
Brief Announcement: Brokering with Hashed Timelock
Contracts is NP-Hard

Eric Chan
University of California, Riverside

Mohsen Lesani
University of California, Riverside

ABSTRACT
In recent years, many di�erent cryptocurrencies have risen in pop-
ularity. Since coins vary in �at value and functionality, it has be-
come important to securely exchange between them. A common
exchange method is hashed timelock contracts (HTLC). However,
this method did not support brokerage transactions that allow par-
ties to leverage assets they gain during the transaction. We consider
HTLC with brokering. The transaction fees for HTLC is a direct
function of the size of the leader set. Thus, brokers are interested
in �nding the minimum leader set of a given transaction graph. We
show that �nding the minimum leader set on general transaction
graphs with brokering is NP-hard. We then introduce �ower trans-
action graphs, a common type of transaction graphs with brokering,
and show that �nding the minimum leader set of a �ower graph is
also NP-hard through a reduction from the knapsack problem.

CCS CONCEPTS
•Computer systems organization!Dependable and fault-tolerant
systems and networks.

KEYWORDS
Blockchain
ACM Reference Format:
Eric Chan and Mohsen Lesani. 2021. Brief Announcement: Brokering with
Hashed Timelock Contracts is NP-Hard. In Proceedings of the 2021 ACM
Symposium on Principles of Distributed Computing (PODC ’21), July 26–
30, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3465084.3467952

1 INTRODUCTION
With the rise of hundreds of cryptocurrencies, it has become im-
portant to be able to exchange between them. Since coins vary in
value and functionality, people may wish to exchange their coins at
any given time. However, trading across blockchains is not atomic
by default. This has led to the development of the hashed timelock
contracts (HTLC), smart contracts that enabled parties to swap
assets across blockchains [1]. However, this form of HTLC does not
support brokerage transactions that allow parties to leverage assets
gained during the transaction. Simple swap transactions require
parties to own the assets that they exchange at the outset. This
means swaps are unable to accommodate brokerage or arbitrage:

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PODC ’21, July 26–30, 2021, Virtual Event, Italy
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8548-0/21/07.
https://doi.org/10.1145/3465084.3467952

(a)

(b)

Figure 1: Example (a) Brokering (b) Flower graphs

arranging for an exchange between other parties for a commission,
or acquiring an asset and immediately selling it for more.

To address this issue, a previous work [3] transforms the trans-
action to an equivalent transaction such that each party owns the
assets that it exchanges. However, the transformed graph might not
be strongly connected; and its safe execution requires certain par-
ties to be trusted. Another work [2] presents a voting protocol that
transfers assets tentatively in a central smart contract. However, all
parties act as leaders and need to vote to commit the transaction.

AnHTLC inputs and hashes the secret of each leader, and triggers
only if the calculated hash values match the stored hash values.
Therefore, the transaction fees for HTLC is a direct function of the
size of the leader set. Hence, it is of interest to �nd the minimum
leader set of a given transaction graphs.

In this short paper, we consider HTLCs that allow brokering,
and the problem of �nding the minimum leader set. Parties can
leverage assets they gain during the transaction instead of owning
the assets at the beginning. We discuss the di�culty of �nding
the minimum leader set on these transaction graphs. We introduce
�ower graphs, a common type of transaction graphs where a broker
mediates between swapping parties. We show that computing the
the minimum leader set of �ower graphs is also NP-hard by a
reduction from the seemingly unrelated knapsack problem.

2 HASHED TIMELOCK CONTRACTS
We brie�y review the HTLC mechanism presented in [1]. We refer
to the corresponding protocol, the cross-chain swap protocol, as
HTLCP. A market clearing service is an untrusted, third-party
service that assembles the transaction as a graph ⌧ with parties as
vertices and asserts as edges. The service also computes a feedback
vertex set (i.e., the removal of this set would leave ⌧ acyclic), and
designates them as the leaders. All other vertices are called the
followers. Each leader ;8 generates a secret B8 , then computes the
hash of his secret ⌘8 = hash(B8). Each contract corresponds to an
edge. A contract is hashlocked by the hash values ⌘8 of all leaders:

Session 3: Blockchains PODC ’21, July 26–30, 2021, Virtual Event, Italy

199

https://doi.org/10.1145/3465084.3467952
https://doi.org/10.1145/3465084.3467952
https://doi.org/10.1145/3465084.3467952

a contract triggers (sends the assets escrowed on it to the speci�ed
counterparty) only after all preimages B8 have been given to it.
Lastly, a contract is timelocked: if all secrets are not provided to
the contract within the timelock duration, the escrowed assets are
returned to the sender. Leaders create all of their outgoing contracts
�rst. A follower creates her outgoing contracts once she veri�es
all of her incoming contracts are created. When a leader observes
that all of his incoming contracts have been created, he releases his
secret B8 : he applies B8 to all the hashlocks on his incoming contracts.
As these secrets are published on the ledger, other parties can see
these secrets. Thus, if a party sees a secret applied to his outgoing
contract, he applies it to his incoming contract. This allows all
secrets to propagate to all contracts and trigger them.

3 BROKERING
A broker is a party that has at least one pair of incoming and
outgoing contracts on the same asset. The broker may not own the
asset on the outgoing contract and only receive it from an incoming
contract during the transaction. Therefore, we represent all the
edges on the same blockchain as one master smart contract that
keeps track of the tentative owners of the assets in that blockchain
during the transaction. Parties that own the asset create edges
by escrowing their assets for another party in the master contract.
Brokers create an edge by transferring an asset that they tentatively
own in the master contract to another party. We say a leader set
! is adequate for a transaction graph ⌧ , if using the HTLCP edge
creation rules, the set ! can create all edges. We say a set of vertices
! is a minimum leader set for a graph⌧ if (1) ! is an adequate leader
set, and (2) for all adequate leader sets !0 of ⌧ , |! |  |!0 |.

Any feedback vertex set is an adequate leader set for transaction
graphs with no brokering; it can successfully execute the transac-
tion. However, when brokering is allowed, an arbitrary feedback
vertex is no longer adequate as a leader set. For example, in Fig-
ure 1.(a), the set of parties {⌫,⇠} compose a feedback vertex set.
However, ⌫ and⇠ are also brokers. In this case, they do not possess
enough B or E assets to create either of their outgoing contracts.
Thus, if ⌫ and ⇠ are chosen as the leaders, the protocol does not
progress. However, this is not to say brokers should never be leaders.
As there is a cycle between ⌫ and ⇠ , at least one of them should be
a leader. It is always necessary that the leader set forms a feedback
vertex set. Clearly, �nding the minimum leader set for a transac-
tion graph with brokering is at least as hard as �nding a minimum
leader set on transaction graphs without brokering. Since latter is
equivalent to �nding a feedback vertex set, which is known to be
NP-hard, the former is also NP-hard.

We consider a common class of transaction graphs with broker-
ing that we call a �ower graph due to its shape. A �ower graph is
a graph where there is one vertex that is incident to every edge,
and has incoming and outgoing edges to every other vertex. As a
transaction graph, only the special vertex can be a broker. No other
vertex is a broker, i.e., all other parties have the assets to create their
outgoing contracts at the beginning of the transaction. This pattern
is common as the market clearing service is often the only broker.
It has a list of all the o�ers from its users and can match them to
make a �ower graph, with itself as the broker for pro�t. An example
�ower graph is shown in Figure 1.(b). In this transaction, the party

supplier

...

items

...

Figure 2: Reduction of Knapsack to Flower graph

- exchanges one B for two Z with the broker 1. The broker 1 passes
the B to the party . in turn. The party . gives the broker 1 one E,
that he passes to the party / . The party / gives the broker 1 three
Z. The broker passes two Z back to - and keeps one Z as pro�t.

4 FLOWER GRAPHS ARE NP-HARD
We now show that �nding the minimum leader set for the �ower
graph is also NP-hard by a reduction from the knapsack problem.
Let the Knapsack problem be given as = (- ,+ ,,), where - is
a set of items {G1, .., G=}, such that each item G8 = (E8 ,F8) is a pair
of a value E8 and a weight F8 . We say a knapsack instance is
satis�able i� there exists a subset ' of - such that the total value of
all items in ' is at least+ while the total weight of all items in ' is at
most, . More precisely,

Õ
(E8 ,F8)2' E8 � + and

Õ
(E8 ,F8)2' F8 , .

It is well known that the Knapsack problem is NP-hard.

T������ 4.1. Finding a minimum leader set for a �ower graph is
NP-Hard.

We show a polynomial time reduction from the Knapsack prob-
lem to �nding a minimum leader set in a �ower graph. For a knap-
sack instance = (- ,+ ,,), we generate a �ower graph instance
� = (V, E) such that is satis�able if and only if � has an adequate
leader set of size two. Given = (- ,+ ,,), we generate the �ower
graph � = (V, E) shown in Figure 2 in the following steps.

(1) Let 1 be the broker in � . We create a single party B with an
edge to1 that transfers, bitcoins B, which wewrite as (B,1) =, B.
In addition, we add the edge (1, B) = 2 D. We will refer to B as the
supplier. (2) For each item G8 = (E8 ,F8) 2 - , we create a party G8
such that (1, G8) = F8 B and (G8 ,1) = E8 E. We will refer to this set
of parties as the items. (3) We compute< = dÕF (-)/minF (-) �
1e + 1, where

Õ
F (-) and minF (-) are the sum and minimum of

the weights of all objects in - respectively. We use < di�erent
cryptocurrencies, which we will refer to as C1... C< . (3.a) We create
a party~1 such that (1,~1) = (+ �1) E and (~1,1) = 2 C1. We create
another party I1 such that (1, I1) = 1 E and (I1,1) = 2 C1. (3.b) For
8 = 2 to<, we create two parties ~8 and I8 . The party ~8 receives a
single contract (1,~8) = 3 C8�1 from 1. We add two edges from ~8 to
1, (~8 ,1) = 2 C8 and (~8 ,1) = (minF (-) � 1) B. We add two edges
for I8 , (1, I8) = 1 C8�1 and (I8 ,1) = 2 C8 . (3.c) We create a party~<+1

Session 3: Blockchains PODC ’21, July 26–30, 2021, Virtual Event, Italy

200

such that (1,~<+1) = 3 C< and (~<+1,1) = 1 D. Finally, we create
the party I<+1 such that (1, I<+1) = 1 C< and (I<+1,1) = 1 D.

We construct the �ower graph such that the sequence of con-
tracts that the broker 1 creates yields a solution to the knapsack
problem. We want the parties B and 1 to be the only leaders. The
supplier B supplies 1 with, B to create contracts. The broker 1
can then use these bitcoins to create contracts to the item parties.
The item parties are constructed such that if there is a knapsack
solution, then 1 will tentatively acquire at least+ E . The rest of the
graph is constructed such that 1 can �nish the transaction with +
E . To �nish the transaction, all contracts must be created.

In particular, in order to create contracts to item parties that 1
had not chosen in the beginning, the other parties should send more
bitcoins to 1. However, we should construct the graph such that
the other parties do not send these bitcoins to 1 before it solves the
knapsack problem. For example, if there were parties that would
trade their Bs for Es, then 1 could subvert solving the knapsack
problem by interleaving exchanges between item parties and these
parties. Therefore, we set them to release additional bitcoins only
after 1 passes + E to them (~1 and I1). Further, to force 1 solve
the knapsack problem, we should prevent any other party from
replacing B in the leader set. Choosing any other single party as the
leader should not release enough bitcoins to create a contract to
any item party. To achieve this, the construction creates two sets of
parties {~2, ..,~<+1} and {I2, .., I<+1} for a sequence of exchanges.
We say that a party is activated if it creates its outgoing contracts.
A party ~8 is activated only if all the ~ and I parties before it are
activated. A party I8 , on the other hand, is activated if either ~8�1
or I8�1 are activated. Therefore, choosing any single party as a
leader cannot activate any ~ party (except itself). A ~ party releases
bitcoins but does not release enough bitcoins to activate an item
party. Therefore, no party can replace B as a leader.

L���� 4.2. If is satis�able, then � has an adequate leader set
of size two.

P����. Let ' be the set of items that satisfy . Let ! = {B,1}
be the leader set of � . We show that ! is adequate by execution.
Since B is a leader, B creates the contract for , B to 1. Since 1
is also a leader, 1 can securely create contracts using the assets
that it receives during the transaction. Thus, 1 can create outgoing
contracts to every party G8 2 '. Since ' satis�es , we know the
total weight of items in ' is no more than, . Since 1 can leverage
, B, he can create the contracts to all G8 2 '. Since all item parties
G8 2 ' receive their incoming contracts, they create their outgoing
contracts. The sum of all of these contracts is at least + E .

Thus, the broker 1 can give (+ � 1) E to ~1 and 1 E to I1. Thus, 1
gets 4 C1, which he can give to~2 and I2 in exchange for (minF (-)�
1) B and 4 C2. Then, 1 repeatedly uses the 4 C8 received from ~8
and I8 to create the contracts to ~8+1 and I8+1, each time gaining
(minF (-) � 1) B in return. After repeating this process< times,
by the de�nition of<, the broker 1 is left with (at least)

Õ
F (-)

B , i.e. the total weight of all - items in bitcoin. The broker 1 can
then use these bitcoins towards creating contracts for item parties
that have not yet been created, namely, - \ '. Additionally, after
1 creates the contracts for ~<+1 and I<+1, 1 receives 2 D in return.
Then 1 can create the �nal contract (1, B). Thus, the set ! = {B,1}
that is of size two is adequate. ⇤

L���� 4.3. An adequate leader set for � is at least size two, and
if ! is an adequate leader set for � of size two, then ! is {B,1}.

P����. We show, by the process of elimination, that the leader
set is ! = {B,1}. Firstly, we show that 1 2 !. Since every party that
is not 1 only has 1 in its neighborhood, then either 1 is in the leader
set, or every other party is in the leader set. This latter implies
|V| � 1 > 2 leaders; thus, 1 must be a leader. Further, since 1 is a
broker, at least one other party should be a leader.

Secondly, B must be in the leader set !. It is assumed that no
single item G8 2 - has value greater than or equal to + . Otherwise,
the Knapsack problem is trivial. Thus, for each G8 2 - , if {1, G8 } is
the leader set, 1 can gain a maximum of (+ � 1) E . The only parties
that desire E are ~1 and I1. Thus, 1 can either create a contract to
~1, or I1, but not both. Regardless of 1’s choice, 1 will receive 2 C1.

The only parties that desire C1 are~2 and I2, but1 can only create
the contract to I2. Thus, 1 gets 2 C2, and this process continues
for I3 to I<+1, leaving 1 with 1 D . However, the only party that
desires D is B . Yet, 1 needs 2 D coins to create the contract (1, B). At
this point, 1 cannot create any contracts with any other party, and
there are still contracts that have not yet been created. Thus, for
each G8 2 - , the set {1, G8 } is an inadequate leader set.

Notice that the above applies to each I8 as well. Speci�cally, if
{1, I8 } is chosen as the leader set, 1 can only move assets from I8
to I8+1, until it reaches I<+1. However, this leaves 1 with only one
D , resulting in the same state.

The same also holds for each ~8 . If {1,~8 } is the leader set, then
1 will receive (minF (-) � 1) B and 2 C8 . By de�nition of minF (-),
the broker 1 cannot create any contracts to any item party G8 . This
leaves the 2 C8 . This results in the same scenario as choosing I8 ,
eventually leading to a stalemate with one D . Thus, for each G8 , ~8
and I8 , the sets {1, G8 }, {1,~8 } and {1, I8 } are all inadequate. ⇤

L���� 4.4. The knapsack instance is satis�able if and only if �
has an adequate leader set of size two.

P����. First, the forward direction follows directly from Lemma
4.2. By construction, we can take {1, B} to be our leader set and
create all contracts. Next, we show the backward direction: if � has
an adequate leader set of size two, then is satis�able. By Lemma
4.3, if � has an adequate leader set of size two, then the leader
set must be {1, B}. � is constructed in a manner such that 1 only
receives, B from B , and only the parties G1, .., G= desire bitcoins.
Thus, 1 must select a set of parties ' such that

Õ
(E8 ,F8)2' F8 does

not exceed, . Additionally, the incoming contracts to both parties
~1 and I1 should be created. Otherwise, even if 1 manages to create
the contract to only one of them, it can receive 2 C1, which cannot
generate any more bitcoins. Since + E are required to create the
contracts for ~1 and I1, it must hold that

Õ
(E8 ,F8)2' E8 is at least + .

Thus, 1 must have created contracts to a subset ' of - spending at
most, B and gaining at least+ E. This set ' is a solution to . ⇤

As shown by Lemma 4.3, the minimum leader set for � is at least
size two. Thus, Theorem 4.1 is immediate from Lemma 4.4.

Lastly, we note that < can be exponential in the size of the
knapsack in the general case, but it is also known that the knapsack
problem remains NP-hard even when the ratio of weights with
respect to each other is polynomially bounded.

Session 3: Blockchains PODC ’21, July 26–30, 2021, Virtual Event, Italy

201

REFERENCES
[1] Maurice Herlihy. 2018. Atomic cross-chain swaps. In Proceedings of the 2018 ACM

symposium on principles of distributed computing. 245–254.

[2] Maurice Herlihy, Barbara Liskov, and Liuba Shrira. 2019. Cross-Chain Deals and
Adversarial Commerce. Proc. VLDB Endow. 13, 2 (Oct. 2019), 100–113.

[3] Narges Shadab, Farzin Houshmand, and Mohsen Lesani. [n.d.]. Cross-chain Trans-
actions. In 2020 IEEE International Conference on Blockchain and Cryptocurrency.

Session 3: Blockchains PODC ’21, July 26–30, 2021, Virtual Event, Italy

202

	Abstract
	1 Introduction
	2 Hashed Timelock Contracts
	3 Brokering
	4 Flower Graphs are NP-Hard
	References

