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Conca-Rossi-Valla [6] ask if every quadratic Gorenstein ring R of regularity three is
Koszul. In [15], we use idealization to answer their question, proving that in nine or
more variables there exist quadratic Gorenstein rings of regularity three, which are not
Koszul. In this paper, we study the analog of the Conca-Rossi-Valla question when the
regularity of R is four or more. Let R be a quadratic Gorenstein ring having codim R = ¢
and reg R = r > 4. We prove that if ¢ = r + 1 then R is always Koszul, and for every
c > r + 2, we construct quadratic Gorenstein rings that are not Koszul, answering

questions of Matsuda [16] and Migliore-Nagel [19].

1 Introduction

Let I be a homogeneous ideal generated by quadrics in a standard graded polynomial
ring S over a field, and set R = S/I. Tate [21] showed that if I is a complete intersection,
then R is Koszul. Complete intersections are the simplest examples of Gorenstein rings,
and Conca-Rossi-Valla show in [6] that quadratic Gorenstein rings of regularity two are
always Koszul. On the other hand, quadratic Gorenstein rings of regularity three are

less well understood:

Received October 20, 2020; Revised July 23, 2021; Accepted September 24, 2021

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permission@oup.com.

220Z YoJe\ 20 UO Jasn salelqi AlsisAlun uingny Agq 92G96€9//620BU/UIWI/SE0L "0 | /I0p/3|01MB-80UBAPE/UIWI/WOD dNO"dIWSpEI.//:Sd)Y WO} POPEOjUMO(]


https://doi.org/10.1093/imrn/rnab297

2 M. Mastroeni et al.

e Vishik-Finkelberg [23] and Polishchuk [20] show that the homogeneous
coordinate ring of a canonical curve generated by quadrics is Koszul.

e Conca-Rossi—Valla [6] show that if R has codimension at most four it is
Koszul.

e Caviglia [4] shows that if R has codimension five it is Koszul.

Conca-Rossi-Valla [6] ask if it is possible that all quadratic Gorenstein rings of
regularity three are Koszul. In [15], we negatively answer this question; using Nagata's
technique of idealization, we produce quadratic Gorenstein rings of regularity three,
which are not XKoszul for all codimensions ¢ > 9.

Our work was motivated by Matsuda’s discovery in [16] of a quadratic Goren-
stein ring with regularity four and codimension seven, which is not Koszul. Matsuda
constructs his example via graph theory; his methods do not produce further exam-
ples of quadratic Gorenstein rings, which are not Koszul. Matsuda’s example is not
subsumed by the results of [15], as it does not arise as an idealization (however, see
Remark 4.2).

Tensoring a quadratic Gorenstein ring R with appropriate choices of R’ yields
new quadratic Gorenstein rings R ®; R’. Applying this to non-Koszul quadratic Goren-
stein rings R constructed by idealization and by Matsuda, we show in [15, 4.9] that
quadratic Gorenstein rings and the Koszul property are related to each other in
characteristic zero (the characteristic assumption is needed only for a small number
of examples verified using Macaulay2 [10]) by the table appearing in Figure 1. Our goal

in this paper is to address the lacunae in the table.

Notation 1. Throughout this paper, unless specifically stated otherwise, we will
denote by k a fixed ground field of arbitrary characteristic, by S a standard graded
polynomial ring over k, by I € S a proper graded ideal, and R = S/I. Recall that I is
nondegenerate if it contains no linear forms; for arbitrary I, we can kill basis elements
which are linear forms contained in I to reduce to the nondegenerate setting, and we

will assume that this is the case throughout. We set ¢ = codimR = htI and r = regR.

1.1 Key players

In this paper, we study the relationship between two conditions that impose extraordi-
nary constraints on the homological properties of R, namely the Gorenstein and Koszul

properties. The ring R is Gorenstein if it is Cohen-Macaulay and its canonical module
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Fig. 1. Is every quadratic Gorenstein ring of codimension ¢ and regularity r Koszul?
is isomorphic to a shift of R:
wg = Ext(R, S)(—n) = R(a)
where dim S = n. This implies that the graded Betti numbers
ﬂfj(R) = dimy, Tor} (R, k);
have a symmetry
B (R) = B3 oir i(R) (1.1)

for all i,j. This information is compactly summarized in the Betti table of R, where the

S

entry in column i and row j is g; i+j(R) (see below for an example). We also recall that

the regularity of R is

regR = max{j | ﬂfiJrj(R) # 0 for some i}.
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4 M. Mastroeni et al.

It is the index of the bottom-most nonzero row in the Betti table of R. When R is Cohen-
Macaulay, the regularity is also the length of the h-vector h(R) = (1, ¢, h,, ..., h,), which
is related to the Hilbert series of R by

- s
It is well known that the h-vector of a Gorenstein ring is also symmetric in the sense
that h; = h,_; for all i, and the regularity r is related to the shift a in the canonical
moduleviar=a+n—c.

On the other hand, R is Koszul if the ground field R/R, = k has a linear free
resolution over R. That is, we have ,Bf?j(k) = 0 for all i and j with j # i. Koszul algebras
have strong duality properties and appear as many rings of interest in commutative
algebra, topology, and algebraic geometry; see the surveys [9] and [5] and the references
therein. A necessary condition for R to be Koszul is that the ideal I is generated by

quadrics; however, this is not sufficient.

Example 1.1 ([16, 1.3]). Matsuda constructs a toric sevenfold in P! whose coordinate
ring R is quadratic and Gorenstein but not Koszul. Its Betti table appears below. A

Macaulay?2 computation shows that ﬁ§4(k) =1, so R is not Koszul.

o 1 2 3 4 5 6 7
0 - - - . __ __ __
1| —— 14 21 —— —— —— —— ——
2| —— —— 36 126 126 36 —— ——
3|—— — —— — —— 21 14 ——
4 —— —— —— —— —— —— —— 1

Matsuda builds the ideal from a certain graph, but it does not generalize in any obvious
fashion. The h-vector of Ris (1,7,14,7,1).

Question 1 ([16,2.1]). Do there exist non-Koszul quadratic Gorenstein rings with r = 4

and ¢ < 6?

The h-vector of a quadratic Gorenstein ring with r = 4 and ¢ < 6, which

is not a complete intersection necessarily has the form (1,c, h,,c, 1), where ¢ = 5,6.
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Migliore-Nagel [19] show that the only possible h-vectors are

(1,5,8,5,1) (1,6,10,6,1) (1,6,11,6,1) (1,6,12,6,1)

but they were unable to construct an example with h, = 12 in characteristic zero and

ask the following:

Question 2. Do there exist quadratic Gorenstein rings of characteristic zero with
h-vector (1,6,12,6,1)?

1.2 Results

Theorem 3.2 shows that any quadratic Gorenstein ring R with ¢ = r+1 is always Koszul.
In particular, any quadratic Gorenstein with h-vector (1,5,8,5,1) is always Koszul.
However, in Example 4.3, we construct a non-Koszul quadratic Gorenstein ring over Q
with Hilbert function (1,6,12,6,1), affirmatively answering Questions 1 and 2. Our

results are summarized in the improvement of Figure 1 below.

o 1 2 s 4 s s 1 s 5w om
o @
! @
2 00000 O0OOOO
3 @0 0000 OOO0
4 @0 OOOOOO0 @ Ves
5 @O OOO0OO0 O No
6 @ @O OO0 © Unknown
7 0O OO0
s @ O OO
9 @ 0O
10 C N
n (
r

Fig. 2. Is every quadratic Gorenstein ring of codimension ¢ and regularity r Koszul?

220Z YoJe\ 20 UO Jasn salelqi AlsisAlun uingny Agq 92G96€9//620BU/UIWI/SE0L "0 | /I0p/3|01MB-80UBAPE/UIWI/WOD dNO"dIWSpEI.//:Sd)Y WO} POPEOjUMO(]



6 M. Mastroeni et al.

The division of the rest of the paper is as follows. We start with a review of the
relevant properties of quadratic Gorenstein rings in Section 2. In Section 3, we prove
Theorem: If R = S/I is a quadratic Gorenstein ring over an infinite ground field with
c=r+1, then

I =Pf(M)+ (gg/---19c42)

for some 5 x 5 alternating matrix M of linear forms such that htPf(M) = 3 and quadrics
q;, which form a regular sequence modulo Pf(M). As a consequence, any quadratic
Gorenstein ring R with ¢ = r+1 is a Koszul algebra. In Section 4, we use inverse systems
to prove Theorem: There is a family of quadratic Gorenstein non-Koszul algebras of
regularity four with Hilbert function (1,c,2c,c,1) for every codimension ¢ > 7. We
close by constructing a regularity-four quadratic Gorenstein non-Koszul algebra over
Q with Hilbert function (1,6, 12,6, 1) related to the family of the previous theorem. This

answers the questions of [16] and [19].

2 Background on Quadratic Gorenstein Rings

The mains tools that we will use in the following sections are linkage and inverse
systems. We briefly review some terminology and establish our conventions regarding
these topics below, and we refer the reader to [8, Ch. 21], [22, Ch. 4], and [11, §2.4] for
further details.

Given an ideal I C S with htl = ¢, we say that I is directly linked to the ideal J if
there is a complete intersection L C I with ht, = csuch thatJ = (L : 1) and I = (L : J).
When I is unmixed, in particular when I is Cohen—Macaulay, it is automatically directly
linked to the colon ideal J = (L : I) for any complete intersection L as above. Many
properties can be passed between an ideal and its links. For example, if I and J are
directly linked, then S/I is Cohen—Macaulay if and only if S/J is. We will especially need
the following proposition relating the h-vectors of a Cohen—Macaulay ideal and its links,

which was originally proved in greater generality in [7, 3(b)]; see also [18, 5.2.19].

Proposition 2.1. Suppose that I € Sis a Cohen—-Macaulay ideal generated by quadrics
and that L C I is a quadratic complete intersection with htL = htI = c. Denote the linked
ideal by J = (L : I). Then h-vectors of S/I and S/J are related by

hy(S/T) = (‘;) — hy_(S/).
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Quadratic Gorenstein Rings 7

Suppose that S = klx,...,x,_;] so that R = S/I is an Artinian ring. We consider
the ring D = klyy,...,y,_;] as an S-module via the action defined as follows. For any

and y? = yoﬁ0 . -yfc_‘ll with o, B € N¢, we define

dec—1

1 o —_— ao DY
monomials x¥ = x X,

P = yP=® if ;> o, forall i
0 otherwise

The S-module action on D is defined by extending this action on monomials linearly. We

call D the module of inverse polynomials since D is isomorphic as an S-module to

1 -1 -1
HS (S) = mk[xo S ey !

The set M = (0 :j, I) is a finitely generated S-submodule of D called the Macaulay inverse
system of I, and it is well known that there is bijective correspondence between ideals
I C Ssuch that R = S/I is Artinian and finitely generated S-submodules of D. Given such
a submodule M C D, we associate to it the ideal I = (0 :g M). There is a close relationship
between the Hilbert functions of I and M. In particular, R = S/I is Gorenstein with socle
in degree r if and only if M is generated by a single inverse polynomial of degree r.

Over a field of characteristic zero, it is possible to describe inverse systems by
an equivalent action of S on D using partial derivatives. In the following sections, we
will use only the contraction action defined in the preceding paragraph.

In the next section, we will consider quadratic Gorenstein rings R with ¢ = r+1.
We close this background section with a proposition that explains why this is the 1st

interesting case in which to ask whether or not R is Koszul.

Proposition 2.2 ([12, 3.1]). Suppose that R = S/I is a quadratic Cohen-Macaulay ring.
Then regR < pdgR, and equality holds if and only if R is a complete intersection.

3 Quadratic Gorenstein Rings withc=r+1

In this section, we show that every quadratic Gorenstein ring with ¢ = r + 1 is Koszul.
Using linkage, Migliore and Nagel have already computed the h-vectors of such rings
[19, 3.1]. By carefully analyzing their arguments, we are actually able to prove much

more.
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8 M. Mastroeni et al.

Theorem 3.1. Let R = S/I be a quadratic Cohen-Macaulay ring with ¢ = htl. Then R

is a Koszul almost complete intersection if and only if its h-vector is given by

=)~ (")

Proof. If R is a Koszul almost complete intersection, it follows from [14, 3.3] that the
h-polynomial of R is hy(t) = (1 4+ t)°"2(1 + 2t) so that

=223+ (%)= () + ()
()= () - ()« () -()-(2)
i—1 i—2 i—2 i i i—2
Conversely, if R is a quadratic Cohen-Macaulay ring with the given h-vector,
then the h-polynomial of R is hgz(t) = (1 + )¢ — t2(1 + )2 = (1 + t)°2(1 + 2t) so that

j
D2 EVBE® | ¥ =0 - 0hg0) = (1 — 7)1 - 1)1 + 21)
i \i=0

=(1-(c—2)¢t*+ (C; 2)t4)(1 —3t2+2t% (mod t®)

=1-—(c+Dt?+2t3+B(c—2) + (C; 2))t4 (mod t°). (3.1)
Since I is generated by quadrics, this implies that
B3 2(R) = ¢+ 1 and B3 5(R) = 2.
It then follows from [2, 4.2] that

BS4(R) =0

5 = —
ot (475

Since the conclusion is preserved under flat base change, we may assume that
the ground field is infinite. It follows from [14, 4.2] that, if R is a quadratic almost

complete intersection over an infinite ground field with ,325 3(R) > 2, we can write

220Z YoJe\ 20 UO Jasn salelqi AlsisAlun uingny Agq 92G96€9//620BU/UIWI/SE0L "0 | /I0p/3|01MB-80UBAPE/UIWI/WOD dNO"dIWSpEI.//:Sd)Y WO} POPEOjUMO(]



Quadratic Gorenstein Rings 9

I =(qy,...,9.y,) for some quadrics g;, where g, ...,q.,; form a regular sequence and
41,95, q5 are the corresponding minors of a 3 x 2 matrix M = (¢;;) of linear forms. In
particular, we have htl, (M) = 2 as (g,, q3) < I,(M). Additionally,

Q21 Qo) ST = 11:€1,2:94: -1 9cq1)

so that htJ/' = ¢ and ¢;;,¢15,94,.--,9.1; 15 a regular sequence. Now, set
L =(qy,...,9.,1), and consider the linked ideal J = (L : I). Since g, and g; are minors
of M, we have ¢, 1q;,¢; 2q; € (q5,q3) so that J' C J. Then J and J' are ideals of height ¢
with the same h-vector by Proposition 2.1. Hence, they have the same Hilbert function
and are equal.

From the natural short exact sequence
0—S/J(-2) - S/L—- R — 0,

we can obtain a free resolution of R from the free resolutions of S/J and S/L via a

mapping cone. In particular, this yields
B3 i(R) < B3 (S/L) + B3 ;_,(S/J) for all j.

Combining this bound with the description of J from the previous paragraph, we see
that ,BZSJ.(R) =0 forj > 5.

This shows that Syz‘lg (I) is generated by linear syzygies and Koszul syzygies on
the minimal generators of I. In fact, the columns of M must be the two independent
linear syzygies of I, and the S-span of these linear syzygies contains the Koszul syzygies
involving any two of q,, g5, g3. Let W denote the k-span of the Koszul syzygies involving

some g; forj #1,2,3. We claim that
W NS, (Syz; (D)) = 0.

If not, there is some nonzero k-linear combination of Koszul syzygies

D @i - ge)

1<i<j<c+1
j>4

(where e; denotes the i-th standard basis vector of S(—2)°*!), which is an S-linear

combination of the linear syzygies. But such an S-linear combination must be zero in
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10 M. Mastroeni et al.

its j-th coordinate for all j > 4. If a;; # 0O, then examining the j-th coordinate of the
above Koszul syzygy vields a linear dependence relation on the g;, which is impossible
since the g; are the minimal generators for I. Hence, the claim holds so that the Koszul
syzygies in W are part of a minimal set of generators for Syzf(l). As ,6§J(R) =0forj>5

and
-2
B34(R) =3(c—2) + (C ) )

is precisely the number of Koszul syzygies in W, we see that Syzf(I) is minimally
generated by the columns of M and the Koszul syzygies in W.
Consequently, we see that g.,; is a nonzerodivisor modulo (qy,...,q;). Then

S/(qy,-..,q,) is Cohen-Macaulay and has k-polynomial given by

(A +Dhg)q,,...q0 1) = hr(®),

.....

so that deg hs/(q1 g =c—2 and

,,,,,

—1 ~1
hi(S/(@1, 140 = hiyy R) — hyyy (/@) ) = (C i ) - (f_ 2)

by a downward induction. Hence, an induction on ¢ shows that q,,...,q, is a regular
sequence modulo I,(M), and it follows from [14, 3.3] that R is Koszul. | |

Theorem 3.2. Let R = S/I be a quadratic Gorenstein ring over an infinite ground field
with regR+1 = htl = c¢. Then I = Pf(M) +(gg, - - - , G, 2) for some 5 x 5 alternating matrix
M of linear forms such that htPf(M) = 3 and some quadrics g, ..., q.,,, Which are a

regular sequence modulo Pf(IM). Moreover, R is Koszul.

Proof. Since regR < htI = ¢, I is not complete intersection, and because R is a
quadratic Gorenstein ring, this implies that regR > 2 so that ¢ > 3. By [19, 3.1], the

h-vector of R is given by

=)+ ()
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Quadratic Gorenstein Rings 11

so that the h-polynomial is hx(t) = (1 +8)° ' +¢t(1 +6)° 2 = (1 + )31 + 3t + t?). As in

the proof of the previous theorem, this implies that

j
DD EVBE® | ¥ = - 0hg0) = (1530 - )% + 3t + 1%)

i \i=0

=(1-(c-3)t*+ (C ; 3)t4)(1 — 5t +5¢%) (mod t°)

=1—(c+2)t>*+5t2+ (5(c—3) + (C; 3))t4 (mod t°). (3.2)

Since I is generated by quadrics, this implies that 87 ,(R) = ¢+ 2 and 3 ;(R) = 5. We
can then write I = (qy,...,q.,,) for some quadrics g; with g, ..., g, a regular sequence.
SetL =1(q;,--.,q,), and consider the linked ideal J = (L : I). Then Proposition 2.1 shows
that the h-vector of S/J is given by

-1 -3
won=()-(:2)

This implies that J contains a linear form z, and J/zS is a Koszul almost complete
intersection by the preceding theorem.

Next, we claim that J = (L, z). Since J/zS is minimally generated by c quadrics, it
is enough to show that q,, ..., g, are independent modulo z. Suppose this is not the case.
We note that L € (L, z) € J implies ht(L, z) = c. Hence, we may assume that q;,...,q,_;
are a regular sequence modulo zand g, € (q;,...,q,_;,2), and so, after a suitable change
of generators for L, we may further assume that g, = z¢ for some linear form ¢. In
addition, we know that zq,,, = £,q; + --- + £.q, for some linear forms ¢; as zq.,, € L.
Modulo z, this corresponds to a linear syzygy on the images of q;,...,q,_;, but since
qy,--.,9,_; are a regular sequence modulo z, this syzygy must be trivial. Hence, we have
¢; = )z for some A; € k, and after canceling z, we have q.,; = A;q; +---+ 1,19, 1 +L.L.
And so, after another change of generators for I, we may assume that q.,, = ¢.¢ and,
similarly, that g, , = h ¢ for some linear form h_. In this case, the linear syzygies of T

contain the syzygies on q., q.,1,q.,, corresponding to the columns of the matrix

¢, h, O
- 0 h |,
0 —t —¢

which in turn has a linear 2nd syzygy (h,, —{.,¢), so that ,B3SV4(R) # 0. Since R is
Gorenstein with regR = ¢—1, this implies that ,8C573,2075(R) # 0. The short exact sequence

0—-I/L—-S/L—-R—0
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12 M. Mastroeni et al.
induces an exact sequence
0 = Tors_5(S/L,k)ge_5 — Tors_5(R,k)ye 5 — Tors ,(I/L,k)g._s
so that ,3574,2675(I/L) # 0. However, we know that
I/L = Homg(S/J,S/L) = wg,;(2c —n) = Ext$(S/J,S)(2c) where n = dim S.
Since S/J is Cohen—-Macaulay, it follows that

Bas(S/T) = Bi_y_5(EXLYS/T,S) = B5_450_5I/L) # 0.

However, as J/zS is a Koszul almost complete intersection, [14, 3.3] implies that
ﬂng(S/J) = 0 so that ,82'5(S/J) = 0, which is the desired contradiction. Therefore, we
see that J = (L, z) as claimed.

After a suitable change of generators for L modulo z there is a 3 x 2 matrix
M = (¢;;) of linear forms in S = S/zS such that the images of g,y g are the
corresponding minors of M. Let M = (¢ 5) be a lift of this matrix of linear forms to

S. Then we have
Gy = —ZUy + L1830 — £y 003;
Qy = ZUp — £y 1035+ € 203,
Q3 = —ZUg +Ly,1652 — {1262,

for some linear forms u;. That is, we can obtain q,, g,,g; as submaximal Pfaffians of

the alternating matrix

0 Uj Uy by by
—Ug 0 up Ly o

=ty Ay —43, O z

iy —lyy 3, -z O
The other two Pfaffians of M are
Ja=1l35uUs — Ly ouy + 45Uy
Js =3 ug+ Ly Uy — £y 1Uy.

Since q;,q,,q5 is a regular sequence, htPf(M) = 3 so that Pf(M) is a Gorenstein ideal

with minimal free resolution given by the Buchsbaum-Eisenbud structure theorem
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Quadratic Gorenstein Rings 13

[3, 3.4.1]. In particular, M is the matrix of 1st syzygies on Pf(M) so that zf,,zf; €
(41,95, 93), and hence, we have f;,f5 € (L : 2) = (L : J) = I. Additionally, q;,4,.95,f4.f5
must be independent quadrics since otherwise the Buchsbaum-Eisenbud complex
would not be a resolution of Pf(M). Hence, after replacing the original g; for i > 4,

we may assume that

I=PfM)+ Gg ... Qos2)

for some quadrics q;. As the columns of M are independent linear syzygies on I and
ﬁ§,3<R) = 5, these must be all of the linear syzygies of I. Consequently, we must have

,33?,4(1?) = 0 as there are no linear syzygies on the columns of M, and so, (3.2) implies that

ﬁﬁAR)=5w—3)+<C;3)

This is precisely the number of Koszul syzygies involving some g; for j > 6; the other
Koszul syzygies are in the S-span of the linear syzygies. By arguing inductively as in
the proof of the preceding theorem, we see that gg, ..., q.,, must be a regular sequence
modulo Pf(M). u

By flat base change to an infinite ground field, we have the following corollary.

Corollary 3.3. Let R = S/I be a quadratic Gorenstein ring with reg R+ 1 =htI = c.
Then R is Koszul with multiplicity e(R) = 5 - 2°~2 and Betti table

0 1 2 3 4 .-~ c—2 ¢c—-1 ¢
0 — — — — — — —
1 - Cc+2 5 - - - - -
2 |- - 5+ 8()+1 - - - -
3 |- - - 5(°°) + (37 5(%%°) + (7))

c—2|- - - - 5 c+2 -

c—1|- - - - - - 1

Specifically, we have

55 (R) =5(C—S)+ (0—3)
2t i—1 i
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and

By (R) = 5(‘.’ - 3) + (C. B 3)
’ 1—2 1—3
BE(R) = (C) +2((f'_ 2) for all i.
2 1—1

As a consequence of the above corollary, we see that

(‘.’) < B5R) < (”. 2)
l l

for all i so that both the Betti number bounds proposed by Buchsbaum-Eisenbud-

so that

Horrocks conjecture and by [1, 6.5] hold for this class of Koszul algebras.

Question 3. Using the fact that we know the entire Betti table of R and that R is
Koszul from the preceding corollary, does the conclusion of Theorem 3.2 hold without

the infinite ground field hypothesis?

We suspect that the answer to the above question is yes since such a structure
theorem is possible for Koszul almost complete intersections without any restriction on
the ground field.

Question 4. Is every quadratic Gorenstein ring R = S/I where I has ¢ + 2 minimal

quadric generators necessarily of the form described in Theorem 3.2?

Huneke-Ulrich ideals [13] are a well-known class of Gorenstein ideals of
deviation two, but these ideals are never quadratic in codimension greater than three. It
would also be interesting to explore when such rings are G-quadratic or admit a Grébner

flag.

4 Quadratic Gorenstein Rings with r = 4 Which Are Not Koszul

Theorem 4.1. Let S = klx,,...,x,_;] where c > 7, and let D = kly,, ..., y,_;] denote the

module of inverse polynomials as in Section 2. Consider the inverse polynomial

2
F= Z ViVir1Yigo
ieZ/cZ
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Quadratic Gorenstein Rings 15

and let I = (0 ;g F) € S be the corresponding ideal. Then R = S/I; is a quadratic

Gorenstein ring, which is not Koszul, with h-vector h(R) = (1,¢, 2¢,c, 1).

In the proof below, we view Z/cZ as being totally ordered by 0 <1 <--- <c—1

and set |i| = min{i,c — i} for each i € Z/cZ.

Proof. It is well known that R is Gorenstein with regularity 4. For each i € Z/cZ, we
note that
XF =V Voo 4V Ve Vi Vi Vs
i yl+1yl+2 yl—lyl+l Yi—2¥i-1Yi-

In particular, all of these cubics are linearly independent since, for example, only x;F
contains the monomial y; +1yl.2+2, and so, no linear form annihilates F so that I is

nondegenerate. Hence, the h-vector of R has the form
h(R) = (ll Cl h2/ C/ ]-)/
where
c+1 . . .
h, = 9 — |linearly independent quadrics in I|.

Any quadratic monomial x;x; with [{ — j| > 3 annihilates F, and a count shows there are

c(c —b5)
2

such monomials. The ¢ binomials of the form
2
X; — X 1%-3
also annihilate F; combining these with the preceding square-free monomials gives a

total of

c(c—3)
2

linearly independent quadrics that annihilate F. Thus, to show that
h(R) =(1,c 2¢c,c, 1),

it suffices to prove that there are no other quadrics in I.
Let J < Iy be the ideal generated by the @ quadrics of the preceding
paragraph. We will show that J = I so that R is quadratic with the desired h-vector. If
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16 M. Mastroeni et al.

q € I is a quadric, then after replacing g with suitable linear combination with quadrics

in J we assume that g has the form

q= Z Qi1 XiXip1 T z Q12X Xiyo
- ,

1

for some a;;,,,a;;,, € k. We claim that such a quadric q is zero. Indeed, since
xx, F=y? , +vV, i
i+1 _yi+2 yl—lYH—l
XiXiyoF = Vin1Viio

we see that x;x;, | F is the only quadric containing yi2+2, and this forces a;;,, = 0 for all
i as gF = 0. But then

0=gF = Z Qi ir2Yit1Yiv2

is a sum of independent quadratic monomials so that a;;,, = 0 for all i as well. Hence,
q = 0 as claimed, and we see that [I/J], = 0.
Among the degree 3 square-free monomials

x;x;x, withi <j < ¢,

we see that x;x;x, is zero modulo J unless [i—¢| < 2 so that only the monomials
2

X;X;1X;yo could possibly be nonzero. Similarly, any monomial of the form x7x; is zero
modulo J unless |i —j| < 2. Ifj=1i,i+ 1,i + 2, then
XiZXJ- =X; 3%, 1X;=0 (modJ) (4.1)

since
Xi_3X; X 3Xji1. XX p €Jasc= 7.
On the other hand, we have

2 _ 2 _
XX 1 =Xj_3X; | = Xj_4X;_3X; 5

2 _
XiXi o = Xj 3Xj 92X
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Quadratic Gorenstein Rings 17

modulo J so that the ¢ monomials of the form x;x; ;x; , span S/J in degree 3. In degree

4, we note that

XinXi+1Xi+2 =0 (mod J)

unless j =1i,i+ 1,i+ 2, and moreover, we have

ll
o

2 -
XiXip1Xipn = X 3% 1 X 1%
2 _ 2 _
X;iX7 1 Xj9 =X; pX; X0 =0
XX, X2, =X X,X?
41442 = -1+
for all i, where the middle equivalence follows from (4.1). Thus, S/J is spanned in degree

4 by the monomials x;x; +1Xl-2+2, which are all equivalent to one another. In particular,

every variable annihilates
2 _ 2
XX X5 = XX, X5

modulo J so that every monomial of degree at least five is zero modulo J. Since S/J maps

surjectively onto R and
h(R) = (1,¢,2¢,c,1),
this shows that J = I..

To prove that R is not Koszul, it suffices to show that there is a quadratic 1st
syzygy of I, which is not in the module Z generated by the linear syzygies and the Koszul
syzygies of I (see e.g., [14, 2.8]). For each i € Z/cZ, let

2
q; =X; —X_1X,_3

1

be the binomial quadrics in I, and let u; = x;_;x;_,. Then a computation shows that

c—1
qu'ui =0.
i—0

Call this syzygy u = (ugp, ..., U,_;); we claim that u ¢ Z.
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18 M. Mastroeni et al.

To see this, let m,,..., mg denote the quadratic monomials in I, and let

L=(qy,.../qc_1.,My,..., My).

We further claim that
(L:qo) =Xy, .../ Xe_3)1-
Indeed, for 3 <i < c¢ — 4, we have
X;qy € (Myq,...,My),
while

X5qy = —Xoq3 t+ X3(XpX3) — Xo_3(XoX,_1)

Xc 390 = Xo(XoXc_3) = X 19c-3 + Xc 6(Xc_1Xca)
are both elements of L. If £ € (L : qy); is any other linear form, we may assume that

{ =axy+bx; +dx,_,+ex, ,forsomea,b,deck.

Since none of the generators of L contain a monomial of the form x3, x,_;X,_3, OF X;X; 4

in their supports, we see that

e a=0as Xg is not in the support of any polynomial in L.

e b=0as Xlxg is not in the support of any polynomial in L.
e d=0asx, X, ,X._3is notin the support of any polynomial in L.

e e=0as XC_IX(% is not in the support of any polynomial in L.

Hence, £ = 0 so that

(L:qg); =Xy, ..., Xo 1)1

as claimed.
As a consequence of the preceding paragraph, we see that the 1st coordinate of

any linear syzygy on qq,...,q,_;, M, ..., mg must belong to (x,,...,x,_;). If u € Z, then
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Quadratic Gorenstein Rings 19

its 1st coordinate
Ug = Xo_1Xc—2

must be a linear combination of the 1st coordinates of the linear syzygies and Koszul

syzygies of I so that

2 2
Ug € (Xg,. .. X 3,q1,--1Ge_1) = Xpy o1 Xo_ 3, X1Xe_ 1, Xp_0,X0_1,q1)-

But this is impossible since x,_;x,_, does not appear in any quadric in this ideal. This
shows that u is a minimal quadratic syzygy, which is not in the submodule generated by
the linear and Koszul syzygies. Therefore S/I is quadratic, Gorenstein, and not Koszul,

with regularity four and codimension c. |

Example 4.2. The ¢ = 7 case of Theorem 4.1 yields an ideal with generators

Yo¥s  VaVs—VE
YoYa  YVo¥a—VE
Y1¥Va Y1¥3 _Yi
Y1¥s Yo¥2 _Yg
YoVe  YV1Ve — V3
Y2Vs YoVs —Yf
YsV6  Va¥o— Vi

This recovers the Artinian reduction of the toric ring in Example 1.1 (see the proof of

[16,1.3]); in this sense, the above result greatly extends Matsuda's example.

Example 4.3. When k = Q, we can also find an example of a non-Koszul quadratic
Gorenstein ring with regularity r = 4 and codimension ¢ = 6 by slightly modifying the

construction of the preceding theorem. As in Theorem 4.1, we start with the polynomial

F = YoV1VE + V1VaV2 + VoV3V% + VaVaVe + VaVsV2 + VsVoV 2.

The corresponding ideal Ij; is generated by six quadrics and two cubics. It is possible to

eliminate the cubics by modifying the input polynomial F to

G =F + yoVsVa + ¥oVe.
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20 M. Mastroeni et al.

The ideal I; is generated by the nine quadrics

O
Y1V
Yo¥3
Y5 = VoV
Yg —¥V3Vs
Y5 — V175
Yi+YaVs— Ve
Y1V3 — Yo¥a — Vi + V2
YoYa +Y2V4 — V3Vs5 —yé

The ring R = S/I; has Betti table

01 2 3 4 5 6
0 - - - - - _
-9 & - = =~ (4.2)
2|- — 40 72 40 — -
3/- - - - a4 9 -
4l- - — — — -1

The h-vector of Ris (1,6,12,6,1), and since
s g
B3 4(R) =40 > 5)
R cannot be Koszul by [2, 3.4].

For any non-Koszul quadratic Gorenstein ring R = S/I, let R' = R ®,, klz]/(z?),
where z is a new variable. Then R’ is also non-Koszul, quadratic, and Gorenstein and

has a mapping cone resolution over the polynomial ring S[z] with

reg R' =reg R+ 1 and codim R’ = codim R + 1

(seee.g., [15,4.9] for further details). Applying this to the rings appearing in Theorem 4.1
yields non-Koszul quadratic Gorenstein rings when r = 5 and c € {9, 10}, and applying
it to Example 4.3 yields non-Koszul quadratic Gorenstein rings when ¢ = r + 2.
Combined with Theorem 3.2, we obtain the improvement from Figure 1 to 2 for quadratic

Gorenstein rings over a field of characteristic zero.
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Quadratic Gorenstein Rings 21

McCullough-Seceleanu [17] use the idealization construction to produce a
quadratic Gorenstein algebra with r = 3 and ¢ = 8, which is not Koszul. We are working
to apply the techniques of Caviglia [4] to understand the two remaining unknown cases

r=3 and c € {6, 7} in Figure 2.

Remark 4.4. Although our strongest results hold only in characteristic zero, most
of our results in this paper and [15] hold in arbitrary characteristic so that Figure 2
remains mostly intact in prime characteristic. The notable exceptions are that the cases

where 6 < ¢ =r + 2 and where r = 3 and

ce{10,11,14,15,18,19, 24}

remain unknown.
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