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Conca–Rossi–Valla [6] ask if every quadratic Gorenstein ring R of regularity three is

Koszul. In [15], we use idealization to answer their question, proving that in nine or

more variables there exist quadratic Gorenstein rings of regularity three, which are not

Koszul. In this paper, we study the analog of the Conca–Rossi–Valla question when the

regularity of R is four or more. Let R be a quadratic Gorenstein ring having codim R = c

and reg R = r ≥ 4. We prove that if c = r + 1 then R is always Koszul, and for every

c ≥ r + 2, we construct quadratic Gorenstein rings that are not Koszul, answering

questions of Matsuda [16] and Migliore–Nagel [19].

1 Introduction

Let I be a homogeneous ideal generated by quadrics in a standard graded polynomial

ring S over a field, and set R = S/I. Tate [21] showed that if I is a complete intersection,

then R is Koszul. Complete intersections are the simplest examples of Gorenstein rings,

and Conca–Rossi–Valla show in [6] that quadratic Gorenstein rings of regularity two are

always Koszul. On the other hand, quadratic Gorenstein rings of regularity three are

less well understood:
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• Vishik–Finkelberg [23] and Polishchuk [20] show that the homogeneous

coordinate ring of a canonical curve generated by quadrics is Koszul.

• Conca–Rossi–Valla [6] show that if R has codimension at most four it is

Koszul.

• Caviglia [4] shows that if R has codimension five it is Koszul.

Conca–Rossi–Valla [6] ask if it is possible that all quadratic Gorenstein rings of

regularity three are Koszul. In [15], we negatively answer this question; using Nagata’s

technique of idealization, we produce quadratic Gorenstein rings of regularity three,

which are not Koszul for all codimensions c ≥ 9.

Our work was motivated by Matsuda’s discovery in [16] of a quadratic Goren-

stein ring with regularity four and codimension seven, which is not Koszul. Matsuda

constructs his example via graph theory; his methods do not produce further exam-

ples of quadratic Gorenstein rings, which are not Koszul. Matsuda’s example is not

subsumed by the results of [15], as it does not arise as an idealization (however, see

Remark 4.2).

Tensoring a quadratic Gorenstein ring R with appropriate choices of R′ yields
new quadratic Gorenstein rings R ⊗k R′. Applying this to non-Koszul quadratic Goren-

stein rings R constructed by idealization and by Matsuda, we show in [15, 4.9] that

quadratic Gorenstein rings and the Koszul property are related to each other in

characteristic zero (the characteristic assumption is needed only for a small number

of examples verified using Macaulay2 [10]) by the table appearing in Figure 1. Our goal

in this paper is to address the lacunae in the table.

Notation 1. Throughout this paper, unless specifically stated otherwise, we will

denote by k a fixed ground field of arbitrary characteristic, by S a standard graded

polynomial ring over k, by I ⊆ S a proper graded ideal, and R = S/I. Recall that I is

nondegenerate if it contains no linear forms; for arbitrary I, we can kill basis elements

which are linear forms contained in I to reduce to the nondegenerate setting, and we

will assume that this is the case throughout. We set c = codimR = htI and r = regR.

1.1 Key players

In this paper, we study the relationship between two conditions that impose extraordi-

nary constraints on the homological properties of R, namely the Gorenstein and Koszul

properties. The ring R is Gorenstein if it is Cohen–Macaulay and its canonical module
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Quadratic Gorenstein Rings 3

Fig. 1. Is every quadratic Gorenstein ring of codimension c and regularity r Koszul?

is isomorphic to a shift of R:

ωR = ExtcS(R,S)(−n) ∼= R(a)

where dim S = n. This implies that the graded Betti numbers

βS
i,j(R) = dimk Tor

S
i (R,k)j

have a symmetry

βS
i,j(R) = βS

c−i,c+r−j(R) (1.1)

for all i, j. This information is compactly summarized in the Betti table of R, where the

entry in column i and row j is βS
i,i+j(R) (see below for an example). We also recall that

the regularity of R is

regR = max{j | βS
i,i+j(R) �= 0 for some i}.
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It is the index of the bottom-most nonzero row in the Betti table of R. When R is Cohen–

Macaulay, the regularity is also the length of the h-vector h(R) = (1, c,h2, . . . ,hr), which

is related to the Hilbert series of R by

HR(t) = 1 + ct + h2t
2 + · · · + hrt

r

(1 − t)dimR
.

It is well known that the h-vector of a Gorenstein ring is also symmetric in the sense

that hi = hr−i for all i, and the regularity r is related to the shift a in the canonical

module via r = a + n − c.

On the other hand, R is Koszul if the ground field R/R+ ∼= k has a linear free

resolution over R. That is, we have βR
i,j(k) = 0 for all i and j with j �= i. Koszul algebras

have strong duality properties and appear as many rings of interest in commutative

algebra, topology, and algebraic geometry; see the surveys [9] and [5] and the references

therein. A necessary condition for R to be Koszul is that the ideal I is generated by

quadrics; however, this is not sufficient.

Example 1.1 ([16, 1.3]). Matsuda constructs a toric sevenfold in P14 whose coordinate

ring R is quadratic and Gorenstein but not Koszul. Its Betti table appears below. A

Macaulay2 computation shows that βR
3,4(k) = 1, so R is not Koszul.

0 1 2 3 4 5 6 7

0 1 −− −− −− −− −− −− −−
1 −− 14 21 −− −− −− −− −−
2 −− −− 36 126 126 36 −− −−
3 −− −− −− −− −− 21 14 −−
4 −− −− −− −− −− −− −− 1

Matsuda builds the ideal from a certain graph, but it does not generalize in any obvious

fashion. The h-vector of R is (1, 7, 14, 7, 1).

Question 1 ([16,2.1]). Do there exist non-Koszul quadratic Gorenstein rings with r = 4

and c ≤ 6?

The h-vector of a quadratic Gorenstein ring with r = 4 and c ≤ 6, which

is not a complete intersection necessarily has the form (1, c,h2, c, 1), where c = 5, 6.
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Quadratic Gorenstein Rings 5

Migliore–Nagel [19] show that the only possible h-vectors are

(1, 5, 8, 5, 1) (1, 6, 10, 6, 1) (1, 6, 11, 6, 1) (1, 6, 12, 6, 1)

but they were unable to construct an example with h2 = 12 in characteristic zero and

ask the following:

Question 2. Do there exist quadratic Gorenstein rings of characteristic zero with

h-vector (1, 6, 12, 6, 1)?

1.2 Results

Theorem 3.2 shows that any quadratic Gorenstein ring Rwith c = r+1 is always Koszul.

In particular, any quadratic Gorenstein with h-vector (1, 5, 8, 5, 1) is always Koszul.

However, in Example 4.3, we construct a non-Koszul quadratic Gorenstein ring over Q

with Hilbert function (1, 6, 12, 6, 1), affirmatively answering Questions 1 and 2. Our

results are summarized in the improvement of Figure 1 below.

Fig. 2. Is every quadratic Gorenstein ring of codimension c and regularity r Koszul?
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6 M. Mastroeni et al.

The division of the rest of the paper is as follows. We start with a review of the

relevant properties of quadratic Gorenstein rings in Section 2. In Section 3, we prove

Theorem: If R = S/I is a quadratic Gorenstein ring over an infinite ground field with

c = r + 1, then

I = Pf(M) + (q6, . . . , qc+2)

for some 5× 5 alternating matrix M of linear forms such that htPf(M) = 3 and quadrics

qi, which form a regular sequence modulo Pf(M). As a consequence, any quadratic

Gorenstein ring Rwith c = r+1 is a Koszul algebra. In Section 4, we use inverse systems

to prove Theorem: There is a family of quadratic Gorenstein non-Koszul algebras of

regularity four with Hilbert function (1, c, 2c, c, 1) for every codimension c ≥ 7. We

close by constructing a regularity-four quadratic Gorenstein non-Koszul algebra over

Q with Hilbert function (1, 6, 12, 6, 1) related to the family of the previous theorem. This

answers the questions of [16] and [19].

2 Background on Quadratic Gorenstein Rings

The mains tools that we will use in the following sections are linkage and inverse

systems. We briefly review some terminology and establish our conventions regarding

these topics below, and we refer the reader to [8, Ch. 21], [22, Ch. 4], and [11, §2.4] for

further details.

Given an ideal I ⊆ S with htI = c, we say that I is directly linked to the ideal J if

there is a complete intersection L ⊆ I with htL = c such that J = (L : I) and I = (L : J).

When I is unmixed, in particular when I is Cohen–Macaulay, it is automatically directly

linked to the colon ideal J = (L : I) for any complete intersection L as above. Many

properties can be passed between an ideal and its links. For example, if I and J are

directly linked, then S/I is Cohen–Macaulay if and only if S/J is. We will especially need

the following proposition relating the h-vectors of a Cohen–Macaulay ideal and its links,

which was originally proved in greater generality in [7, 3(b)]; see also [18, 5.2.19].

Proposition 2.1. Suppose that I ⊆ S is a Cohen–Macaulay ideal generated by quadrics

and that L ⊆ I is a quadratic complete intersection with htL = htI = c. Denote the linked

ideal by J = (L : I). Then h-vectors of S/I and S/J are related by

hi(S/I) =
(
c

i

)
− hc−i(S/J).
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Quadratic Gorenstein Rings 7

Suppose that S = k[x0, . . . , xc−1] so that R = S/I is an Artinian ring. We consider

the ring D = k[y0, . . . , yc−1] as an S-module via the action defined as follows. For any

monomials xα = xα0
0 · · ·xαc−1

c−1 and yβ = yβ0
0 · · ·yβc−1

c−1 with α,β ∈ Nc, we define

xα · yβ =
{

yβ−α if βi ≥ αi for all i

0 otherwise

The S-module action on D is defined by extending this action on monomials linearly. We

call D the module of inverse polynomials since D is isomorphic as an S-module to

Hc
S+(S) = 1

x0 · · · xc−1
k
[
x−1
0 , . . . , x−1

c−1

]
.

The setM = (0 :D I) is a finitely generated S-submodule of D called theMacaulay inverse

system of I, and it is well known that there is bijective correspondence between ideals

I ⊆ S such that R = S/I is Artinian and finitely generated S-submodules of D. Given such

a submoduleM ⊆ D, we associate to it the ideal I = (0 :S M). There is a close relationship

between the Hilbert functions of I and M. In particular, R = S/I is Gorenstein with socle

in degree r if and only if M is generated by a single inverse polynomial of degree r.

Over a field of characteristic zero, it is possible to describe inverse systems by

an equivalent action of S on D using partial derivatives. In the following sections, we

will use only the contraction action defined in the preceding paragraph.

In the next section, we will consider quadratic Gorenstein rings Rwith c = r+1.

We close this background section with a proposition that explains why this is the 1st

interesting case in which to ask whether or not R is Koszul.

Proposition 2.2 ([12, 3.1]). Suppose that R = S/I is a quadratic Cohen–Macaulay ring.

Then regR ≤ pdSR, and equality holds if and only if R is a complete intersection.

3 Quadratic Gorenstein Rings with c = r + 1

In this section, we show that every quadratic Gorenstein ring with c = r + 1 is Koszul.

Using linkage, Migliore and Nagel have already computed the h-vectors of such rings

[19, 3.1]. By carefully analyzing their arguments, we are actually able to prove much

more.
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Theorem 3.1. Let R = S/I be a quadratic Cohen–Macaulay ring with c = htI. Then R

is a Koszul almost complete intersection if and only if its h-vector is given by

hi(R) =
(
c

i

)
−

(
c − 2

i − 2

)
.

Proof. If R is a Koszul almost complete intersection, it follows from [14, 3.3] that the

h-polynomial of R is hR(t) = (1 + t)c−2(1 + 2t) so that

hi(R) = 2
(
c − 2

i − 1

)
+

(
c − 2

i

)
=

(
c − 2

i − 1

)
+

(
c − 1

i

)

=
(
c − 2

i − 1

)
+

(
c − 2

i − 2

)
−

(
c − 2

i − 2

)
+

(
c − 1

i

)
=

(
c

i

)
−

(
c − 2

i − 2

)
.

Conversely, if R is a quadratic Cohen–Macaulay ring with the given h-vector,

then the h-polynomial of R is hR(t) = (1 + t)c − t2(1 + t)c−2 = (1 + t)c−2(1 + 2t) so that

∑
j

⎛
⎝ j∑

i=0

(−1)iβS
i,j(R)

⎞
⎠ tj = (1 − t)chR(t) = (1 − t2)c−2(1 − t)2(1 + 2t)

≡ (1 − (c − 2)t2 +
(
c − 2

2

)
t4)(1 − 3t2 + 2t3) (mod t5)

≡ 1 − (c + 1)t2 + 2t3 + (3(c − 2) +
(
c − 2

2

)
)t4 (mod t5). (3.1)

Since I is generated by quadrics, this implies that

βS
1,2(R) = c + 1 and βS

2,3(R) = 2.

It then follows from [2, 4.2] that

βS
3,4(R) = 0

so that
(βS

2,4(R)=3(c−2)+
c−22

)
.

Since the conclusion is preserved under flat base change, we may assume that

the ground field is infinite. It follows from [14, 4.2] that, if R is a quadratic almost

complete intersection over an infinite ground field with βS
2,3(R) ≥ 2, we can write
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Quadratic Gorenstein Rings 9

I = (q1, . . . , qc+1) for some quadrics qi, where q2, . . . , qc+1 form a regular sequence and

q1, q2, q3 are the corresponding minors of a 3 × 2 matrix M = (�i,j) of linear forms. In

particular, we have htI2(M) = 2 as (q2, q3) ⊆ I2(M). Additionally,

(q2, . . . , qc+1) ⊆ J ′ = (�1,1, �1,2, q4, . . . , qc+1)

so that htJ ′ = c and �1,1, �1,2, q4, . . . , qc+1 is a regular sequence. Now, set

L = (q2, . . . , qc+1), and consider the linked ideal J = (L : I). Since q2 and q3 are minors

of M, we have �1,1q1, �1,2q1 ∈ (q2, q3) so that J ′ ⊆ J. Then J and J ′ are ideals of height c

with the same h-vector by Proposition 2.1. Hence, they have the same Hilbert function

and are equal.

From the natural short exact sequence

0 → S/J(−2) → S/L → R → 0,

we can obtain a free resolution of R from the free resolutions of S/J and S/L via a

mapping cone. In particular, this yields

βS
2,j(R) ≤ βS

2,j(S/L) + βS
1,j−2(S/J) for all j.

Combining this bound with the description of J from the previous paragraph, we see

that βS
2,j(R) = 0 for j ≥ 5.

This shows that SyzS1(I) is generated by linear syzygies and Koszul syzygies on

the minimal generators of I. In fact, the columns of M must be the two independent

linear syzygies of I, and the S-span of these linear syzygies contains the Koszul syzygies

involving any two of q1, q2, q3. Let W denote the k-span of the Koszul syzygies involving

some qj for j �= 1, 2, 3. We claim that

W ∩ S+(SyzS1(I)3) = 0.

If not, there is some nonzero k-linear combination of Koszul syzygies

∑
1≤i<j≤c+1

j≥4

ai,j(qiej − qjei)

(where ei denotes the i-th standard basis vector of S(−2)c+1), which is an S-linear

combination of the linear syzygies. But such an S-linear combination must be zero in
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10 M. Mastroeni et al.

its j-th coordinate for all j ≥ 4. If ai,j �= 0, then examining the j-th coordinate of the

above Koszul syzygy yields a linear dependence relation on the qi, which is impossible

since the qi are the minimal generators for I. Hence, the claim holds so that the Koszul

syzygies in W are part of a minimal set of generators for SyzS1(I). As βS
2,j(R) = 0 for j ≥ 5

and

βS
2,4(R) = 3(c − 2) +

(
c − 2

2

)

is precisely the number of Koszul syzygies in W, we see that SyzS1(I) is minimally

generated by the columns of M and the Koszul syzygies in W.

Consequently, we see that qc+1 is a nonzerodivisor modulo (q1, . . . , qc). Then

S/(q1, . . . , qc) is Cohen–Macaulay and has h-polynomial given by

(1 + t)hS/(q1,...,qc)(t) = hR(t),

so that deghS/(q1,...,qc)(t) = c − 2 and

hi(S/(q1, . . . , qc)) = hi+1(R) − hi+1(S/(q1, . . . , qc)) =
(
c − 1

i

)
−

(
c − 1

i − 2

)

by a downward induction. Hence, an induction on c shows that q4, . . . , qc is a regular

sequence modulo I2(M), and it follows from [14, 3.3] that R is Koszul. �

Theorem 3.2. Let R = S/I be a quadratic Gorenstein ring over an infinite ground field

with regR+1 = htI = c. Then I = Pf(M)+ (q6, . . . , qc+2) for some 5×5 alternating matrix

M of linear forms such that htPf(M) = 3 and some quadrics q6, . . . , qc+2, which are a

regular sequence modulo Pf(M). Moreover, R is Koszul.

Proof. Since regR < htI = c, I is not complete intersection, and because R is a

quadratic Gorenstein ring, this implies that regR ≥ 2 so that c ≥ 3. By [19, 3.1], the

h-vector of R is given by

hi(R) =
(
c − 1

i

)
+

(
c − 3

i − 1

)
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Quadratic Gorenstein Rings 11

so that the h-polynomial is hR(t) = (1 + t)c−1 + t(1 + t)c−3 = (1 + t)c−3(1 + 3t + t2). As in

the proof of the previous theorem, this implies that

∑
j

⎛
⎝ j∑

i=0

(−1)iβS
i,j(R)

⎞
⎠ tj = (1 − t)chR(t) = (1 − t2)c−3(1 − t)3(1 + 3t + t2)

≡ (1 − (c − 3)t2 +
(
c − 3

2

)
t4)(1 − 5t2 + 5t3) (mod t5)

≡ 1 − (c + 2)t2 + 5t3 + (5(c − 3) +
(
c − 3

2

)
)t4 (mod t5). (3.2)

Since I is generated by quadrics, this implies that βS
1,2(R) = c + 2 and βS

2,3(R) = 5. We

can then write I = (q1, . . . , qc+2) for some quadrics qi with q1, . . . , qc a regular sequence.

Set L = (q1, . . . , qc), and consider the linked ideal J = (L : I). Then Proposition 2.1 shows

that the h-vector of S/J is given by

hi(S/J) =
(
c − 1

i

)
−

(
c − 3

i − 2

)
.

This implies that J contains a linear form z, and J/zS is a Koszul almost complete

intersection by the preceding theorem.

Next, we claim that J = (L, z). Since J/zS is minimally generated by c quadrics, it

is enough to show that q1, . . . , qc are independent modulo z. Suppose this is not the case.

We note that L ⊆ (L, z) ⊆ J implies ht(L, z) = c. Hence, we may assume that q1, . . . , qc−1

are a regular sequence modulo z and qc ∈ (q1, . . . , qc−1, z), and so, after a suitable change

of generators for L, we may further assume that qc = z� for some linear form �. In

addition, we know that zqc+1 = �1q1 + · · · + �cqc for some linear forms �i as zqc+1 ∈ L.

Modulo z, this corresponds to a linear syzygy on the images of q1, . . . , qc−1, but since

q1, . . . , qc−1 are a regular sequence modulo z, this syzygy must be trivial. Hence, we have

�i = λiz for some λi ∈ k, and after canceling z, we have qc+1 = λ1q1 + · · · + λc−1qc−1 + �c�.

And so, after another change of generators for I, we may assume that qc+1 = �c� and,

similarly, that qc+2 = hc� for some linear form hc. In this case, the linear syzygies of I

contain the syzygies on qc, qc+1, qc+2 corresponding to the columns of the matrix⎛
⎜⎜⎝

�c hc 0

−� 0 hc

0 −� −�c

⎞
⎟⎟⎠ ,

which in turn has a linear 2nd syzygy (hc,−�c, �), so that βS
3,4(R) �= 0. Since R is

Gorenstein with regR = c−1, this implies that βS
c−3,2c−5(R) �= 0. The short exact sequence

0 → I/L → S/L → R → 0
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12 M. Mastroeni et al.

induces an exact sequence

0 = TorSc−3(S/L,k)2c−5 → TorSc−3(R,k)2c−5 → TorSc−4(I/L,k)2c−5

so that βS
c−4,2c−5(I/L) �= 0. However, we know that

I/L ∼= HomS(S/J, S/L) ∼= ωS/J(2c − n) ∼= ExtcS(S/J, S)(2c) where n = dim S.

Since S/J is Cohen–Macaulay, it follows that

βS
4,5(S/J) = βS

c−4,−5(Ext
c
S(S/J, S)) = βS

c−4,2c−5(I/L) �= 0.

However, as J/zS is a Koszul almost complete intersection, [14, 3.3] implies that

β
S/zS
3,4 (S/J) = 0 so that βS

4,5(S/J) = 0, which is the desired contradiction. Therefore, we

see that J = (L, z) as claimed.

After a suitable change of generators for L modulo z there is a 3 × 2 matrix

M = (�i,j) of linear forms in S = S/zS such that the images of q1, q2, q3 are the

corresponding minors of M. Let M = (�i,j) be a lift of this matrix of linear forms to

S. Then we have

q1 = −zu1 + �2,1�3,2 − �2,2�3,1

q2 = zu2 − �1,1�3,2 + �1,2�3,1

q3 = −zu3 + �1,1�2,2 − �1,2�2,1

for some linear forms ui. That is, we can obtain q1, q2, q3 as submaximal Pfaffians of

the alternating matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 u3 u2 �1,1 �1,2

−u3 0 u1 �2,1 �2,2

−u2 −u1 0 �3,1 �3,2

−�1,1 −�2,1 −�3,1 0 z

−�1,2 −�2,2 −�3,2 −z 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

The other two Pfaffians of M are

f4 = �3,2u3 − �2,2u2 + �1,2u1

f5 = −�3,1u3 + �2,1u2 − �1,1u1.

Since q1, q2, q3 is a regular sequence, htPf(M) = 3 so that Pf(M) is a Gorenstein ideal

with minimal free resolution given by the Buchsbaum–Eisenbud structure theorem
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Quadratic Gorenstein Rings 13

[3, 3.4.1]. In particular, M is the matrix of 1st syzygies on Pf(M) so that zf4, zf5 ∈
(q1, q2, q3), and hence, we have f4, f5 ∈ (L : z) = (L : J) = I. Additionally, q1, q2, q3, f4, f5
must be independent quadrics since otherwise the Buchsbaum–Eisenbud complex

would not be a resolution of Pf(M). Hence, after replacing the original qi for i ≥ 4,

we may assume that

I = Pf(M) + (q6, . . . , qc+2)

for some quadrics qi. As the columns of M are independent linear syzygies on I and

βS
2,3(R) = 5, these must be all of the linear syzygies of I. Consequently, we must have

βS
3,4(R) = 0 as there are no linear syzygies on the columns ofM, and so, (3.2) implies that

βS
2,4(R) = 5(c − 3) +

(
c − 3

2

)
.

This is precisely the number of Koszul syzygies involving some qj for j ≥ 6; the other

Koszul syzygies are in the S-span of the linear syzygies. By arguing inductively as in

the proof of the preceding theorem, we see that q6, . . . , qc+2 must be a regular sequence

modulo Pf(M). �

By flat base change to an infinite ground field, we have the following corollary.

Corollary 3.3. Let R = S/I be a quadratic Gorenstein ring with reg R + 1 = ht I = c.

Then R is Koszul with multiplicity e(R) = 5 · 2c−3 and Betti table

0 1 2 3 4 · · · c − 2 c − 1 c

0 1 − − − − − − −
1 − c + 2 5 − − − − −
2 − − 5

(c−3
1

) + (c−3
2

)
5
(c−3

1

) + 1 − − − −
3 − − − 5

(c−3
2

) + (c−3
3

)
5
(c−3

2

) + (c−3
1

)
...

. . .
. . .

c − 2 − − − − 5 c + 2 −
c − 1 − − − − − − 1

Specifically, we have

βS
i,2i(R) = 5

(
c − 3

i − 1

)
+

(
c − 3

i

)
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14 M. Mastroeni et al.

and

βS
i,2i−1(R) = 5

(
c − 3

i − 2

)
+

(
c − 3

i − 3

)

so that

βS
i (R) =

(
c

i

)
+ 2

(
c − 2

i − 1

)
for all i.

As a consequence of the above corollary, we see that

(
c

i

)
≤ βS

i (R) ≤
(
c + 2

i

)

for all i so that both the Betti number bounds proposed by Buchsbaum–Eisenbud–

Horrocks conjecture and by [1, 6.5] hold for this class of Koszul algebras.

Question 3. Using the fact that we know the entire Betti table of R and that R is

Koszul from the preceding corollary, does the conclusion of Theorem 3.2 hold without

the infinite ground field hypothesis?

We suspect that the answer to the above question is yes since such a structure

theorem is possible for Koszul almost complete intersections without any restriction on

the ground field.

Question 4. Is every quadratic Gorenstein ring R = S/I where I has c + 2 minimal

quadric generators necessarily of the form described in Theorem 3.2?

Huneke–Ulrich ideals [13] are a well-known class of Gorenstein ideals of

deviation two, but these ideals are never quadratic in codimension greater than three. It

would also be interesting to explore when such rings are G-quadratic or admit a Gröbner

flag.

4 Quadratic Gorenstein Rings with r = 4 Which Are Not Koszul

Theorem 4.1. Let S = k[x0, . . . , xc−1] where c ≥ 7, and let D = k[y0, . . . , yc−1] denote the

module of inverse polynomials as in Section 2. Consider the inverse polynomial

F =
∑

i∈Z/cZ

yiyi+1y
2
i+2
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Quadratic Gorenstein Rings 15

and let IF = (0 :S F) ⊆ S be the corresponding ideal. Then R = S/IF is a quadratic

Gorenstein ring, which is not Koszul, with h-vector h(R) = (1, c, 2c, c, 1).

In the proof below, we view Z/cZ as being totally ordered by 0 < 1 < · · · < c − 1

and set |i| = min{i, c − i} for each i ∈ Z/cZ.

Proof. It is well known that R is Gorenstein with regularity 4. For each i ∈ Z/cZ, we

note that

xiF = yi+1y
2
i+2 + yi−1y

2
i+1 + yi−2yi−1yi.

In particular, all of these cubics are linearly independent since, for example, only xiF

contains the monomial yi+1y
2
i+2, and so, no linear form annihilates F so that IF is

nondegenerate. Hence, the h-vector of R has the form

h(R) = (1, c,h2, c, 1),

where

h2 =
(
c + 1

2

)
− |linearly independent quadrics in IF |.

Any quadratic monomial xixj with |i − j| ≥ 3 annihilates F, and a count shows there are

c(c − 5)

2

such monomials. The c binomials of the form

x2i − xi−1xi−3

also annihilate F; combining these with the preceding square-free monomials gives a

total of

c(c − 3)

2

linearly independent quadrics that annihilate F. Thus, to show that

h(R) = (1, c, 2c, c, 1),

it suffices to prove that there are no other quadrics in IF .

Let J ⊆ IF be the ideal generated by the c(c−3)
2 quadrics of the preceding

paragraph. We will show that J = IF so that R is quadratic with the desired h-vector. If

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab297/6396526 by Auburn U

niversity Libraries user on 07 M
arch 2022



16 M. Mastroeni et al.

q ∈ IF is a quadric, then after replacing qwith suitable linear combination with quadrics

in J we assume that q has the form

q =
∑
i

ai,i+1xixi+1 +
∑
i

ai,i+2xixi+2

for some ai,i+1,ai,i+2 ∈ k. We claim that such a quadric q is zero. Indeed, since

xixi+1F = y2i+2 + yi−1yi+1

xixi+2F = yi+1yi+2

we see that xixi+1F is the only quadric containing y2i+2, and this forces ai,i+1 = 0 for all

i as qF = 0. But then

0 = qF =
∑

ai,i+2yi+1yi+2

is a sum of independent quadratic monomials so that ai,i+2 = 0 for all i as well. Hence,

q = 0 as claimed, and we see that [I/J]2 = 0.

Among the degree 3 square-free monomials

xixjx� with i < j < �,

we see that xixjx� is zero modulo J unless |i − �| ≤ 2 so that only the monomials

xixi+1xi+2 could possibly be nonzero. Similarly, any monomial of the form x2i xj is zero

modulo J unless |i − j| ≤ 2. If j = i, i + 1, i + 2, then

x2i xj ≡ xi−3xi−1xj ≡ 0 (mod J) (4.1)

since

xi−3xi, xi−3xi+1, xi−1xi+2 ∈ J as c ≥ 7.

On the other hand, we have

x2i xi−1 ≡ xi−3x
2
i−1 ≡ xi−4xi−3xi−2

x2i xi−2 ≡ xi−3xi−2xi−1
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Quadratic Gorenstein Rings 17

modulo J so that the c monomials of the form xixi+1xi+2 span S/J in degree 3. In degree

4, we note that

xjxixi+1xi+2 ≡ 0 (mod J)

unless j = i, i + 1, i + 2, and moreover, we have

x2i xi+1xi+2 ≡ xi−3xi−1xi+1xi+2 ≡ 0

xix
2
i+1xi+2 ≡ xi−2x

2
i xi+2 ≡ 0

xixi+1x
2
i+2 ≡ xi−1xix

2
i+1

for all i, where the middle equivalence follows from (4.1). Thus, S/J is spanned in degree

4 by the monomials xixi+1x
2
i+2, which are all equivalent to one another. In particular,

every variable annihilates

x0x1x
2
2 ≡ x3x4x

2
5

modulo J so that every monomial of degree at least five is zero modulo J. Since S/J maps

surjectively onto R and

h(R) = (1, c, 2c, c, 1),

this shows that J = IF .

To prove that R is not Koszul, it suffices to show that there is a quadratic 1st

syzygy of I, which is not in the module Z generated by the linear syzygies and the Koszul

syzygies of I (see e.g., [14, 2.8]). For each i ∈ Z/cZ, let

qi = x2i − xi−1xi−3

be the binomial quadrics in IF , and let ui = xi−1xi−2. Then a computation shows that

c−1∑
i=0

qiui = 0.

Call this syzygy u = (u0, . . . ,uc−1); we claim that u /∈ Z.
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18 M. Mastroeni et al.

To see this, let m1, . . . ,ms denote the quadratic monomials in IF , and let

L = (q1, . . . , qc−1,m1, . . . ,ms).

We further claim that

(L : q0)1 = (x2, . . . , xc−3)1.

Indeed, for 3 ≤ i ≤ c − 4, we have

xiq0 ∈ (m1, . . . ,ms),

while

x2q0 = −x0q3 + x3(x0x3) − xc−3(x2xc−1)

xc−3q0 = x0(x0xc−3) − xc−1qc−3 + xc−6(xc−1xc−4)

are both elements of L. If � ∈ (L : q0)1 is any other linear form, we may assume that

� = ax0 + bx1 + dxc−2 + exc−1 for some a,b,d, e ∈ k.

Since none of the generators of L contain a monomial of the form x20, xc−1xc−3, or xixi+1

in their supports, we see that

• a = 0 as x30 is not in the support of any polynomial in L.

• b = 0 as x1x
2
0 is not in the support of any polynomial in L.

• d = 0 as xc−1xc−2xc−3 is not in the support of any polynomial in L.

• e = 0 as xc−1x
2
0 is not in the support of any polynomial in L.

Hence, � = 0 so that

(L : q0)1 = (x2, . . . , xc−1)1

as claimed.

As a consequence of the preceding paragraph, we see that the 1st coordinate of

any linear syzygy on q0, . . . , qc−1,m1, . . . ,ms must belong to (x2, . . . , xc−1). If u ∈ Z, then
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Quadratic Gorenstein Rings 19

its 1st coordinate

u0 = xc−1xc−2

must be a linear combination of the 1st coordinates of the linear syzygies and Koszul

syzygies of IF so that

u0 ∈ (x2, . . . , xc−3, q1, . . . , qc−1) = (x2, . . . , xc−3, x1xc−1, x
2
c−2, x

2
c−1, q1).

But this is impossible since xc−1xc−2 does not appear in any quadric in this ideal. This

shows that u is a minimal quadratic syzygy, which is not in the submodule generated by

the linear and Koszul syzygies. Therefore S/IF is quadratic, Gorenstein, and not Koszul,

with regularity four and codimension c. �

Example 4.2. The c = 7 case of Theorem 4.1 yields an ideal with generators

y0y3 y3y5 − y26
y0y4 y2y4 − y25
y1y4 y1y3 − y24
y1y5 y0y2 − y23
y2y6 y1y6 − y22
y2y5 y0y5 − y21
y3y6 y4y6 − y20

This recovers the Artinian reduction of the toric ring in Example 1.1 (see the proof of

[16,1.3]); in this sense, the above result greatly extends Matsuda’s example.

Example 4.3. When k = Q, we can also find an example of a non-Koszul quadratic

Gorenstein ring with regularity r = 4 and codimension c = 6 by slightly modifying the

construction of the preceding theorem. As in Theorem 4.1, we start with the polynomial

F = y0y1y
2
2 + y1y2y

2
3 + y2y3y

2
4 + y3y4y

2
5 + y4y5y

2
0 + y5y0y

2
1.

The corresponding ideal IF is generated by six quadrics and two cubics. It is possible to

eliminate the cubics by modifying the input polynomial F to

G = F + y0y5y
2
4 + y0y

3
5.
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20 M. Mastroeni et al.

The ideal IG is generated by the nine quadrics

y2y5
y1y4
y0y3

y23 − y0y2
y20 − y3y5
y22 − y1y5

y21 + y2y4 − y25
y1y3 − y2y4 − y24 + y25
y0y4 + y2y4 − y3y5 − y25

The ring R = S/IG has Betti table

0 1 2 3 4 5 6

0 1 − − − − − −
1 − 9 4 − − − −
2 − − 40 72 40 − −
3 − − − − 4 9 −
4 − − − − − − 1

(4.2)

The h-vector of R is (1, 6, 12, 6, 1), and since

βS
2,4(R) = 40 >

(
9

2

)
,

R cannot be Koszul by [2, 3.4].

For any non-Koszul quadratic Gorenstein ring R = S/I, let R′ = R ⊗k k[z]/(z2),

where z is a new variable. Then R′ is also non-Koszul, quadratic, and Gorenstein and

has a mapping cone resolution over the polynomial ring S[z] with

reg R′ = reg R + 1 and codim R′ = codim R + 1

(see e.g., [15, 4.9] for further details). Applying this to the rings appearing in Theorem 4.1

yields non-Koszul quadratic Gorenstein rings when r = 5 and c ∈ {9, 10}, and applying

it to Example 4.3 yields non-Koszul quadratic Gorenstein rings when c = r + 2.

Combined with Theorem 3.2, we obtain the improvement from Figure 1 to 2 for quadratic

Gorenstein rings over a field of characteristic zero.
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Quadratic Gorenstein Rings 21

McCullough–Seceleanu [17] use the idealization construction to produce a

quadratic Gorenstein algebra with r = 3 and c = 8, which is not Koszul. We are working

to apply the techniques of Caviglia [4] to understand the two remaining unknown cases

r = 3 and c ∈ {6, 7} in Figure 2.

Remark 4.4. Although our strongest results hold only in characteristic zero, most

of our results in this paper and [15] hold in arbitrary characteristic so that Figure 2

remains mostly intact in prime characteristic. The notable exceptions are that the cases

where 6 ≤ c = r + 2 and where r = 3 and

c ∈ {10, 11, 14, 15, 18, 19, 24}

remain unknown.
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