
83

Grafs: Declarative Graph Analytics∗

FARZIN HOUSHMAND, University of California, Riverside, USA

MOHSEN LESANI, University of California, Riverside, USA

KEVAL VORA, Simon Fraser University, Canada

Graph analytics elicits insights from large graphs to inform critical decisions for business, safety and security.
Several large-scale graph processing frameworks feature e!cient runtime systems; however, they often provide
programming models that are low-level and subtly di"erent from each other. Therefore, end users can #nd
implementation and specially optimization of graph analytics error-prone and time-consuming. This paper
regards the abstract interface of the graph processing frameworks as the instruction set for graph analytics,
and presents Grafs, a high-level declarative speci#cation language for graph analytics and a synthesizer that
automatically generates e!cient code for #ve high-performance graph processing frameworks. It features
novel semantics-preserving fusion transformations that optimize the speci#cations and reduce them to three
primitives: reduction over paths, mapping over vertices and reduction over vertices. Reductions over paths are
commonly calculated based on push or pull models that iteratively apply kernel functions at the vertices. This
paper presents conditions, parametric in terms of the kernel functions, for the correctness and termination
of the iterative models, and uses these conditions as speci#cations to automatically synthesize the kernel
functions. Experimental results show that the generated code matches or outperforms handwritten code, and
that fusion accelerates execution.

CCS Concepts: • Software and its engineering→ Domain speci!c languages; Formal language de!ni-
tions; Source code generation; Correctness.

Additional Key Words and Phrases: Program Synthesis, Fusion

ACM Reference Format:
Farzin Houshmand, Mohsen Lesani, and Keval Vora. 2021. Grafs: Declarative Graph Analytics. Proc. ACM
Program. Lang. 5, ICFP, Article 83 (August 2021), 32 pages. https://doi.org/10.1145/3473588

1 INTRODUCTION

Large-scale graph analytics has recently gained popularity due to its growing applicability across
various important domains including social networks, market in$uencer analysis, bioinformatics,
criminology, and machine learning and data mining. Several large-scale graph processing sys-
tems [Gonzalez et al. 2012; Malewicz et al. 2010; Mariappan et al. 2021; Mariappan and Vora 2019;
Roy et al. 2013; Shun and Blelloch 2013; Vora 2019; Zhang et al. 2018; Zhu et al. 2016, 2015] have
been developed to enable e!cient graph analysis across shared memory and distributed platforms.
Their programming models often require graph analysis problems to be expressed in terms of low-
level kernel functions over vertices and edges. However, analyses over graphs are best expressed
using higher-level abstractions such as reduction over paths in the graph. For instance, shortest
path, reachability and connected component problems are fundamentally formulated in terms of

∗This work is supported by National Science Foundation grants 1942711, 1718997 and 1910878.

Authors’ addresses: Farzin Houshmand, University of California, Riverside, USA, fhous001@cs.ucr.edu; Mohsen Lesani,
University of California, Riverside, USA, lesani@cs.ucr.edu; Keval Vora, Simon Fraser University, Canada, keval@sfu.ca.

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/8-ART83
https://doi.org/10.1145/3473588

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3473588
https://doi.org/10.1145/3473588

83:2 Farzin Houshmand, Mohsen Lesani, and Keval Vora

paths. Further, elaborate graph analysis problems that involve multiple reductions over paths or
vertices are di!cult to correctly implement using the o"ered low-level programming models. More
importantly, manual optimizations such as merging multiple iterations can be time-consuming and
error-prone. In particular, showing correctness and termination properties requires reasoning about
the $ow of values between vertices across multiple iterations that emulate values for paths.

This project regards the interface of the graph processing frameworks as the instruction set for
graph analytics, and introduces Grafs, a graph analytics language and synthesizer. The Grafs
language is a high-level declarative speci!cation language that provides features for common graph
processing idioms such as reduction over paths. We show that the declarative language can easily
and concisely capture the common graph analysis problems. Given a speci#cation, the Grafs
synthesizer automatically synthesizes code for #ve graph processing frameworks: Ligra [Shun and
Blelloch 2013], GridGraph [Zhu et al. 2015], PowerGraph [Gonzalez et al. 2012], Gemini [Zhu et al.
2016], and GraphIt [Zhang et al. 2018].
To synthesize e!cient implementations, Grafs optimizes speci#cations by syntactic fusion

transformations that fuse similar operations to be executed together.We formalize the syntax and the
semantics of the Grafs language and the fusion rules, and prove that the fusion transformations are
semantics-preserving. E"ectively, fusion reduces speci#cations to the sequence of three primitives:
reduction over paths, mapping over vertices and reduction over vertices.
Graph analytics frameworks o"er iterative programming models to calculate reduction over

paths. The values for vertices or edges are calculated iteratively based on the values of neighbors.
In$uenced by their runtime systems, these frameworks di"er on how values are propagated between
iterations. Some allow computations to both pull and push values to neighbors [Gonzalez et al.
2012] whereas others only allow push [Zhu et al. 2015] and others support a hybrid [Shun and
Blelloch 2013; Zhang et al. 2018; Zhu et al. 2016]. Not only the propagation methods, but also
system-speci!c nuances of the frameworks make their implementation of the same analysis problem
subtly di"erent. For example, they follow di"erent protocols for atomicity of updates.

We formalize a comprehensive set of iterative models that given certain kernel functions, calculate
path-based reductions. For each model, we present correctness and termination conditions on candi-
date kernel functions. Given a path-based reduction, the Grafs synthesizer enumerates candidate
kernel functions and uses the correctness conditions as speci#cations to automatically synthesize
the kernel functions. After fusion reduces speci#cations to the three primitives, reduction over paths,
mapping over vertices and reduction over vertices, the synthesizer reduces reductions over paths
to iterative calculations. Thus, graph analysis is reduced to iteration-map-reduce primitives. Grafs
translates each of these primitives to implementations in each of the #ve target frameworks.
We apply Grafs to common graph analysis use-cases and generate code for each of the #ve

frameworks. We note that graph processing frameworks often o"er a more $exible and expressive
API. However, we show that Grafs can express a large collection of common use-cases. The exper-
imental results show that Grafs concisely captures use-cases, e!ciently analyzes and synthesizes
code, and its fusion brings up to 4× and in average 2.4× speedup.

In summary, this paper makes the following contributions. It provides the high-level declarative
language Grafs and its semantics for large-scale graph analytics. It captures the iteration-map-
reduce graph processing primitives that implement graph computations as structured let terms.
Grafs presents semantics-preserving fusion transformations that are aware of these primitives:
they fuse computation into and maintain this structure. This paper formally models and proves the
formal correctness and termination conditions for a comprehensive set of iterative models. Further,
it combines type-directed enumerative synthesis and constrained-based synthesis to automatically
synthesize the iterative kernel functions. The resulting tool can target #ve di"erent graph processing
frameworks and is evaluated on multiple standard benchmarks. The experiments show that fusion

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:3

Graph
analytics

specification
SMT solver

Synthesis
Semantics-preserving

fusion
transformation

Fused specification
as

iteration-map-reduce Candidate

Kernel
functions

Code
generation

Ligra

GridGraph

Gemini

PowerGraph

GraphIt

Fig. 1. Workflow of Grafs (Graph Analytics Fusion and Synthesis)

can accelerate execution. Grafs showcases that declarative languages and fusion transformations
are e"ective for large-scale analytics.
In the following sections will present (1) Graph analytics speci#cation language Grafs and its

semantics (§ 3 and § 5.1), (2) Semantics-preserving and platform-independent fusion transformations
(§ 5.2), (3) The formalization of iterative graph computation models (§ 4), their correctness and
termination conditions (§ 6.1), and synthesis of their kernel functions (§ 6.2), and (4) The synthesis
tool that generates code for #ve graph processing frameworks and its experimental results (§ 7).

2 OVERVIEW

Fig. 1 shows the overview ofGrafs. The user writes her graph analytics as a declarative speci#cation.
Then, the fusion transformations optimize the input speci#cation and translates it to iteration-
map-reduce primitives. Subsequently, the synthesis process generates iterative kernel functions
for the optimized speci#cation. Finally, the code generation backend translates the kernels to #ve
target graph processing frameworks. In this section, we present an example use-case in the Grafs
speci#cation language, and then show how that speci#cation can be fused into an equivalent
more e!cient and canonical speci#cation. Then, we illustrate iterative reduction models (i.e.,
algorithms). Next, we consider the iteration-map-reduce primitives, and see both fused and unfused
implementations of our use-case based on them. Finally, we see a glimpse of the correctness
conditions of iterative reductions and how a synthesizer can use the conditions to generate the
iterative kernel functions.
Speci!cation. The Grafs language allows declarative and concise speci#cation of graph

analysis computations. For example, Fig. 2, Eq. 1 represents the speci#cation of the Radius use-case.
The radius of a graph is the minimum eccentricity over its vertices. The eccentricity of a source
vertex ! is the longest of the shortest paths from ! to any other vertex. The inner-most reduction of
the Radius use-case is a path-based reduction that calculates the shortest path from a source vertex
! to a destination vertex " . It applies the minimum reduction function min to the result of applying
the weight function weight to all paths # in Paths(!, "), that is the set of paths from ! to " . Then, it
speci#es the eccentricity of ! as a nesting vertex-based reduction with the reduction function max to
#nd the longest of the shortest paths over all destination vertices " . Finally, it speci#es the radius
as the minimum of the eccentricity of the sample sources !1 and !2.

Fusion. A naive execution of speci#cations may execute path-based and vertex-based reductions
multiple times. We show that multiple such reductions can be fused into a single reduction, and

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

83:4 Farzin Houshmand, Mohsen Lesani, and Keval Vora

speci#cations can be represented as a common triple-let form with separate terms for path-based
reduction, mapping over vertices and vertex-based reduction.
For example, the Radius use-case includes multiple path-based reductions one per source that

can be fused together. Further, the path-based reductions are enclosed by vertex-based reductions
that can be fused together as well. We illustrate this fusion in Fig. 2. We consider the fusion steps
in turn. The speci#cation of Radius is represented in Eq. 1. In Eq. 2, the outer min function over
the two sources is unrolled. In Eq. 3, we restate each of the two reductions in a triple-let form.
Grafs features a triple-let term that separates path-based reductions, mapping over vertices and
vertex-based reductions, and thus, facilitates fusion. The termmax

!∈V
min

"∈Paths(#1,!)
length(#) is rewritten

as the following three lets. The #rst let, ilet $! min
#1

length, calculates a path-based reduction.

For each vertex, it calculates the shortest length over the paths from the source !1, and binds the
result to $. The second let applies a map function in each vertex on the results of the path-based
reduction. In this case, there is only one path-based reduction; therefore, the map function in the
second let, mlet $ ′ ! $, is simply the identity function, and the result is bound to $ ′. (In use-cases
with an expression on multiple path-based reductions, the map in the second let captures the
expression.) The third let calculates a reduction over all vertices. In this example, the third let,
rlet $ ′′ ! max $ ′, calculates the maximum value over all vertices and binds the result to $ ′′. In
Eq. 3, a similar transformation is applied for the other source !2 as well.
Next, in Eq. 4, the two triple-let terms are fused into one by pairing the operations of the

corresponding lets, and the outer min is applied to the two #nal results $ ′′ and % ′′. In the next two
steps, the paired path-based and vertex-based reductions are fused. In Eq. 5, the two path-based
reductions of the #rst let, ilet , are fused into one. The fused reduction calculates the pair of the two
values simultaneously. (The two sources !1 and !2 are used to initialize the #rst and second elements
of the pairs respectively.) The fused path function F returns the pair of the results of the two path
functions. Similarly, the fused reduction function R applies the two reduction functions to the
#rst and second elements of the input pairs respectively. Finally, in Eq. 6, the pair of vertex-based
reductions of the third let, rlet , are fused into one. The fused reduction function R ′ applies the two
reduction functions to the #rst and second elements of the input pairs respectively. The original
Radius speci#cation executes two rounds of path-based and vertex-based reductions; however, the
fused version computes one path-based and one vertex-based reduction on tuples of two elements
at the same time. We will see the formal fusion rules including rules for more elaborate terms such
as nested path-based reductions (§ 5.2 and § 5.3).
The #nal term represents the speci#cation of Radius as an equivalent sequence of one path-

based reduction, one map in each vertex, and one reduction over all vertices. We will next see that
path-based reductions are calculated iteratively. Thus, fusion reduces Grafs speci#cations to three
primitives: Iteration-Map-Reduce: iteration for iterative path-based reduction, map for mapping
over vertices and reduce for reduction over vertices. Map and reduce over vertices can be directly
implemented; next, we consider iterative path-based reductions.

Iterative Path-based Reduction. Calculating path-based reductions by explicit enumeration
of paths is prohibitively ine!cient. Instead, path-based reductions are calculated iteratively by local
updates on the value of vertices based on the values of their neighbors. As an example, we consider
the pull iterative model for idempotent reduction functions. Let us consider the shortest path
use-case SSSP(!) (") = min

"∈Paths(#,!)
weight(#). It speci#es a path-based reduction from the source

! where the reduction function R is min and the path function F is weight. (We saw a similar
reduction, the shortest length, as the innermost reduction of Radius.)

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:5

Radius = min
#∈{#1,#2 }

max
!∈V

min
"∈Paths(#,!)

length(#) (1)

= min

(
max
!∈V

min
"∈Paths(#1,!)

length(#), max
!∈V

min
"∈Paths(#2,!)

length(#)

)
(2)

= min

#$$$$
%

#$$$$
%

ilet $! min
#1

length in

mlet $ ′ ! $ in
rlet $ ′′ ! max $ ′ in
$ ′′

&''''
(
,

#$$$$
%

ilet % ! min
#2

length in

mlet %′ ! % in
rlet %′′ ! max %′ in
%′′

&''''
(

&''''
(

(3)

=

#$$$$
%

ilet 〈$,%〉 ! 〈min
#1

length, min
#2

length〉 in

mlet 〈$ ′,%′〉 ! 〈$,%〉 in
rlet 〈$ ′′,%′′〉 ! 〈max $ ′, max %′〉 in
min($ ′′,%′′)

&''''
(

(4)

=

#$$$$
%

ilet 〈$,%〉 ! R
〈#1,#2 〉

F in

mlet 〈$ ′,%′〉 ! 〈$,%〉 in
rlet 〈$ ′′,%′′〉 ! 〈max $ ′, max %′〉 in
min($ ′′,%′′)

&''''
(

where
F ! &# . 〈length(#), length(#)〉
R (〈',(〉, 〈'′,(′〉) !
〈min(','′),min((,(′)〉

(5)

=

#$$$$
%

ilet 〈$,%〉 ! R
〈#1,#2 〉

F in

mlet 〈$ ′,%′〉 ! 〈$,%〉 in
rlet 〈$ ′′,%′′〉 ! R ′ 〈$ ′,%′〉 in
min($ ′′,%′′)

&''''
(

where
R ′ (〈',(〉, 〈'′,(′〉) !
〈max(','′),max((,(′)〉

(6)

Fig. 2. Fusion of the Radius Use-case.

def Iteration-Pull (I,P,R)
foreach (" ∈))

S(") ← I(")
if (S(") ≠ ⊥) *← * ∪ {"}

while (* ≠ ∅)
foreach (" ∈ *)
+" ← ⊥
foreach (〈,, "〉 ∈ in-edges("))
+" ← R(+", P(S(,), 〈,, "〉)

-" ← R(S("),+")
if (-" ≠ S("))

S(") ← -"
foreach (〈",, ′〉 ∈ out-edges("))
*′ ← *′ ∪ {, ′}

,′ ← *′, ∅
(a)

(b)

def Map (.)
foreach (" ∈))
S(") ← . (S(")))

def Reduce (R)
"'/ ← ⊥
foreach (" ∈))
"'/ ← R("'/,S("))

return "'/
(c)

Fig. 3. Pull Iterative Reduction.

The pull-based iterative reduction is presented in Fig. 3a and illustrated in Fig. 3b. Each vertex
stores a value S("); we denote the value of a vertex " in the iteration 0 as S$ ("). The iterative
calculation is based on three kernel function: the initialization function I, the propagation function
P and the reduction function R. The function I is a function from vertices to their initial value.
For the SSSP use-case, I is &" . if (" = !) 0 else ⊥ that initializes the value of the source ! to zero

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

83:6 Farzin Houshmand, Mohsen Lesani, and Keval Vora

Radius (Unfused) :
Iteration(&" . if (" = !1) 0 else ⊥,

&-, 1 . - + 1,
min)

1221 ← Reduce(max)
Iteration(&" . if (" = !2) 0 else ⊥,

&-, 1 . - + 1,
min)

1222 ← Reduce(max)
radius← min(1221, 1222)

(a)

Radius (Fused) :
Iteration(&" . 〈if (" = !1) 0 else ⊥,

if (" = !2) 0 else ⊥〉,
&-, 1 . 〈- + 1, - + 1〉,
&〈',(〉, 〈'′,(′〉.
〈min(','), min((,(′)〉)

〈1221, 1222〉 ← Reduce(&〈',(〉, 〈'′,(′〉.
〈max(','′), max((,(′)〉)

radius← min(1221, 1222)

(b)

Fig. 4. Unfused and fused implementations of Radius as iteration-map-reduce rounds.

(the some value of zero to be more precise) and the other vertices to none ⊥. In each iteration, if the
value of a vertex changes, its successors are added to the active set * for the next iteration. Fig. 3b
shows the calculations for the active vertex " that is shown in black. In an iteration 0 + 1, an active
vertex " pulls the value S$ (,) of each of its predecessors ,. For each predecessor ,, it applies the
propagation function P to the value S$ (,) and the edge 〈,, "〉. For the SSSP use-case, the function
P is &-, 1 . - + weight(1) that adds the value of the predecessor to the weight of the edge from it. It
then applies R (that is min in SSSP) to reduce the propagated values together and with the current
value S$ (") of " . The result is the new value S$+1 (") of " . If the value of " changes, the successors
of " that are marked as gray are active in the next iteration. The calculation stops when the values
of vertices stay unchanged in two consecutive iterations. We will formalize a comprehensive set of
iterative models (§ 4).

Iteration-Map-Reduce. After the fusion transformation, the speci#cation reduces to iteration-
map-reduce primitives: reduction over paths, mapping over vertices and reduction over vertices.
We saw in Fig. 3a and b that reductions over paths can be computed using the iterative models. A
sketch of bothMap and Reduce operations is shown in Fig. 3c. TheMap operation simply goes over
all the vertices in the graph and applies the input function . to the value of each vertex. Similarly,
the Reduce operation reduces vertex values with the input reduction function R. Fig. 4 shows
sketches for both unfused and fused implementation of the Radius use-case. Fig. 4a shows the
translation of the original unfused speci#cation of the Radius use-case that we saw in Fig. 2, Eq. 1.
In contrast, Fig. 4b shows the translation of the #nal fused speci#cation of the Radius use-case
that we saw in Fig. 2, Eq. 6. (We note that since the map is the identity function for the Radius
use-case, it is elided in these implementations.) The unfused version in Fig. 4a executes two rounds
of iteration-map-reduce. The #rst and the second rounds perform calculations for the #rst source
!1 and the second source !2 respectively. Each round #rst performs an iteration to calculate the
shortest path from the source to each vertex. Then, it calculates the eccentricity of the source
by applying the max reduction function on the values of all vertices. Finally, the radius of the
graph is minimum of the two eccentricity values. The fused version in Fig. 4b performs one round
of iteration-map-reduce. The fused iteration stores and performs operations on a pair of values:
shortest paths to each of the two sources. The initialization function initializes the values of the
two sources, and the propagation and reduce functions propagate and reduce the shortest path
values to them at the same time. Similarly, the subsequent reduction over all vertices calculates
the eccentricity of the two sources at the same time. As we will see in the experiments (§ 7), this
reduces the computation load by a factor of two.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:7

Correctness and Synthesis. We formalize correctness and termination conditions for calculation
of path-based reductions based on the iterative models. The conditions are parametric in terms of
the kernel initialization and propagation functions and are used to automatically synthesize the
kernel functions (§ 6.1 and § 6.2).

(a) Separate calculation for paths and then reduction

(b) Reduction at predecessor and then propagation

Fig. 5. The Correctness of the Pull Model. The path
· 1 denotes the extension of path # with edge 1 .

We present and prove su!cient conditions for
a comprehensive set of iterative models (§ 6.1).
As an example, we consider the pull model and
illustrate one of the correctness conditions on
the propagation function P in Fig. 5a and Fig. 5b.
Consider a vertex " and a predecessor, of " . Con-
sider calculating the reduction over all the paths
to " that go through ,. Fig. 5a shows the direct
calculation where the value of the path function
for each path to " is separately calculated, and
then the results are reduced. On the other hand,
Fig. 5b shows a calculation using the propagation
function P where #rst, the values of the path function for the paths to the predecessor , are
calculated and reduced, and then, the result is propagated by P to " . In order to correctly calculate
path-based reductions by local updates, the result of the above two calculations should be the same.
Intuitively, local propagations from predecessors should be equivalent to global reductions over
paths. Further, to reason about termination, we formalize the termination conditions for iterative
models. Iterations incrementally consider longer paths. Cycles of a graph generate an in#nite
number of paths and can cause divergence. However, under certain conditions on the reduction
and path functions R and F , adding longer paths has no e"ect on the vertex values. For example,
for the shortest path use-case SSSP (with non-negative edges), after a certain number of iterations,
all the simple paths of the graph are already considered, and longer cyclic paths cannot improve
the shortest path. Therefore, the calculation eventually terminates. We will see a formal de#nition
of this condition and prove that it is su!cient for termination.

We use the correctness conditions to synthesize correct kernel functions (§ 6.2). In particular, we
apply type-guided enumerative synthesis to #nd candidates, and automatic solvers to check the
validity of the correctness conditions for each candidate. The result is correct-by-construction
kernel functions that can iteratively calculate path-based reductions. We translate the synthesized
functions to code in #ve high-performance graph processing frameworks (§ 7).

3 DECLARATIVE GRAPH ANALYTICS

The Grafs language declaratively and concisely captures mathematical speci!cations of graph
analysis computations. The language design is guided by common idioms in graph processing
use-cases. It supports reduction over values of paths to a vertex, and mapping and reduction over
those values. Fig. 6 presents example use-cases. More use-cases are available in the appendix § 1.

Path-based Reductions. The use-case SSSP speci#es the weight of the shortest path from the
source vertex ! to each vertex " . The set of paths from a source vertex ! to a destination vertex " is
denoted by Paths(!, "). The speci#cation applies the minimum reduction function min to the result
of applying the weight function weight to all paths # in Paths(!, "). The speci#cation of connected
component (for undirected graphs) CC takes the smallest identi#er of the vertices in a component
as the representative identi#er of that component. The set of all paths (from any source vertex) to a
destination vertex " is denoted by Paths("). The speci#cation CC de#nes the connected component
of each vertex " as the minimum identi#er of the head vertices of the paths Paths("). The above
two speci#cations apply a reduction function R to the result of a path function F for a set of paths.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

83:8 Farzin Houshmand, Mohsen Lesani, and Keval Vora

We call these reductions path-based reductions. Similarly, the breadth-#rst-search use-case BFS
calculates the parent for each vertex in the BFS tree rooted at a source vertex ! . For each vertex
" , it speci#es a path-based reduction to #nd the shortest-length path from ! to " , and returns the
penultimate of that path. The penultimate of a path is the vertex before the last in the path. The
speci#cation uses the reduction function argmin to get the path with the minimum length rather
than the minimum length itself, and then applies the penultimate function to the path. (A simpler
speci#cation can simply apply min instead of argmin and return the minimum path length, i.e.,
the depth of the vertex in the breadth-#rst-search tree.)

SSSP(!) (") = min
"∈Paths(#,!)

weight(#)

CC(") = min
"∈Paths(!)

head(#)

BFS(!) (") = penultimate(argmin
"∈Paths(#,!)

length(#))

WSP(!) (") = let 3 ! argsmin
"∈Paths(#,!)

length(#) in

max
"∈%

capacity(#)

NSP(!) (") =

))))) argsmin
"∈Paths(#,!)

weight(#)

)))))
NWR(!) (") =

min
"∈Paths(#,!)

capacity(#)

max
"∈Paths(#,!)

capacity(#)

Trust(") = max
#∈#

#$$
%

max
"∈Paths(#,!)

capacity(#)

min
"∈Paths(#,!)

length(#)

&''
(

Radius = min
#∈{# }

max
!∈V

min
"∈Paths(#,!)

length(#)

DRR =

max
#∈{! }

max
!∈V

min
"∈Paths(#,!)

length(#)

min
#∈{! }

max
!∈V

min
"∈Paths(#,!)

length(#)

DS(!) =

⋃
!∈V∧

(
min

"∈Paths(#,!)
weight(#)

)
> 7

{"}

LTrust(!) = let SSSP ! &!, " . min
"∈Paths(#,!)

weight(#) in

letWP ! &!, " . max
"∈Paths(#,!)

capacity(#) in

min
!∈V∧ SSSP(!, ") < Radius

WP(!, ")

Fig. 6. A Subset of Use-cases in Grafs. SSSP: Single Source
Shortest Path, CC: Connected Components, BFS: Breadth-
First Search,WSP: Widest Shortest Path, NSP: Number of
Shortest Paths, NWR: Narrowest to Widest Ratio, Trust:
Trust from users {!}, Radius: Radius sampled on vertices
{!}, DRR: Diameter to Radius Ratio, DS: Vertices with the
distance of at least 7, LTrust: Least trust in the radius.

Nested Path-basedReductions. Path-
based reductions can be nested. The use-
case WSP speci#es the widest shortest
path from a source ! to each vertex " . We
use the let syntactic sugar to enhance read-
ability. WSP has a nested reduction (with
the reduction function argsmin) to #nd
the shortest paths, and then a nesting re-
duction to #nd thewidest capacity in those
paths.WSP is used as a metric of the trust
of a user to other users in social networks
where the capacity of each edge is the
local trust rating of the source user to
the sink user [Golbeck 2005]. Intuitively,
users with wider (stronger trust ratings)
and shorter (closer) paths are more trust-
worthy sources of information. Similarly,
the use-case NSP speci#es the number of
shortest paths from a source ! to each ver-
tex " . It uses a nested reduction to #nd the
shortest paths and then applies the cardi-
nality operator to the resulting set. (We
will see in § 5.3 that cardinality is a syntac-
tic sugar for a path-based reduction with
the sum

∑
function.)

Mapping over Vertices. Mathemati-
cal operators can be applied to path-based
reductions. The use-case NWR speci#es
the narrowest to widest path ratio from
a source to each vertex. At each vertex,
it divides the result of two path-based re-
ductions. Similarly, the use-case Trust is
the result of division and maximum oper-
ations between path-based reductions. It
speci#es the trust from a set of users {!}
to each other user " . As before, wider and
shorter paths are favored.
Vertex-based Reductions. The val-

ues of vertices calculated by a path-based reduction can be subsequently reduced by a vertex-based
reduction. For example, the eccentricity of a source vertex ! is the longest of the shortest paths

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:9

from ! to any other vertex. The radius of a graph is the minimum eccentricity over its vertices. The
Radius use-case speci#es eccentricity as a vertex-based reduction with the reduction function max
to #nd the longest of the shortest paths over all vertices. It then speci#es the radius as the minimum
of the eccentricity of a set of sample sources {!}. Similar to path-based reductions, mathematical
operators can be applied to vertex-based reductions. As the set of sampled sources {!} is #nite, the
outer min function can be unrolled to an in#x operator between vertex-based reductions. Similarly,
the use-case DRR, that is the ratio of the diameter over the radius of the graph, is speci#ed as
maximum and minimum operations between vertex-based reductions, and a subsequent division.

The use-case DS speci#es the set of vertices with the distance of at least 7 from the source ! . The
union ∪ vertex-based reduction is used to calculate the set. The set of vertices that it is applied
to are constrained by a nested path-based reduction to specify the distance. (In § 5.3, we show
that constrained vertex-based reductions can be desugared to standard vertex-based reductions that
are applied to path-based reductions on pairs of values.) The next use-case, LTrust, represents a
measure of the least amount of trust from a user to her neighbourhood in a social network. Similar
to DS, the use-case LTrust is speci#ed as a constrained vertex-based reduction. Given a source ! ,
it calculates the widest path to each vertex within the radius of ! (i.e., 0-hop neighbourhood of !
where 0 is the radius of the graph), and then returns the narrowest of those.

4 ITERATIVE MODELS

We formalize four canonical models for iterative graph computations: the pull and push models
with idempotent and non-idempotent reduction. Graph computation frameworks [Gonzalez et al.
2012; Malewicz et al. 2010; Roy et al. 2013; Shun and Blelloch 2013; Zhu et al. 2016, 2015] implement
variants of these models. Later in § 6, we use these models to implement path-based reductions and
present their correctness conditions.
In these models, each vertex is #rst initialized. Then, the value of each vertex is iteratively

updated based on the values of its predecessors. In each iteration, the vertex pulls the values of its
predecessors or each predecessor pushes its value to the vertex. Then, the values of the predecessors
and the current value of the vertex are reduced to calculate the new value of the vertex. Before
assigning the reduced value to the vertex, a #nal function may be applied to it. The iteration stops
when the value of no vertex changes. The models are parametrized by four kernel functions: I, P,
R and E. The initialization function I de#nes the initial value for each vertex. The propagation
function P, given a value - and an edge 〈,, "〉 where - is the value of ,, de#nes the value that is
propagated to " . The commutative and associative reduction function R de#nes how the propagated
values are aggregated. The epilogue function E de#nes the #nal update.

We present a high-level language to specify the kernel functions. We compile kernels speci#ed
in this language to executable programs in #ve graph processing frameworks. The grammar for
the bodies of the kernel functions is presented in Fig. 7a. (Later in § 6.2, the same grammar is used
by the synthesis process; given higher-level speci#cations, it automatically generates the kernel
functions in this language.) Fig. 7b shows the iterative kernel functions for two example use-cases:
the shortest path SSSP and the page-rank PageRank (PR). For the shortest path SSSP use-case, the
initialization function I initializes the source vertex ! to (some value of) 0 and the other vertices to
none ⊥. The propagation function P adds the value " of the predecessor to the weight of the edge
1 . The reduction function R is the minimum (that is idempotent) and the epilogue function E is
the identity function. For the page-rank use-case PR, I divides the value 1 between the number
of vertices |) |. The function P divides the value " of the predecessor between its successors. The
function R is sum (that is non-idempotent). The function E multiplies the sum with the damping
factor 4 and adds a constant.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

83:10 Farzin Houshmand, Mohsen Lesani, and Keval Vora

1 ::= - | " Body Exp
| 1 + 1 | 1 − 1 | − 1 | 〈1, 1〉
| 1 × 1 | 1 / 1 | 1 = 1 | 1 < 1
| min(1, 1) | max(1, 1)
| if (1) then 1 else 1
| weight(1) | capacity(1)
| indeg(1) | outdeg(1)
| src(1) | dst(1)
| |) | Graph Order

- ::= 0 | 1 | .. | True | False Literal
" Variable

(a) Grammar

SSSP

I ! &" . if (" = !) 0 else ⊥
P ! &", 1 . " + weight(1)
R ! &", " ′. min(", " ′)
E ! &" . "

PageRank (PR)

I ! &" . 1 / |) |
P ! &", 1 . " / outdeg(src(1))
R ! &", " ′. " + " ′

E ! &" . 4 × " + (1 − 4) / |) |

(b) Examples

Fig. 7. (a) Grammar for Kernel Functions (b) Example Kernel Functions. (min and + filter none values ⊥.)

Pull Model. The characteristic of the pull model is that vertices pull the values of their
predecessors to calculate their new values. We consider the pull model for idempotent and non-
idempotent reduction functions in turn.
Pull model with idempotent reduction (pull+). The pull model for idempotent reduction is

represented in Fig. 8, Def. 1. The value of the vertex " in the iteration 0 is represented as S$
pull+("). In

the beginning when 0 = 0, vertices have no value ⊥. In the #rst iteration 0 = 1, they are initialized
by the initialization function I. In subsequent iterations 0 + 1, 0 ≥ 1, each vertex " pulls values
of its predecessors. For each predecessor ,, the propagation function P is applied to the value
S$
pull+(,) of , (from the previous iteration 0) and the connecting edge 〈,, "〉. Then, as illustrated in

Fig. 3b, all the propagated values are reduced by R with each other and then with the previous value
S$
pull+(") of " . Finally, applying the epilogue function to the reduced value results in the new value

S$+1
pull+(") of " . As an optimization, the above update is performed only if the set of predecessors of

" whose value have changed in the previous iteration CPreds$ (") is non-empty.
Pull model with non-idempotent reduction (pull−). The pull model for non-idempotent reduction

is represented in Fig. 8, Def. 2. The value of the vertex " in the iteration 0 is represented as S$
pull− (").

Similar to the previous model, the values from predecessors are propagated and reduced. The
di"erence is that after reducing the propagated values, the result is not reduced with the previous
value of the vertex. The reason is to avoid duplicate reduction with the non-idempotent reduction
function. Consider a vertex " and a predecessor , of " . Assume that the value of , represents the
reduction of a set 5 of values. After the value of , is propagated to " , the value of " includes the
reduced and propagated values of 5 . Assume that the value of , is updated again to represent the
reduction of more values. If the new value of , is propagated to " and reduced with the current
value of " , then the set 5 is included in the value of " twice.

Push Model. In the pull model above, each vertex itself pulls values from its predecessors. In
contrast, in the push model, the predecessors push values to the vertex when they are updated. We
consider the push model for idempotent and non-idempotent reduction functions in turn.
Push model with idempotent reduction (push+). The push model for idempotent reduction is

represented in Fig. 8, Def. 3. The value of the vertex " in the iteration 0 is represented as S$
push+(").

The iterations 0 and 1 are similar to the previous models. In subsequent iterations 0 + 1, 0 ≥ 1,
for each vertex " , the predecessors {,0, ..,,&−1} that have been changed in the previous iteration
independently propagate their values and reduce it with the current value of " . Since the reduction
function is commutative and associative, the predecessors can apply their updates in any order.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:11

CPreds$ (") =
{
, | , ∈ preds(") ∧ S$ (,) ≠ S$−1 (,)

}

Definition 1 (Pull (idempotent reduction)).

S0
pull+

(") ! ⊥

S1
pull+

(") ! I(")

S$+1
pull+

(") !

S$
pull+

(") if CPreds$ (") = ∅

E
[
R
(
S$
pull+

("), R'∈preds(!) P
(
S$
pull+

(,), 〈,, "〉
))]

else
0 ≥ 1

Definition 2 (Pull (non-idempotent reduction)).

S0
pull−

(") ! ⊥

S1
pull−

(") ! I(")

S$+1
pull−

(") !

S$
pull−

(") if CPreds$ (") = ∅

E
[
R'∈preds(!) P

(
S$
pull−

(,), 〈,, "〉
)]

else
0 ≥ 1

Definition 3 (Push (idempotent reduction)).

S0
push+

(") ! ⊥

S1
push+

(") ! I(")

S$+1
push+

(") ! E(5&), 0 ≥ 1 where

let {,0, ..,,&−1} ! CPreds$ (") in

50 ! S$
push+

(")

5(+1 ! R
(
5(, P

(
S$
push+

(,(), 〈,(, "〉
))

Definition 4 (Push (non-idempotent reduction)).

S0
push−

(") ! ⊥

S1
push−

(") ! I(")

S$+1
push−

(") ! E(5&), 0 ≥ 1 where

let {,0, ..,,&−1} ! preds(") in
50 ! ⊥

5(+1 ! R
(
5(, P

(
S$
push−

(,(), 〈,(, "〉
))

Fig. 8. Four Iterative Reduction Methods. (Grafs also incorporates another variant of Push, Non-idempotent

Reduction (appendix § 3.1.2)). CPreds$ ("): The predecessors of the vertex " that changed in the iteration 0

In each iteration, the initial value 50 of " is its value in the previous iteration 0 . For each changed
predecessor,(, the propagation function P is applied to the valueS$

push+(,() of,((from the previous

iteration 0) and the connecting edge 〈,(, "〉. The result is then reduced with the current value 5(of
" to calculate its new value 5(+1. Propagation and reduction by the last changed predecessor ,&−1
results in the value 5& . The #nal value of " is the result of applying the epilogue E to 5& .
Push model with non-idempotent reduction (push−). This model works for non-idempotent (in

addition to idempotent) reduction functions. The iterative model is represented in Fig. 8, Def. 4. Let
the value of the vertex " in the iteration 0 be represented as S$

push− ("). Since the reduction function

may not be idempotent, in contrast to the previous model, vertices start from the none value 50 = ⊥,
and all the predecessors ,(propagate their values in each iteration. For each predecessor ,(, the
propagate function P is applied to the latest value S$

push− (,() of ,(and the connecting edge 〈,(, "〉.

The resulting value is reduced with the current value 5(of " . We note that this variant makes
all vertices active during an iteration; Grafs also incorporates another variant (appendix § 3.1.2)
where only the vertices whose values change are active and propagate their values. In this variant,
an active predecessor ,(#rst rollbacks its previous update before applying its new update.

The iterative models that we saw here are synchronous. In the synchronous model, vertices store
their previous in addition to their new value to propagate their previous value. In the asynchronous
model, however, each vertex stores one value, and vertices can propagate intermediate values. The
four asynchronous models and their correctness is available in the appendix § 3.1.3. Further, we
present streaming iterative models and their correctness in the appendix § 3.1.4.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

83:12 Farzin Houshmand, Mohsen Lesani, and Keval Vora

5 SPECIFICATION AND FUSION

In this section, we de#ne the core speci#cation language, its denotational semantics, and the
semantics-preserving fusion transformations.

5.1 Core Specification Language

6 ! R
V
7 | 6 ⊕ 6 | $ | Vertex-based Red.

ilet 8 ! 9 in
mlet 8 ! : in
rlet 8 ! ; in 1

7 ! R
"∈%

F (#) | 7 ⊕7 | $ | Path-based Red.

ilet 8 ! 9 in 1
3 ! Paths | argsR

"∈%
F (#) Paths

R ! min | max | ∨ | ∧ |
∑

Reduction Fun.
F ! length | weight | capacity Path Fun.
⊕ ! min | max | ∧ | ∨ | + | Operation

− | × | / | = | < | >

Path Variable
$ Variable
1 ! 1 ⊕ 1 | $
8 ! 〈8 ,8 〉 | $
9 ! 〈9,9〉 | R F

; ! 〈;,;〉 | R 〈$〉 | R 〈<〉
: ! 〈:, :〉 | 1
R ! [] | R ⊕ 6 | 6 ⊕ R Context for 6
M ! [] | R

V
M | M ⊕7 | 7 ⊕M Context for7

Ms ! [] | 〈Ms,9〉 | 〈9,Ms〉 | Context for9
ilet 8 ! Ms in 1 |
ilet 8 ! Ms in mlet 8 ! : in rlet 8 ! ; in 1

Rs ! [] | 〈Rs,;〉 | 〈;,Rs〉 | Context for ;
ilet 8 ! 9 in mlet 8 ! : in rlet 8 ! Rs in 1

n Value
v Vertex Value

< : D) ! (V(+) ↦→ N) ∪ {⊥} Sem. Dom. of7
n⊥ : D* ! N ∪ {⊥} Sem. Dom. of 6

Fig. 9. Core Specification Language

To present the crux of the fusion trans-
formations, we de#ne a core speci#ca-
tion language in Fig. 9. It features both
reduction over paths and reduction
over vertices. A computation can be
speci#ed as a reduction 6 over the val-
ues of vertices. The value of vertices,
in turn, can be speci#ed as a nested re-
duction7 over the paths to each ver-
tex. More elaborate computations can
be speci#ed by nested path-based com-
putations, and applying operations be-
tween multiple path-based and vertex-
based computations. We will visit each
term type in turn.
Vertex-based and path-based reduc-

tions. A vertex-based reduction R
V
7

applies a reduction function R to the
result of path-based reductions7 over
all vertices V. The function R is a
commutative and associative function
such as min, max, ∨, ∧ and

∑
. Larger

vertex-based reductions 6 ⊕ 6 ′ can be
constructed using the operators ⊕. A
path-based reduction R

"∈%
F (#) applies

a reduction functionR to the results of
applying the function F to each path
in set of paths 3 . Similar to vertex-
based reductions, larger path-based re-
ductions 7 ⊕ 7′ can be constructed
using the operators ⊕. The path func-
tion F is the length, weight, or capacity of the path. The set of paths 3 can be either Paths that
denotes all the paths to each vertex, or the restricted paths argsR

"∈%
F (#) where R ∈ {min,max} that

denotes the paths in 3 whose F value is the extremum. (The 6 and7 terms can be also variables $
that can be substituted with a value n or a map value < from vertices to values.)

Let forms. Let terms factor di"erent reductions. Factored reductions are conducive to fusion. As
shown in Fig. 9, the terms7 and 6 both have let forms. The7 term constructor ilet 8 ! 9 in 1
binds variables 8 to factored path-based reductions9 for the expression 1 . The expression 1 can
apply operators ⊕ to the variables 8 . Both the variables 8 and reductions 9 can be inductively
constructed as pairs. A single path-based reduction9 is simply represented as R F where R is the
reduction function and F is the path function. Similarly, the triple-let 6 constructor ilet 8 ! 9 in

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:13

SPRed !
R
"∈%

F (#)

"
(+) =

[v ↦→ R {F (#) | # ∈ # 3 $ (+) (v)}]v∈V(+)

SMBin
#7 ⊕7′ $ (+) =

#7 $ (+) ⊕ #7′ $ (+)

SVRed!
R
V
7

"
(+) =

R
{
#7 $(+) (v) v∈V(+)

}

SRLet %

&&'

ilet 8 ! 9 in
mlet 8 ′ ! : in
rlet 8 ′′ ! ; in
1

(

))*(+) =

+
1
[
8 ′′ !

+
;
[
8 ′ ! #: [8 ! #9 $ (+)] $

] ,
(+)

] ,

SMPair
〈9, 9 ′〉 $ (+) =

〈
#9 $(+), #9 ′ $(+)

〉
SRPair
〈;, ;′〉 $ (+) =

〈
#; $(+), #;′ $(+)

〉

SMM

#R F $ =
!

R
"∈Paths

F (#)

" SRR-
R

〈
[v ↦→ -v]v∈V(+) , .., [v ↦→ -′v]v∈V(+)

〉 .
=

!
R
V

(
[v ↦→ 〈-v, .., -′v〉]v∈V(+)

) "

Fig. 10. Denotational Semantics of the Specification Language

mlet 8 ′ ! : in rlet 8 ′′ ! ; in 1 binds variables 8 to factored path-based reductions 9 , binds
variables 8 ′ to expressions : (on 8), and binds variables 8 ′′ to factored vertex-based reductions ;
(on8 ′). A triple-let term represents an 6 term as a sequence: path-based reductions, mappings on the
results, and #nally vertex-based reductions on the results. We will see that this form enables fusion
(§ 5.2) and can be directly implemented (§ 7). Similar to9 , the factored vertex-based reductions
; can be inductively constructed as pairs. A single vertex-based reduction ; is R 〈$〉 that is a

reduction over tuples of variables 〈$〉 (or is R 〈<〉 after the variables are substituted with map
values < from vertices to values). To concisely represent the fusion rules, we de#ne the context R
to abstract the surrounding term where a term 6 appears. Similarly, we de#ne the contextsM,Ms,
and Rs for the terms7,9 and ;.
Semantics and Compositionality. We de#ne the denotational semantics of the speci#cation

language (presented in Fig. 9). For brevity, we showcase the semantics ! " of a subset of the term
constructors in Fig. 10. (The full semantics is available in the appendix § 2.1.) The semantics of an
unde#ned or stuck computation is represented as ⊥. In each rule, it is assumed that the semantics
of subterms are not unde#ned; otherwise, the semantics of the whole term is unde#ned as well. The
domain D) of a path-based computation7 on a graph + is a #nite map from each vertex of + to
natural numbers V(+) ↦→ N, and ⊥ (for unde#ned computation). The domain D* of a vertex-based

computation 6 is the natural numbers N and ⊥. We use the notation [0(↦→ "(](for a #nite map
that maps each key 0(to value "(over the range = .
The rule SPRed de#nes the semantics of the path-based reduction R

"∈%
F (#). It uses the (elided)

semantics of paths 3 that is a map from each vertex v to the set of paths to v. For each vertex v,
the rule SPRed applies the function F to each path to v, and then applies the reduction function
R to the resulting values. (Since the reduction functions R are commutative and associative, they
can be applied to the values in any order.) The rule SMBin de#nes the semantics of7 ⊕7′ as the
result of the operator ⊕ on the semantics of7 and7′. The operators R and ⊕ are in the syntactic
and semantic domains when they are on the left- and right-hand side of the rules respectively. The
operator ⊕ is simply lifted to maps by pointwise application to the values of each key.

The rule SVRed de#nes the semantics of the vertex-based reduction R
V
7 using the map resulted

from the semantics of7; it reduces the values of the map for all vertices. The rule SRLet de#nes

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

83:14 Farzin Houshmand, Mohsen Lesani, and Keval Vora

the semantics of triple-let terms by three subsequent substitutions: the substitution of the variables
8 with the semantics of9 in :, the substitution of 8 ′ with the semantics of : in ;, and #nally the
substitution of 8 ′′ with the semantics of ; in 1 . (The semantics of 1 and : are elided.)
The rules SMPair and SRPair de#ne the semantics of pairs of factored reductions 9 and ;

inductively. The two rules SMM and SRR reduce the semantics of single factored reductions to
expanded reductions. The rule SMM de#nes the semantics of the factored path-based reduction
R F as a path-based reduction on the paths Paths. The rule SRR de#nes the semantics of a factored

vertex-based reduction. It merges the tuple of the factored maps [v ↦→ -v]v∈V(+) , .., [v ↦→ -′v]v∈V(+)
into a map from vertices v to tuples 〈-v, ..,-

′
v〉, and then applies the vertex-based reduction.

We prove that the semantics is compositional. If two terms are semantically equivalent, replacing
one with the other in any context is semantics-preserving. Compositionality of the semantics is
used to prove that the fusion transformations are semantic-preserving. The following theorem
states the compositionality for 6 . (Similar lemmas for7,9 and ; and their proofs are available in
the appendix § 4.2.)

Lemma 1 (Compositionality). For all 6 , 6 ′ and R, if ! 6 " = ! 6 ′ " then !R[6] " = !R[6 ′] ".

5.2 Fusion

We now present the fusion transformations. Fusion reduces computation time by combining
separate reductions into a single reduction. The transformations have three main forms: fusion
of nested path-based reductions, fusion of pairs of path-based reductions, and fusion of pairs of
vertex-based reductions. The result of fusion is an equivalent speci#cation in the triple-let form
with separate terms for path-based reduction, mapping over vertices and vertex-based reduction.

The fusion rules are presented in Fig. 11. The top-level fusion relation⇒* is called 6 -fusion and
transforms an 6 term to another. The other fusion relations⇒) ,⇒, , and⇒- which transform7,
9 and ; terms are called7-fusion,9-fusion and ;-fusion. We consider7-fusions #rst. The rule
FMInR states that7-fusions can be applied to7 terms that appear in the context of 6 terms. (Both
M[71] andM[72] in this rule are 6 terms.) The rule FMInM states that7-fusions can be applied
to7 terms in the context of other7 terms.
Fusing nested path-based reductions. The rule FPNest7-fuses nested path-based reductions

to $at reductions. Consider the nested path-based reduction R
"′ ∈ % ′

F (#) where the set of paths

3 ′ is another path-based reduction argsR ′
"∈%

F ′(#) where R ′ is min or max. Let us assume that

R ′ is min. A straightforward calculation computes F ′ on the paths 3 and #nds the subset of
paths 3 ′ with the minimum value, and then computes F on the paths 3 ′ and reduces them by
R. An optimized calculation can compute both F ′ and F on the paths 3 simultaneously and
only consider the pairs with the minimum #rst element to calculate the reduction R over the
second elements. To calculate the values of the path functions F and F ′, this approach enumerates
paths only once instead of twice. Therefore, the two reductions can be fused into one reduction as
ilet 〈$, $ ′〉 ! R ′′

"′ ∈%
F ′′(# ′) in $ ′. The new path function F ′′ returns the pair of values F ′(# ′) and

F (# ′) for an input path # ′. The new reduction function R ′′ considers the #rst element of the two
input pairs and if the #rst element of one input is (strictly) smaller than the other, that input is
returned. That input takes over because the set of paths for the reduction R are only those with
the minimum value for F ′. On the other hand, if the #rst elements of the inputs are equal, their
second elements are reduced by R to make the second element of the output pair. The rule FPNest
can be repeatedly applied to a deeply nested path-based reduction to $atten it to a reduction over
the basic paths term Paths.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:15

FMInR
71 ⇒) 72

M[71] ⇒* M[72]

FMInM
71 ⇒) 72

M[71] ⇒) M[72]

FPNest
R

"′ ∈ args R′
!∈"

F′ (")
F (# ′) ⇒) ilet 〈$, $ ′〉 ! R ′′

"∈%
F ′′(#) in $ ′

where R ′ ∈ {min,max}
F ′′ ! &# . 〈F ′(#), F (#)〉
R ′′(〈',(〉, 〈'′,(′〉) !

if (' = '′) then 〈',R((,(′)〉
else if (R ′(','′) = ') then 〈',(〉 else 〈'′,(′〉

FPRed
R

"∈Paths
F (#)

⇒)

ilet $! R F in $

FILetBin
(ilet 81 ! 91 in 11) ⊕ (ilet 82 ! 92 in 12)

⇒)

ilet 〈81,82〉 ! 〈91,92〉 in 11 ⊕ 12

if
free(11) ∩ 82 = ∅
free(12) ∩ 81 = ∅

FMInILet
91 ⇒, 92

ilet 8 ! Ms[91] in 1
⇒)

ilet 8 ! Ms[92] in 1

FMPair〈
R F ,R ′ F ′

〉
⇒, R ′′ F ′′

where F ′′ ! &# . 〈F (#), F ′(#)〉
R ′′(〈',(〉, 〈'′,(′〉) !
〈R(','′),R ′((,(′)〉

FVRed
R
V
(ilet 8 ! R ′ F in 1)

⇒*

ilet 8 ! R ′ F in
mlet $! 1 in
rlet $ ′ ! R $ in $ ′

FLetsBin

#$$$
%

ilet 81 ! 91 in
mlet 8 ′1 ! :1 in
rlet 8 ′′1 ! ;1 in
11

&'''
(
⊕

#$$$
%

ilet 82 ! 92 in
mlet 8 ′2 ! :2 in
rlet 8 ′′2 ! ;2 in
12

&'''
(
⇒*

#$$$
%

ilet 〈81,82〉 ! 〈91,92〉 in
mlet 〈8 ′1,8

′
2〉 ! 〈:1, :2〉 in

rlet 〈8 ′′1 ,8
′′
2 〉 ! 〈;1,;2〉 in

11 ⊕ 12

&'''
(
if

free(:1) ∩ 82 =

free(:2) ∩ 81 =

free(;1) ∩ 8
′
2 =

free(;2) ∩ 8
′
1 =

free(11) ∩ 8
′′
2 =

free(12) ∩ 8
′′
1 = ∅

FMInLets
91 ⇒, 92

#$
%

ilet 8 ! Ms[91] in
mlet 8 ′ ! : in
rlet 8 ′′ ! ; in 1

&'
(
⇒*

#$
%

ilet 8 ! Ms[92] in
mlet 8 ′ ! : in
rlet 8 ′′ ! ; in 1

&'
(

FRinLets
;1 ⇒- ;2

#$
%

ilet 8 ! 9 in
mlet 8 ′ ! : in
rlet 8 ′′ ! Rs[;1] in 1

&'
(
⇒*

#$
%

ilet 8 ! 9 in
mlet 8 ′ ! : in
rlet 8 ′′ ! Rs[;2] in 1

&'
(

FRPair
〈R1 $1,R2 $2〉 ⇒- R3 〈$1, $2〉
where R3 (〈',(〉, 〈'

′,(′〉) !
〈R1 (','

′),R2 ((,(
′)〉

Fig. 11. Fusion Rules

Factoring, pairing and fusing path-based reductions. The rule FPRed factors out a $at reduction
to an equivalent let form. The rule FILetBin fuses an operation between two let terms to a single
let term. It pairs the factored reductions91 and92 of the two let terms. The condition of the rule
prevents the free variables of the expression of one term from clashing with the bound variables
of another. The rule FMInILet allows the factored reductions9 in the context of a let term to be
fused. The rule FMPair9-fuses a pair of factored reductions 〈R F ,R ′ F ′〉 to a single reduction
R ′′ F ′′ that calculates the two reductions simultaneously. The path function F ′′ returns the pair
of the results of F and F ′. Similarly, the reduction function R ′′ returns a pair: the reduction of the
#rst elements by R and the second elements by R ′.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

83:16 Farzin Houshmand, Mohsen Lesani, and Keval Vora

Factoring into, pairing and fusing triple-let terms. The rules above can factor all path-based
reductions7 to the let form, and fuse factored reductions to a single one. The next rule FVRed
transforms vertex-based reductions that are applied to these path-based reductions to an equivalent
triple-let form. The triple-let form factors path-based and vertex-based reductions in separate let
parts. The rule FLetsBin fuses an operation between two triple-let terms to a single triple-let term.
It pairs the factored path-based reductions9 , expression :, and vertex-based reduction ; of the
two terms. The rules FMInLets and FRinLets allow the factored reductions9 and ; in the context
of a triple-let term to be fused.
Fusing vertex-based reductions. The rule FRPair presents ;-fusions. It fuses a pair of factored

vertex-based reductions 〈R1 $1,R2 $2〉 to a single reduction R3 〈$1, $2〉. Given two pairs, R3 returns
a pair: the reduction of the #rst elements by R1 and the second elements by R2.
We saw an example fusion in Fig. 2. (More examples are available in the appendix § 2.3.) The

fusion transformation presented above is semantic-preserving: terms are only fused into other
terms with the same semantics. The following theorem states the semantics-preservation property
of fusion. (The proofs are available in the appendix § 4.3.)

Theorem 1 (Semantics-preserving Fusion). For all 61 and 62, if 61 ⇒* 62 then ! 61 " = ! 62 ".

5.3 Extensions

We now consider extensions to the core syntax and the fusion rules.
Common Operation Elimination. Fusion factors path-based reductions, vertex-based map opera-

tions and vertex-based reductions into the triple-let form. This form facilitates common operation
elimination. For example, if a path-based reduction appears twice in the #rst let and assigned to
two sets of variables, one can be eliminated and the result of the other can be assigned to both sets
of variables. (The elimination rules are available in the appendix § 2.2.1.)

Domain. The scalar semantic domain of the core language was con#ned to the natural numbers.
The domain are simply extended to booleans, vertex identi#ers and also sets of values. Thus, the
reduction operations are extended with union ∪ and intersection ∩, and the path functions are
extended with head and penultimate. The function head returns the identi#er of the head vertex of
the path, and the function penultimate returns the identi#er of the penultimate (that is the vertex
before the last) of the path.

Unary operations and Literals. The path-based reductions7 and vertex-based reductions 6 and
their fusion rules can be simply extended with unary operations and literals. (the appendix § 2.2.3)

Vertex Variables. We extend the core syntax with path terms Paths(", " ′) and Paths(") that can
specify vertex variables as source and destination. The term Paths(", " ′) speci#es the set of paths
from the source " to the destination " ′, and the term Paths(") speci#es the set of paths from any
source to the destination " . Thus, the source ! of a path-based reduction can be either a vertex " or
none ⊥. A factored path-based reduction R

.
F carries its con#guration 2 , that is either a source, or

a pair of other con#gurations. We also extend the syntax with vertex-based reductions R
!∈V

7 that

can bind the vertex variable " . (These syntactic extensions and their fusion rules are available in
the appendix § 2.2.4.)
Syntactic Sugar. Syntactic sugar enables concise speci#cations. For example, the term

F (argR
"∈%

F ′(#)) where R is either min or max #rst #nds a path # in 3 with the minimum or

maximum value for the function F ′, and then returns the result of applying F to # . It is used to
specify the BFS use-case. The following rule expands this term to a path-based reduction in the let

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:17

form. The path function F ′′ returns the pair of the results of F ′ and F . The reduction function R ′

returns the input pair with the minimum or maximum #rst element.

FMRed
F (argR

"∈%
F ′(#)) ! ilet 〈$, $ ′〉 ! R ′

"∈%
F ′′(#) in $ ′ where R ∈ {min,max}

F ′′ ! &# . 〈F ′(#), F (#)〉 R ′(〈',(〉, 〈'′,(′〉) ! if (R(','′) = ') then 〈',(〉 else 〈'′,(′〉

(7)

In the appendix § 2.2.5, we present the syntactic sugar (1) cardinality |3 |, (2) vertex-based reduction
over a given subset of vertices R

!∈{!1,..,!# }
7, and (3) vertex-based reduction constrained by a path-

based reduction R
!∈V∧)′

7. The latter was used in the use-cases NSP, Radius, and DS in Fig. 6.

As an example DS is fused as follows:

DS(!) =
⋃

!∈V∧

(
min

"∈Paths(#,!)
weight(#)

)
> 7

{"}

= R
!∈V

〈(
min

"∈Paths(#,!)
weight(#)

)
> 7, {"}

〉
where

R(〈',(〉, 〈'′,(′〉) !
if (' ∧ '′) then 〈',(∪ (′〉
else(') then 〈',(〉
else 〈'′,(′〉

= R
!∈V
〈
(
ilet $! min

#
weight in $

)
> ilet $ ′ ! ⊥ in 7, ilet $ ′′ ! ⊥ in {"}〉

= R
!∈V

(
ilet 〈〈$, $ ′〉, $ ′′〉 ! 〈〈min

#
weight,⊥〉,⊥〉 in 〈$ > 7, {"}〉

)
= R

!∈V

(
ilet $! min

#
weight in 〈$ > 7, {"}〉

)

=

#$$$$
%

ilet $! min
#

weight in

mlet $ ′ ! 〈$ > 7, {"}〉 in
rlet $ ′′ ! R $ ′ in
$ ′′

&''''
(

Nested Triple-lets. The core syntax supports expressions that can be fused to a single iteration-
map-reduce triple-let term. We extend the core syntax to support nested vertex-based reductions,
and extend the fusion rules to fuse them. For example, the use-case LTrust that we saw in Fig. 6
uses the vertex-based reduction Radius as a nested term. Nested triple-let terms can be translated
to a sequence of iteration-map-reduce rounds on the graph. (In the appendix § 2.2.6, we de#ne the
extension and show that LTrust is fused to two rounds of iteration-map-reduce.)

6 MAPPING SPECIFICATION TO ITERATION-MAP-REDUCE

ilet8 ! R
.
F in

mlet 8 ′ ! : in

rlet 8 ′′ ! R ′ 〈$ ′〉 in 1

Fig. 12. Triple-let Form

As we saw in the #nal term of Fig. 2, fusion results in the triple-let form
shown in Fig. 12. The three let parts can be directly mapped to three
computation primitives: iteration, map and reduce. Each vertex stores
the variables 8 and 8 ′. The #rst let is mapped to an iterative calculation
for the path-based reduction R

.
F that results in values for the variables

8 in each vertex. The second let is mapped to a map operation over
vertices: given the values of the variables 8 in each vertex, the map operation calculates the values
of the expressions :, and stores the results in the variables8 ′ for the vertex. The third let is mapped
to a reduction operation over vertices: given the values of the variables $ ′ in 8 ′ in each vertex, the

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

83:18 Farzin Houshmand, Mohsen Lesani, and Keval Vora

reduction operation R ′ 〈$ ′〉 reduces the values of 〈$ ′〉 for all vertices, and stores the results in the
global variables 8 ′′. Finally, the single expression 1 is calculated based on the values of 8 ′′.

The two latter primitives, vertex-based mapping and reduction, can be implemented by a traversal
over vertices. Since themapping and the reduction both traverse the vertices, a simple optimization is
to perform them in the same pass. Now, we consider how path-based reductions can be implemented.
We saw the iterative computation models in § 4. In the next subsections, we present how they can
be instantiated to implement path-based reductions. We #rst present the correctness conditions of
the iterative models to calculate path-based reductions (§ 6.1), and then present the synthesis of
iteration kernel functions based on the correctness conditions (§ 6.2).

6.1 The Correctness of Iterative Path-Based Reduction

This subsection presents the iterative calculation of path-based reductions. We consider both the
pull and push models with both idempotent and non-idempotent reduction. For each model, we
present correctness and termination conditions.
Speci!cation. Factored path-based reductions in the triple-let speci#cations have the form

R
.
F . Considering a general single reduction, 2 is either none ⊥ or a source vertex ! . The factored

reduction for the former (with no source) is simply unrolled to R"∈Paths(!) F (#) and the latter
(with the source !) is unrolled to R"∈{" | "∈Paths(!) ∧ head(")=# } F (#). Both of these reductions can
be captured as the following general speci#cation where the condition > (#) is True for the former
and is head(#) = ! for the latter.

Definition 5 (Specification). S#12 (") = R" ∈ {" | "∈Paths(!) ∧ C(") } F (#)

The reduction function R is associative and commutative. It returns ⊥ on an empty set, and returns
the single element on a singleton set.
Model Instantiation. The iterative models (we saw in § 4) are parametric in terms of the

kernel functions I, P, R, and E. We consider the correctness conditions on the kernel functions
such that the iterative models calculate the speci#ed path-based reduction. We will see in § 6.2 that
these conditions will guide automatic synthesis of the kernel functions I, P, and R for a given
path-based reduction.

Correctness. The iterative models calculate the value S$ (") of each vertex " in iterations 0 by
propagating the values of its neighbor vertices. The iteration stops when the value of no vertex
changes. The values of the vertices S$ (") are expected to converge to the speci#cation S#12 (").
We show the correctness in two steps. (1) First, we show that under certain conditions, at the end
of each iteration 0 , the value S$ (") of each vertex " is equal to the iteration speci#cation S#12$ (")
for the iteration 0 . The speci#cation S#12$ (") is de#ned as the result of reduction over paths of
length less than 0 .
Definition 6. S#12$ (") = R" ∈ {" | "∈Paths(!) ∧ C(") ∧ length(")<$ } F (#)

(2) Second, we show that under certain conditions, there is an index 0 where S#12$ (") and
5#12$+1 (") are equal with each other and S#12 (") as well. These two steps together show that the
values of vertices S$ (") eventually converge to S#12 ("). We now consider the four variants of the
iterative models. (The proofs of the theorems are available in the appendix § 3.1 and 4.4 .)

Pull Model. We consider the correctness of the pull model to calculate path-based reductions.
We look at idempotent and non-idempotent reduction functions in turn.

The correctness of the pull models is dependent on the conditions C1 - C9 presented in Fig. 13.
(A) The conditions C1 and C2 require the correctness of initialization function I. If the path
condition C holds on the simple initial path 〈", "〉, the value of the initialization function I should
be F (〈", "〉); otherwise, it should be none ⊥. (B) The conditions C3 - C5 state the requirements for

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:19

the propagation function P. The condition C3: It simply states that if the value of the vertex is none
⊥, its propagated value should be none ⊥ as well. The condition C4: We saw an illustration for C4
in Fig. 5a and Fig. 5b. For a path # , we call the value of F on # , the path value of # . The path # · 1
denotes the extension of the path # at the end with the edge 1 . Consider two paths #1 and #2 that
end in a vertex , and there is an edge 〈,, "〉 from , to another vertex " . Reducing the path values of
the two extended paths #1 · 〈,, "〉 and #2 · 〈,, "〉. should be the same as reducing the path values of
#1 and #2, and then propagating the result with P through 〈,, "〉. Intuitively, this condition states
that the local reduction and propagation e"ectively calculate reduction over paths. The condition
C5: Vertices that have only a single incoming path do not receive multiple values to be reduced.
For such vertices, C5 states that the propagation of the path value of # over an outgoing edge 1 is
equal to the path value of the extended path # · 1 . (C) The conditions C6 - C9 state the required
properties of the reduction function R. The none value ⊥ should be the identity element, and R
should be commutative, associative and idempotent. (The epilogue function E is instantiated to
identity.) For example, given the factored path-based reduction min

#
length for the shortest path

use-case SSSP, the kernel functions that we saw in Fig. 7 satisfy the conditions above.
Pull model with idempotent reduction. The following theorem states that if the conditions above

hold, then the value S$
pull+(") that the pull model with idempotent reduction (Def. 1) calculates

complies with the speci#cation S#12$ (").

Theorem 2 (Correctness of Pull (idempotent reduction)). For all R, F , C, I, P, and 0 ≥ 1,
if the conditions C1 - C9 hold, then S$

pull+(") = S#12$ (").

The full proof is available in the appendix § 4.4.1. The proof is by induction on the iteration 0 .
At the iteration 0 = 1, the speci#cation S#121 (") requires reduction on only the paths of length
zero to each vertex. Therefore, by the conditions C1 - C2, the initialization function I properly
initializes each vertex " to S#121 ("). In each iteration 0 + 1, if there is any predecessor of the vertex
" whose value is changed in the previous iteration 0 , then their new values are propagated by
P and reduced together by R, and then reduced with the current value of " . By the conditions
C7 and C8, the reduction function R is commutative and associative, and can be applied to the
propagated values in any order. By the induction hypothesis, the value of each predecessor , is the
reduction of the paths to , of length / , 0 ≤ / < 0 . The predecessors that have no paths and store ⊥
are ignored by the conditions C3 and C6. By the conditions C4 and C5, the propagation of the value
of a predecessor , of the vertex " is equal to the reduction over the paths to " that pass through ,.
Since these paths include the edge (from , to "), their length / is 0 < / < 0 + 1. The previous value
of " itself is the reduction over paths to " of length / , 0 ≤ / < 0 . Since, the reduction function R is
idempotent, reducing these two values absorbs the values of the repeated paths, and results in the
reduction over all paths of length / , 0 ≤ / < 0 + 1 that the speci#cation requires.
Pull model with non-idempotent reduction. The pull model with non-idempotent reduction

S$
pull− (") is de#ned in Def. 2. We show that it can correctly calculate path-based reductions with

non-idempotent (in addition to idempotent) reduction functions. For instance, consider the factored
path-based reduction

∑
#
1 that counts the number of paths from the source ! ; the reduction function

sum
∑

is non-idempotent. The initialization function is instantiated toI = &" . 1 and the propagation
function is instantiated to P = &-, 1 . - that simply propagates the value of the predecessor.
The following theorem states that if the conditions above except idempotency hold and the

source vertex is not on any cycle then the pull model with non-idempotent reduction S$
pull− (")

complies with the speci#cation S#12$ (").

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

83:20 Farzin Houshmand, Mohsen Lesani, and Keval Vora

Theorem 3 (Correctness of Pull (non-idempotent reduction)). For all R, F , I, P, 0 ≥ 1,
and ! , let C(#) = (head(#) = !), if C1 - C8 hold, and ! is not on any cycle, S$

pull− (") = S#12$ (").

A. Initialization:
C1 : ∀" . C(〈", "〉) → I(") = F (〈", "〉)
C2 : ∀" . ¬C(〈", "〉) → I(") = ⊥

B. Propagation:
C3 (None Propagation) :
∀1 . P(⊥, 1) = ⊥

C4 (Aggregate Propagation) :
∀#1, #2, " .

tail(#1) = tail(#2) →
let , ! tail(#1) in
P [R(F (#1), F (#2)), 〈,, "〉] =
R [F (#1 · 〈,, "〉), F (#2 · 〈,, "〉)]

C5 (Single Path) :
∀#, 1 . P(F (#), 1) = F (# · 1)

C. Reduction:
C6 (Identity) :
∀-. R(-,⊥) = -

C7 (Commutativity) :
∀-,-′. R(-,-′) = R(-′,-)

C8 (Associativity) :
∀-,-′,-′′. R(R(-,-′),-′′) = R(-,R(-′,-′′))

C9 (Idempotency) :
∀-. R(-,-) = -

Termination:
C10 : ∀# . R(F (#), F (simple(#))) = F (simple(#))

Fig. 13. Correctness and Termination Conditions

The full proof is available in the appendix
§ 4.4.2. Compared to the previous model, the re-
duction with the current value is avoided. How-
ever, no path is missed. The di"erence is only
the paths of length 0. The vertices other than
the source ! do not have a path of length 0 from
! . The source ! itself is also correctly initialized
to the value of F on the zero-length path 〈!, !〉,
and since ! is not on any cycle, its correct value
is never overwritten.

Push Model. We now consider the correct-
ness of the push model to calculate path-based
reductions.
Push model with idempotent reduction. The

following theorem states that if the conditions
C1 - C9 hold, the value S$

push+(") calculated

by the push model with idempotent reduc-
tion, (Def. 3) complies with the speci#cation
S#12$ (").

Theorem 4 (Correctness of push (idem-
potent reduction)). For all R, F , C, I, P,
and 0 ≥ 1, if the conditions C1 - C9 hold,
S$
push+(") = S#12$ (").

Push model with non-idempotent reduction.
Similarly, the following theorem states the cor-
rectness of the push model with non-idempotent reduction (Def. 4).

Theorem 5 (Correctness of Push (non-idempotent reduction)). For all R, F , I, P, 0 ≥ 1,
and ! , let C(#) = (head(#) = !), if C1 - C8 hold, and ! is not on any cycle, S$

push− (") = S#12$ (")

Termination. We show that under certain conditions, there exists an iteration 0 where
S#12$ (") (Def. 6) stays unchanged and converges to the original speci#cation S#12 (") (Def. 5).
Iterations incrementally consider longer paths; however, longer paths do not necessarily yield new
information. For example, in the shortest path use-case SSSP, after considering all the simple paths,
the longer paths (that are cyclic) cannot lead to shorter paths (in graphs with non-negative edges).
Given a path # , we call the path that results from removing its cycles the simpli#cation simple(#)
of # . In the shortest path use-case SSSP, the reduction function R is min and the path function F is
weight. Reducing the F value of simple(#) with the F value of # results in the former. Therefore,
simpli#ed paths are enough to arrive at the same result for the reduction, and longer paths do not
change the result. We capture this property as the condition C10 in Fig. 13 and prove convergence.

Theorem 6 (Termination). For all R, F , and C, if the graph is acyclic or the condition C10 holds,
then there exists 0 such that for every 0 ′ ≥ 0 , S#12$

′
(") = S#12 (").

Let / be the length of the longest simple path to the vertex " . After the iteration 0 = / + 1, the
value of S#12$ (") stays unchanged. This is because the reduction with the paths of length greater

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:21

def SynthP (F ,R)
Let ? be the return type of F .
memoize variable " for type ? and size 1
memoize variable / for type Edge and size 1
foreach (literal /(with type ?()
memoize /(for ?(and size 1

size← 1

while (true)
: ← Candidates (? , size)
foreach (1 ∈ :)
if F ;R; Γ 5 (C4 ∧ C5) [P ! (&", / . 1)]
return (&", / . 1)

size← size + 1

(a)

P ! List[V],
eweight : 〈V,V〉 → N
weight : P→ N

∀# . if (# = ⊥)
weight(#) = 0

else
let " ! head(#), # ′ ! tail(#) in
if (# ′ = ⊥) weight(#) = 0

else
let " ′ ! head(# ′) in
weight(#) = weight(# ′) + eweight(〈" ′, "〉)

(b)

Fig. 14. (a) Synthesis of the Propagation Function P. (b) Context assertions Example.

than / does not change the value of S#12$ ("). If a path # that is longer than / exists, then # is not
simple, i.e., it includes a cycle. This is refuted if the graph is acyclic. Otherwise, the simpli#cation
of # , simple(#), is already in the set of paths of length less than / + 1 and by the condition C10,
reducing the path value of # with the path value of simple(#) results in the path value of simple(#).
An immediate corollary of the above two theorems is that iteration eventually terminates and

converges to the speci#cation S#12 (") (if the corresponding conditions in Theorem 2 to Theorem 5
hold). The #nal iteration is simply the maximum value of 0 from Theorem 6 for all vertices. For
example, the corollary for the pull model for idempotent reduction functions is the following.

Corollary 7 (Termination for pull model with idempotent reduction). For all R, F , C,
I, and P, if the conditions C1 - C9 hold, and the graph is acyclic or the condition C10 holds, then there
exists an iteration 0 such that S$

pull+(") = S#12 (").

We state the correctness conditions and prove similar theorems for all the models. The informal
and formal proofs are available in the appendix § 3.1 and 4.4 respectively.

6.2 Synthesis of Iterative Reduction

Given a path-based reduction R
.
F , we now use the correctness conditions presented in the previous

subsection to automatically synthesize correct-by-construction kernel functions.
For example, consider the push iterative model with idempotent reduction that we saw in Fig. 8,

Def. 3. By Theorem 4, we need to #nd the functions I, P ′ and R ′ such that the conditions C1
- C10 (presented in Fig. 13) hold. We use these conditions to synthesize the functions I, P ′ and
R ′. In particular, (1) we use the initialization conditions C1 - C2 to synthesize I, (2) we use the
propagation conditions C4 and C5 to synthesize P and then wrap it in the following function P ′ to
handle none ⊥ values and satisfy the condition C3. The some value of " is denoted as ["].

P ′ ! &-, 1 . if (- = ⊥) return ⊥ else return [P(-, 1)]

and (3) we check the conditions C7 - C9 for the reduction function R, and then wrap R in the
following reduction function R ′ to handle none ⊥ values so that the condition C6 is satis#ed. If the
conditions C7 - C9 hold for R, they hold for R ′ as well.

R ′ ! &',(. if (' = ⊥) return (else if ((= ⊥) return '
else return [R(',()]

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

83:22 Farzin Houshmand, Mohsen Lesani, and Keval Vora

To #nd candidate expressions for the body of I and P, we apply a type-guided enumerative
search. It enumerates expressions from the grammar that we saw in Fig. 7a in the order of increasing
size. To support overloaded operators, the expression constructors have union types. To synthesize
an expression of the given type, the search only considers expression constructors that return that
type. Given the parameter types of the constructor, it then recursively searches for the arguments,
and uses memoization to avoid redundant enumeration.

The procedure SynthP that synthesizes P is shown in Fig. 14a. (The synthesis of the other kernel
functions is similar.) It starts by memoizing expressions of size one, literals and variables, to make
them available for the synthesis of the body of P. Let? be the return type of F ; thus, vertices store
values of type ? . The propagation function P takes a value stored at a vertex (of type of ?) and
an edge (of type Edge) and returns a vertex value (of type ?). Thus, the two input parameters of
type ? and Edge are memoized as available expressions. Then, candidate bodies for P (of type ?)
of increasing sizes are obtained.

A candidate is correct if the condition C4 and C5 are valid when P is replaced with the candidate.
To check the validity of an assertion, we use o"-the-shelf SMT solvers to check the satis#ability of
its negation. The context of the validity check F ;R; Γ is the de#nition of the functions F and R
from the given path-based reduction, and a set of assertions Γ that de#ne basic graph functions and
relations. We model paths P as lists of vertices V, and de#ne graph functions and relations including
the path functions length, weight, punultimate and capacity in the combination of the quanti#ed
uninterpreted functions and list theories. Fig. 14b showcases the axiomatization of the weight
function in Γ. (More assertions are available in the appendix § 3.2.) The edge-weight eweight is a
function on pairs of vertices 〈V,V〉, and the path weight weight is a function on paths P to natural
numbers N. If the list for the path is empty or has a single vertex, the weight of the path is trivially
zero; otherwise, the weight of the path is recursively the sum of the weight of the path without the
last edge, and the edge-weight of the last edge.

For termination, we check a stronger condition than C10. We remove an edge instead of a cycle:
for every path # and edge 1 , if reducing the F value of # with the F value of # · 1 results in the
former, then the reduction is terminating. (For the push variant that requires rollback, after the
propagation function P is synthesized, a correctness condition on P and the rollback function B is
used to synthesize B (appendix § 3.1.2).)

7 EXPERIMENTAL RESULTS

Implementation. We implemented the Grafs synthesis tool in three parts: fusion, synthesis
and backends. The fusion phase closely follows the fusion rules (of § 5.2) using the visitor pattern.
The synthesis phase uses the Z3 SMT solver to check the validity of the correctness conditions.
Grafs incorporates a dedicated backend for each framework. Each backend generates a framework-
speci#c C++ #le containing the initialization I, propagation P, (if needed rollback B) and reduction
function R. (The di"erent mappings for each of the target frameworks are presented in the appendix
§ 5.1.) Grafs can be modularly extended with backends for new frameworks.

Platform and Benchmarks. We performed the experiments on a 4-node cluster, each with 32
cores and 64GB memory. The experiments for frameworks that are exclusively for shared memory
are performed on one of these nodes. The nodes are connected via 40Gbps In#niBand network, and
they run CentOS 7.4 Linux x86_64 kernel version 3.10. All programs are compiled with gcc-5.1.0
(for Ligra, GridGraph and GraphIt) and mpich-3.2.1 and openmpi-3.0 (for PowerGraph and Gemini,
respectively). We used social network graphs of various sizes: LiveJournal (LJ, 1.1@A), Twitter (TW,
23@A), TwitterMPI (TM, 28@A), and Friendster (FR, 31@A). We report the average of 5 executions.
Results Summary. To evaluate the Grafs synthesis tool, we study the e"ect of fusion on

performance. Then, we study the e"ect of di"erent fusion types separately. The experiments show

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:23

Table 1. Execution times (in seconds). H: Handwri!en, S: Synthesized, R: the ratio B/5 .

Prog. Input
Ligra GridGraph Gemini PowerGraph (Push) PowerGraph (Pull) GraphIt (Push)

H S R H S R H S R H S R H S R H S R

DRR

LJ 1.03 0.33 3.1 15.3 3.8 4 1.2 0.4 3 20.4 6.4 3.2 36 10 3.6 0.63 0.21 3
TW - - - 82 23 3.6 7.2 3.7 2 120 48 2.5 292 81 3.6 16.3 5.4 3
TM - - - 141 44 3.3 8.9 3.8 2.3 166 50 3.3 462 86 2.9 19 6 3.1
FR - - - 265 73 3.6 13 4.9 2.6 247 86 2.9 522 154 3.4 30 9.3 3.2

Trust

LJ 1 0.36 2.7 14.1 4.4 3.2 1.18 0.62 1.9 20.5 7.5 2.7 37 10 3.7 0.61 0.29 2.1
TW - - - 85 28 3.1 6.2 5 1.2 122 50 2.4 293 99 2.9 16.1 8.3 1.9
TM - - - 122 40 3 7.5 5.6 1.3 157 71 2.2 455 129 3.5 17.2 6.9 2.5
FR - - - 218 117 2 10.1 6.7 1.5 252 98 2.6 526 173 3 28 13 2.1

LTrust

LJ 1.02 0.63 1.6 11.5 6 1.9 1.13 0.86 1.3 23 15.1 1.5 41 28 1.4 0.59 0.39 1.5
TW - - - 74 47 1.6 6.1 4.9 1.2 130 108 1.2 - - - 16 11.4 1.4
TM - - - 142 82 1.7 7.3 6 1.2 200 134 1.5 - - - 10 20.1 2
FR - - - 210 175 1.2 10.2 8.8 1.1 286 198 1.5 - - - 34 24.9 1.3

0
20
40
60
80
100

N
or
m
al
iz
ed

#
of

op
s
(%
)

Ligra Grid
Graph

Gemini PG
Push

PG
Pull

GraphIt

(DRR)

Ligra Grid
Graph

Gemini PG
Push

PG
Pull

GraphIt

(Trust)

Ligra Grid
Graph

Gemini PG
Push

PG
Pull

GraphIt

(LTrust)

Fig. 15. Edge-work Ratio: Normalized # of edges processed by the fused over the unfused version. Missing
bars correspond to programs not successfully running on input graphs.

LJ
TW
TM
FR

20
40
60
80
100

N
o
rm

al
iz
ed

#
o
f
o
p
s
(%
)

Ligra Grid
Graph

Gemini PG
Push

PG
Pull

GraphIt

(a):WSP-un

Ligra Grid
Graph

Gemini PG
Push

PG
Pull

GraphIt

(b):NWR-un

Ligra Grid
Graph

Gemini PG
Push

PG
Pull

GraphIt

(c):Radius-un

20
40
60
80
100

N
o
rm

al
iz
ed

#
o
f
o
p
s
(%
)

(d):WSP-w (e):NWR-w (f):Radius-w

Fig. 16. Edge-work ratio: # of edges processed by the fused over the unfused version. Missing bars correspond
to programs not successfully running on inputs. (Absolute execution times are available in the appendix § 6.2.)

that fusion can lead up to 4× and in average 2.4× faster execution time compared to the unfused
codes. We then report the number of lines of code for the speci#cations and their synthesis time.
Compared to existing frameworks, Grafs allows signi#cantly more concise speci#cations, and can
e!ciently generate code in less than two minutes. Finally, we compare the synthesized code with
handwritten versions for use-cases available in the frameworks. Experimental results show that the
synthesized code either matches or outperforms handwritten code. We then show that synthesized
programs scale similar to handwritten programs. (More experiments including the scalability of
fusion on di"erent number of sources for Radius are available in the appendix § 6.)
The E"ect of Fusion. We study the performance bene#ts of fusion on the more elaborate

use-cases: Trust, DRR, and LTrust (presented in Fig. 6). The absolute execution times and edge-
work ratio are presented in Table 1 and Fig. 15 respectively. The goal of these measurement is to

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

83:24 Farzin Houshmand, Mohsen Lesani, and Keval Vora

compare handwritten and synthesized programs. Therefore, for each pair, we #x the framework, its
con#guration and the iterative model. These measurements are not meant to compare frameworks
with each other, as #ne-tuning con#gurations is framework-speci#c and orthogonal to the goal of
these experiments. The number of edges processed by a program indicates the number of times
that propagation happens across edges; thus, it represents the amount of computation performed
throughout the execution. The edge-work ratio is the number of edges processed by the synthesized
(fused) programs normalized w.r.t. that by the unfused versions. The experimental results show
that fusion reduces the edge-work ratio up to a quarter and leads to up to 4× speedup. These
use-cases bene#t from fusion rules for path-based and vertex-based reductions, common operation
elimination (appendix § 2.2.1) and factoring of nested vertex-based reductions (appendix § 2.2.6).

DRR. DRR calculates the ratio of the diameter over radius sampled over two sources. In addition
to the rules FMPair, FRPair and FLetsBin which fuse path-based and vertex-based reductions,
common operation elimination factors redundant path-based computations in diameter and radius.
Therefore, instead of 4 reductions, Grafs fuses and calculates 1 reduction. (The complete fusion
steps are available in the appendix § 2.3.) In Fig. 15, we observe that the edge-work ratio is 25-40%.
This translates to 2-4× speedup in Table 1.

Trust. Trust speci#es the trust from a given set of sources to other vertices. It applies division
and maximum operator between path-based reductions: the widest and shortest paths. The rules
FILetBin and FMPair fuse the 4 path-based reductions to 1. As Fig. 15 shows, the edge-work ratio
is 25-40%, and as Table 1 shows, the speedup is 1.2-3.7×. We note that the theoretical bound on the
edge-work ratio for both DRR and Trust is 25%, which happens when the path-based computations
for the two sources fully overlap.
LTrust. Given a source ! , LTrust calculates the narrowest of the widest paths to vertices

within the distance Radius from ! . LTrust has a nested reduction for Radius that is factored
and then fused. Moreover, the two path-based reductions, the narrowest and shortest paths, are
fused by the rules FILetBin and FMPair. This results in a sequence of two iteration-map-reduce
rounds. The unfused and fused programs perform four and two sequences of iteration-map-reduce
rounds respectively. The theoretical bound for the edge-work ratio is 50% . Fig. 15 shows that the
edge-work ratio is 57-85% which translates to 1.1-2× speedup in Table 1.

Fusion Types. In order to study the performance bene#ts of di"erent types of fusion rules, we
compare the unfused and the fused implementations of three representative use-cases: WSP, NWR
and Radius (presented in Fig. 6). Fig. 16 shows the edge-work ratio. We visit the use-cases and the
applied fusion rules in turn.
WSP. The unfused program for WSP consists of two computation phases over the edges of

the input graph, one after the other. The #rst calculates the shortest paths from the given source
to all the vertices, and the second computes the capacity of the widest path across the shortest
paths.WSP is fused by the rule FPNest that fuses nested path-based reductions. The fused program
executes the two computations above in one pass over a pair of values.

Assessment. Fig. 16a and Fig. 16d show the edge-work ratio ofWSP for unweighted and weighted
graphs respectively. In unweighted graphs, the fused program processes half the number of edges
processed by the unfused program (50% ratio). The ratio is 50-70% for the weighted graphs. When
graphs are unweighted, each edge represents a unit cost (either weight or capacity). In each iteration,
the set of edges that contribute to the weight and capacity values of a vertex are the same. The
fused program exploits this overlap by simultaneously propagating the two values across each
edge. However, for weighted graphs, the two values can be propagated to the vertex in di"erent
iterations resulting in di"erent shortest and widest paths. Hence, the fused program exploits the
partial overlap between the processed edges.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:25

Usecase #PBR1 T2 GF 3 L4 GG5 G6 PG7 GI8

BFS 1 25 1 32 100 185 280 130
CC 1 1 1 47 60 117 210 130
SSSP 1 24 1 66 73 117 280 133
WP 1 29 1 66 73 117 280 133
WSP 2 44 2 85 95 197 294 40
NWR 2 58 2 80 95 222 294 40
Radius 2 49 2 38 65 222 294 40
DRR 4 50 3 65 110 213 561 111
Trust 4 105 3 105 145 300 481 96
LTrust 4 102 4 115 148 302 481 107

1 # of path-based reductions
2 Synthesis time (s)
3 GF: LoC in Grafs
4 L: LoC in Ligra

5 GG: LoC in GridGraph
6 G: LoC in Gemini
7 PG: LoC in PowerGraph
8 GI: LoC in GraphIt

(a)

1 2 4 8 16 32

10

5

3
2

1

0.5

2.6
2.4

2.4

2.4

2.3
2.7

E
xe
cu
ti
on

ti
m
e
(s
)

Trust-H
Trust-S

1 2 4 8 16 32

10

5

3
2

1

0.5

3.6
3.1

3

3

3.1
3.1

DRR-H
DRR-S

1 2 4 8 16 32

10

5

3

2

1

0.5

1.6
1.5

1.6

1.5

1.5
1.6

of cores

E
xe
cu
ti
on

ti
m
e
(s
)

LTrust-H
LTrust-S

1 2 4 8 16 32

5

3

2

1

0.5

1.5

1.5

1.5

1.6

1.6
1.8

of cores

WSP-H
WSP-S

(b)

Fig. 17. (a): Synthesis time and the number of lines of code, (b): Scalability on Ligra. X-axis: # of cores. Y-axis:
time is logarithmic scale. H: Handwri!en. S: Synthesized.

NWR. The unfused version of NWR calculates the narrowest and the widest paths separately.
The two are fused by the rule FMPair that fuses multiple path-based reductions into one. It fuses
the two reduction functions to one reduction function that operates on pairs. The fused propagation
function passes the narrowest and widest values over an edge at the same time.
Assessment. Fig. 16b and Fig. 16e show the edge-work ratio for NWR for unweighted and

weighted graphs respectively. Similar to WSP, the fused program reduces the number of processed
edges to 50% for unweighted graphs and to 51-73% for weighted graphs.
Radius. Radius computes eccentricity (i.e. the maximum shortest distance) by sampling over

two sources. The unfused version computes eccentricity separately for each source. However,
Radius is fused by the rule FMPair (that we considered above) and the rule FRPair which fuses
multiple vertex-based reductions into a single reduction.
Assessment. Fig. 16c and Fig. 16f show the edge-work ratio for Radius for unweighted and

weighted graphs respectively. We observe that on unweighted graphs, the edge-work ratio is
52-78%. This ratio is 53-74% on weighted graphs. Even though fusion enables computation of
multiple eccentricity values at the same time, contrary toWSP and NWR, we do not observe the
50% reduction. This is because eccentricity computations across di"erent sources can occur via
non-overlaping paths. The fused version exploits the partial overlaps.

We observe that the reduction in edge computations is di"erent across di"erent frameworks as
well. For example, the edge-work ratio is 52-68% in GridGraph, whereas 54-78% in PowerGraph.
This is because of the di"erence in the scheduling strategies across these di"erent frameworks, that
lead to di"erent overlaps in edge computations. (The absolute execution times for the use-cases
above,WSP, NWR and Radius, are available in the appendix § 6.2.)

Synthesis Time and LoC. Fig. 17a presents the synthesis time for the use-cases. Synthesis is
done in less than 2 minutes and often less. It also compares the lines of code (LoC) that user should
write in Grafs and the other #ve frameworks. For each use-case, it reports the number of lines of
code of the functions or struct de#nitions where a change is needed for that use-case. We observe
that the Grafs speci#cations are signi#cantly smaller.
Synthesized Matching Handwritten. We compared the performance of the synthesized

programs and their equivalent handwritten programs on #ve use-cases BFS, CC, SSSP, WP (widest
path) and PR. We adopted the handwritten implementations of BFS, CC, SSSP and PR that are
available in the frameworks, and developed WP based on SSSP by updating the path function.
Table 2 shows the execution times of the handwritten programs (H) and synthesized programs (S),

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

83:26 Farzin Houshmand, Mohsen Lesani, and Keval Vora

Table 2. Execution Times (in seconds). H: Handwri!en, S: Synthesized, R: the ratio H/S, ER: edge-work ratio.
Missing cells are due to either missing handwri!en use-cases (PR) or not successfully running on an input

Prog. Input
Ligra GridGraph Gemini PowerGraph (Push) PowerGraph (Pull) GraphIt (Push)

H S R ER H S R ER H S R ER H S R ER H S R ER H S R ER

BFS

LJ 0.38 0.37 1.02 1 1.56 1.56 1 1 0.38 0.39 0.99 1 5.9 5.6 1.04 1 10.1 9.3 1.09 1 0.16 0.15 1.06 1
TW 8.6 8.7 0.98 1 210 195 1.07 1 2.9 2.9 1 1 33.7 30.8 1.1 1 69.6 64.2 1.08 1 4.6 3.8 1.2 1
TM 7.1 7 1.01 1 487 472 1.03 1 3.1 3.2 0.96 1 48.8 43.4 1.12 1 108.9 106.3 1.02 1 4.1 4.1 1 1
FR - - - - 521 532 0.97 1 3.7 3.9 0.96 1 69.9 64.8 1.07 1 131 118 1.11 1 7.8 8.2 0.95 1

CC

LJ 0.36 0.38 0.94 1 2.21 2.22 0.99 1 0.77 0.77 1 1 13 10 1.3 0.45 19.6 18.9 1.03 1 0.18 0.19 0.94 1
TW 21 20 1.05 1 230 214 1.07 1 4.8 4.9 0.98 1 84.4 69.6 1.21 0.33 122.6 119.1 1.02 1 6.3 7.5 0.84 1
TM 13 15 0.86 1 432 423 1.02 1 7.5 7.6 0.98 1 160.3 129.7 1.23 0.45 262.7 241.4 1.08 1 6.1 6.1 1 1
FR - - - - 606 599 1.01 1 14 14.3 0.98 1 259.1 200.7 1.3 0.43 292.3 293 0.99 1 12.2 11.7 1.04 1

SSSP

LJ 0.54 0.57 0.94 1 2.42 2.1 1.15 1 0.45 0.49 0.9 1 7.3 7.3 1 1 13.3 13.1 1.01 1 0.2 0.22 0.9 1
TW - - - - 201 205 0.98 1 2.8 2.8 1 1 36.1 35 1.03 1 87.6 84.6 1.03 1 4.4 4.7 0.93 1
TM - - - - 490 487 1 1 2.8 3 0.94 1 47.5 48.8 0.97 1 137.4 125.3 1.09 1 5 5.3 0.94 1
FR - - - - 572 570 1 1 5 5.4 0.92 1 96.1 90.9 1.05 1 176.9 182.9 0.96 1 12.6 14 0.9 1

WP

LJ 0.61 0.64 1.04 1 3.46 3.2 1.08 1 0.45 0.47 0.97 1 7.8 7.9 0.98 1 15.1 14.7 1.02 1 0.25 0.2 1.25 1
TW - - - - 245 242 1.01 1 3 3 1 1 36.4 36.4 1 1 93.2 91.68 1.01 1 5.5 5 1.1 1
TM - - - - 479 498 0.96 1 3.2 3.2 1 1 57.6 54 1.06 1 175.7 160.5 1.09 1 8.2 7.5 1.09 1
FR - - - - 551 545 1.01 1 5.5 5.8 0.95 1 86.3 97.2 0.88 1 198.4 225.8 0.87 1 10.9 9.6 1.13 1

PR

LJ 19.5 19 1.01 1 44 37 1.1 1 21 21 1 1 - - - - 80 80 1 1 11.8 11.4 1.03 1
TW 673 664 1 1 1000 908 1.1 1 282 400 0.7 1 - - - - 1128 1041 1.08 1 319 331 0.96 1
TM 597 646 0.92 1 1399 1441 0.97 1 880 860 1.02 1 - - - - 1157 1078 1.07 1 596 613 0.97 1
FR - - - - 1023 995 1.02 1 590 577 1.02 1 - - - - 601 548 1.09 1 260 280 0.93 1

Table 3. Metrics for Comparing Handwri!en and Synthesized Code. H: Handwri!en, S: Synthesized. (Power-
Graph does not require the user to write atomic operations.)

Prog.
Vertex Data Size (bytes) :: Edge Data Size (bytes) # Atomics Per Edge

Ligra GridGraph Gemini PowerGraph GraphIt Ligra GridGraph Gemini PowerGraph GraphIt

H S H S H S H S H S H S H S H S H S H S

BFS 8::0 8::0 8::0 8::0 8::0 8::0 12::0 12::0 4::0 8::0 1 1 1 1 1 1 0 0 1 1
CC 4::0 4::0 4::0 4::0 4::0 4::0 8::0 8::0 4::0 4::0 1 1 1 1 1 1 0 0 1 1
SSSP 4::4 4::4 4::4 4::4 4::4 4::4 4::4 4::4 4::4 4::4 1 1 1 1 1 1 0 0 1 1
WP 4::4 4::4 4::4 4::4 4::4 4::4 4::4 4::4 4::4 4::4 1 1 1 1 1 1 0 0 1 1
PR 4::0 4::0 4::0 4::0 8::0 8::0 8::0 8::0 4::0 4::0 1 1 1 1 1 1 0 0 0 0

and their relative ratio (R), i.e., former divided by the latter. It also reports the edge-work ratio (ER)
that is the number of edges processed by the synthesized programs divided by that processed by the
handwritten versions. (The PR use-case was run until convergence.) Although the execution time
is primarily dependent on the number of processed edges, it is also dependent on the e!ciency of
the kernel functions, which is in$uenced by the number of vertex and edge variables and atomic
operations. To have a more precise comparison, in Table 3, we further compare the number of
atomic operations per edge computation, and the state maintained per vertex and edge, which are
two key factors for e!ciency of graph computations.

Assessment. We observe in Table 2 that the synthesized programs process the same number of
edges compared to handwritten programs in Ligra, GridGraph and Gemini. On PowerGraph (for
the use-case CC in the push model), the synthesized program process fewer edges. This is due to
unnecessary processing of all the edges in the #rst iteration in the handwritten program which
the synthesized version avoids. We also observe that the execution time is closely related to the
number of processed edges. The performance of the handwritten and synthesized code is similar
in most cases. The synthesized CC for PowerGraph in the push model performs 28% faster. We
observe in Table 3 that the number of atomic operations per edge is exactly the same as that in the
handwritten programs, and the size of the state per vertex and edge is minimal.
Scalability. Fig. 17b shows the scalability of both the handwritten and synthesized code on

the Ligra framework and LJ input graph for four use-cases: Trust, DRR, LTrust, andWSP. The
speedup remains steady around 2.5×, 3.1×, 1.5× and 1.5× respectively. As we saw in § 5, fusion

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:27

preserves, and furthermore increases, the parallelism of speci#cations. Moreover, the synthesized
codes retain the edge- and vertex-level parallelism o"ered by the frameworks. They never rely on
major synchronization bottlenecks (e.g., locking multiple edges or vertices at the same time). Thus,
synthesized programs scale similar to handwritten programs.

8 RELATEDWORK

Graph Processing Frameworks. Graph processing systems provide interfaces to hide the imple-
mentation details such as parallelism, synchronization and communication in scalable runtimes.
At the heart of graph computations are operations over vertex and edge values and scheduling
policies to determine the order in which operations are performed. Parallelism is often extracted at
the vertex and edge level, and hence, most interfaces allow computations to be directly expressed
as vertex-level and edge-level operations [Dathathri et al. 2018; Gonzalez et al. 2012; Grossman
et al. 2018; Hoang et al. 2019; Low et al. 2012, 2014; Malewicz et al. 2010; Mariappan et al. 2021;
Mariappan and Vora 2019; Nguyen et al. 2013; Roy et al. 2013; Shun and Blelloch 2013; Vora 2019;
Vora et al. 2017; Zhang et al. 2018; Zhu et al. 2016, 2015]. Certain DSLs raise the abstraction level
by expressing the operation in the form of sequential programs or datalog queries, in order to
simplify development of graph algorithms [Aberger et al. 2017; Hong et al. 2012; Rodriguez 2015;
Sevenich et al. 2016; van Rest et al. 2016; Zhang et al. 2018]. Others [Cheramangalath et al. 2017; Gill
et al. 2018; Shashidhar and Nasre 2016] focus on generating implementations of graph algorithms
for di"erent architectures such as GPUs. Unlike our synthesis process that generates codes for
multiple graph processing frameworks, these systems generate implementations that are tied to
their runtime speci#cs. Moreover, Grafs synthesizes the kernel functions.

Declarative Graph Processing DSLs. Fregel [Emoto et al. 2016] is a domain-speci#c language
that allows graph computations to be expressed as a higher-order function that is applied at
every vertex. Its latest version compiles code to the Giraph and Pregel+. Similar to Grafs, Fregel
is declarative, models termination conditions, and applies optimizing transformations (such as
tupling). Following Fregel, Palgol [Zhang et al. 2017] extends Fregel’s functional interface with
remote data access. Similarly, s6graph [Coll Ruiz et al. 2016] is a graph processing framework with
a functional interface and dedicated runtime. In addition to a vertex-centric intermediate language,
Grafs presents a higher-level language for path-based computations and its semantics, formally
models a comprehensive set of the common iterative models and proves the formal correctness
and termination conditions for them, captures the canonical iteration-map-reduce primitives as a
let form and presents several fusion optimization types that transform speci#cations into these
primitives, combines type-directed enumerative and constrained-based synthesis to generate the
iterative kernel functions, and generates implementations in #ve graph processing frameworks.
Elixir [Prountzos et al. 2012, 2015] captures a graph computation as an operator on a graph

neighborhood that is iteratively applied to the graph non-deterministically. It allows declarative
constraints for scheduling, implementation selection, and synchronization insertion into the op-
erators and applies automated planning to #nd multiple implementations. LM [Cruz et al. 2014]
and CLM [Cruz et al. 2016] present a logic programming language for programming over graph
structures and algorithms. Similar to Elixir, CLM supports declarative speci#cation of scheduling
and partitioning policies that allows programmers to add logical rules for optimization. In contrast,
Grafs o"ers a more high-level speci#cation language for path-based computations, applies fusion
optimizations, formalizes correctness and termination conditions for iterative computations, and
uses them to automatically synthesize the iterative kernel functions.
To simplify constructing and reasoning about programs, declarative programming [Rocha and

Launchbury 2011] is applied to many domains such as compiler optimization [Lindig and Ramsey
2004], parallel programming [Cruz et al. 2014] and con#guration generation [Hewson et al. 2012].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

83:28 Farzin Houshmand, Mohsen Lesani, and Keval Vora

Program Synthesis. Program synthesis has always been an area of interest for computer
scientists. Previous works have employed enumeration [Itzhaky et al. 2010; Udupa et al. 2013], vari-
ants of syntax-guided synthesis [Alur et al. 2013] and type-guided synthesis [Osera and Zdancewic
2015; Polikarpova et al. 2016] to synthesize protocol snippets [Udupa et al. 2013] and Excel macros
[Gulwani 2011; Gulwani et al. 2012]. Grafs’s synthesis process enumerates graph processing kernel
functions based on a syntax grammar for local computations.

Previous works have also used constraint solving to #ll holes in program sketches [Solar-Lezama
et al. 2005, 2006] including architectural kernel functions [Xu et al. 2014], and to synthesize control
structures, imperative programs [Feng et al. 2017; Srivastava et al. 2010] and program templates [Bar-
man et al. 2015], and to compose APIs [Jha et al. 2010; Shi et al. 2019]. The Grafs synthesis tool
applies SMT solvers to check that the candidate kernel functions satisfy the correctness conditions
of the iterative models. Built on top of Fregel, [Morihata et al. 2018] uses SMT solvers to optimize
kernel functions. In contrast, Grafs automatically synthesizes the kernel functions.
Superoptimization is another thread of synthesis which applies stochastic search methods to

synthesize programs [Bansal and Aiken 2006; Joshi et al. 2002, 2006; Massalin 1987; Schkufza et al.
2013]. Moreover, Souper [Sasnauskas et al. 2017] took a step further by synthesizing superoptimizers.
In contrary to superoptimization which focuses on optimizing machine-level code, Grafs fusion
rules optimize high-level graph processing speci#cations.
Distributed and concurrent program synthesis. Big& [Smith and Albarghouthi 2016]

synthesizes map-reduce-style distributed programs and SCYTHE [Wang et al. 2017] synthesizes
SQL queries based on the programming-by-example approach. Hamsaz [Houshmand and Lesani
2019] minimizes and synthesizes coordination between replicas in a distributed system. Transit
[Udupa et al. 2013] describes a distributed protocol as both symbolic and concrete execution
fragments called concolic snippets, and applies solvers and user feedback to interactively generate
the implementation. All three works above have di"erent synthesis domains than Grafs.
Previous works have synthesized concurrent programs either by inferring atomic sections and

inserting synchronization primitives [Bloem et al. 2014; Cherem et al. 2008; Cunningham et al.
2008; Halpert et al. 2007; Vechev and Yahav 2008; Vechev et al. 2010], or by following semantic
preserving rules to transform sequential to concurrent programs [Cerny et al. 2017, 2013, 2014].

Fusion. Fusion is a versatile optimization technique. Loop fusion [Bondhugula et al. 2008; Darte
1999; Kennedy and McKinley 1993; Qasem and Kennedy 2006] merges the bodies of loops on regular
structures such as arrays and hence reduces the number of memory accesses and improves locality.
Fusion also has been applied to tree structures [Rajbhandari et al. 2016a,b; Sakka et al. 2017, 2019] to
combine multiple phases of traversal or fuse di"erent stages of data processing pipelines [Saarikivi
et al. 2017] to enhance data locality. Deforestation of functional programs [Chin 1992; Gill et al.
1993; Johann and Visser 2000; Wadler 1988] combines a sequence of function applications into
a single application and eliminates intermediate values. However, deforestation is oblivious to
the primitives of graph computation. Graph computations use three fundamental primitives; thus,
Grafs structures these primitives as the triple-let term. The fusion rules transform computations
to this structure and maintain it during fusion.

9 CONCLUSION

We saw Grafs, a declarative graph analytics language and synthesizer. It features semantics-
preserving fusion optimizations. It automatically synthesizes kernel functions based on correctness
conditions for iterative reductions, and generates code for high-performance graph processing
frameworks. We hope that Grafs motivates fundamental research in declarative languages and
automatic synthesis techniques and tools for graph analytics and broadly data mining.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

Grafs: Declarative Graph Analytics 83:29

REFERENCES

Christopher R Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun, and Christopher Ré. 2017. Emptyheaded:
A relational engine for graph processing. ACM Transactions on Database Systems (TODS) 42, 4 (2017), 20. https:
//doi.org/10.1145/3129246

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A Seshia, Rishabh Singh,
Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In 2013 Formal Methods in
Computer-Aided Design. IEEE, 1–8.

Sorav Bansal and Alex Aiken. 2006. Automatic generation of peephole superoptimizers. In ACM Sigplan Notices, Vol. 41.
ACM, 394–403. https://doi.org/10.1145/1168857.1168906

Shaon Barman, Rastislav Bodik, Satish Chandra, Emina Torlak, Arka Bhattacharya, and David Culler. 2015. Toward tool
support for interactive synthesis. In 2015 ACM International Symposium on New Ideas, New Paradigms, and Re"ections on
Programming and Software (Onward!). ACM, 121–136. https://doi.org/10.1145/2814228.2814235

Roderick Bloem, Georg Ho"erek, Bettina Könighofer, Robert Könighofer, Simon Ausserlechner, and Raphael Spörk. 2014.
Synthesis of Synchronization Using Uninterpreted Functions. In Proceedings of the 14th Conference on Formal Methods
in Computer-Aided Design (Lausanne, Switzerland) (FMCAD ’14). FMCAD Inc, Austin, TX, Article 11, 8 pages. http:
//dl.acm.org/citation.cfm?id=2682923.2682937

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A Practical Automatic Polyhedral Parallelizer
and Locality Optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Tucson, AZ, USA) (PLDI ’08). ACM, New York, NY, USA, 101–113. https://doi.org/10.1145/1375581.
1375595

Pavol Cerny, Edmund M. Clarke, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, Roopsha Samanta, and
Thorsten Tarrach. 2017. From Non-preemptive to Preemptive Scheduling Using Synchronization Synthesis. Form.
Methods Syst. Des. 50, 2-3 (June 2017), 97–139. https://doi.org/10.1007/s10703-016-0256-5

Pavol Cerny, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and Thorsten Tarrach. 2013. E!cient Synthesis
for Concurrency by Semantics-Preserving Transformations. In Computer Aided Veri!cation, Natasha Sharygina and
Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 951–967.

Pavol Cerny, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and Thorsten Tarrach. 2014. Regression-Free
Synthesis for Concurrency. In Computer Aided Veri!cation, Armin Biere and Roderick Bloem (Eds.). Springer International
Publishing, Cham, 568–584.

Unnikrishnan Cheramangalath, Rupesh Nasre, and Y N. Srikant. 2017. DH-Falcon: A Language for Large-Scale Graph
Processing on Distributed Heterogeneous Systems. 439–450. https://doi.org/10.1109/CLUSTER.2017.72

Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. 2008. Inferring locks for atomic sections. ACM SIGPLAN Notices 43,
6 (2008), 304–315.

Wei-Ngan Chin. 1992. Safe fusion of functional expressions. In ACM SIGPLAN Lisp Pointers. ACM, 11–20.
Onofre Coll Ruiz, Kiminori Matsuzaki, and Shigeyuki Sato. 2016. s6raph: vertex-centric graph processing framework with

functional interface. In Proceedings of the 5th International Workshop on Functional High-Performance Computing. 58–64.
Flavio Cruz, Ricardo Rocha, and Seth Copen Goldstein. 2016. Declarative coordination of graph-based parallel programs. In

Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 1–12.
Flavio Cruz, Ricardo Rocha, Seth Copen Goldstein, and Frank Pfenning. 2014. A linear logic programming language for

concurrent programming over graph structures. Theory and Practice of Logic Programming 14, 4-5 (2014), 493–507.
Dave Cunningham, Khilan Gudka, and Susan Eisenbach. 2008. Keep o" the grass: Locking the right path for atomicity. In

International Conference on Compiler Construction. Springer, 276–290.
Alain Darte. 1999. On the complexity of loop fusion. In 1999 International Conference on Parallel Architectures and Compilation

Techniques (Cat. No. PR00425). IEEE, 149–157.
Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks, Nikoli Dryden, Marc Snir, and Keshav Pingali.

2018. Gluon: A Communication-optimizing Substrate for Distributed Heterogeneous Graph Analytics. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia, PA, USA) (PLDI
2018). ACM, New York, NY, USA, 752–768. https://doi.org/10.1145/3192366.3192404

Kento Emoto, Kiminori Matsuzaki, Zhenjiang Hu, Akimasa Morihata, and Hideya Iwasaki. 2016. Think like a vertex, behave
like a function! a functional DSL for vertex-centric big graph processing. ACM SIGPLAN Notices 51 (09 2016), 200–213.
https://doi.org/10.1145/3022670.2951938

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W Reps. 2017. Component-based synthesis for complex
APIs. ACM SIGPLAN Notices 52, 1 (2017), 599–612.

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. 1993. A Short Cut to Deforestation. In Proceedings of the
Conference on Functional Programming Languages and Computer Architecture (Copenhagen, Denmark) (FPCA ’93). ACM,
New York, NY, USA, 223–232. https://doi.org/10.1145/165180.165214

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

https://doi.org/10.1145/3129246
https://doi.org/10.1145/3129246
https://doi.org/10.1145/1168857.1168906
https://doi.org/10.1145/2814228.2814235
http://dl.acm.org/citation.cfm?id=2682923.2682937
http://dl.acm.org/citation.cfm?id=2682923.2682937
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1007/s10703-016-0256-5
https://doi.org/10.1109/CLUSTER.2017.72
https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1145/3022670.2951938
https://doi.org/10.1145/165180.165214

83:30 Farzin Houshmand, Mohsen Lesani, and Keval Vora

Gurbinder Gill, Roshan Dathathri, Loc Hoang, Andrew Lenharth, and Keshav Pingali. 2018. Abelian: A Compiler for Graph
Analytics on Distributed, Heterogeneous Platforms. In Euro-Par 2018: Parallel Processing, Marco Aldinucci, Luca Padovani,
and Massimo Torquati (Eds.). Springer International Publishing, Cham, 249–264. http://doi.org/10.1007/978-3-319-96983-
1_18

Jennifer Ann Golbeck. 2005. Computing and applying trust in web-based social networks. Ph.D. Dissertation.
Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. Powergraph: Distributed graph-

parallel computation on natural graphs. In Presented as part of the 10th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 12). 17–30.

Samuel Grossman, Heiner Litz, and Christos Kozyrakis. 2018. Making pull-based graph processing performant. In ACM
SIGPLAN Notices, Vol. 53. ACM, 246–260. https://doi.org/10.1145/3200691.3178506

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In ACM SIGPLAN Notices,
Vol. 46. ACM, 317–330. https://doi.org/10.1145/1926385.1926423

Sumit Gulwani, William R Harris, and Rishabh Singh. 2012. Spreadsheet data manipulation using examples. Commun. ACM
55, 8 (2012), 97–105. https://doi.org/10.1145/2240236.2240260

Richard L Halpert, Christopher JF Pickett, and Clark Verbrugge. 2007. Component-based lock allocation. In Parallel
Architecture and Compilation Techniques, 2007. PACT 2007. 16th International Conference on. IEEE, 353–364.

John A Hewson, Paul Anderson, and Andrew D Gordon. 2012. A Declarative Approach to Automated Con#guration.. In
LISA, Vol. 12. 51–66.

Loc Hoang, Matteo Pontecorvi, Roshan Dathathri, Gurbinder Gill, Bozhi You, Keshav Pingali, and Vijaya Ramachandran.
2019. A round-e!cient distributed betweenness centrality algorithm. In Proceedings of the 24th Symposium on Principles
and Practice of Parallel Programming. 272–286.

Sungpack Hong, Hassan Cha#, Edic Sedlar, and Kunle Olukotun. 2012. Green-Marl: a DSL for easy and e!cient graph
analysis. ACM SIGARCH Computer Architecture News 40, 1 (2012), 349–362.

Farzin Houshmand and Mohsen Lesani. 2019. Hamsaz: replication coordination analysis and synthesis. Proceedings of the
ACM on Programming Languages 3, POPL (2019), 74.

Shachar Itzhaky, Sumit Gulwani, Neil Immerman, and Mooly Sagiv. 2010. A simple inductive synthesis methodology and its
applications. In ACM Sigplan Notices, Vol. 45. ACM, 36–46.

Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010. Oracle-guided component-based program synthesis.
In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1. ACM, 215–224.

Patricia Johann and Eelco Visser. 2000. Warm fusion in Stratego: A case study in generation of program transformation
systems. Annals of Mathematics and Arti!cial Intelligence 29, 1 (2000), 1–34.

Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali: a goal-directed superoptimizer. Vol. 37. ACM.
Rajeev Joshi, Greg Nelson, and Yunhong Zhou. 2006. Denali: A practical algorithm for generating optimal code. ACM

Transactions on Programming Languages and Systems (TOPLAS) 28, 6 (2006), 967–989.
Ken Kennedy and Kathryn S McKinley. 1993. Maximizing loop parallelism and improving data locality via loop fusion and

distribution. In International Workshop on Languages and Compilers for Parallel Computing. Springer, 301–320.
Christian Lindig and Norman Ramsey. 2004. Declarative composition of stack frames. In International Conference on Compiler

Construction. Springer, 298–312.
Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M Hellerstein. 2012. Distributed

GraphLab: a framework for machine learning and data mining in the cloud. Proceedings of the VLDB Endowment 5, 8
(2012), 716–727.

Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin, and Joseph Hellerstein. 2014. Graphlab:
A new framework for parallel machine learning. arXiv preprint arXiv:1408.2041 (2014).

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski.
2010. Pregel: a system for large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data. ACM, 135–146.

Mugilan Mariappan, Joanna Che, and Keval Vora. 2021. DZiG: Sparsity-Aware Incremental Processing of Streaming Graphs.
In Proceedings of the European Conference on Computer Systems (EuroSys ’21). 1–16.

Mugilan Mariappan and Keval Vora. 2019. GraphBolt: Dependency-Driven Synchronous Processing of Streaming Graphs.
In Proceedings of the European Conference on Computer Systems (EuroSys ’19). 1–16.

Harry Massalin. 1987. Superoptimizer – a Look at the Smallest Program. Palo Alto, California (1987).
Akimasa Morihata, Kento Emoto, Kiminori Matsuzaki, Zhenjiang Hu, and Hideya Iwasaki. 2018. Optimizing Declarative

Parallel Distributed Graph Processing by Using Constraint Solvers. In Functional and Logic Programming, John P. Gallagher
and Martin Sulzmann (Eds.). Springer International Publishing, Cham, 166–181.

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight infrastructure for graph analytics. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 456–471.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

http://doi.org/10.1007/978-3-319-96983-1_18
http://doi.org/10.1007/978-3-319-96983-1_18
https://doi.org/10.1145/3200691.3178506
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/2240236.2240260

Grafs: Declarative Graph Analytics 83:31

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program synthesis. ACM SIGPLAN Notices 50,
6 (2015), 619–630.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from polymorphic re#nement types.
In ACM SIGPLAN Notices, Vol. 51. ACM, 522–538.

Dimitrios Prountzos, Roman Manevich, and Keshav Pingali. 2012. Elixir: A system for synthesizing concurrent graph
programs. In ACM SIGPLAN Notices, Vol. 47. ACM, 375–394.

Dimitrios Prountzos, Roman Manevich, and Keshav Pingali. 2015. Synthesizing parallel graph programs via automated
planning. In ACM SIGPLAN Notices, Vol. 50. ACM, 533–544.

Apan Qasem and Ken Kennedy. 2006. Pro#table Loop Fusion and Tiling Using Model-driven Empirical Search. In Proceedings
of the 20th Annual International Conference on Supercomputing (Cairns, Queensland, Australia) (ICS ’06). ACM, New York,
NY, USA, 249–258. https://doi.org/10.1145/1183401.1183437

Samyam Rajbhandari, Jinsung Kim, Sriram Krishnamoorthy, Louis-Noel Pouchet, Fabrice Rastello, Robert J Harrison,
and Ponnuswamy Sadayappan. 2016a. A domain-speci#c compiler for a parallel multiresolution adaptive numerical
simulation environment. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 40.

Samyam Rajbhandari, Jinsung Kim, Sriram Krishnamoorthy, Louis-Noël Pouchet, Fabrice Rastello, Robert J Harrison, and
Ponnuswamy Sadayappan. 2016b. On fusing recursive traversals of Kd trees. In Proceedings of the 25th International
Conference on Compiler Construction. ACM, 152–162.

Ricardo Rocha and John Launchbury. 2011. Practical Aspects of Declarative Languages: 13th International Symposium, PADL
2011, Austin, TX, USA, January 24-25, 2011. Proceedings. Vol. 6539. Springer.

Marko A Rodriguez. 2015. The gremlin graph traversal machine and language (invited talk). In Proceedings of the 15th
Symposium on Database Programming Languages. ACM, 1–10.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-centric graph processing using streaming
partitions. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 472–488.

Olli Saarikivi, Margus Veanes, Todd Mytkowicz, and Madan Musuvathi. 2017. Fusing E"ectful Comprehensions. SIGPLAN
Not. 52, 6 (June 2017), 17–32. https://doi.org/10.1145/3140587.3062362

Laith Sakka, Kirshanthan Sundararajah, and Milind Kulkarni. 2017. Treefuser: a framework for analyzing and fusing general
recursive tree traversals. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 76.

Laith Sakka, Kirshanthan Sundararajah, Ryan R Newton, and Milind Kulkarni. 2019. Sound, #ne-grained traversal fusion
for heterogeneous trees. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 830–844.

Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gratian Lup, Jubi Taneja, and John Regehr. 2017.
Souper: A synthesizing superoptimizer. arXiv preprint arXiv:1711.04422 (2017).

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic superoptimization. In ACM SIGPLAN Notices, Vol. 48. ACM,
305–316.

Martin Sevenich, Sungpack Hong, Oskar van Rest, Zhe Wu, Jayanta Banerjee, and Hassan Cha#. 2016. Using domain-speci#c
languages for analytic graph databases. Proceedings of the VLDB Endowment 9, 13 (2016), 1257–1268.

G Shashidhar and Rupesh Nasre. 2016. Lighthouse: An automatic code generator for graph algorithms on gpus. In
International Workshop on Languages and Compilers for Parallel Computing. Springer, 235–249.

Kensen Shi, Jacob Steinhardt, and Percy Liang. 2019. FrAngel: Component-based Synthesis with Control Structures. Proc.
ACM Program. Lang. 3, POPL, Article 73 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290386

Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing Framework for Shared Memory. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Shenzhen, China) (PPoPP ’13).
ACM, New York, NY, USA, 135–146. https://doi.org/10.1145/2442516.2442530

Calvin Smith and Aws Albarghouthi. 2016. MapReduce program synthesis. ACM SIGPLAN Notices 51, 6 (2016), 326–340.
Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Kemal Ebcioğlu. 2005. Programming by sketching for

bit-streaming programs. In ACM SIGPLAN Notices, Vol. 40. ACM, 281–294.
Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial sketching for

#nite programs. ACM Sigplan Notices 41, 11 (2006), 404–415.
Saurabh Srivastava, Sumit Gulwani, and Je"rey S Foster. 2010. From program veri#cation to program synthesis. In ACM

Sigplan Notices, Vol. 45. ACM, 313–326.
Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim, Milo MK Martin, and Rajeev Alur. 2013.

TRANSIT: specifying protocols with concolic snippets. ACM SIGPLAN Notices 48, 6 (2013), 287–296.
Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Cha#. 2016. PGQL: a property graph query language.

In Proceedings of the Fourth International Workshop on Graph Data Management Experiences and Systems. ACM, 7.
Martin Vechev and Eran Yahav. 2008. Deriving linearizable #ne-grained concurrent objects. ACM SIGPLAN Notices 43, 6

(2008), 125–135.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

https://doi.org/10.1145/1183401.1183437
https://doi.org/10.1145/3140587.3062362
https://doi.org/10.1145/3290386
https://doi.org/10.1145/2442516.2442530

83:32 Farzin Houshmand, Mohsen Lesani, and Keval Vora

Martin Vechev, Eran Yahav, and Greta Yorsh. 2010. Abstraction-guided synthesis of synchronization. In ACM Sigplan Notices,
Vol. 45. ACM, 327–338.

Keval Vora. 2019. Lumos: Dependency-Driven Disk-based Graph Processing. In USENIX Annual Technical Conference
(USENIX ATC ’19). 429–442.

Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and Accurate Computations on Streaming Graphs via
Trimmed Approximations. (2017), 237–251. https://doi.org/10.1145/3037697.3037748

Philip Wadler. 1988. Deforestation: Transforming Programs to Eliminate Trees. In Proceedings of the Second European Sym-
posium on Programming (Nancy, France). North-Holland Publishing Co., Amsterdam, The Netherlands, The Netherlands,
231–248. http://dl.acm.org/citation.cfm?id=80098.80104

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing highly expressive SQL queries from input-output
examples. In ACM SIGPLAN Notices, Vol. 52. ACM, 452–466.

Zhilei Xu, Shoaib Kamil, and Armando Solar-Lezama. 2014. MSL: A Synthesis Enabled Language for Distributed Implemen-
tations. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
(New Orleans, Louisana) (SC ’14). IEEE Press, Piscataway, NJ, USA, 311–322. https://doi.org/10.1109/SC.2014.31

Yongzhe Zhang, Hsiang-Shang Ko, and Zhenjiang Hu. 2017. Palgol: A high-level DSL for vertex-centric graph processing
with remote data access. In Asian Symposium on Programming Languages and Systems. Springer, 301–320.

Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman Amarasinghe. 2018. GraphIt:
A High-performance Graph DSL. Proc. ACM Program. Lang. 2, OOPSLA, Article 121 (Oct. 2018), 30 pages. https:
//doi.org/10.1145/3276491

Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini: A computation-centric distributed graph
processing system. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16). 301–316.

Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. Gridgraph: Large-scale graph processing on a single machine using
2-level hierarchical partitioning. In 2015 {USENIX} Annual Technical Conference ({USENIX}{ATC} 15). 375–386.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 83. Publication date: August 2021.

https://doi.org/10.1145/3037697.3037748
http://dl.acm.org/citation.cfm?id=80098.80104
https://doi.org/10.1109/SC.2014.31
https://doi.org/10.1145/3276491
https://doi.org/10.1145/3276491

	Abstract
	1 Introduction
	2 Overview
	3 Declarative Graph Analytics
	4 Iterative Models
	5 Specification and Fusion
	5.1 Core Specification Language
	5.2 Fusion
	5.3 Extensions

	6 Mapping Specification to Iteration-Map-Reduce
	6.1 The Correctness of Iterative Path-Based Reduction
	6.2 Synthesis of Iterative Reduction

	7 Experimental Results
	8 Related Work
	9 Conclusion
	References

