116 version of the original Ooyama three-layer model (Ooyama 1969) with the assumption of gradient
117 wind balance removed (hereafter SBL). The three layers are the boundary layer (layer b), the lower
118 free atmosphere (layer 1), and the upper free atmosphere (layer 2). The boundary layer has a fixed
119 depth of h_b and it allows permeation with the two layers above and the exchanges of momentum
120 and heat with the underlying ocean surface. The two layers of the free atmosphere are modeled
121 with two shallow water layers with different densities. The density of the boundary layer and lower
122 layer free atmosphere is ρ_0 , and that of the upper layer free atmosphere is $\varepsilon\rho_0$ with $\varepsilon = 0.9$. The

123 axisymmetric assumption is assumed in this study as in FL16 and the governing equations in
 124 cylindrical coordinates are as follows:

125
$$\frac{\partial u_j}{\partial t} + u_j \frac{\partial u_j}{\partial r} - \left(f + \frac{v_j}{r} \right) v_j = -\frac{\partial P_j}{\partial r} + D_{v,u_j} + D_{hd,u_j}, j = 1, 2, \quad (1)$$

126
$$\frac{\partial v_j}{\partial t} + u_j \zeta_j = D_{v,v_j} + D_{hd,v_j}, j = 1, 2, \quad (2)$$

127
$$\frac{\partial u_b}{\partial t} + u_b \frac{\partial u_b}{\partial r} - \left(f + \frac{v_b}{r} \right) v_b = -\frac{\partial P_1}{\partial r} + D_{v,u_b} + D_{hd,u_b} + D_{s,u_b}, \quad (3)$$

128
$$\frac{\partial v_b}{\partial t} + u_b \zeta_b = D_{v,v_b} + D_{hd,v_b} + D_{s,v_b}, \quad (4)$$

129
$$\frac{\partial \theta_{e,b}}{\partial t} + u_b \frac{\partial \theta_{e,b}}{\partial r} = D_{v,\theta_{e,b}} + D_{hd,\theta_{e,b}} + D_{s,\theta_{e,b}}, \quad (5)$$

130
$$\frac{\partial h_1}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (r u_1 h_1) = Q_{b,1} - Q_{1,b} - Q_{1,2}, \quad (6)$$

131
$$\frac{\partial h_2}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (r u_2 h_2) = \frac{Q_{b,2}}{\varepsilon} + \frac{Q_{1,2}}{\varepsilon}, \quad (7)$$

132
$$w_b = -\frac{h_b}{r} \frac{\partial r u_b}{\partial r}, \quad (8)$$

133
$$P_1 = g(h_1 - H_1) + \varepsilon g(h_2 - H_2), \quad (9)$$

134
$$P_2 = g(h_1 - H_1) + g(h_2 - H_2), \quad (10)$$

135 where r and t are radius and time; u_1 (u_2) and v_1 (v_2) are the radial and tangential winds in layer
 136 1 (layer 2); u_b , v_b , w_b , and f are depth-averaged radial wind, tangential wind, vertical velocity at
 137 the boundary layer top, and the Coriolis parameter (assumed the value at 20°N except otherwise
 138 specified); P is kinematic pressure anomaly; $\zeta = f + r^{-1} \partial(rv)/\partial r$ is absolute vertical vorticity;
 139 and h_1 and h_2 are the layer depths of the layers 1 and 2, respectively, H_1 and H_2 are their mean layer
 140 depths; $\theta_{e,b}$ is the well-mixed equivalent potential temperature in the boundary layer; $Q_{i,j}$
 141 represents the mass flux from layer i to layer j ; $D_{v,X}$, where X is u , v , or θ_e , denotes the vertical
 142 exchange of momentum or heat between two neighboring layers and is parameterized with the
 143 vertical mass flux; $D_{hd,X}$ means the horizontal diffusion of variable X ; and $D_{s,X}$ represents the
 144 tendency caused by surface momentum or heat exchange.

145 The mass fluxes ($Q_{1,2}$, $Q_{b,1}$, $Q_{b,2}$, and $Q_{1,b}$) between layers due to convection are assumed to
146 be proportional to the upward mass flux from the boundary layer top, which is defined as $Q_b =$
147 $(w_b + |w_b|)/2$. These mass fluxes are functions of Q_b and the entrainment parameter η , as given
148 in their Eqs. (11)–(13) and (16) in FL16. The entrainment parameter η is a measure for deep
149 convective instability. A transition from shallow to deep convection takes place when η exceeds
150 1. The surface flux-induced tendencies are parameterized using the bulk aerodynamic formula
151 given below:

152 $D_{s,u_b} = -C_D S_b u_b / h_b,$ (11)

153 $D_{s,v_b} = -C_D S_b v_b / h_b,$ (12)

154 $D_{s,\theta_{e,b}} = -C_E S_b (\theta_{e,b} - \theta_{e,s}^*) / h_b,$ (13)

155 where S_b is the surface wind speed calculated using u_b and v_b , $\theta_{e,s}^*$ is the equivalent potential
156 temperature at the given sea surface temperature (SST, which is 29°C except otherwise specified).
157 The surface drag coefficient C_D is a function of wind speed given as $10^{-3} \times$
158 $\max\{1.12, \min[2.581, 1.0 + 0.06(S_b - 5)]\}$ and the surface exchange coefficient C_E for
159 enthalpy flux is a constant of 1.29×10^{-3} . The horizontal diffusion ($D_{hd,x}$) is formulated as in
160 FL16 [cf. their Eqs. (21)–(23)] but with horizontal diffusion coefficient following the Smagorinsky
161 scheme (Smagorinsky 1963) and the horizontal mixing length l_h of 600 m (except otherwise
162 specified). The vertical exchange terms (D_{v,u_b} , D_{v,v_b} , D_{v,u_1} , D_{v,v_1} , D_{v,u_2} , D_{v,v_2} , and $D_{v,\theta_{e,b}}$) are
163 calculated following FL16 [cf. their Eqs. (24), (25), (28)–(30)].

164 ***b. The Ooyama-type model with a multilevel boundary layer (MBL)***

165 In this Ooyama-type model (hereafter, MBL), the slab boundary layer is replaced by a
 166 multilevel boundary layer, which is a simplified version of the boundary layer model of Kepert and
 167 Wang (2001) and outlined in Li and Wang (2021a) and also used in Fei et al. (2021). Exchanges of
 168 mass, momentum and heat between the boundary layer and the two layers above occur at the
 169 prescribed boundary layer top h_b , which is set to be 1000 m as in the slab boundary layer. Our
 170 tests show that the major results are not strongly dependent on the height of the prescribed boundary
 171 layer top in a reasonable range (see discussions in section 4a). The governing equations of the
 172 multilevel boundary layer are given below

$$173 \quad \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} + w \frac{\partial u}{\partial z} - \left(f + \frac{v}{r} \right) v = - \frac{\partial P_1}{\partial r} + D_{v,u_b} + D_{hd,u} + D_{vd,u}, \quad (14)$$

$$174 \quad \frac{\partial v}{\partial t} + u \zeta + w \frac{\partial v}{\partial z} = D_{v,v_b} + D_{hd,v} + D_{vd,v}, \quad (15)$$

$$175 \quad \frac{\partial w}{\partial z} + \frac{1}{r} \frac{\partial r u}{\partial r} = 0 \quad (16)$$

176 where u , v , and w are the radial and tangential winds, and vertical velocity; $D_{vd,X}$ is vertical
 177 diffusion (including surface friction) of X (u , or v) defined as $-\partial F_{vd,X}/\partial z$, in which $F_{vd,X}$
 178 represents vertical turbulent flux; $F_{vd,X}$ above the surface has the form $F_{vd,X}^{z>0} = -K_v \frac{\partial X}{\partial z}$, where
 179 the vertical diffusivity has the form $K_v = l_v^2 \left[\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right]^{1/2}$ with the vertical mixing length l_v
 180 being parameterized as $l_v^{-1} = l_\infty^{-1} + (\kappa z)^{-1}$ (Blackadar 1962), with the asymptotic mixing
 181 length l_∞ being 90 m (except otherwise specified) and the *von Karmen* constant κ being 0.4; $F_{vd,X}$
 182 at the sea surface is parameterized by the bulk aerodynamic formula and has the form $F_{vd,X}^{z=0} =$
 183 $-C_D S_s X_s$ for momentum flux and $F_{vd,\theta_{e,b}}^{z=0} = -C_E S_s (\theta_{e,b} - \theta_{e,s}^*)$ for enthalpy flux, in which the
 184 variable with the subscript ‘s’ means that it is evaluated at 10-m height. Note that u_b , v_b , w_b in

185 the calculations of mass flux ($Q_{i,j}$) and vertical exchange ($D_{v,X}$) in MBL are defined at the
186 prescribed boundary layer top h_b mentioned above rather than the depth-average in the boundary
187 layer. Note also that the equivalent potential temperature is assumed to be well-mixed in the
188 boundary layer in MBL and thus the same budget equation Eq. (5) as in SBL is used.

189 ***c. Numerical solution and experimental design***

190 The governing equations are solved numerically. Both SBL and MBL have a uniform radial
191 grid spacing of 1 km, extending from the TC center outward to 2400 km, where an open lateral
192 boundary condition is assumed. The multilevel boundary layer consists of 20 levels in the vertical
193 from the surface to a height of 1774 m, which is higher than the prescribed boundary layer top (h_b)
194 to ensure that a complete boundary layer structure could be fully captured. We will show in section
195 4a that reasonable changes in the multilevel model top make negligible difference to the simulated
196 TC evolution. The model time integration is accomplished with the alternative use of forward and
197 forward-backward schemes. Most of the model parameters are identical to those used in FL16
198 except that more realistic surface exchange coefficients and mixing lengths (l_h and l_∞) are used
199 in our model as listed in Table 1.

200 The initial cyclonic vortex has the radial profile of tangential wind which is slightly modified
201 from that used in Ooyama (1969) and FL16 and it is given below:

$$202 v_0(r) = \begin{cases} v_{m0} \frac{2(r/r_m)}{1+(r/r_m)^2}, & r \leq r_m \\ v_{m0} \frac{2(r/r_m)}{1+(r/r_m)^2} e^{-\left(\frac{r-r_m}{r_o}\right)^2}, & r > r_m \end{cases} \quad (17)$$

203 where v_{m0} and r_m are the maximum tangential wind and the radius of maximum wind. An
204 exponential decay term with r_o of 1000 km is imposed to the original tangential wind outside r_m

205 so that the tangential wind nearly vanishes at a limited outer radius. A weak tropical depression
206 with $v_{m0} = 10 \text{ m s}^{-1}$ and $r_m = 80 \text{ km}$ is assumed in the boundary layer and in the lower layer free
207 atmosphere while there is no flow in the upper layer free atmosphere in all experiments described
208 below. The initial mass field is in gradient wind balance with the given tangential wind.

209 Three basic experiments were designed to examine and understand the different behaviors of
210 the simulated TC intensification in the Ooyama-type three-layer model with different treatments of
211 the boundary layer. In experiments SBL and MBL, the slab boundary layer and the multilevel
212 boundary layer were used, respectively, with other model settings being default as described above
213 in sections 2a and 2b. In the sensitivity experiment FMBL, a wind factor (*fac*) with value of 0.8
214 was applied to 10-m radial and tangential winds in the forms of $u_{10}^M = u_{10} * fac$ and $v_{10}^M =$
215 v_{10}/fac in calculating surface wind stress and enthalpy flux during the integration of MBL model.
216 This means that in FMBL, the 10-m winds (u_{10}, v_{10}) in calculating the surface wind stress and
217 surface enthalpy flux were replaced by the modified winds (u_{10}^M, v_{10}^M) , which was used to mimic
218 the boundary layer averaged winds as in the slab boundary layer. The modified wind speed (S_{10}^M)
219 increases correspondingly with an approximation of $S_{10}^M = S_{10}/fac$ because the surface tangential
220 wind is much larger than the radial wind and largely determines the total surface wind speed.
221 Therefore, the modified winds (u_{10}^M, v_{10}^M) lead to increased surface wind stress and enthalpy flux in
222 FMBL. Note that 0.8 for *fac* was chosen based on the ratio between 10-m winds and the boundary-
223 layer mean winds in the inner core of TCs from previous boundary layer models (e.g., Kepert 2010a)
224 and our preliminary tests.

225 **3. TC intensification with different treatments of the boundary layer**

226 ***a. An overview of the simulated TC with MBL***

227 Before comparing the simulated TCs with different treatments of the boundary layer in the
228 Ooyama-type three-layer model, some basic characteristics of the simulated TC using the newly
229 developed Ooyama-type model with a multilevel boundary layer (i.e., MBL) are presented here
230 first. The evolutions of the storm intensity and various radii regarding wind structures simulated in
231 MBL are shown in Figs. 1a,b. As we can see from Fig. 1a, the maximum tangential wind at lower
232 free atmosphere (v_{1max}) increases from 10 to 60 m s⁻¹ in about 3.5 days (84 h) with the most rapid
233 intensification at 46 h of simulation. The simulated TC maintains its intensity after attaining the
234 steady state, which is different from that in Ooyama (1969) (cf. his Fig. 4) who assumed the
235 gradient wind balance even in the boundary layer but is consistent with that in FL16 (cf. their Fig.
236 4) who included the unbalanced flow as in this study. FL16 found that the assumption of gradient
237 wind balance in the boundary layer would cause the maximum eyewall ascent to occur outside of
238 the radius of maximum gradient wind (RMGW). The latent heat release in the eyewall ascent
239 produces the maximum positive tangential wind tendency outside the RMGW while frictional
240 convergence (represented by the mass fluxes between the middle layer and the boundary layer, see
241 section 2c in FL16 for more information) reduces the tangential wind inside the RMGW. During
242 the initial spinup period (defined as 6-hourly intensity change less than 2 m s⁻¹) when the vortex is
243 weak, the radius of maximum v_I (abbr. *rmvI*) increases slightly (Fig. 1b). Once entering the primary
244 intensification stage, the inner core starts contracting continuously and the radius of maximum w_b

245 (abbr. *rmwb*), which approximately presents the location of diabatic heating, is always located
246 inside *rmvl*. The radius of maximum wind maintains at around 30 km after achieving quasi-steady
247 intensity of 60 m s^{-1} , which is comparable to the observed relationship between TC intensity and
248 the radius of maximum wind (Zhang et al. 2020).

249 The 6-hourly changes of v_l and *rmvl* are shown in Fig. 1c. We can see that the *rmvl* contraction
250 generally keeps pace with but precedes the storm intensification, with the fastest contraction rate
251 occurring about 6 h earlier than the highest intensification rate. Similar results have been reported
252 in previous observational and numerical studies (Stern et al. 2015; Qin et al. 2016; Li et al. 2019;
253 Wu et al. 2021). With the intensification of the simulated TC, the outer radii of both the hurricane-
254 force and gale-force winds expand radially outward even after the quasi-steady stage is reached.
255 Compared with those in Ooyama (1969), the outward expansion is much slower in our simulation
256 mainly because the removal of the gradient wind balance assumption in our model induces stronger
257 inflow, and thus more absolute angular momentum is transported inward from the outer-core region
258 to accelerate the inner core. Another measure of TC structure is the inflow angle, defined as $\tan^{-1}(u_{10}/v_{10})$
259 at the location of v_{10max} in the numerical simulation following Bryan et al. (2012). The
260 inflow angle simulated in MBL maintains around 20° during the quasi-steady stage (not shown),
261 which is close to the averaged 23° obtained based on observations from a large database of
262 dropsonde data (Powell et al. 2009).

263 The radial distributions of some model variables within a radius of 240 km at three selected
264 times are presented in Fig. 2. The three selected times marked in Fig. 1a are 30, 46, 84 h, which
265 indicate the time when the storm just starts its primary intensification stage, intensifies the most

266 rapidly, and reaches the nearly steady-state intensity, respectively. The upper row in Fig. 2, shows
267 the radial profiles of v_1 , v_2 , and $-u_b$. Generally, the distributions are consistent with the numerical
268 simulations of the original Ooyama model (cf. their Figs. 4,5). However, v_1 simulated in MBL
269 shows an abrupt radial variation inside its maximum during the primary intensification stage (Figs.
270 2a,b), especially around the time of the most rapid intensification (Fig. 2b). Similar results can be
271 found in those simulated by the Ooyama-type model with the unbalanced slab boundary layer in
272 FL16 (cf. their Fig. 6). The abrupt radial variation in v_1 near the eyewall ascent is mainly related
273 with the narrow ascent updraft in the unbalanced boundary layer, which causes sharp gradient in
274 the positive tangential wind tendency around the eyewall ascent. Such an abrupt radial variation in
275 v_1 is alleviated by the increasing horizontal diffusion when the storm intensifies further towards its
276 quasi-steady state.

277 The vertical motion at the boundary layer top (w_b) and the entrainment parameter (η) are shown
278 in the lower row in Fig. 2. The storm intensification is accompanied with the enhancement of
279 eyewall updraft and the gradual decrease of convective instability near the eyewall updraft. The
280 w_b and η profiles show some dissimilarities to those shown in Ooyama (1969). There is a weak
281 subsidence just inside the eyewall updraft in the TC simulated in MBL, while no apparent
282 subsidence is shown in the original Ooyama model. By comparing the balanced and unbalanced
283 simulations in FL16, it turns out that the TCs simulated with the unbalanced boundary layer all
284 exhibit obvious subsidence inside the eyewall ascent, like what is shown in Figs. 2d-f. Note that
285 the subsidence inside the eyewall updraft is a common feature in observations and in simulations
286 with full-physics models (e.g., Willoughby 1998; Wang 2001, 2007; Stern et al. 2015). There is a

287 local minimum in the entrainment parameter at the location of the subsidence because of the cold
288 middle-level low entropy air carried downward to the boundary layer by the subsidence.
289 Nevertheless, this narrow weak downdraft with a low entrainment parameter does not have any
290 considerable influence on the intensification processes of the simulated storm.

291 The above analysis indicates that the Ooyama-type three-layer model with a multilevel
292 boundary layer can capture the main features of TC evolution qualitatively comparable to those
293 simulated in full-physics models or the Ooyama-type three-layer models with the unbalanced
294 boundary layer as discussed in FL16. However, the simulation shows great improvements to those
295 documented in Ooyama (1969), in which the balanced slab boundary layer was used. This suggests
296 that the model we constructed has included the basic processes that control TC intensification, such
297 as the control of eyewall diabatic heating by the boundary layer dynamics and the balanced
298 response of the secondary circulation to diabatic heating in the eyewall updraft and its role in
299 spinning up the primary circulation as recently schematically shown in Li and Wang (2021a). To
300 further demonstrate the superior of the use of a multilevel boundary layer to the use of a slab
301 boundary layer, we compared the simulations between SBL and MBL in the next subsection.

302 ***b. Comparison between simulations with SBL and MBL***

303 The performances of the Ooyama-type three-layer models with a slab boundary layer (SBL)
304 and a height-resolving boundary layer (MBL) in simulating TC development are compared in this
305 subsection. The simulation with a modified MBL (FMBL, see section 2c) is also conducted to help
306 understand the differences between the simulations in SBL and MBL. Figure 3 compares the

307 temporal evolutions of the simulated TC intensity and 6-hourly intensification rate (abbr. IR6) in
308 the three experiments (SBL, MBL, and FMBL). The onset of the primary intensification stage [IR6
309 $\geq 2 \text{ m s}^{-1} (6\text{h})^{-1}$] in SBL is the earliest among the three experiments, and accordingly, its most rapid
310 intensification also occurs first at 25 h of simulation with the maximum intensification rate up to
311 $15.8 \text{ m s}^{-1} (6\text{h})^{-1}$. After around 60 h of simulation, the storm in SBL reaches the quasi-steady
312 intensity of 59.3 m s^{-1} . The most rapid intensification in MBL occurs at 46 h of simulation with the
313 maximum intensification rate of $11.9 \text{ m s}^{-1} (6\text{h})^{-1}$, which is about 21 hours later and 25% smaller
314 than that in SBL, respectively. Besides, it takes about 84 h for the storm in MBL to attain its steady-
315 state evolution, about 40% longer than that in SBL. As a simple check on the realism of the model
316 simulation, the intensification rate is compared to that reported in some earlier observational studies.
317 According to the study of Xu et al. (2016) and Xu and Wang (2018a), the observed maximum
318 intensification rate over the North Atlantic and the western North Pacific are roughly 11 and 10 $\text{m s}^{-1} (6\text{h})^{-1}$, respectively, for sea surface temperature of 29°C . The observed maximum intensification
319 rate reflects the upper limit of the intensification rate of a real TC under favorable environmental
320 conditions. The maximum intensification rate of $11.9 \text{ m s}^{-1} (6\text{h})^{-1}$ simulated in MBL is comparable
321 with that in observations while that of $15.8 \text{ m s}^{-1} (6\text{h})^{-1}$ in SBL is too large. With the wind factor
322 introduced to the near-surface winds in calculating surface wind stress and enthalpy flux in FMBL,
323 the onset of the primary intensification stage becomes much earlier with the initial spinup period
324 shortened by 37%, and the maximum intensification rate is 42% higher than that in MBL, but both
325 are comparable to those simulated in SBL. This suggests that the large intensification rate of the
326 storm simulated in experiment SBL results primarily from the overestimated surface wind stress
327

328 and enthalpy flux due to the use of the boundary-layer mean winds rather than the near-surface
329 winds as used in MBL.

330 The structural evolutions of the three storms simulated in MBL, SBL, and FMBL are compared
331 in Fig. 4. Note that during the initial spinup stage, the radius of maximum tangential wind in the
332 lower layer (rmv_l) and the radial location of eyewall updraft at the boundary layer top (rmw_b) show
333 some irregular changes, especially in MBL, because the boundary layer is not well developed in
334 the early model integration. With the intensification of the storm and the contraction of rmv_l ,
335 eyewall updraft keeps strengthening and rmw_b contracts continuously. In all experiments, the
336 contraction of both rmv_l and rmw_b stops when the storms reach their quasi-steady stages. The
337 eyewall updraft strengthens much faster and is also much stronger in SBL than in MBL during the
338 primary intensification stage, which corresponds to the much more rapid intensification in SBL. In
339 addition, the inflow angle of the simulated TC in SBL is around 10° during the steady-state (not
340 shown), which is much smaller than that in MBL (20°) and observation (23°). This is because the
341 inflow angle in a slab boundary layer is determined by the boundary-layer averaged tangential and
342 radial winds, namely weaker inflow and stronger tangential wind than those near the surface in
343 MBL. With the surface wind stress and enthalpy flux enhanced in FMBL relative to those in MBL,
344 the eyewall updraft core becomes stronger and is located more inside rmv_l than that in MBL. This
345 can be clearly seen from the horizontal reference lines in Figs. 4a,c, which mark the model times
346 when the storm intensities in terms of the maximum v_l are at 15, 20, and 30 m s^{-1} , respectively. The
347 larger diabatic heating rate more inside rmv_l implies higher heating efficiency and thus higher
348 intensification rate in FMBL than in MBL as inferred from the balanced vortex dynamics (Schubert

349 and Hack 1982; Pendergrass and Willoughby 2009). Similar mechanism applies to the shortened
350 initial spinup period in FMBL compared to that in MBL.

351 Although the eyewall updraft is about 50% weaker in FMBL than in SBL, the primary
352 intensification of the simulated storm in FMBL starts only several hours later but with the
353 maximum intensification rate slightly higher (Fig. 3). This can be explained by the difference in
354 the locations of the eyewall heating relative to $rmvI$. As we can see from Fig. 4, the updraft core
355 simulated in FMBL is located more inside $rmvI$ than that in SBL during the primary intensification
356 stage, implying the higher heating efficiency in FMBL than in SBL. The radial location of the
357 eyewall updraft is determined by the frictional convergence of the boundary-layer inflow. The
358 outwardly located eyewall updraft in SBL relative to that in FMBL results from the weaker
359 overshooting of the boundary-layer inflow, which is presumably due to the inaccurate calculation
360 of vertically averaged nonlinear advection terms in the slab boundary layer in SBL. Figure 5
361 compares the true depth-averaged advection term $-\overline{u \partial u / \partial r}$ and the slab-model equivalent
362 advection term $-\overline{u} \partial \overline{u} / \partial r$ in the boundary layer of MBL. It is clear that the slab-model treatment
363 of the nonlinear advection terms substantially underestimates the magnitude of the negative radial
364 advection of radial wind near the radius of maximum upward motion and shifts the true location of
365 the minimum radial advection of radial wind outward. Namely, the overshooting of the frictional
366 inflow in a slab boundary layer is less inwardly penetrated relative to the RMGW than that in a
367 height-resolving boundary layer. Consistent results were also documented by Kepert (2010b) based
368 on a diagnostic height-resolving boundary layer model. Kepert (2010b) indicated that the errors in
369 calculating the nonlinear advection term in the slab boundary layer are not negligible but are not

370 very large either with an acceleration error of 10^{-4} m s $^{-2}$. He also mentioned that errors cannot be
371 fully captured based on the budget analysis in a diagnostic model because the slab model is
372 nonlinear and the error may accumulate. The results in our study partly confirm his speculation.
373 Although the acceleration errors of 10^{-3} - 10^{-4} m s $^{-2}$ during intensification in this study are not too
374 big in magnitude, they have a persistent and cumulative effect on boundary-layer inflow during TC
375 intensification, which then influences eyewall updraft and intensification rate to some extent.
376 Above-mentioned analysis indicates that the simplification in calculating the nonlinear advection
377 terms in a slab boundary layer can cause non-negligible simulation errors.

378 Interestingly, although the intensification rate differs greatly among SBL, MBL, and FMBL,
379 the quasi-steady state intensities of the three simulated storms are very close (Fig. 3a). To
380 understand this feature, we conducted two additional sensitivity experiments similar to FMBL to
381 isolate the roles of surface wind stress and surface enthalpy flux in affecting the behavior of the
382 simulated storm. In one experiment (FMBL_heat), the modified winds are only used in calculating
383 surface enthalpy flux, while in the other experiment (FMBL_fric), the modified winds are only
384 used in calculating surface wind stress.

385 Figure 6 compares the time series of storm intensities and 6-hourly intensification rates
386 simulated in FMBL, FMBL_heat, FMBL_fric, and MBL. The storm simulated in FMBL, in which
387 the modified winds are used in calculating both surface wind stress and surface enthalpy flux, has
388 the shortest initial spinup period, intensifies the most rapidly among the four experiments, and
389 attains the quasi-steady intensity after about 60 h of simulation. With the modified winds only used
390 in calculating surface enthalpy flux in FMBL_heat, the primary intensification stage is substantially

391 delayed compared to that simulated in FMBL but occurs slightly earlier than that in MBL. The
392 storm intensifies less rapidly with the maximum intensification rate reduced by about 18%
393 compared to that simulated in FMBL but somewhat higher than that simulated in MBL. The storm
394 simulated in FMBL_heat reaches its quasi-steady state intensity of 63.0 m s^{-1} , which is about 5%
395 stronger than that simulated in MBL and FMBL. This suggests that surface enthalpy flux
396 contributes positively to both the intensification rate and the final maximum intensity of the
397 simulated storm. Compared to that in FMBL, the primary intensification in FMBL_fric is only
398 slightly delayed but with the maximum intensification rate reduced by about 13%, while the quasi-
399 steady intensity of the storm simulated by FMBL_fric is about 5% weaker than that simulated in
400 MBL and FMBL. This indicates that surface friction can largely shorten the initial spinup period
401 and contributes positively to the intensification rate but limits the final maximum intensity of the
402 simulated TC. These results are generally in agreement with those recently examined by Li and
403 Wang (2021a), who found that increasing surface drag coefficient in a reasonable range shortened
404 the initial spin-up time but reduced the final maximum intensity. In the early spinup period, the
405 large surface wind stress favors the development of boundary layer inflow, and thus the eyewall
406 updraft, leading to the earlier development of eyewall convection and the onset of the primary
407 intensification stage. With the intensification of the storm, the gradually increasing wind speed
408 results in rapidly enhancing surface frictional effect, which increases with the square of surface
409 wind speed, limiting the final maximum intensity of the simulated storm. Although the positive
410 effect from frictionally induced boundary layer convergence and the eyewall updraft also increases
411 as the storm intensifies, its effect is largely offset by the negative effect from the frictional loss of

412 kinetic energy. Eventually, the positive effect of surface enthalpy flux and the negative effect of
413 surface wind stress are almost balanced, leading to little difference in the final intensity among
414 FBML, SBL, and MBL as we can see from Fig. 3a.

415 The above results, however, differ from those in FL16, who found that the storm simulated in
416 the Ooyama-type model with a slab boundary layer was substantially stronger in the quasi-steady
417 stage than that simulated with a parameterized height-dependent boundary layer (cf. their Fig. 4),
418 as also mentioned in the introduction. The difference is probably caused by the intrinsic weaknesses
419 of the parameterized height-dependent boundary layer model in simulating the boundary layer
420 structure as shown in Kepert (2010b). He compared the boundary-layer wind structures simulated
421 in the parameterized height-dependent and the multilevel height-resolving boundary layer models.
422 With the same other model settings, the parameterized height-dependent boundary layer model
423 simulated upward motion about 30% weaker than the multilevel height-resolving boundary layer
424 model. The too weak eyewall updraft in the parameterized height-dependent boundary layer model
425 could be related to the fixed constant boundary layer depth and the simplified treatment of vertical
426 advection term. As a result, with similar surface wind stress, weaker upward motion and thus
427 convective heating in the eyewall in the simulation with the parameterized height-dependent
428 boundary layer may lead to a weaker maximum steady-state intensity. Therefore, the weaker final
429 maximum intensity of the storm simulated with the parameterized height-dependent boundary layer
430 than that simulated with the slab boundary layer in FL16 could be due to the intrinsic weakness of
431 the parameterized height-dependent boundary layer, which underestimates the final maximum
432 intensity of the simulated storm.

433 **4. Sensitivity experiments with MBL**

434 In this section, the good performance of the newly developed Ooyama-type model with a
435 multilevel boundary layer (MBL) is demonstrated with various sensitivity experiments, including
436 those previously studied with full-physics models in the literature. Three groups of experiments are
437 considered. In the first group, the sensitivity of the simulated storm to the model configuration,
438 including the selected model depth and boundary layer top, is conducted to demonstrate that our
439 main results and conclusions are little dependent on the model configuration. In the second group,
440 the sensitivity of the simulated storm to several key physical parameters, including the sea surface
441 temperature, latitude, and both horizontal and vertical mixing lengths, is examined to demonstrate
442 that the simple model can reproduce most of the features that are previously simulated with full-
443 physics models. In the third group, the sensitivity of the simulated storm to the initial vortex
444 structure, including the radius of maximum wind and the decaying rate of tangential wind outside
445 the radius of maximum wind, is examined to demonstrate that the simple model can duplicate the
446 dependence of the simulated TC behavior on the initial TC vortex structure previously simulated
447 with full-physics models in the literature.

448 ***a. Sensitivity to model configuration***

449 As in Kepert and Wang (2001), a Neumann boundary condition is used at the top of the
450 multilevel boundary layer described in section 2b, where the vertical gradient of horizontal winds
451 is assumed to be zero. Kepert (2017) demonstrated in his appendix that under the Neumann upper
452 boundary condition, the boundary layer wind structure is insensitive to the height of the model top

453 in a multilevel boundary layer model forced by the prescribed pressure gradient force. Here, the
454 sensitivity of the simulated TC intensification to the model top of the multilevel boundary layer is
455 evaluated in the Ooyama-type three-layer model. We conducted experiments in MBL with various
456 model tops at 1,239 m (16 model levels), 1,774 m (20 levels), and 2,383 m (24 levels), respectively,
457 among which 20 levels is the default setting used elsewhere in the text and the other two are used
458 as sensitivity experiments. In the first sensitivity experiment, 1239 m with 16 vertical levels is
459 marginally higher than h_b , which denotes the boundary layer top where the exchange with the free
460 atmosphere above occurs and is set to be 1000 m in this study (see section 2b). The second
461 sensitivity experiment has 24 vertical levels with the top at 2383 m to ensure that the simulated
462 interior is less affected by the upper boundary condition and a full gradient wind adjustment in the
463 upper part can be achieved. As shown in Fig. 7a, experiments with three different vertical levels
464 simulate almost the same intensification rate and final maximum intensity. This is mainly due to
465 the fact that the simulated boundary layer flow is almost identical (Fig. 8), as demonstrated in the
466 forced boundary layer model by Kepert (2017). Therefore, choosing different model levels for the
467 multilevel boundary layer has little influence on the behavior of the simulated TC in MBL.

468 Another model configuration in MBL is related to the definition of the boundary layer top (h_b),
469 which is set to be 1000 m by default, the same as that used in SBL. In the assumed slab boundary
470 layer, turbulence mixing is presumed to vanish at the boundary layer top. However, this assumption
471 cannot be fully satisfied in the multilevel boundary layer because the vertical diffusion is not
472 necessarily zero above h_b . In addition, choosing different boundary layer depths may affect the
473 updraft at the boundary layer top and also the equivalent potential temperature in the boundary

474 layer. Therefore, we further examined whether the chosen boundary layer depth has a significant
475 impact on the simulated TC. Three experiments with the boundary layer tops at 782 m (at the 12th
476 level), 1000 m (at the 14th level), and 1239 m (at the 16th level), respectively, were conducted.
477 Figure 7b shows that with a reduced boundary layer depth, the initial spinup period is slightly
478 shortened. This is mainly because the eyewall updraft below 1000 m is located slightly more
479 radially inward than that at and above 1000 m due to the outward tilt of the eyewall updraft in the
480 boundary layer (see horizontal reference lines in Fig. 8b). This results in relatively higher heating
481 efficiency, and thus the reduced initial spinup period but little effect on the final maximum intensity.
482 Nevertheless, in general, the overall behavior of the simulated storm in MBL is not very sensitive
483 to the chosen boundary layer top at around 1000 m.

484 ***b. Sensitivity to physical parameters***

485 The development of a TC is controlled by a series of physical processes, including the turbulent
486 flux at the sea surface, turbulent vertical mixing in the boundary layer, and subgrid scale horizontal
487 diffusion, and so on. It is necessary for a newly developed model (MBL) to be able to capture the
488 sensitivity of the simulated TC to these physical processes consistent with more physically based
489 full-physics models. In other words, the new model should have appropriate response to the varying
490 physical parameters. Therefore, we tested the sensitivity of the simulated TC to various physical
491 parameters, including horizontal mixing length (l_h), asymptotic vertical mixing length (l_∞), SST,
492 and the Coriolis parameter (latitude).

493 The horizontal and asymptotic vertical mixing lengths control the horizontal and vertical

494 turbulent diffusion, respectively. As shown in Figs. 9a,b, both the maximum intensification rate
495 and the final maximum intensity are highly sensitive to the horizontal mixing length. With the
496 reduced horizontal mixing length (and thus the reduced horizontal diffusion), the simulated storm
497 intensifies more rapidly and reaches a higher final maximum intensity (Fig. 9a), which is consistent
498 with the results in Bryan and Rotunno (2009) and Bryan (2012). Rotunno and Bryan (2012) found
499 that the horizontal diffusion is a major contributor to the angular momentum budget in the inner-
500 core boundary layer and it acts to reduce the angular momentum of the parcels there, thus diffusing
501 the radial distribution of angular momentum carried upward. Note that when l_h is set to 50 m, the
502 TC intensity exhibits some small-scale oscillations, which could be related to the severe frontal
503 discontinuity between the eye and eyewall regions due to the insufficient horizontal mixing across
504 the radius of maximum wind. Different from the horizontal mixing length, the asymptotic vertical
505 mixing length has a relatively weaker influence on the simulated storm. Generally, reducing the
506 asymptotic vertical mixing length results in the reduced intensification rate and final maximum
507 intensity but the impact is rather marginal. Rotunno and Bryan (2012) also found that vertical
508 diffusion hardly influences the maximum tangential wind but it imposes significant effects on the
509 boundary layer depth and the amount of supergradient wind (maximum wind in excess of the
510 gradient wind).

511 The SST is well recognized as an important factor controlling TC development because it
512 largely determines the energy supply to TCs through surface enthalpy flux from the underlying
513 ocean. With a higher SST, the simulated TC in MBL intensifies more rapidly and attains a higher
514 final maximum intensity (Fig. 9c). This is in agreement with observations and high-resolution

515 numerical simulations by full-physics models (e.g., Xu and Wang 2018a; Črnivec et al. 2016; Li et
516 al. 2020). Note that since the stratification in the free atmosphere above the boundary layer is the
517 same in all SST experiments, the actual comparison is not straightforward.

518 The Coriolis parameter is another factor that may affect TC intensification rate and the final
519 maximum intensity. Figure 9d shows results from simulations with the Coriolis parameters at
520 different latitudes. We can see that at the lower latitude with a smaller Coriolis parameter or weaker
521 ambient rotation, the simulated storm has higher intensification rate and stronger final maximum
522 intensity. Several previous studies with numerical simulations also reported similar results
523 (DeMaria and Pickle 1988; Smith et al. 2011). Smith et al. (2015) explained such a sensitivity to
524 the dependence of the dynamics of the frictional boundary layer to the Coriolis parameter. Namely,
525 with a reduced Coriolis parameter, the boundary layer inflow and thus the eyewall updraft would
526 be stronger, leading to stronger diabatic heating and thus more rapid intensification and higher final
527 maximum intensity of the simulated storm.

528 *c. Sensitivity to initial vortex structure*

529 In addition to physical parameters, the structure of the TC vortex itself also largely influences
530 its intensification and maximum intensity (Carrasco et al. 2014; Xu and Wang 2015; 2018a,b; Tao
531 et al. 2020; Li and Wang 2021b). For example, the intensification rate of the observed TCs is found
532 to be negatively correlated with the radius of maximum wind and the outer-core wind skirt
533 (Carrasco et al. 2014; Xu and Wang 2015; 2018a). This phenomenon was upheld later by numerical
534 experiments with cloud-resolving models (Xu and Wang 2018b; Tao et al. 2020; Li and Wang

535 2021b). Previous studies also reported that the final maximum intensity of a numerically simulated
536 TC is positively correlated with the initial inner-core size of a TC (Xu and Wang 2018b; Tao et al.
537 2020). To see whether the newly developed simple model can reproduce the observed and
538 numerically simulated relationship between the initial TC structure and the subsequent TC
539 intensification and the final maximum intensity, we conducted some sensitivity experiments by
540 varying the radius of maximum wind (r_m) and the decay parameter (r_o) in the initial wind profile
541 given in Eq. (17). The radial distributions of the initial tangential winds used in various experiments
542 are plotted in the thumbnail figures of Figs. 9e, f, from which we can see that vortex with smaller
543 r_m and r_o has a smaller inner-core size and a narrower outer-core wind skirt, respectively.

544 Consistent with previous studies, the initial spinup period is shorter and the intensification rate
545 during the subsequent primary intensification stage is larger for the vortex with initially smaller r_m
546 and r_o . This has been explained based on the balanced vortex dynamics in Xu and Wang (2018b)
547 and by the dependence of the unbalanced boundary layer dynamical response to the vortex structure
548 in Li and Wang (2021b). According to the balanced vortex dynamics, the vortex initially with a
549 larger r_m (larger r_o) has lower inertial stability inside r_m (higher inertial stability outside r_m). The
550 larger r_m implies smaller eyewall heating efficiency in spinning up the tangential wind in the inner
551 core and the larger r_o implies larger resistance to the inflow into the inner core. Li and Wang (2021b)
552 demonstrated that both the strength and the radial location of diabatic heating in the eyewall depend
553 on the response of the unbalanced boundary layer dynamics, and such a response is greatly
554 controlled by the TC vortex structure and can help explain well the dependence of the simulated
555 TC behavior on the initial TC vortex structure.

556 Although TCs with an initially smaller r_m or initially narrower outer-core wind skirt intensify
557 more rapidly, they tend to achieve lower final maximum intensities (Figs. 9e,f), consistent with the
558 results in Xu and Wang (2018b). Similar results have also been reported in Tao et al. (2020), who
559 found a linear relationship between r_m and the absolute angular momentum passing through r_m in
560 the simulated steady-state TCs. As they mentioned, their finding suggests that the TC vortex with
561 initially large absolute angular momentum (i.e., larger r_m and/or higher intensity) would be more
562 intense in the steady-state in their model simulations. However, the precise mechanisms are still an
563 issue to be addressed in future studies.

564 Finally, it is our interest to compare the responses to various parameters in SBL with those in
565 MBL discussed above, corresponding sensitivity experiments (except for the asymptotic vertical
566 mixing length l_∞) using SBL are also conducted with the results compared in Fig. 9. In general,
567 the sensitivities in SBL are consistent with those in MBL. Namely, the Ooyama-type model coupled
568 with the slab boundary layer also responds appropriately to various parameters. However,
569 compared with that in MBL, the intensification in SBL is systematically too rapid. In addition, the
570 TC intensity simulated in SBL exhibits a more obvious instability than that in MBL when the
571 horizontal diffusion is too weak (cf. Fig. 9a where l_h is set to 50 m). This is supposed to be related
572 to the more abrupt radial variation of quantities around the eyewall updraft in SBL.

573 The above results strongly suggest that the newly developed Ooyama-type model with a
574 multilevel boundary layer can well capture the key dynamical/physical processes responsible for
575 TC intensification and steady-state maximum intensity. It produces more reasonable TC
576 intensification rate and causes less instability than the version with a slab boundary layer when the

577 horizontal diffusion is relatively weak. Although the new model exhibits some sensitivity to the
578 chosen boundary layer top, the sensitivity is marginal with the height in a reasonable range.
579 Therefore, this model can be used in future studies to help understand some basic dynamics in TC
580 intensification and maximum intensity, in particular for those related to the coupling between the
581 boundary layer and the free atmosphere above.

582 **5. Conclusions and discussion**

583 The three-layer model originally developed by Ooyama (1969) is the first numerical model
584 that successfully simulated many aspects of TCs. The Ooyama-type model consists of a slab
585 boundary layer and two shallow water layers above. Later studies showed that the use of a slab
586 boundary layer would produce unrealistic boundary layer wind structure (Kepert 2010a,b; Williams
587 2015) and too strong eyewall updraft at the top of TC boundary layer and thereby simulate
588 unrealistically rapid intensification compared to the use of a parameterized height-dependent
589 boundary layer (FL16). To fully consider the height-dependent boundary layer dynamics in the
590 Ooyama-type three-layer model, this study replaced the slab boundary layer with a fully nonlinear
591 multilevel boundary layer, performed simulations of TC evolution, and compared the behavior of
592 the simulated TC in the same model settings but with a slab boundary layer.

593 Results show that compared with the simulation with a slab boundary layer, the use of a fully
594 nonlinear multilevel boundary layer can greatly improve simulations of the boundary-layer wind
595 structure and the strength and radial location of eyewall updraft, and thus more realistic
596 intensification rate to a certain extent. The storm simulated with the multilevel boundary layer

597 experienced a much longer (40%) initial spinup period and lower intensification rate (25%) than
598 that simulated with the slab boundary layer. The improvement results partly from the better
599 treatment for surface wind stress and surface enthalpy flux calculations and partly from the more
600 accurate representation of nonlinear advection terms in the boundary layer. We showed that
601 increasing surface wind stress led to the shortened initial spinup period and thus the earlier onset
602 of the primary intensification stage but a reduced steady-state intensity while increasing surface
603 enthalpy flux led to a marginally earlier onset of the primary intensification stage, a relatively
604 higher intensification rate, and a larger steady-state intensity of the simulated storm. These are
605 consistent with previous results based on fully-physics cloud-resolving model simulations (e.g., Li
606 and Wang 2021a). Further analysis showed that the eyewall updraft in the simulation with the
607 multilevel boundary layer is much weaker but more inside the radius of maximum wind than that
608 in the simulation with the slab boundary layer. This indicates that the weaker diabatic heating with
609 the multilevel boundary layer due to the weaker eyewall updraft is partly compensated by the higher
610 heating efficiency due to higher inertial stability as implied by balanced vortex dynamics. The less
611 inwardly displaced eyewall updraft relative to the radius of maximum wind in the slab boundary
612 layer than in the multilevel boundary layer is partly due to the inaccurate representation of nonlinear
613 advection terms in the slab boundary layer, an intrinsic weakness as revealed by Kepert (2010b).

614 To further demonstrate the simulation ability of the newly developed simple model, we also
615 performed a series of sensitivity experiments. Results confirmed that our main results and
616 conclusions are little dependent on the model configuration, including the height of the vertical
617 extent of the multilevel boundary layer and the prescribed height of the boundary layer top. In

618 addition, the model can reproduce the TC evolution and sensitivity to various physical parameters
619 and the initial vortex structure comparable to full-physics models reported in the literature.

620 Finally, we should point out that although the model documented in this study can reproduce
621 many aspects of TCs comparable to those simulated in full-physics models, because of the heavy
622 simplification, most of the results are mainly qualitatively consistent, and close quantitative
623 comparisons may not be straightforward. Some intrinsic weaknesses also exist in such a three-layer
624 configuration, including the oversimplified convective processes (e.g., neglect of the mass
625 ventilation caused by convection) and the upright eyewall structure. Therefore, caution needs to be
626 given when the model simulations are used to explain more complicated physical processes.
627 Nevertheless, the Ooyama-type three-layer model with a multilevel boundary layer designed in this
628 study is highly efficient and captures the basic dynamics of TC intensification processes involving
629 the nonlinear interaction between the boundary layer and free atmosphere above. Therefore, this
630 simple model has the potential to be used in future studies to help understand some basic dynamics
631 in TC intensification and maximum intensity. Besides, the simplicity of the model allows the model
632 to be run easily as an educational tool for class teaching. In addition, only results from the
633 axisymmetric configuration are reported in this study. The behavior of the simulated TC in three-
634 dimensions will be examined in a future work.

635 **Acknowledgments:** This study has been supported in part by the National Natural Science
636 Foundation of China under Grant 41730960, and in part by the NSF Grant AGS-1834300. R. Fei
637 is funded by China Scholarship Council (File 201905330037).

638 **References**

639 Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. *Meteor. Atmos.*
640 *Phys.*, **52**, 233-240, <https://doi.org/10.1007/BF01030791>.

641 Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral
642 atmosphere. *J. Geophys. Res.*, **67**, 3095–3102, <https://doi.org/10.1029/JZ067i008p03095>.

643 Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric
644 numerical simulations. *Mon. Wea. Rev.*, **137**, 1770-1789,
645 <https://doi.org/10.1175/2008MWR2709.1>.

646 Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the
647 intensity and structure of numerically simulated hurricanes. *Mon. Wea. Rev.*, **140**, 1125-1143,
648 <https://doi.org/10.1175/MWR-D-11-00231.1>.

649 Carrasco, C., C. Landsea, and Y. Lin, 2014: The influence of tropical cyclone size on its
650 intensification. *Wea. Forecasting*, **29**, 582–590, <https://doi.org/10.1175/WAF-D-13-00092.1>.

651 Črnivec, N., R. K. Smith, and G. Kilroy, 2016: Dependence of tropical cyclone intensification rate
652 on sea-surface temperature. *Quart. J. Roy. Meteor. Soc.*, **142**, 1618–1627,
653 <https://doi.org/10.1002/qj.2752>.

654 DeMaria, M., and J. D. Pickle, 1988: A simplified system of equations for simulation of tropical
655 cyclones. *J. Atmos. Sci.*, **45**, 1542–1554, [https://doi.org/10.1175/1520-0469\(1988\)045<1542:ASSOEF>2.0.CO;2](https://doi.org/10.1175/1520-0469(1988)045<1542:ASSOEF>2.0.CO;2).

657 Emanuel, K. A., 1988: The maximum intensity of hurricanes. *J. Atmos. Sci.*, **45**, 1143–1155,
658 [https://doi.org/10.1175/1520-0469\(1988\)045<1143:TMIOH>2.0.CO;2](https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2).

659 Fei, R., Y. Wang, and Y. Li, 2021: Contributions of vertical advection to supergradient wind in
660 tropical cyclone boundary layer: A numerical study. *J. Atmos. Sci.*, **78**, 1057–1073,
661 <https://doi.org/10.1175/JAS-D-20-0075.1>.

662 Frisia, T., D. Schönemann, and J. Vigh, 2013: The impact of gradient wind imbalance on potential
663 intensity of tropical cyclones in an unbalanced slab boundary layer model. *J. Atmos. Sci.*, **70**,
664 1874–1890, <https://doi.org/10.1175/JAS-D-12-0160.1>.

665 Frisia, T., and M. Lee, 2016: The impact of gradient wind imbalance on tropical cyclone
666 intensification within Ooyama's three-layer model. *J. Atmos. Sci.*, **73**, 3659–3679,
667 <https://doi.org/10.1175/JAS-D-15-0336.1>.

668 Kepert, J., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone
669 core. Part II: Nonlinear enhancement. *J. Atmos. Sci.*, **58**, 2485–2501,
670 [https://doi.org/10.1175/1520-0469\(2001\)058<2485:TDOBLJ>2.0.CO;2](https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2).

671 Kepert, J. D., 2010a: Slab- and height-resolving models of the tropical cyclone boundary layer.
672 Part I: Comparing the simulations. *Quart. J. Roy. Meteor. Soc.*, **136**, 1686–1699,
673 <https://doi.org/10.1002/qj.667>.

674 Kepert, J. D., 2010b: Slab- and height-resolving models of the tropical cyclone boundary layer.
675 Part II: Why the simulations differ. *Quart. J. Roy. Meteor. Soc.*, **136**, 1700–1711,
676 <https://doi.org/10.1002/qj.685>.

677 Kepert, J. D., 2017: Time and space scales in the tropical cyclone boundary layer, and the location
678 of the eyewall updraft. *J. Atmos. Sci.*, **74**, 3305–3323, <https://doi.org/10.1175/JAS-D-17-0077.1>.

679 Lee, M., and T. Frisia, 2018: On the role of convective available potential energy (CAPE) in
680 tropical cyclone intensification. *Tellus*, **70A**, 1-18,
681 <https://doi.org/10.1080/16000870.2018.1433433>.

682 Li, Y., Y. Wang, and Y. Lin, 2019: Revisiting the dynamics of eyewall contraction of tropical
683 cyclones. *J. Atmos. Sci.*, **76**, 3229–3245, <https://doi.org/10.1175/JAS-D-19-0076.1>.

684 Li, Y.-L. Y. Wang, Y.-L. Lin, and R. Fei, 2020: Dependence of superintensity of tropical cyclones
685 on SST in axisymmetric numerical simulations. *Mon. Wea. Rev.*, **148**(12), 4767–4781,
686 <https://doi.org/10.1175/MWR-D-20-0141.1>.

687 Li, T.-H., and Y. Wang, 2021a: The role of boundary layer dynamics in tropical cyclone
688 intensification. Part I: Sensitivity to surface drag coefficient. *J. Meteor. Soc. Japan*, **99**, 537–
689 554, <https://doi.org/10.2151/jmsj.2021-027>.

690 Li, T.-H., and Y. Wang, 2021b: The role of boundary layer dynamics in tropical cyclone
691 intensification. Part II: Sensitivity to initial vortex structure. *J. Meteor. Soc. Japan*, **99**, 555–

692 573, <https://doi.org/10.2151/jmsj.2021-028>.

693 Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. *J. Atmos. Sci.*,
694 **26**, 3–40, [https://doi.org/10.1175/1520-0469\(1969\)026<0003:NSOTLC>2.0.CO;2](https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2).

695 Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical
696 cyclones. Part I: Quasi-steady forcing. *Mon. Wea. Rev.*, **137**, 805–821,
697 <https://doi.org/10.1175/2008MWR2657.1>.

698 Powell, M. D., G. Soukup, S. Cocke, S. Gulati, N. Morisseau-Leroy, S. Hamid, N. Dorst, and L.
699 Axe, 2005: State of Florida hurricane loss prediction model: Atmospheric science component.
700 *J. Wind Eng. Ind. Aerodyn.*, **93**, 651–674, <https://doi.org/10.1016/j.jweia.2005.05.008>.

701 Powell, M. D., E. W. Uhlhorn, and J. D. Kepert, 2009: Estimating maximum surface winds from
702 hurricane reconnaissance measurements. *Wea. Forecasting*, **24**, 868–883,
703 <https://doi.org/10.1175/2008WAF2007087.1>.

704 Qin, N., D.-L. Zhang, and Y. Li, 2016: A statistical analysis of steady eyewall sizes associated with
705 rapidly intensifying hurricanes. *Wea. Forecasting*, **31**, 737–742, <https://doi.org/10.1175/WAF-D-16-0016.1>.

706 Rotunno R., and G. H. Bryan, 2012: Effects of parameterized diffusion on simulated hurricanes. *J.
707 Atmos. Sci.*, **69**, 2284–2299, <https://doi.org/10.1175/JAS-D-11-0204.1>.

708 Schechter, D. A., and T. J. Dunkerton, 2009: Hurricane formation in diabatic Ekman turbulence.
709 *Quart. J. Roy. Meteor. Soc.*, **135**, 823–838, <https://doi.org/10.1002/qj.405>.

710 Schechter, D. A., 2011: Evaluation of a reduced model for investigating hurricane formation from
711 turbulence. *Quart. J. Roy. Meteor. Soc.*, **137**, 155–178, <https://doi.org/10.1002/qj.729>.

712 Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. *J. Atmos.
713 Sci.*, **39**, 1687–1697, [https://doi.org/10.1175/1520-0469\(1982\)039<1687:ISATCD>2.0.CO;2](https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2).

714 Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. *J. Atmos.
715 Sci.*, **40**, 1984–1998, [https://doi.org/10.1175/1520-0469\(1983\)040<1984:TABL FU>2.0.CO;2](https://doi.org/10.1175/1520-0469(1983)040<1984:TABL FU>2.0.CO;2).

716 Smith, R. K., C. W. Schmidt, and M. T. Montgomery, 2011: An investigation of rotational
717 influences on tropical-cyclone size and intensity. *Quart. J. Roy. Meteor. Soc.*, **137**, 1841–1855,

719 <https://doi.org/10.1002/qj.862>.

720 Smith, R. K., G. Kilroy, and M. K. Montgomery, 2015: Why do model tropical cyclones intensify
721 more rapidly at low latitudes. *J. Atmos. Sci.*, **72**, 1783–1804, <https://doi.org/10.1175/JAS-D-14-0044.1>.

723 Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between
724 eyewall contraction and intensification. *J. Atmos. Sci.*, **72**, 1283–1306, <https://doi.org/10.1175/JAS-D-14-0261.1>.

726 Tao, D., M. Bell, R. Rotunno, and P. J. Van Leeuwen, 2020: Why do the maximum intensities in
727 modeled tropical cyclones vary under the same environmental conditions? *Geophys. Res. Lett.*,
728 **47**, e2019GL085980, <https://doi.org/10.1029/2019gl085980>.

729 Vickery, P. J., P. F. Skerlj, A. C. Steckley, and L. A. Twisdale, 2000: Hurricane wind field model
730 for use in hurricane simulations. *J. Struct. Eng.*, **126**, 1203–1221,
731 [https://doi.org/10.1061/\(ASCE\)0733-9445\(2000\)126:10\(1203\)](https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1203)).

732 Vickery, P. J., D. Wadhera, M. D. Powell, and Y. Chen, 2009a: A hurricane boundary layer and
733 wind field model for use in engineering applications. *J. Appl. Meteor. Climatol.*, **48**, 381–405,
734 <https://doi.org/10.1175/2008JAMC1841.1>.

735 Vickery, P. J., F. J. Masters, M. D. Powell, and D. Wadhera, 2009b: Hurricane hazard modeling:
736 The past, present, and future. *J. Wind Eng. Ind. Aerodyn.*, **97**, 392–405,
737 <https://doi.org/10.1016/j.jweia.2009.05.005>.

738 Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh
739 primitive equation model: TCM3. Part I: Model description and control experiment. *Mon. Wea.
740 Rev.*, **129**, 1370–1394, [https://doi.org/10.1175/1520-0493\(2001\)129<1370:AESOTC>2.0.CO;2](https://doi.org/10.1175/1520-0493(2001)129<1370:AESOTC>2.0.CO;2).

741 Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical
742 cyclone model - TCM4: Model description and development of asymmetries without explicit
743 asymmetric forcing. *Meteor. Atmos. Phys.*, **97**, 93–116. <https://doi.org/10.1007/s00703-006-0246-z>.

745 Williams, G. J., 2015: The effects of vortex structure and vortex translation on the tropical cyclone
746 boundary layer wind field. *J. Adv. Model. Earth Syst.*, **7**, 188–214,
747 <https://doi.org/10.1002/2013MS000299>.

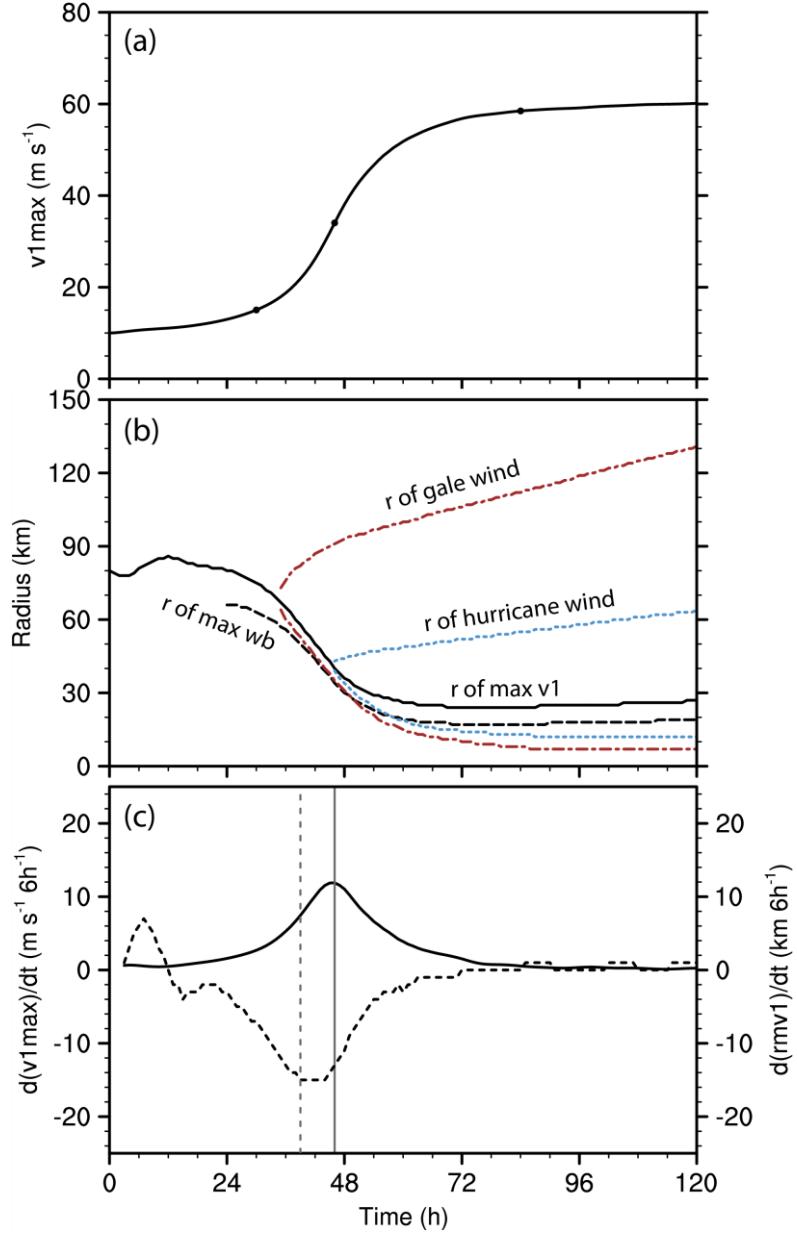
748 Willoughby, H. E, 1998: Tropical cyclone eye thermodynamics. *Mon. Wea. Rev.*, **126**, 3053–3067,
749 [https://doi.org/10.1175/1520-0493\(1998\)126,3053:TCET.2.0.CO;2](https://doi.org/10.1175/1520-0493(1998)126,3053:TCET.2.0.CO;2)

750 Wu, Q., and Z. Ruan, 2021: Rapid contraction of the radius of maximum tangential wind and rapid
751 intensification of a tropical cyclone. *J. Geophys. Res. Atmos.*, **126**, e2020JD033681,
752 <https://doi.org/10.1029/2020JD033681>.

753 Xu, J., and Y. Wang, 2015: A statistical analysis on the dependence of tropical cyclone
754 intensification rate on the storm intensity and size in the North Atlantic. *Wea. Forecasting*, **30**,
755 692–701, <https://doi.org/10.1175/WAF-D-14-00141.1>.

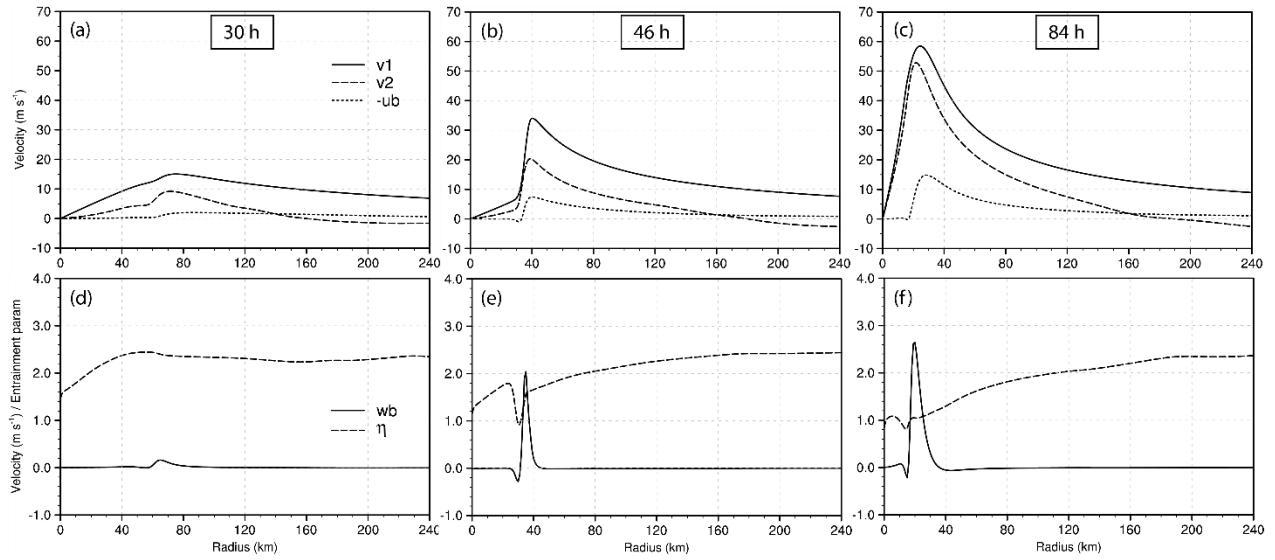
756 Xu, J., Y. Wang, and Z. M. Tan, 2016: The relationship between sea surface temperature and
757 maximum intensification rate of tropical cyclones in the North Atlantic. *J. Atmos. Sci.*, **73**, 4979–
758 4988, <https://doi.org/10.1175/JAS-D-16-0164.1>.

759 Xu, J., and Y. Wang, 2018a: Dependence of tropical cyclone intensification rate on sea surface
760 temperature, storm intensity and size in the western North Pacific. *Wea. Forecasting*, **33**(2),
761 523–537, <https://doi.org/10.1175/WAF-D-17-0095.1>


762 Xu, J., and Y. Wang, 2018b: Effect of the initial vortex structure on intensification of a numerically
763 simulated tropical cyclone. *J. Meteor. Soc. Japan.* **96**, 111–126,
764 <https://doi.org/10.2151/jmsj.2018-014>.

765 Zhang, G., W. Perrie, B. Zhang, J. Yang, and Y. He, 2020: Monitoring of tropical cyclone structures
766 in ten years of RADARSAT-2 SAR images. *Remote Sens. Environ.*, **236**,
767 <https://doi.org/10.1016/j.rse.2019.111449>.

768 Table 1. Values of model parameters.


Parameter	Value
ε	0.9
h_b	1000 m
H_1, H_2	5000 m
f	$5 \times 10^{-5} \text{ s}^{-1}$ (latitude: 20°N)
$\overline{\theta_{e,s}^*}$	372 K (sea surface temperature: 29°C)
$\theta_{e,1}$	332 K
$\overline{\theta_{e,2}^*}$	342 K
a	$0.001 \text{ K s}^2 \text{m}^{-2}$
b	$0.0002 \text{ K s}^2 \text{m}^{-2}$
l_h	600 m
l_v	90 m
C_E	1.29×10^{-3}

769

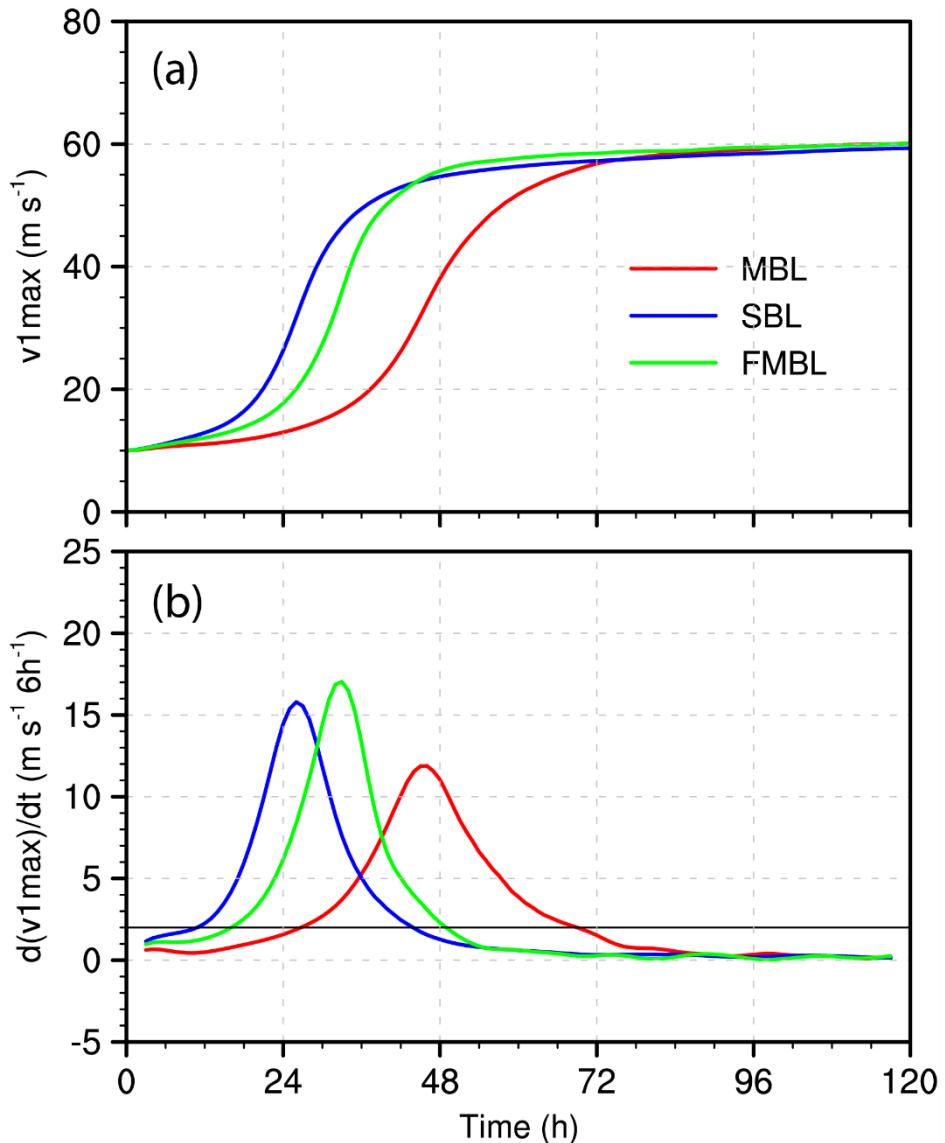
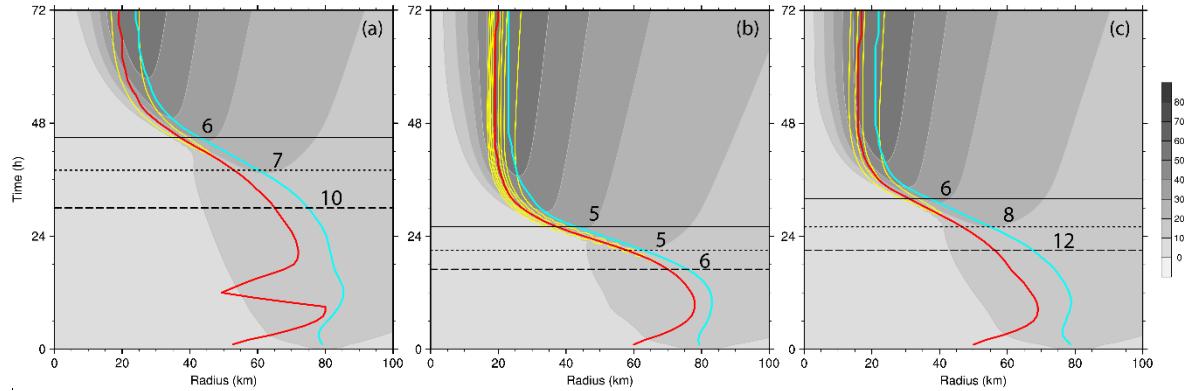
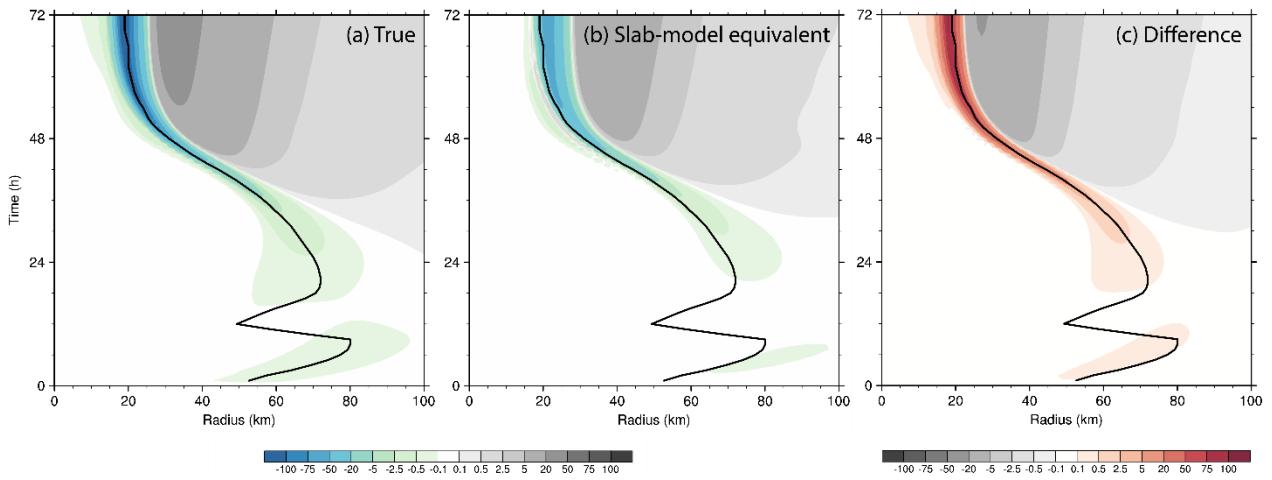

770
771
772
773
774
775
776
777

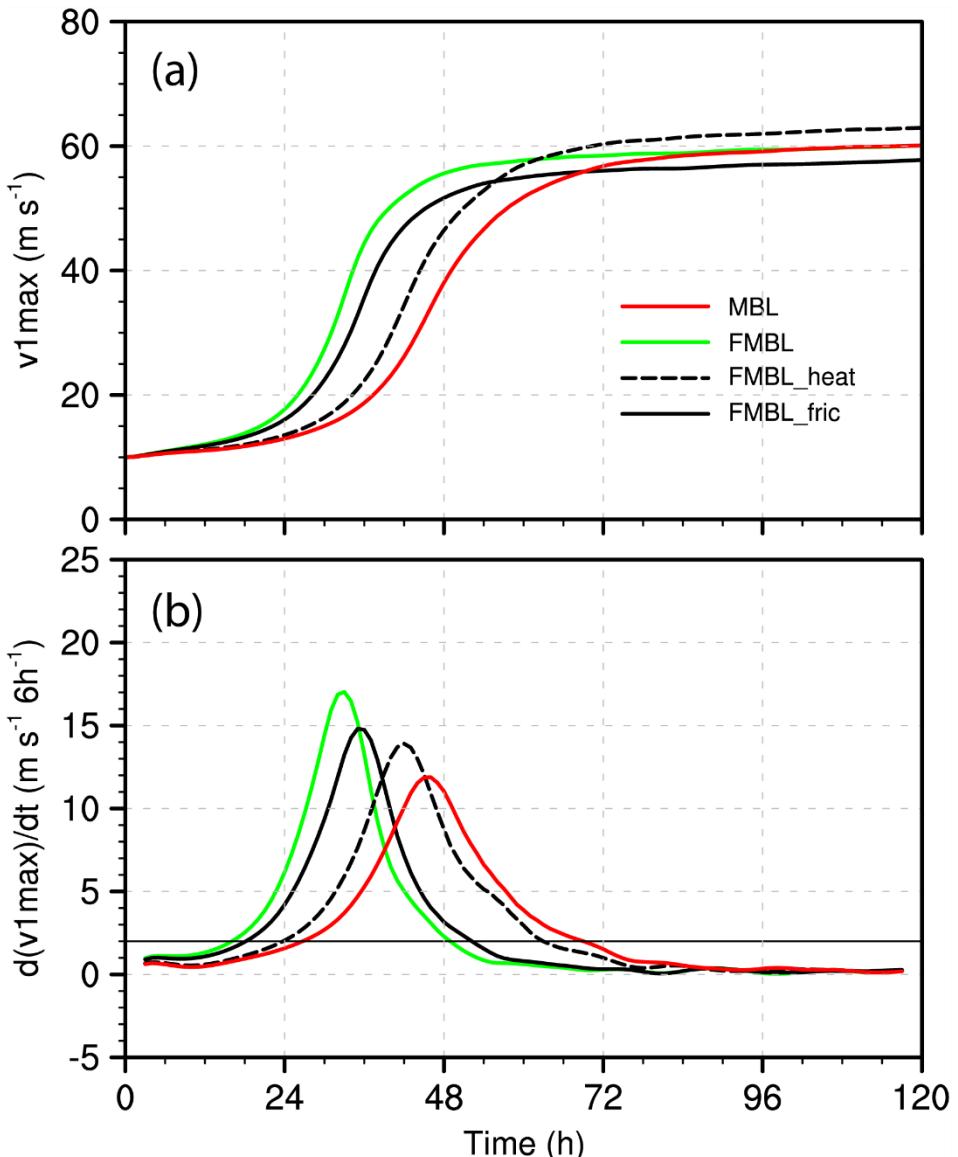
Fig. 1. Evolution of the simulated TC in MBL: (a) maximum v_1 ; (b) radii of maximum v_1 , maximum w_b , and outer and inner limits of hurricane- and gale-force winds; (c) 6-hourly change of maximum v_1 (solid, left coordinate) and radius of maximum v_1 (dashed, right coordinate). Dots on the curve in (a) indicate the times selected for the detailed illustration in Fig. 2. Solid and dashed vertical reference lines in (c) denote time of the most rapid intensification rate and the time of the fastest contraction of radius of maximum v_1 , respectively.


778

779 Fig. 2. Radial distributions of various variables within a radius of 240 km in the simulated TC in
 780 MBL at $t=30, 44$, and 84 h, including v_1 , v_2 , and u_b (upper panels) and w_b and η (lower
 781 panels).

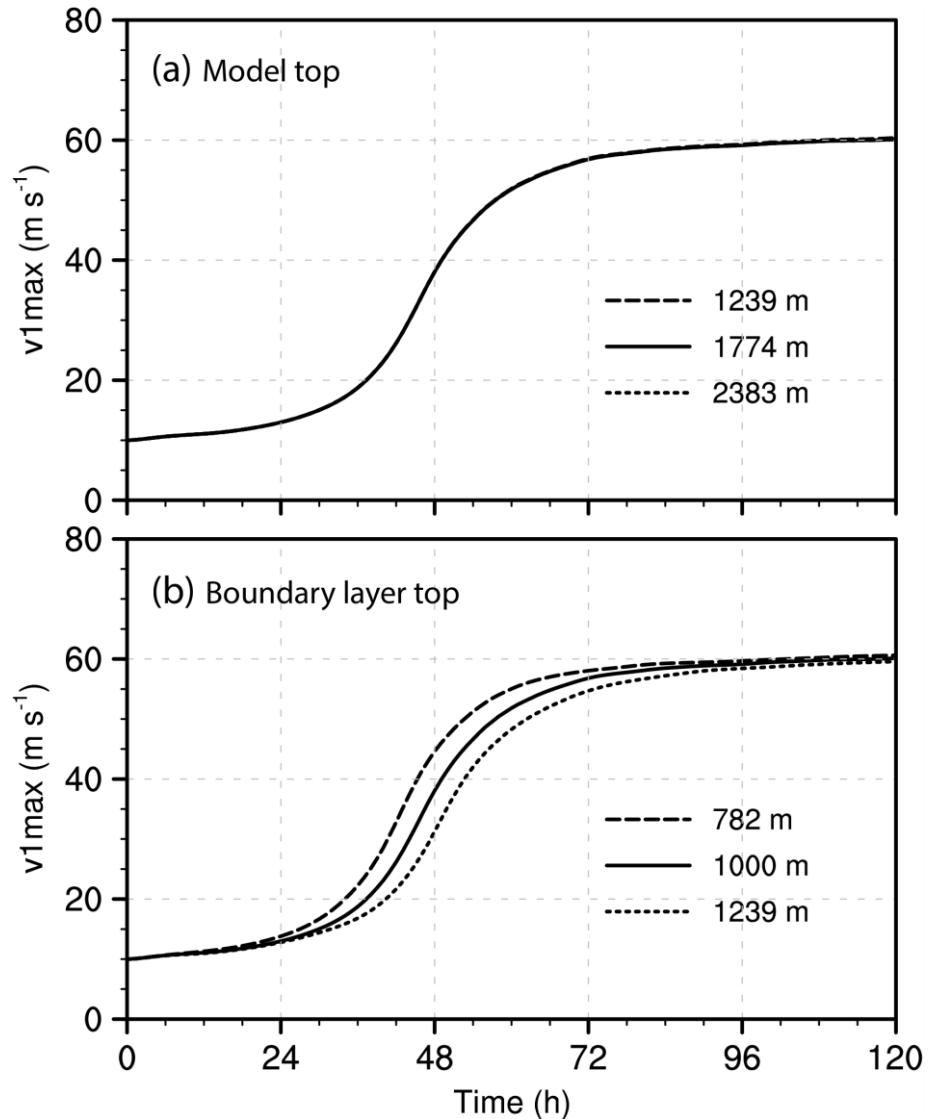

782

783 Fig. 3. Time series of (a) maximum v_1 and (b) 6-hourly intensification rate (IR6) in MBL (red),
 784 SBL (blue), and FMBL (green). The horizontal line in (b) denotes the intensification rate of 2
 785 $\text{m s}^{-1} (6h)^{-1}$, which is deemed as the onset of the primary intensification phase.

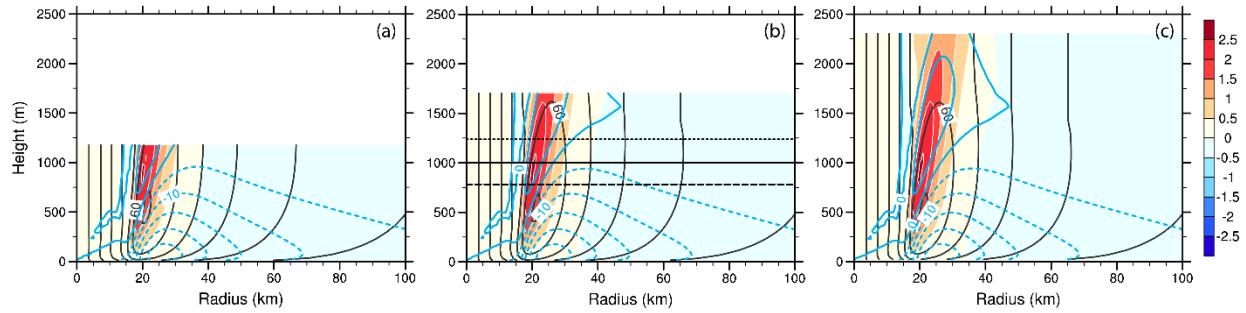

786

787 Fig. 4. Radius-time diagrams of v_1 (shaded at an interval of 10 m s^{-1}) and w_b (contoured at an
 788 interval of 2 m s^{-1} from 1 m s^{-1}) in (a) MBL, (b) SBL, and (c) FMBL. The thick red and blue
 789 curves mark the radii of maximum w_b and v_1 , respectively. Long dashed, short dashed, and
 790 solid horizontal lines in each panel refer to the respective times for the storm intensity at 15,
 791 20, and 30 m s^{-1} , respectively. The values (unit: km) denote the radial distances between the
 792 maximum w_b and v_1 .

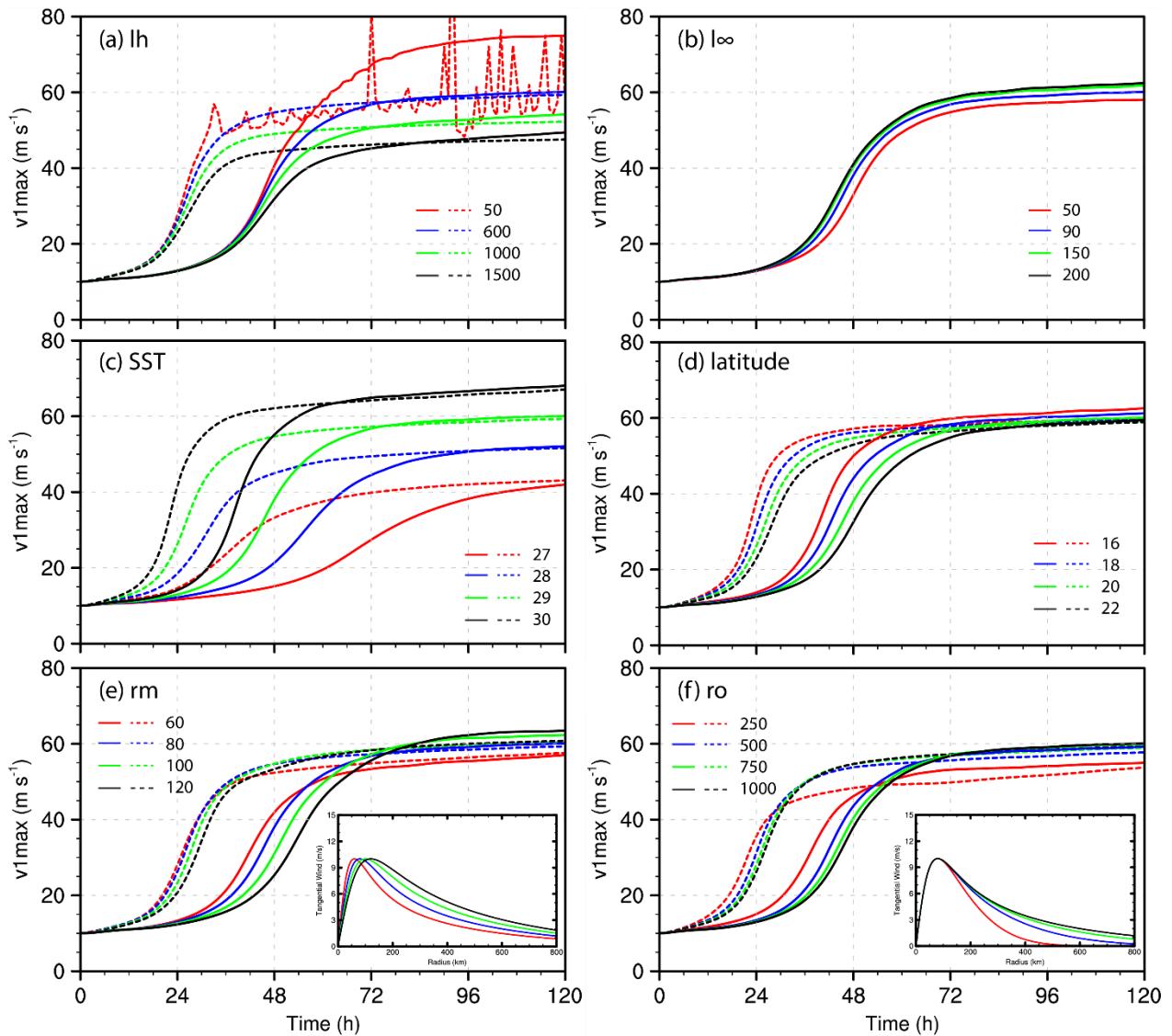
793


794 Fig. 5. Radius-time diagrams of (a) the true depth-averaged radial advection of u ($-\bar{u}\partial u/\partial r$, unit:
 795 $\text{m s}^{-1} \text{ h}^{-1}$) and (b) the slab-model equivalent radial advection of u ($-\bar{u}\partial \bar{u}/\partial r$) in MBL. The
 796 difference $-\bar{u}'\partial u'/\partial r$ is shown in (c). The thick line in each panel denotes the location of
 797 the maximum w_b in MBL. Note that to give a better illustration, the contours are not at a
 798 constant interval.

799


800 Fig. 6. Time series of (a) maximum v_1 and (b) 6-hourly intensification rate in MBL (red), FMBL

801 (green), FMBL_heat (black solid), and FMBL_fric (black dashed).



802
803
804
805
806
807

Fig. 7. (a) Time series of maximum v_1 of the storms simulated in MBL with the height of the boundary layer model at 1239 (long dashed), 1774 (solid), and 2383 m (short dashed), respectively. (b) Time series of maximum v_1 of the storms simulated in MBL with the boundary layer top (h_b) set at 782 (long dashed), 1000 (solid), and 1239 m (short dashed), respectively.

808
809 Fig. 8. Radius-height diagrams of the steady-state boundary layer winds simulated by MBL with
810 the model height at (a) 1239, (b) 1774, and (c) 2383 m, respectively, including tangential
811 (contoured in black at an interval of 10 m s^{-1}), radial (contoured in blue at an interval of 5 m
812 s^{-1}), and vertical winds (shaded at an interval of 0.5 m s^{-1}). The long-dashed (782 m), solid
813 (1000 m), and short-dashed (1239 m) horizontal lines in (b) mark the heights of the boundary
814 layer top in the three experiments shown in Fig. 7b.

815
816
817
818
819
820
821

Fig. 9. Sensitivities of the simulated TC intensity evolution to (a) the horizontal mixing length (l_h , unit: m), (b) the asymptotic vertical mixing length (l_∞ , unit: m), (c) sea surface temperature (SST, unit: $^{\circ}\text{C}$), (d) latitude (unit: degree) of the Coriolis parameter, and (e) radius of maximum wind (r_m , unit: km) and (f) decay parameter (r_o , unit: km) of the initial TC vortex in MBL (solid curves) and SBL (dashed curves). The initial wind profiles of the sensitivity experiments in (e) and (f) are shown as thumbnails.