Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SIAM J. Sc1. COMPUT. © 2022 Society for Industrial and Applied Mathematics
Vol. 44, No. 1, pp. C25-C53

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC*

HUSSAM AL DAAST, GREY BALLARD?!, AND PETER BENNERf

Abstract. We present efficient and scalable parallel algorithms for performing mathematical
operations for low-rank tensors represented in the tensor train (TT) format. We consider algorithms
for addition, elementwise multiplication, computing norms and inner products, orthonormalization,
and rounding (rank truncation). These are the kernel operations for applications such as iterative
Krylov solvers that exploit the TT structure. The parallel algorithms are designed for distributed-
memory computation, and we propose a data distribution and strategy that parallelizes computations
for individual cores within the TT format. We analyze the computation and communication costs
of the proposed algorithms to show their scalability, and we present numerical experiments that
demonstrate their efficiency on both shared-memory and distributed-memory parallel systems. For
example, we observe better single-core performance than the existing MATLAB TT-Toolbox in
rounding a 2GB TT tensor, and our implementation achieves a 34X speedup using all 40 cores of a
single node. We also show nearly linear parallel scaling on larger TT tensors up to over 10,000 cores
for all mathematical operations.

Key words. low-rank tensor format, tensor train, parallel algorithms, QR, SVD
AMS subject classifications. 15A69, 15A23, 65Y05, 65Y20

DOI. 10.1137/20M1387158

1. Introduction. Multidimensional data, or tensors, appear in a variety of ap-
plications where numerical values represent multiway relationships. The tensor train
(TT) format is a low-rank representation of a tensor that has been applied to solv-
ing problems in areas such as parameter-dependent PDEs, stochastic PDEs, mo-
lecular simulations, uncertainty quantification, data completion, and classification
[9, 10, 19, 22, 32, 34, 41, 46]. As the number of dimensions or modes of a tensor
becomes large, the total number of data elements grows exponentially fast, which is
known as the curse of dimensionality [22]. Fortunately, it can be shown in many cases
that the tensors exhibit low-rank structure and can be represented or approximated
by significantly fewer parameters. Low-rank tensor approximations allow for storing
the data implicitly and performing arithmetic operations in feasible time and space
complexity, avoiding the curse of dimensionality.

In contrast to the matrix case where the singular value decomposition (SVD)
provides optimal low-rank representations, there are more diverse possibilities for low-
rank representations of tensors [30]. Various representations have been proposed, such
as CANDECOMP/PARAFAC (CP) [15, 23], Tucker [52], quantized tensor train [29],
and hierarchical Tucker [22], in addition to TT [41], and each has been demonstrated
to be most effective in certain applications. The TT format, which is also known as the
matrix product state (MPS) in the computational physics and chemistry communities,
consists of a sequence of T'T cores, one for each tensor dimension, and each core is
a 3-way tensor except for the first and last cores, which are matrices. The primary

*Submitted to the journal’s Software and High-Performance Computing section December 21,
2020; accepted for publication (in revised form) October 12, 2021; published electronically February
3, 2022.

https://doi.org/10.1137/20M1387158

TDepartment of Computational Methods in Systems and Control Theory, Max Planck Insti-
tute for Dynamics of Complex Technical Systems, Magdeburg, 39106, Germany (aldaas@mpi-
magdeburg.mpg.de, benner@mpi-magdeburg.mpg.de).

fComputer Science Department, Wake Forest University, Winston Salem, NC, 27106 USA (bal-
lard@wfu.edu).

C25

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/20M1387158
mailto:aldaas@mpi-magdeburg.mpg.de
mailto:aldaas@mpi-magdeburg.mpg.de
mailto:benner@mpi-magdeburg.mpg.de
mailto:ballard@wfu.edu
mailto:ballard@wfu.edu

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C26 HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

advantages of T'T are that (1) the number of parameters in the representation is linear,
rather than exponential, in the number of modes and (2) the representation can be
computed to satisfy a specified approximation error threshold in a numerically stable
way.

As these low-rank tensor techniques have been applied to larger and larger data
sets, efficient sequential and parallel implementations of algorithms for computing
and manipulating these formats have also been developed. Toolboxes and libraries in
productivity-oriented languages such as MATLAB and Python [4, 31, 39, 54] are avail-
able for moderately sized data, and parallel algorithms implemented in performance-
oriented languages exist for computation of decompositions such as CP [20, 48, 36]
and Tucker [3, 8, 28, 47] and operations such as tensor contraction [49], allowing
for scalability to much larger data and numbers of processors. While efficient com-
putation of TT approximations of explicit tensors has attracted recent attention
[13, 21, 37, 45, 55], no such high-performance parallel implementations exist for ap-
proximating tensors already in TT format. In condensed matter computations, several
advances have been made in parallelizing the density matrix renormalization group
(DMRG) algorithm, which computes the ground-state eigenvector in MPS/TT format
[27, 35, 50]. The modes’ dimensions in these applications are very small and the TT
ranks can be very large. In contrast, applications from parameter-dependent PDEs,
stochastic PDEs, uncertainty quantification, and molecular simulations [10, 11, 32]
yield computations with TT tensors having certain modes with very large dimensions
and relatively small TT ranks. The goal of this work is to establish efficient and
scalable algorithms for implementing the key mathematical operations on TT tensors
for applications where at least one mode has a very large dimension and the TT ranks
are relatively small to allow researchers to scale their models beyond the time and
memory constraints when using current MATLAB and Python implementations.

We consider mathematical operations such as addition, Hadamard (elementwise)
multiplication, computing norms and inner products, left- and right-orthonormalization,
as well as rounding (rank truncation). These are the operations required to, for ex-
ample, solve a structured linear system whose solution can be approximated well by
a tensor in TT format using a Krylov method [34]. As we will see in section 2,
mathematical operations can increase the ranks of the TT representation of the result
tensor, which can then be recompressed, or rounded back to smaller ranks, in order to
maintain feasible time and space complexity with some controllable loss of accuracy.
As a result, the rounding procedure (and the orthonormalization it requires) is of
prime importance in developing efficient and scalable TT algorithms. We will assume
throughout that full tensors are never formed explicitly.

In order to develop scalable parallel algorithms, we propose a data distribution
and parallelization techniques that maintain computational load balance and attempt
to minimize interprocessor communication, which is the most expensive operation on
parallel machines in terms of both time and energy consumption. As discussed in
section 3, we distribute the slices of each TT core across all processors, where slices
are matrices (or vectors) whose dimensions are determined by the low ranks of the TT
representation. This distribution allows for full parallelization of each corewise com-
putation and avoids the need for communication within slicewise computations. The
orthonormalization and rounding algorithms depend on parallel QR decompositions,
and our approach enables the use of the Tall-Skinny QR algorithm, which is commu-
nication optimal for the matrix dimensions in this application [18]. We analyze the
parallel computation and communication costs of each TT algorithm, demonstrat-
ing that the bulk of the computation is load balanced perfectly across processors.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC C27

The communication costs are independent of the original tensor dimensions, so their
relative costs diminish with small ranks.

We verify the theoretical analysis and benchmark our C/MPI implementation
on up to 256 nodes (10,240 cores) of a distributed-memory parallel platform in sec-
tion 4. Our experiments are performed on synthetic data using tensor dimensions
and ranks that arise in a variety of scientific and data analysis applications. On
a shared-memory system (one node of the system), we compare our TT-rounding
implementation against the TT-Toolbox [39] in MATLAB and show that our imple-
mentation is 70% more efficient using a single core and achieves up to a 34x parallel
speedup using all 40 cores on the node. We also present strong scaling performance
experiments for computing inner products, norms, orthonormalization, and rounding
using up to over 10K MPI processes. The experimental results show that the time
remains dominated by local computation even at that scale, allowing for nearly linear
scaling for multiple operations, achieving for example a 97x speedup of TT-rounding
when scaling from 1 node to 128 nodes on a TT tensor with a 28 GB memory footprint.
We conclude in section 5 and discuss limitations of our approaches and perspectives
for future improvements.

2. Notation and background. In this section, we review the TT format and
present a brief overview of the notation and computational kernels associated with
it. Tensors are denoted by boldface Euler script letters (e.g., X), and matrices are
denoted by boldface block letters (e.g., A). The number I,, for 1 <n < N is referred
to as the mode size or mode dimension, and we use i,, to index that dimension. The
order of a tensor is its number of modes, e.g., the order of X is N. The nth TT core
(described below) of a tensor X is denoted by Tx ,,. We use MATLAB-style notation
to obtain elements or subtensors, where a solitary colon (:) refers to the entire range
of a dimension. For example X(i, j, k) is a tensor entry, X(i,:,:) is a tensor slice (a
matrix in this case), and X(:, j, k) is a tensor fiber (a vector).

The mode-n “modal” unfolding (or matricization or flattening) of a tensor X €
RItxT2x1Is ig the matrix Xm) € RI"XIIT, where I = I;I515. In this case, the columns
of the modal unfolding are fibers in that mode. The mode-n product or tensor-times-
matrix operation is denoted by x, and is defined so that the mode-n unfolding of
X xn A is AX(,). We refer to [30, 44] for more details.

The norm of a tensor is defined so that [|X||? = Dy Xl ,in)?%, which
generalizes the vector 2-norm and matrix Frobenius norm.

2.1. TT tensors. A tensor X € R X*XIN ig in the TT format if there ex-
ist strictly positive integers Ry,..., Ry with Rg = Ry = 1 and N order-3 tensors
Tx1,---,Tx N, called TT cores, with Tx ,, € REn-1xInXRn gych that

I)C(il, . ,iN) = 7x71(i1, :) .- ~7;x7n(2,in7 :) . ~-fT:x)N(:,iN).

We note that because Ry = Ry = 1, the first and last TT cores are (order-2) matrices
so Tx 1(i1,:) € RF and Tx y(:,in) € REN-1. The R,,_1 x R, matrix Tx (¢, in,:)
is referred to as the i,th slice of the nth TT core of X, where 1 < i,, < I,,. Figure 2.1
shows an illustration of an order-5 TT tensor.

Due to the multiplicative formulation of the TT format, the cores of a TT tensor
are not unique. For example, let X be a TT tensor, and let M € RE»*Fn he an
invertible matrix. Then, the TT tensor Y defined such that

H(ilv cee ’iN) = :Tx,l(ilv :) T (:Txm(:vina :)M)'(Milg’x,n-kl(:vin-‘rla)) e ’TDC,N(:,iN)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C28 HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

Ry Ry Ry Rs R3 Ry Ry

R

Iy

I Iy I, Is

Fia. 2.1. Order-5 TT tensor with a particular slice from each TT core highlighted. The chain
product of these slices produces a scalar element of the full tensor with indices corresponding to the
slices.

is equal to X. Another important remark is the following:

(2.1) Taca(in,) (T (i,)M) - T g1 (g1, 1) - TN (5 0)
= j'X:,l(i17 :) e fo,n(:a in7 :> : (M:T:x,nJrl(:; in+17)) e j’x,N(:a ZN)

where M in this case need not be invertible. Thus, we can “pass” a matrix between
adjacent cores without changing the tensor. This property is used to orthonormalize
TT cores as we will see in subsection 2.3.

2.2. Unfolding TT cores. In order to express the arithmetic operations on TT
cores using linear algebra, we will often use two specific matrix unfoldings of the three-
dimensional (3D) tensors. The horizontal unfolding of TT core Jx, corresponds
to the concatenation of the slices Tx (:,iy,:) for i, = 1,...,I, horizontally. We
denote the corresponding operator by H, so that H(Tx) is an R,_1 X R, I, matrix.
The vertical unfolding corresponds to the concatenation of the slices Tx (3, 4y, :) for
in=1,..., I, vertically. We denote the corresponding operator by V, so that V(Tx ,,)
is an R,_1I, X R, matrix. These unfoldings are illustrated in Figure 2.2.

Note that the horizontal unfolding is equivalent to the modal unfolding with
respect to the 1st mode, often denoted with subscript (1) to denote the mode that
corresponds to rows [30]. Similarly, the vertical unfolding is the transpose of the modal
unfolding with respect to the 3rd mode, which also corresponds to the more general
unfolding that maps the first two modes to rows and the third mode to columns,
denoted with subscript (1:2) to denote the modes that correspond to rows [42]. These
connections are important for the linearization of tensor entries in memory and our
efficient use of BLAS and LAPACK, discussed in subsection 3.1.

2.3. TT orthonormalization. Different types of orthonormalization can be
defined for TT tensors. We focus in this paper on left and right orthonormalizations
which are required in the rounding procedure. We use the terms column and row
orthonormal to refer to matrices that have orthonormal columns and orthonormal
rows, respectively, so that a matrix Q is column orthonormal if Q'Q =1 and row
orthonormal if QQ—r =1

A TT tensor is said to be right orthonormal if H(Tx) is row orthonormal for
n = 2,...,N (all but the first core). On the other hand, a tensor is said to be
left orthonormal if V(Jx) is column orthonormal for n = 1,...,N — 1 (all but
the last core). More generally, we define a tensor to be n-right orthonormal if the
horizontal unfoldings of cores n + 1,..., N are all row orthonormal, and a tensor

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC

T n € REn—13InxRn

isa TT core

Rn—1
fins ‘ ‘ ‘ ‘ ‘
Rn-at I,
Ry Rn Rn —
In
H(Tx,n) € REn—1%InFn
is horizontal unfolding Ry
'

Rn
V(Tx,n) € REn-1InxRn

is vertical unfolding

F1G. 2.2. Horizontal and vertical unfoldings of a TT core.

C29

is n-left orthonormal if the vertical unfoldings of cores 1,...,n — 1 are all column
orthonormal.

These definitions correspond to the fact that the tensor that represents the con-
traction of these sets of TT cores inherits their orthonormality. For example, let X
be a right-orthonormal TT tensor, then we can write X (1) = Tx 1%(1), where Z is a
Ry x I3 x --- x Iy tensor whose entries are given by

Z(Tl,ig, . ,iN) = Tx,g(?”l,ig, I) . ‘J’xvg(i, ig, I) e T:xm(Z,Z'n, S) o 7{)(:7]\/(,2]\[)

The 1st modal unfolding of % is row orthonormal, as shown below [41, Lemma 3.1]:

Zo)Zy

i,y

Z Z(:,42,. ..
SUN

ViN)Z(cd, . in)

0,) - TN Gyin) Toon (in) T Toa(yiz, o) |

Z Tx’Q(Z,i
iN

192,...,1

> Txa(iin,) Taenoa(hino1,:) | Y Taen(in)Txn(in)

12 5ees IN—1

Z Tx2(s,

©2,. i N —1

Z(:,42,--,N) Z(iyi9,..in) T

iN

Toeno1(yin—1,:) " - T 2(yin,:)

iny) T n—1 (5 in—1,) H(Txe,n)H(Ten) |
TRy

':TDC,N—l(Z,’L.Nfl, :)T o 'g’xﬂ(:vi?v :)T

Z Txa(yiz,:) - Tenva(Cyiv1,) Txn_1(in—1,:) - Txa(:,d0,:)

12, N —1

Z g’xg(i

92, IN—2

Tx,Nn—

Z g'xg(i

92, IN—2

,1273)“'7x,N—2(5,1N2a5)< D Tan-1(yinoy,:)

IN—1

1(t,in—1, Z)T> Txn—2(yin—2,:) - Txo(syin,:) "

a2, 1) - T v—2 (s, in—2,1) H(:TDC,N—I)H(TDC,N—I)T

TRy _o

Tan-a(tyinoz,) - Txali iz’

Z Txo(yiz,:) - T nv—a(yiv—o,) Txn_2(,in—2,:) - Txa(:da,:)

12,0 N -2

oo =1Ip,.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C30 HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

Similar arguments show that the 1st modal unfolding of the tensor representing the
last N — n cores of an n-right orthonormal TT tensor is row orthonormal and that
the last modal unfolding of the tensor representing the first n — 1 cores of an n-left
orthonormal TT tensor is row orthonormal.

Given a TT tensor, we can orthonormalize it by exploiting the nonuniqueness of
TT tensors expressed in 2.1. That is, we can right- or left-orthonormalize a TT core
using a QR decomposition of one of its unfoldings and pass its triangular factor to its
neighbor core without changing the represented tensor. By starting from one end and
repeating this process on each core in order, we can obtain a left or right orthonormal
TT tensor, as shown in Algorithm 2.1 (for right orthonormalization).

Algorithm 2.1 TT-right-orthonormalization

Require: A TT tensor X

Ensure: A right orthonormal TT tensor Y equivalent to X
1: function Y = RIGHT-ORTHONORMALIZATION(X)
2: Set T&N e TI)C,N

3 for n = N down to 2 do

4 [H(T‘d,n)—ra R] = QR(H(Ty,n)T) > QR factorization
5: V(‘Iy’n_ﬁ = V(T:xm_l)RT > T‘d,n—l = T:x,n_l X3 R,T
6 end for

7: end function

We note that the norm of a right- or left-orthonormal TT tensor can be cheaply
computed, based on the idea that postmultiplication by a matrix with orthonormal
rows or premultiplication by a matrix with orthonormal columns does not affect the
Frobenius norm of a matrix. Thus, we have that ||X|| = [|[Tx 1||r provided that Z
has orthonormal rows, and || X|| = [|Tx n||F if X is left orthonormal.

2.4. TT rounding. Orthonormalization plays an essential role in compressing
the TT format of a tensor (decreasing the TT ranks R,) [41]. This compression is
known as TT rounding and is given in Algorithm 2.2.

The intuition for rounding can be expressed in matrix notation as follows. Suppose
we have a matrix represented by a product

(2.2) A = QBCZ,

where Q and Z are column and row orthonormal, respectively. Then the truncated
SVD of A can be readily expressed in terms of the truncated SVD of BC. In our
case, B is tall and skinny and C is short and wide, so the rank is bounded by their
shared dimension. To truncate the rank, one can row-orthonormalize C and then
perform a truncated SVD of B (or vice-versa). That is, if we compute RcQs = C
and UBZBVE = BR¢, then to round A we can replace B with ﬂB and C with

3] BV;QC, where Ug3 BV; is the SVD truncated to the desired tolerance.

In order to truncate a particular rank R,, by considering only the nth TT core
using this idea, the TT format should be both n-left and n-right orthonormal. The
unfolding of X that maps the first n tensor dimensions to rows can be expressed as a
product of four matrices:

(2.3) Xam) = Ir, ® Qn—1)) V(Txn) - H(Txn+1) - I, @ Zy),
where Qis I1 X --- X I,,_1 X R,_1 with

Qi1, . oy in—1,"n-1) = Toc,1(t1,:) - T 2(5 92, 1) - Txm—1 (5 tn—1, Tn—1),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC C31

InRn1 R, Ini1Rns1 g1+ In

o
»; Iln,J«’?OZ(l)

V(Tx,n)

I -

- Rna

r

L, ®Quun-1)

FI1G. 2.3. Visualization of identity (2.3) for X(i.p)-

and 2 is Ry41 X Lo X -+ x Iy with
Z(Trg1y ing2s -5 IN) = Tt nt2(Tngts tng2: 1) - T g3 (s ings, 1) - T v (5 IN)-

See Figure 2.3 for a visualization and section SM1 for a full derivation of (2.3). If X is
n-left and n-right orthonormal, then Q;,,,_1y and Z(;) are column and row orthonor-
mal (and so are their Kronecker products with an identity matrix), respectively, and
H(Tx n+1) is also row orthonormal.

In order to truncate R,,, we view (2.3) as an instance of (2.2) where V(JT'x ,,) plays
the role of B and H(Jx 1) plays the role of C (though H(JTx n+1) is already or-

thonormalized). We compute the truncated SVD V(T'x ,,) ~ ﬁf)VT, replace V(Tx)

with U, and apply E]VT to H(Tx nt1). Inthis way, R, is truncated, V(T x) becomes
column orthonormal, and because Q and Z are not modified, X becomes (n+1)-left
and (n+1)-right orthonormal and ready for the truncation of Ry, 41.

The rounding procedure consists of two sweeps along the modes. During the first,
the tensor is left or right orthonormalized. On the second, sweeping in the opposite
direction, the T'T ranks are reduced sequentially via SVD truncation of the matricized
cores. The rounding accuracy €¢ can be defined a priori such that the rounded TT
tensor is gg-close to the original TT tensor. We note that this method is quasi-optimal
in finding the closest TT tensor with prescribed TT ranks to a given TT tensor [40].

Algorithm 2.2 TT-rounding

Require: A tensor Y in TT format, a threshold gq
Ensure: A tensor X in TT format with reduced ranks such that || X — Y| < &o|Y||
1: function X = RoOUNDING(Y, g¢)

2: X = RIGHT-ORTHONORMALIZATION (Y)

3 Compute ||Y]| = ||Tx.1]|7 and the truncation threshold € = \)%60

4 forn=1to N —1do

5 V(T xn) 2, V] =SVDV(Tx.n),¢€) > e-truncated SVD factorization
6: H(Txms1) =2V H(Tx 1) b Tx i1 = Txms1 x1 (ZV)
7 end for

8: end function

2.5. Parallel cost model. To analyze our parallel algorithms, we use the MPI-
based model that tracks floating point operations (flops) as well as the amount of
data and number of messages communicated along the critical path [6, 16, 51]. In

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C32 HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

this model, communication is performed via point-to-point messages, and the time
is estimated as the sum of time spent in computation and communication along the
critical path. In this way, processors can perform independent computations simul-
taneously and disjoint pairs of processors can communicate messages simultaneously.
Each flop is assumed to cost v units of time, and message of n words is assumed
to cost o + fBn units, where « is referred to as the per-message latency cost and
is the per-word bandwidth cost. Accumulating costs along the critical path ensures
that computation and communication that depend on one another occur in sequence.
The parallel time cost is thus estimated as v - # flops + 5 - # words + « - # messages.
Overlapping computation and communication is a useful optimization (and our imple-
mentation does so when possible), but the model ignores this possibility as it affects
the overall running time by at most a constant. Algorithms for collective communi-
cations among groups of processors, such as ALLREDUCE, have been optimized for
this model (and within MPI implementations), and we use the previously established
costs of collectives [16, 51] in our analysis.

3. Parallel algorithms for TT. In this section we detail the parallel algo-
rithms for manipulating TT tensors that are distributed over multiple processors’
memories. We describe our proposed data distribution of the core tensors in sub-
section 3.1, which is designed for efficient orthonormalization and truncation of TT
tensors. In subsection 3.2 we show how to perform basic operations on TT tensors in
this distribution such as addition, elementwise multiplication, and applying certain
linear operators. Our proposed parallel orthonormalization and truncation routines
are presented in subsections 3.4 and 3.5, respectively. Both of those routines rely
on an existing communication-efficient parallel QR decomposition algorithm called
Tall-Skinny QR (TSQR) [18], which is given for completeness in subsection 3.3. A
summary of the costs of the parallel algorithms is presented in Table 3.1.

TABLE 3.1
Summary of computation and communication costs of parallel TT operations using P proces-
sors, assuming inputs are N-way tensors with identical dimensions I, = I and ranks Ry, = R. The
computation cost of rounding assumes the original ranks are reduced in half; the constant can range
from 3 to 13 depending on the reduced ranks.

TT algorithm Computation Comm. Data Comm. Msgs
Summation — — —
Hadamard %}# — —
Inner Product 4%@3 O(NR?) O(N log P)
Norm g NIE® O(NR?) O(N log P)
Orthonormalization | 5 %ﬁs +O(NR31log P) O(NRZ2logP) O(N log P)
Rounding 7%}"/3 +O(NR3logP) O(NR?*logP) O(NlogP)

3.1. Data distribution and layout. We are interested in the parallelization
of TT operations with a large number of modes and where one or multiple mode
sizes are very large compared to the TT ranks. This type of configuration arises
in many applications such as parameter dependent PDEs [34], stochastic PDEs [32],
and molecular simulations [46]. In case there exist TT cores with relatively small
mode sizes, those can be stored redundantly on each processor. We note that our
implementation can deal with both cases.

Algorithms for orthonormalization and rounding of T'T tensors are sequential with
respect to the mode; often computation can occur on only one mode at a time. In
order to utilize all processors and maintain load balancing in a parallel environment,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC C33

RZS

Ry R: R, R3 Ra Ry

Ry

Iy

. I.
I I Py . 5
1 Iy

FiG. 3.1. One-dimensional (1D) distribution of a TT tensor across P processors with data
owned by a particular processor highlighted in blue.

we choose to distribute each TT core over all processors, so that each processor owns
a subtensor of each TT core. To ensure the computations on each core can be done
in a communication-efficient way, we choose a 1D distribution for each core, where
the mode corresponding to the original tensor is divided across processors. This
corresponds to a Cartesian distribution of each R,,_1 X I, X R, core over a 1 x P x 1
processor grid, or equivalently, a block row distribution of V(T ,,) or a block column
distribution of H(Jx) for n = 1,...,N; see Figure 3.1. In this manner, each

processor owns N local subtensors with dimensions {R,,—1 X (I,/P) x R,}. The

notation f)':(f)n denotes the local subtensor of the nth core owned by processor p.

This distribution allows performing basic operations, such as addition and ele-
mentwise multiplication, on the TT representation locally; see subsection 3.2. Fur-
thermore, the bottleneck computations within orthonormalization and rounding are
orthonormalization of vertical and horizontal unfoldings of TT cores. For communica-
tion optimality of these operations, the TSQR algorithm (see subsection 3.3) requires
that both of these unfoldings are in 1D matrix distribution, which in turn requires
that the TT core be distributed over a 1 x P x 1 processor grid. The distribution of a
TT core in this way can also be seen as a generalization of the distribution of a vector
in parallel iterative linear solvers [1, 26]. Indeed, if A is an I,, x I,, sparse matrix dis-
tributed across processors as block row panels, the computation of AT ,,(k,:,[) can
be done by using standard parallel sparse-matrix-vector multiplication routines. We
note that a drawback of this distribution is that the available parallelism in each TT
core computation is limited to the size of the tensor dimension. If the T'T ranks are
much larger than the tensor dimension, then alternative distributions, redistributions,
and parallelizations should be considered.

Tensor entries are linearized in memory. Each local core tensor ng?)n is R,_1 X
(I,/P) x Ry, and we store it in the “vec-oriented” or “natural descending” order
[8, 44] in memory. For 3-way tensors, this means that mode-1 fibers (of length R,,_1)
are contiguous in memory, as this corresponds to the mode-1 modal unfolding. Addi-
tionally, the mode-3 slices (of size R, _1 X (I,,/P)) are also contiguous in memory and
internally linearized in column-major order, as this corresponds to the more general
(1:2) unfolding [42, 44]. In particular, these facts imply that both the vertical and
horizontal unfoldings are column major in memory.

BLAS and LAPACK routines require either row- or column-major ordering (unit
stride for one dimension and constant stride for the other), but this property of the
vertical and horizontal unfoldings means that we can operate on them without any
physical permutation of the tensor data. For example, we can perform operations

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C34 HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

such as QR factorization of V(Tx ,) and V(Tx)R, where R € RE*En with a
single LAPACK or BLAS call.

This choice of ordering comes at the expense of less convenient access to the mode-
2 modal unfolding (of dimension (I,,/P) x R, 1 R,), which is neither row nor column
major in memory. This unfolding can be visualized in memory as a concatenation of
R,, contiguous submatrices, each of dimension (I,,/P) x R,,_1 and each stored in row-
major order [8]. In order to perform the mode-2 multiplication (tensor times matrix
operation), as is necessary in the application of a spatial operator on the core, we
must make a sequence of calls to the matrix-matrix multiplication BLAS subroutine.
That is, we make R, calls for multiplications of the same I,, x I,, matrix with different
I, X R,_1 matrices.

3.2. Basic operations.
3.2.1. Summation. To sum two tensors X and Y, we can write [41]

Z(21577’N) = x(ll,,lN> +y(ll77ZN)
=Toc1(in, 1) TN (in) + Tyain,) Ty n (s in)

= (Tﬁx,l(il’) 7‘371(i1’)) (‘Ix?(:’i% ! Ty 2(:, 42,))

(Tx’Nl(:’iNh:) g'yw_l(:,izv—l,i)) (gzgg:::;))) .

Thus, the TT representation of & = X +Y is given by the following slicewise formula:

. T n :7ina:
‘J’Z,n(:vznvz) = (© () j'ld n(: Zn))

for2<n <N -1,and 1 <14, <1, Wealso have Ty ; = (‘J'x,l 3'1(“) and

Tx,n
TZJV - (7y7N> M
Note that the TT ranks of this representation of Z are the sums of the TT ranks of
X and Y.

Given the 1D data distribution of each core described in subsection 3.1, the sum-
mation operation can be performed locally with no interprocessor communication.
That is, because X, Y, and Z have identical dimensions, they will have identical dis-
tributions, and each slice of a core tensor of 2 will be owned by the processor that
owns the corresponding slices of cores of X and Y.

3.2.2. Hadamard product. To compute the Hadamard (elementwise) product
of two tensors X and Y, we can write [41]

Z(i1,...,in) = X(i1, ... in) - Yli1, ..., in)
= (Toea(in,:) - T Grin)) - (Tyalin,) -+ Ty n(in))
= (Twa(in,) T (5in) © (Tyalin,:) - Ty n(in))
= (Txca(in,:) @ Tyalin,:) - (Toen(in) @ Ty N (5 0n)) -
Thus, the TT representation of Z = X Y is given by the following slicewise formula:

Ton(in,) = Txn(in,) @ Ty n(in,:) for 1 <n <N and 1 <4, <I,. Here, the
TT ranks of the representation of Z are the products of the TT ranks of X and Y.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC C35

Again, given the 1D data distribution of each core and the fact that each core is
computed slicewise, the Hadamard product can be performed locally with no interpro-
cessor communication. We note that because of the extra expense of the Hadamard
product (due to computing explicit Kronecker products of slices), it is likely advan-
tageous to maintain Hadamard products in implicit form for later operations such as
rounding. While we do not pursue this approach further in this work, the combination
of Hadamard products and recompression has been shown to be effective for Tucker
tensors, but it requires randomization in the truncation operations [33].

3.2.3. Inner product. To compute the inner product of two tensors X and Y,
using similar identities as for the Hadamard product, we can write [41]

(X,Y) = ‘Z X(ir, ..o yin) -Y(ir, ... in)

T1,0.0N

> (Txalin) @Tyalin:) - (Tan(in) @ Ty n(:,in))

D1,0.0N

> (Txalin,) @Tyalin,) Y (Tl ia,:) @ Ty (s, dz, 1))

il i2

Y (T nGin) @ Ty n(yin)) .

iN

This expression can be evaluated efficiently by a sequence of structured matrix-vector
products that avoid forming Kronecker products of matrices, and these matrix-vector

products are cast as matrix-matrix multiplications.
To see how, we assume that the TT ranks of X and Y are {RX} and {RY},
respectively. First, we explicitly construct the row vector

W1 = ij,l(ih :) & 9i‘d,l(ilv :)a

11

which has dimension R - RY. Note that w; is the vectorization of the matrix
V(Ty1)"V(Tx1). Then we distribute wy to all terms within the next summation
to compute wo using

wo =Y w1 (Taco(syi2,1) @ Ty o(s,d2,0))

i

with each term in the summation evaluated via vec (3’13,2(:72’2, Z)Twljx’g(ng, :)),
where W is a reshaping of the vector wy into a RY x RY matrix and vec is a row-
wise vectorization operator. We note that Tx o(:,i2,:) is RX x RY, and Ty (s, ia,:)
is RY x RY, and wy therefore has dimension RY - RY. This process is repeated with

(31) W, = 27‘3,71(1#}“5)TWn—17x,n(5,imi)7

in

until the last core, when we compute the inner product as (X,Y) = >, Ty n(:
,’L'N>—r Wnr_1 Tx,N(Z,iN), where W _1 is an R‘Iéffl X R%71 matrix.

If all the tensor dimensions are the same and all TT ranks are the same, i.e.,
I=I = =Iyand R=RY¥ =RY = ... = RX_| = RY{_,, the computational
complexity is approximately 4NIR3.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C36 HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

Evaluating (3.1) directly can exploit the efficiency of dense matrix multiplication,
but it requires many calls to the BLAS subroutine. With some extra temporary
memory, we can reduce the number of BLAS calls to 2, performing the same overall
number of flops. Let Z be defined such that H(Tz) = W,_1H(Tx.n), or the mode-
1 multiplication between the core and the matrix, for n = 1,..., N (with Wy = 1).
Then, we have W,, as a contraction of modes 1 and 2 between cores of Y and Z, or

W, =V(Ty,) " V(Tz,) for n=1,...,N.

Each of these two multiplications requires a single BLAS call because horizontal and
vertical unfoldings are column major in memory. We note the final contraction in
mode N is a dot product instead of a matrix multiplication.

When the input TT tensors are distributed across processors as described in
subsection 3.1, we can compute the inner product using this technique. Each term
in the summation of (3.1), which involves corresponding slices of the input tensors,
is evaluated by a single processor as long as the matrix W, is available on each
processor. Thus, the computation can be load balanced across processors as long as
the distribution is load balanced, and each processor can apply the optimization to
reduce BLAS calls independently. We perform an ALLREDUCE collective operation
to compute the summation for each mode. With constant tensor dimensions and TT
ranks, the computational cost is approximately 4NIR3/P and the communication
cost is 8- O(NR?) + a - O(N log P).

3.2.4. Norms. To compute the norm of a tensor in TT format, we consider
two approaches. The first approach is to use the inner product algorithm described
in subsection 3.2.3 and the identity || X||> = (X,X). We note that in this case, the
matrices {W,} are symmetric and positive semidefinite (SPSD) (see (3.1)), and the
structured matrix-vector products can exploit this property to save roughly half the
computation. Since W, is SPSD, it admits a triangular factorization given by piv-
oted Cholesky (or LDL): W,, = P,L,L P!, Thus, the matrix W, is computed
as W, = V(Tan) V(Tz.n), where H(Tz,) =L, (P} H(Tx.,)). The triangular
multiplication to compute the nth core of Z and the symmetric multiplication to com-
pute W,, each require half the flops of a normal matrix multiplication, so the overall
computational complexity of this approach is 2NIR3. It is parallelized similarly to
the general inner product.

The second approach is to first right- or left-orthonormalize the tensor using
Algorithm 2.1, and then the norm of the tensor is given by ||Tx 1||r or |[Tx.n|r as
shown in subsection 2.3. This approach can be more accurate than the first one when
computing small norms, as the first approach can suffer from cancellation error. When
the TT tensor is distributed, the orthonormalization procedure is more complicated
than computing inner products; we describe the parallel algorithm in subsection 3.4.

3.2.5. Matrix-vector multiplication. In order to build Krylov-like iterative
methods to solve linear systems with solutions in TT-format, we must also be able to
apply a matrix operator to a vector in TT-format. We will consider a restricted set
of matrix operators: sums of Kronecker products of sparse matrices [12, 32, 34, 53].

Each term in the sum can be seen as a generalization of a rank-one tensor to the
operator case. We use the notation

A=A ® -®AyN

to denote a single Kronecker product of matrices, where the dimensions of A,, are
I, x I,, conforming to the dimensions of X in T'T-format. In this case, we can compute

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC C37

the matrix-vector multiplication vec(Y) = A - vec(X), where

Y. vin) = > A, j1) - An(in, i) - X0, dn)
J1,--5JN
= Z Aq(ir, 1) - AN(in, i) - Tx1 (1,) - Toe v (5)
J1s--3JN
= Ay(in, 1) Txa(rs) Y Anlin, in) T G in)
J1 JiN

=Tya(i,:) - Ty n(,in)

with Ty = A1Tx1, Tyn = Txn X2 Ay, for 1 <n < N, and Ty xn = T AL
Here the notation X refers to the mode-2 tensor-matrix product, defined so that

T‘d,n(rn—la 5 rn) = Anjx,n(’rn—la 5 rn)

forl<n<N,1<r,.1<R,_1,and1<r, <R,.

Thus, applying a Kronecker product of matrices to a vector in TT-format main-
tains the TT-format with the same ranks, and operations on cores can be performed
independently. In order to apply an operator that is a sum of multiple Kronecker
products of matrices, we can apply each term separately and use the summation pro-
cedure described in subsection 3.2.1 along with TT-rounding to control rank growth.
We note that it is possible to apply more general forms of tensorized operators to
vectors in TT-format [41], but we do not consider them here.

When the vector in TT-format is distributed as described in subsection 3.1, we
must perform the mode-2 tensor-matrix product using a parallel algorithm. We can
view the mode-2 tensor-matrix product as applying the matrix to the mode-2 un-
folding of the tensor core Jx, (often denoted with subscript (2) [30]), which has
dimensions I,, X R,_1R,. We observe that the parallel distribution of the mode-2
unfolding of Tx ,, is 1D row-distributed: each processor owns a subset of the rows
of the matrix (corresponding to slices of the core tensor). Thus, the application of
A, to this unfolding has the same algorithmic structure as the sparse-matrix-times-
multiple-vectors operation (SpMM) where all vectors have the same parallel distribu-
tion. Assuming the matrix A,, is sparse and also row-distributed, as is common in
libraries such as PETSc [5] and Trilinos [24], the parallel algorithm involves communi-
cation of input tensor core slices among processors, where the communication pattern
is determined by A,, and its distribution. We do not explore experimental results for
such matrix-vector multiplications in this paper, as the performance depends heavily
on the application and sparsity structure of the operator matrices.

3.3. TSQR. As is evident in Algorithms 2.1 and 2.2, the QR factorization of
tall-skinny matrices is a key subroutine in TT rounding. To compute the QR factor-
izations within the TT orthonormalization and TT rounding procedures in parallel,
we use the Tall-Skinny QR algorithm [18], which is designed (and communication
efficient) for matrices with many more rows than columns. For completeness, we
present the TSQR subroutine as Algorithm 3.1, which corresponds to [7, Alg. 7], and
the TSQR~Apply-Q subroutine as Algorithm 3.2. While TSQR is strictly a matrix
algorithm, it is fundamental to the TT algorithms and analysis of subsections 3.4
and 3.5, so we present it separately in this subsection. The subroutines assume a
power-of-two number of processors to simplify the pseudocode; see section SM2 for
the generalizations to any number of processors.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C38 HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

For a tall-skinny matrix that is 1D row-distributed over processors (as is the case
for the vertical unfolding and the transpose of the horizontal unfolding), the parallel
Householder QR algorithm requires synchronizations for each column of the matrix
(to compute and apply each Householder vector). Furthermore, the local computation
of Householder QR is nearly always memory-bandwidth bound in the form of BLAS-2
subroutines (matrix-vector operations). The idea of the TSQR algorithm is that the
entire factorization can be computed using a single reduction across processors, and
each local computation becomes a smaller QR factorization. That is, while parallel
Householder QR has latency cost of O(b) for a matrix with b columns, TSQR has
latency cost O(log P) (see subsection 3.3.1). The superior performance of TSQR over
Householder QR has been demonstrated on both distributed-memory and shared-
memory platforms [2, 7, 17, 38].

The price of TSQR is that the implicit representation of the orthonormal factor is
more complicated than a single set of Householder vectors, and that the representation
depends on the structure of the reduction tree. We can maintain and apply the
orthonormal factor in this implicit form as long as the parallel algorithm for applying
it uses a consistent tree structure. We note that we employ the “butterfly” variant of
TSQR, which corresponds to an ALLREDUCE-like collective operation such that at the
end of the algorithm the triangular factor R is owned by all processors redundantly.
At each of the log P steps, each processor determines a different partner processor
with which to exchange data. Another variant uses a binomial tree, corresponding
to a reduce-like collective with the triangular factor owned by a single processor. In
the context of TT, the key advantage of the butterfly over the binomial variant is the
reduction in communication when the implicit orthogonal factor is applied to another
matrix, as we describe in subsection 3.3.2. We compare performance of these two
variants in subsection 4.3.1.

3.3.1. Factorization. TSQR (Algorithm 3.1) has two phases: local submatrix
orthonormalization (line 3) and parallel reduction of remaining triangular factors (line
4 through line 12). The cost of the TSQR is as follows:

(3.2) - (2W£2 + O(b® log P)) + B-O(b*log P) + - O(log P),

where m is the number of rows and b is the number of columns [18]. The leading
order flop cost is the QR of the local (m/P) x b submatrix (line 3), the leaf of the
TSQR tree. The communication costs come from the TSQR tree, which has height
O(log P).

3.3.2. Applying and forming Q. The structure of the TSQR-Apply-Q algo-
rithm (Algorithm 3.2) matches that of TSQR, but in reverse order (because the TSQR
algorithm corresponds to applying Q). Thus, the root of the tree is applied first and
the leaves last. However, by using a butterfly tree the communication cost of the
TSQR-Apply-Q algorithm (Algorithm 3.2) is 0 if the number of processors is a power
of 2 and S - be + o otherwise (the cost of one message; see section SM2). The cost of
TSQR-Apply-Q is then

(3.3) v (477;__?6 + O(b%clog P)) +B-bc+ a,

where the additional parameter ¢ is the number of columns of C. The leading order

flop cost is the application of the local matrix at the leaf of the TSQR tree (line
12).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC C39

Algorithm 3.1 Parallel Butterfly TSQR

Require: A is an m x b matrix 1D-distributed so that proc p owns row block AW
Require: Number of procs is power of two; see Algorithm SM2.1 for general case
Ensure: A = QR with R owned by all procs and Q represented by {Yép)} with

redundancy Y@p) = Yf) for p=¢ mod 2¢ and ¢ < log P

1: function [{Yép)},R] — PAR-TSQR(A)
2: p = MYPRrocID()
3: [Yl(gg)P, Rl(fg); p] = Local-QR(A®) > Leaf node QR
4: for ¢ =log P — 1 down to 0 do
5 j=2" 55+ ((p+2) mod 2¢T1) > Determine partner
6 Send Réﬁ?l to and receive Réﬁl from proc j > Communication
7 if p < j then
_ (») R(P)
8: Y? R = Local-QR R‘(Zj"sl > Tree node QR
+1
9: else
_ () RrRY
10: [Y(p)7 R,”] = Local-QR [| ~¢H! > Partner tree node QR
4 (2 R(p)
041
11: end if
12: end for

13 R=RY
14: end function

Using a binomial tree TSQR algorithm requires more communication in the ap-
plication phase (see [7, Algorithm 8], for example). We also note that if the input
matrix C is upper triangular, then the leading constant can be reduced from 4 to 2 by
exploiting the sparsity structure in this local application (and within the tree because

all Bép) matrices are upper triangular in this case, throughout the algorithm), which
matches the computation cost of the factorization. In particular, when we form Q,
we use this algorithm with C as the identity matrix, which is upper triangular.

3.4. TT orthonormalization. Given the parallel TSQR algorithm of subsec-
tion 3.3, we now present a parallel algorithm for TT Orthonormalization. Algo-
rithm 3.3 shows right orthonormalization and is a parallelization of Algorithm 2.1.
The approach for left orthonormalization is analogous. The algorithm is performed
via a sequential sweep over the cores, where at each iteration, an LQ factorization
row-orthonormalizes the horizontal unfolding of a core and the triangular factor is
applied to its left neighbor core. The 1D parallel distribution of each core implies
that the transpose of the horizontal unfolding is 1D row-distributed, fitting the re-
quirements of the TSQR algorithm. Note that we perform a QR factorization of the
transpose of the horizontal unfolding, which corresponds to an LQ factorization of
the unfolding itself.

Figure 3.2 depicts the operations within a single iteration of the sweep. At it-
eration n, TSQR is applied to the nth core in line 3 (Figure 3.2(c)) and then the

orthonormal factor is formed explicitly in line 4 (Figure 3.2(b)). The notation {Yé’; 71}
signifies the set of triangular matrices owned by processor p in the implicit representa-
tion of the QR factorization of the nth core, where £ refers to the level of the tree and

indexes the set. In the case P is a power of 2, each processor owns log P matrices in

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C40 HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

Algorithm 3.2 Parallel Application of Implicit @ from Butterfly TSQR

Require: {Yép)} represents orthonormal matrix Q computed by Algorithm 3.1
Require: C is b x ¢ and redundantly owned by all processors
Require: Number of procs is power of two; see Algorithm SM2.2 for general case

Ensure: B=Q [g] is m x ¢ and 1D-distributed so that proc p owns row block B®)

1. function B = PAR-TSQR-APPLY-Q({Y "}, C)
2 p = MYPRrocID()
3. B =cC
4: for / =0tologP —1do
5 j=241 o] + ((p+ 2% mod 2¢+! > Determine partner
20+
6 if p < j then
R (P) i (P)
By ([L] B)
7 _¢5"| = Loc-ApPpPLY-Q £ > Tree node apply
(()| >
Bej+)1 Yl 0
8: else)
By 1 5 (P)
9:]?f;j)l = Loc-AprpPLy-Q ({ (bp)] ; B,) > Part. tree node apply
0+1 Ylf 0
10: end if
11: end for
® B
12: B® = Loc-AppLy-Q chz))gP7 1C6gP > Leaf node apply

13: end function

its set. Because the TSQR subroutine ends with all processors owning the triangular
factor R,,, each processor can apply it to core n — 1 in the 3rd mode without further
communication via local matrix multiplication in Line 5 (Figure 3.2(d)).

Lines 3 and 4 have the costs, given by (3.2) and (3.3) with m = I, R, and
b =c¢= R,_1. Since the computation to form the explicit Q matrix exploits the
sparsity structure of the identity matrix the constant 4 in (3.3) is reduced to 2. These
two lines together cost

I.R,R}_
v <4P1 + O(R?_, log P)) + B-O(R%_,log P) + a - O(log P).
Line 5 is a local triangular matrix multiplication costing =y - Ik_le_ngil/P. As-
suming I, = I and Ry = R for 1 < k < N—1, the total cost of TT orthonormalization
is then

3
(3.4) - (5NIR

+ O(NR?log P)) +B-O(NR*log P) +a-O(Nlog P).

3.5. TT rounding. We present the parallel TT rounding procedure in Algo-
rithm 3.4, which is a parallelization of Algorithm 2.2. The computation consists of
two sweeps over the cores, one to orthonormalize and one to truncate. The algorithm
shown performs right-orthonormalization and then truncates left to right, and the
other ordering works analogously.

Algorithm 3.4 does not call Algorithm 3.3 to perform the orthonormalization
sweep. This is because Algorithm 3.3 forms the orthonormalized cores explicitly, and

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC C41

Algorithm 3.3 Parallel TT-Right-Orthonormalization

Require: X in TT format with each core 1D-distributed

Ensure: X is right orthonormal, in TT format with same distribution
1: function PAR—TT—RIGHT—ORTHONORMALIZATION({ng)n})
2: for n = N down to 2 do

3: [{Yl(f;)b}, R, = TSQR(’H(T%’,)”)T) > QR factorization
4 HITY)T = TSQR-ArPLY-Q({Y{")} Ik, _,) > Form explicit Q
5: V(‘J'(Dg)n_l) = V(ng)n_l) ‘R, > Apply R to previous core
6: end for

7: end function

1 O N 0 R e S O EE

R, R = . 3 = N X o .
HTx.) R Q R HTxn) = Q HTx.)

rrrrrrrrrrrrr

R R : =
VTx1) V(Tx) ViTxn1) V1) = ViTaa) R

(a) Consecutive cores (b) QR of H(Tx,n)" (C) Update nth core (d) Update (n—1)th core

Fic. 3.2. Steps performed in TT right orthonormalization.

Algorithm 3.4 can leave the orthonormalized cores from the first sweep in implicit
form to be applied during the second sweep.

Iteration n of the right-to-left orthonormalization sweep occurs in Lines 3 and 4,
which is illustrated in Figure 3.3, which matches Algorithm 3.3 except for the explicit
formation of the orthonormal factor. Thus, the cost of the orthonormalization sweep
is

NIR3
(3.5) - (3 PR +O(NR? logP)> +B-O(NR*log P) +a-O(Nlog P).

At iteration n of the second loop, Lines 9 to 12 implement the left-to-right trun-
cation procedure for the nth core in parallel (Figure 3.3(b)). Line 9 (Figure 3.3(b))

is a QR factorization and has cost given by 3.2 with m = I,,L,,_; and b = R,,, as the
)

n) has been reduced from I,,R,,_1 to I, L, _1 during iteration

number of rows of V(iT;p’
n—1:

yInLn 1R
P

+ O(R2 log P)) + B-O(R2%1og P) 4 - O(log P).

We note that we reuse the notation {Yép 71} to store the implicit factorization; while the
same variable stored the orthonormal factor of the nth core’s horizontal unfolding from
the orthonormalization sweep, it can be overwritten by this step of the algorithm (the
set of matrices will now have different dimensions). Line 10 (Figure 3.3(c)) requires
O(R3) flops, assuming the full SVD is computed before truncating. Line 11 (Figure
3.3(d)) implicitly applies an orthonormal matrix to an R,, x L, matrix Ug with cost
given by Equation (3.3) with m = I,,L,,_1, b = Ry, and ¢ = Ly

- (4InLn—1RnLn

- + O(R2L, log P)) +B-RyL, + .

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C42

HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

Algorithm 3.4 Parallel TT-Rounding

Require: X in TT format with each core 1D-distributed over 1x Px1 processor grid
Ensure: Y in TT format with reduced ranks identically distributed across processors

1: function {‘.T.(f)n} = PAR—TT—ROUNDING({‘.T&’?”}, €)

2:

© %NS W

10:

11:

12:
13:

for n = N down to 2 do

14: end function

{YP)} Ra) = TSQR(H(ITE)T) > QR factorization
V(‘I(og)n_ﬁ = V(ng)n_l) ‘R, " > Apply R to previous core
end for
Compute [|X||
Yy=X
forn=1to N —1do
{YP)} Ra) = TSQR(V(ITY))) > QR factorization
[Ug, 2, V] = TSVD(R,,, \/%HDCH) > Redundant truncated SVD of R
V(TY)) = TSQR-ArPLy-Q({Y{")}, Un) > Form explicit U
H(TE;LH)T = TSQR—APPLY—Q({Y%H},Vi)) > Apply SV
end for

N O N I I e I -,
HlTxnt1) ® H(Tm2) L. Rt Ron Roa
U (=v) H(Tx.ni1)
Ln
Ly
Ln-
Rn Ly
Q R,
QR factorization Q
(a) Consecutive cores (b) QR of V(Tx,n) (c) Truncated-SVD of R
L 1 L - T T - T 1Ln
o Ryia R Ruia
I H(Txn1) = BV H(Tx i)
o o o &
=V’ H(Tx 1) Lo
Ly
L
L -]
0 Ly
V(Tx) = QU V(Tx.n)
(d) Update the nth core (e) Update the (n+1)th core

Fic. 3.3. Steps performed in iteration of the TT left-to-right truncation.

Line 12 (Figure 3.3(e)) implicitly applies an orthonormal matrix to an Ry, X L,, matrix
VX with cost given by 3.3 with m = I,,;1R,41, b= R, and ¢ = L:

. 4In+1Rn+anLn
7 P

+ O(R2L, log P)> +B-RyL, +a.

Assuming I, = I, R, = R, and L, = L for 1 < k < N-—1, the total cost of

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC C43

Algorithm 3.4 is then
(3.6)

2 L+4L?
). (NIR3R +6RL +

P

+ O(NR?log P)) +B-O(NR*log P) + a - O(N log P).

We note that leaving the orthonormal factors in implicit form during the orthonor-
malization sweep (as opposed to calling Algorithm 3.3) saves up to 40% of the com-
putation, when the reduced ranks L,, are much smaller than the original ranks R,.
As the rank reduction diminishes, so does the advantage of the implicit optimization.
For example, when ranks are all halved, the reduction in leading order flop cost is
12.5%.

4. Numerical experiments. In this section we present performance results
for TT computations using synthetic tensors with mode and dimension parameters
inspired by physics and chemistry applications, as described in subsection 4.2. We
first present microbenchmarks in subsection 4.3 to justify key design decisions, and
then demonstrate performance efficiency and parallel scaling in subsection 4.4.

All numerical experiments were performed on the Max Planck Society supercom-
puter COBRA. All computation nodes contain two Intel Xeon Gold 6148 processors
(Skylake, 20 cores each at 2.4 GHz) and 192 GB of memory, and the nodes are con-
nected through a 100 Gb/s OmniPath interconnect. We link to Intel Math Kernel
Library (MKL) 2020.1 for single-threaded BLAS and LAPACK subroutines.

4.1. Motivating applications. We describe in this section the motivating ap-
plications guiding the choice of tensor dimensions and ranks of the synthetic models
we use in the experiments.

4.1.1. High-order correlation functions. In the study of stochastic pro-
cesses, Gaussian random fields are widely used. If f is a Gaussian random field
defined on a bounded domain C R? (d = 1,2,3), an N-point correlation function
for f is defined on Q. The discretization of the domain determines the N-way tensor
dimensions. These N-point correlation functions can often be efficiently approximated
in TT format [14, 32]. For typical discretizations, the number of discretization points
in the domain) can be extremely large leading to tensors with very large dimen-
sions. In order to compute some desired information about the random solution of
a stochastic PDE such as its expected value, TT computations including addition
and scaling are required. Thus, compressing the resulting TT tensors is required to
maintain the tractability of computations. In [14] the authors present a study of
single-phase fluid flows in heterogeneous porous media. Due to memory and time
constraints, current implementations of T'T arithmetic allows one to only perform the
aforementioned computations on a moderate size discretizations (10,000) for d = 1 or
d = 2. However, in industrial applications where 2 C R3, the mode dimension can be
of order 103.

4.1.2. Molecular simulations. Another important class of applications is mo-
lecular simulations. For example, when a spin system can be considered as a weakly
branched linear chain, it is typical to represent it as a TT tensor [46]. Each branch
is then considered as a spatial coordinate (mode). The number of branches, corre-
sponding to the number of tensor modes, can be arbitrarily large; for example, a
simple backbone protein may have hundreds of branches. The TT representation is
then inherited from the weak correlation between the branches. However, in the same
branch, the correlation cannot be ignored, and thus the exponential growth in the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C44 HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

TABLE 4.1
Synthetic TT models used for performance experiments. In each case the TT ranks are all the
same and are cut in half by the TT rounding procedure.

Model | # Modes Dimensions Ranks | Memory
1 50 2K X -+ x 2K 50 2 GB
2 16 100M x 50K x --- x 50K x 1M 30 28 GB
3 30 2M X --- x 2M 30 385 GB

number of states, which corresponds to the dimension of the tensor mode for that
branch, cannot be avoided.

4.1.3. Parameter-dependent PDEs. In this application, one or a few modes
may be much larger than the rest. This is typically the case in physical applications
such as parameter-dependent PDEs, stochastic PDEs, uncertainty quantification, and
optimal control systems [9, 10, 11, 19, 25, 34, 43]. In such applications, the spatial
discretization leads to a high number of degrees of freedom. This typically results
from large domains, refinement procedures, and a large number of parameter samples.
Most of other modes correspond to control or uncertainty parameters and can have
relatively smaller dimension.

For example, in [10] where the authors study an optimal control problem con-
strained by random Navier—Stokes equations, certain vectors are represented by 10-
mode tensors. The number of degrees of freedom in each mode is as follows: the
velocity field has up to 168,240, the time mode has up to 4,096, and the eight modes
related to the random variables each has 8. Again, this discretization is limited by
memory and time constraints and finer granularity that increases the accuracy of the
approximation would lead to dimensions on the order of millions.

4.2. Synthetic TT models. As we are interested in large scale systems, we
consider two contexts of applications in which a large number of modes exists. The
first context is with each mode of relatively the same (large) dimension, such as the
applications described in subsections 4.1.1 and 4.1.2, and the second context is a single
or few modes with large dimension as well as many modes of relatively smaller dimen-
sion, as arises in parameter-dependent PDEs (subsection 4.1.3). Table 4.1 presents
the details of the three models of synthetic tensors we use in the experiments, in
order of their memory size. The first and third models correspond to the first context
(all modes of the same dimension) and the second model corresponds to the second
context (two large modes and many more smaller modes). The first model is chosen
to be small enough to be processed by a single core, while the second and third are
larger and benefit more from distributed-memory parallelization (the third does not
fit in the memory of a single node). The paragraphs below describe the applications
that inspire these choices of modes and dimensions.

In all experiments, we generate a random TT tensor X with a given number of
modes N, modes sizes I,, for n = 1,..., N, and TT ranks RX forn =1,..., N — 1.
Then, we form the TT tensor Y = 2X — X whose representation has TT ranks RY =
2RX forn =1,...,N — 1. The algorithms are then applied on the TT tensor Y. Note
that the minimal TT ranks of Y are less than or equal to the T'T ranks of X.

4.3. Microbenchmarks. We next present experimental results for microbench-
marks to justify our choices for subroutine algorithms and optimizations. The results
presented in subsection 4.4 use the best-performing variants and optimizations demon-
strated in this section.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC C45

1072
2

T T T
Comm Apply-Q
B Comp Apply-Q

L Comm R
Comm QR
[| Comp QR

—_
&

Time (seconds)
-
T

o
[
T

-
0

Ty gy @gr 9o
S [SH= B £ SR
o =+ (=] o+ 8 ﬁ 9 =g
EE £ & & 2B
g 22 g2 EZ
b=40 b =280 b=120 b =160

Fic. 4.1. Time breakdown for TSQR wvariants for 1,024,000 x b matriz over 1,024 processors,
including both factorization and application of the orthonormal factor to a dense b X b matrix.

4.3.1. TSQR. As discussed in subsection 3.3, the TSQR algorithm depends on
a hierarchical tree. Two tree choices are commonly used in practice, the binomial
tree and the butterfly tree. In both cases the TSQR computes the QR decomposition
sharing the same complexity and communication costs along the critical path, whereas
the butterfly requires less communication cost along the critical path of the application
of the implicit orthonormal factor. This advantage of the butterfly variant in the
application phase is particularly important in the context of TT orthonormalization
and rounding because a large percentage of time is spent in the application phase.

Here we compare the performance of the TSQR algorithms using the binomial and
butterfly trees for both factorization and single application of the orthonormal factor.
Since the difference in their costs is solely related to the number of columns, we fix the
number of rows in the comparison and vary the number of columns. Figure 4.1 reports
the breakdown of time of the variants using 256 nodes with 4 MPI processes per node
(2 cores per socket). The local matrix size on each processor is 1,000 x b where b
varies in {40, 80,120, 160}. We observe that the butterfly tree has better performance
in terms of communication time in the application phase. Note that the factorization
runtime (computation and communication) is relatively the same for both variants.
We also time the cost of communicating the triangular factor R, which is required
of the binomial variant in the context of TT-rounding, but that cost is negligible in
these experiments.

Based on these results (and corroborating experiments with various other param-
eters), we use the butterfly variant of TSQR for TT computations that require TSQR
in all subsequent numerical experiments.

4.3.2. TT rounding. In this section, we consider four variants of TT round-
ing (Algorithm 3.4), based on the orthonormalization/truncation ordering and the
use of the implicit orthonormal factor optimization. As discussed in subsection 2.4,
the rounding procedure can perform right- or left- orthonormalization followed by
a truncation phase in the opposite direction. We refer to the ordering based on
right-orthonormalization and left-truncation as RLR and the ordering based on left-
orthonormalization and right-truncation as LRL. The implicit optimization avoids
the explicit formation of orthonormal factors during the orthonormalization phase;
instead of using Algorithm 3.3 as a black-box subroutine, Algorithm 3.4 leaves or-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C46 HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

2

0.15

0.1

Time (seconds)
Time (seconds)

5-1072

0 0
LRLI LRL RLRI RLR LRLI LRL RLRI RLR

(a) Model 2 (b) Model 3

F1G. 4.2. Performance comparison of TT-Rounding variants for large TT models on 32 nodes
(1,280 cores). LRL refers to left-orthonormalization followed by right-truncation (vice versa for
RLR) and I indicates the use of the implicit optimization.

thonormal factors in implicit TSQR form as much as possible, saving a constant
factor of computation (and a small amount of communication).

Although the asymptotic complexity of the variants of the rounding procedure
are equal, their performance is not the same. This disparity between RLR and LRL
orderings is because of the performance difference between the QR and the LQ im-
plementations of the LAPACK subroutines provided by the MKL implementations.
Despite the same computation complexity, the QR subroutines has much better per-
formance than the LQ subroutines.

In the LRL ordering, a sequence of calls to the QR subroutine are performed
on the vertically unfolded TT cores T ,, with the increased ranks R, _1, R,. Along
the truncation sweep, the LQ subroutine is called in a sequence to factor the hori-
zontally unfolded TT cores Tx , with one reduced rank R,_1, L,. As presented in
subsections 3.4 and 3.5, the RLR ordering employs the QR and LQ subroutines in the
opposite order. Because the truncation phase involves less computation within local
QR/LQ subroutine calls than the orthonormalization phase, the LRL ordering has
the advantage that it spends less time in LQ subroutine calls than the RLR ordering.

The effect of the implicit optimization is a reduction in computation (approxi-
mately 12.5% in these experiments) and communication, but this advantage is offset
in part by the performance of local subroutines. The implicit application of the or-
thonormal factor involves auxiliary LAPACK routines for applying sets of Householder
vectors in various formats. The explicit multiplication of an orthonormal factor to a
small square matrix involves a broadcast and a local subroutine call to matrix mul-
tiplication, which has much higher performance than the auxiliary routines involving
Householder vectors. We use an “I” to indicate the use of the implicit optimization,
so that the four variants are LRLI, LRL, RLRI, and RLR.

Figure 4.2 presents the performance results for TT Models 2 and 3 running on 256
nodes. We see that for both models, the LRL ordering with the implicit optimization
(LRLI) is the fastest. In the case of Model 2, the implicit optimization makes more
of a difference than the ordering. This is because a considerable amount of time is
spent in the first mode, where the QR is used (once) in either ordering. In the case of
Model 3, the ordering makes a much larger difference in running time, as the internal
modes dominate the running time and the QR/LQ difference has a large effect. The
implicit optimization still improves performance, but it has less of an effect than the
ordering. Based on these results, we use the LRLI variant of TT-rounding in all the
experiments presented in subsection 4.4.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC C47

0.5

Time fraction
)
&
L
Time fraction

504t

03 1 03

0.2 1 0.2

B Comm B Comm
11 |n Comp 1 %11 ln Comp
0 0

5 EE9 5EFQ EEQ
g 3 °3 3
1 2 4 8 16 32 64 128 256 16 32 64 128 256
(a) Time breakdown for Model 2 (b) Time breakdown for Model 3
T T T T T
~ --- DPerfect - L --- Perfect
a —— Ortho o —— Ortho
. —— InnPro-Sym 2l —— InnPro-Sym | |
o N InnPro [= InnPro
g g
= = 7L i
=)] 2 L
&« RS
'L o
R . g -
g o« N Bl i
< ™
L | \ | : \
IO] = .
By
(‘:\] [1 1 1 1 1 1 1 1 1 | | | | | |
1 2 4 8 16 32 64 128 256 16 32 64 128 256
Number of Nodes Number of Nodes
(C) Parallel scaling for Model 2 (d) Parallel scaling for Model 3

Fic. 4.3. Time breakdown and parallel scaling of variants for TT norm computation. “Ortho”
refers to orthonormalization (following by computing the norm of a single core), “InnPro” refers to
using the inner product algorithm, and “InnPro-Sym” refers to using the inner product algorithm
with symmetric optimization.

4.4. Parallel scaling.

4.4.1. Norms. In this section we compare the performance and parallel scaling
of three different algorithms for computing the norm of a TT tensor as discussed
in subsection 3.2.4. We focus on this computation because the multiple approaches
represent the performance of algorithms for computing inner products and orthonor-
malization, which are essential on their own in other contexts. We use “Ortho” to
denote the approach of first right- or left-orthonormalizing the TT tensor and then
(cheaply) computing the norm of the first or last core, respectively. Thus, Ortho per-
formance represents that of Algorithm 3.3. The name “InnPro” refers to the approach
of computing the inner product of the TT tensor with itself, and “InnPro-Sym” in-
cludes the optimization that exploits the symmetry in the inner product to save up
to half the computation. InnPro captures the performance of the algorithm described
in subsection 3.2.3 for general TT inner products as well.

We report parallel scaling and a breakdown of computation and communication
for all three algorithms and T'T Models 2 and 3 in Figure 4.3. Model 2 can be processed

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C48 HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

on a single node, but Model 3 requires 16 nodes to achieve sufficient memory; we scale
both models up to 256 nodes (10,240 cores). Based on the theoretical analysis (see
Table 3.1), when all tensor dimensions are equivalent such as Model 3, Ortho has a
leading-order flop constant of 5, InnPro has a constant of 4, and InnPro-Sym has a
constant of 2. Ortho also requires more complicated TSQR reductions compared to
the All-Reduces performed in InnPro and InnPro-Sym, involving an extra log P factor
in data communicated in theory and slightly less efficient implementations in practice.
In addition, the efficiencies of the local computations differ across approaches: Ortho
is bottlenecked by local QR, InnPro by local matrix multiplication (GEMM), and
InnPro-Sym by local triangular matrix multiplication (TRMM).

Overall, we see that InnPro is typically the best performing approach. The main
factor in its superiority is that its computation is cast as GEMM calls, which are
more efficient than TRMM and QR subroutines. Although InnPro-Sym performs half
the flops of InnPro, the relative inefficiency of those flops translates to a less than
2x speedup over InnPro for Model 3 and a slight slowdown for Model 2. We also
note that for high node counts, the cost of the LDLT factorization performed within
InnPro-Sym becomes nonneglible and begins to hinder parallel scaling.

Based on the breakdown of computation and communication, we see that all
three approaches are able to scale reasonably well because they remain computation
bound up to 256 nodes. For Model 2, we see that communication costs are relatively
higher, as that tensor is much smaller. Note that Ortho scales better than InnPro-
Sym and InnPro, even superlinearly for Model 3, which is due in large part to the
higher flop count and relative inefficiency of the local QRs, allowing it to remain more
computation bound than the alternatives. Overall, these results confirm that the
parallel distribution of TT cores allows for high performance and scalability of the
basic T'T operations as described in subsection 3.2.

4.4.2. TT rounding.

Single-node performance. We compare in this section our implementation of TT
rounding against the MATLAB TT-Toolbox [39] rounding process. Table 4.2 presents
a performance comparison on a single node of COBRA, which has 40 cores available.
We run the experiment on TT Model 1, which is small enough to be processed by a
single core. Because it is written in MATLAB, the TT-Toolbox accesses the available
parallelism only through underlying calls to a multithreaded implementation of BLAS
and LAPACK. However, the bulk of the computation occurs in MATLAB functions
that make direct calls to efficient BLAS and LAPACK subroutines, so it can achieve
relatively high sequential performance.

We observe from Table 4.2 that the single-core performance of the two imple-
mentations is similar, with a 70% speedup from our implementation. The single-core
implementations are employing the same algorithm, and we attribute the speedup to
our lower-level interface to LAPACK subroutines and the ability to maintain implicit
orthonormal factors to reduce computation. The parallel strong scaling differs more
drastically, as expected. The MATLAB implementation, which is not designed for
parallelization, achieves less than a 2x speedup when using 20 or 40 cores. Our par-
allelization, which is designed for distributed-memory systems, also scales very well
on this shared-memory machine, achieving over 20x speedup on 20 cores and 34X
speedup on 40 cores.

Distributed-memory strong scaling. We now present the parallel performance of
TT rounding scaling up to hundreds of nodes (over 10,000 cores). As in the case of
subsection 4.4.1, we consider Models 2 and 3. Figure 4.4 presents the relative time

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC C49

TABLE 4.2
Single-node performance results on TT Model 1 and comparison with the MATLAB TT-Toolbox.

1 core 20 cores | Par. speedup 40 cores | Par. speedup
TT-Toolbox 15.68 8.34 1.9% 8.752 1.8%
Our implementation 9.2 0.44 20.9x% 0.27 33.9%
Speedup 1.7x || 18.95x 32.2x

breakdown and raw timing numbers for each model. We use the “LRLI” variant of
TT rounding in these experiments per the results of subsection 4.3.2. As in other
rounding experiments, the ranks are cut in half for each model.

In the time breakdown plots of Figures 4.4(a) and 4.4(b), we distinguish among
TSQR factorization (TSQR), application of orthonormal factors (AppQ), and the rest
of the computation that includes SVDs and triangular multiplication (Other). We
also separate the computation and communication of each category. In the context
of Algorithm 3.4, TSQR corresponds to lines 3 and 9, AppQ corresponds to lines 11
and 12, and Other corresponds to lines 4 and 10.

1
0.8

0.6

Time fraction

I
=

Other Comp
£ AppQ Comm
0.2

FITSQR Comm
B TSQR Comp

-
1 2 4 8 16 32 64 128 256 16 32 64 128 256

(a) Time breakdown for Model 2 (b) Time breakdown for Model 3

T T
- - - Perfect
—— LRLI [

94

—
--- Perfect | |
—— LRLI

93

92

Time (seconds)
o1

2-2 2-1 20

I Y S | | | |
1 2 4 8 16 32 64 128 256 16 32 64 128 256
Number of Nodes Number of Nodes

(C) Parallel scaling for Model 2 (d) Parallel scaling for Model 3

Fic. 4.4. Time breakdown and and parallel scaling of LRLI variant of TT rounding.

In Figures 4.4(c) and 4.4(d), we observe the strong scaling raw times in log scale
compared to perfect scaling (based on time at the fewest number of nodes). We see
nearly perfect scaling for Model 2 until 128 nodes; time continues to decrease but is
not cut in half when scaling to 256 nodes. The parallel speedup numbers for Model
2 are 97x for 128 nodes and 108x for 256 nodes, compared to performance on 1
node. In the case of Model 3, we see superlinear scaling, even at 256 nodes. We
attribute this scaling in part to the baseline comparison of 16 nodes, which already
involves parallelization/communication, and in part to local data fitting into higher
levels of cache as the number of processors increases, which helps memory-bound local

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C50 HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

computations. We observe a 48 speedup for Model 3, scaling from 16 to 256 nodes.

The time breakdown plots also help to explain the scaling performance. We
see that for Model 2, over 70% of the time is spent in local computation, while for
Model 3, over 90% of the time is computation. Of this computation, the majority is
spent in TSQR, which itself is dominated by the initial local leaf QR computations.
If the rank is reduced by a smaller factor, then relatively more flops will occur in
AppQ. We note that AppQ involves minimal communication because of the use of the
Butterfly TSQR variant. The Other category is dominated by the triangular matrix
multiplication, which achieves higher performance than the LAPACK subroutines
involving orthonormal factors.

5. Conclusions. This work presents the parallel implementation of the basic
computational algorithms for tensors represented in low-rank TT format. Because
most T'T computations involve dependence through the train, we specify a data distri-
bution that distributes each core across all processors and show that the computations
and communication costs of our proposed algorithms enable efficiency and scalability
for each core computation. The orthonormalization and rounding procedures for TT
tensors depend heavily on the TSQR algorithm, which is designed to scale well on
architectures with a large number of processors for matrices with highly skewed aspect
ratios. Our numerical experiments show that our algorithms are indeed efficient and
scalable, outperforming productivity-oriented implementations on a single core and
single node and scaling well to hundreds of nodes (thousands of cores). Thus, our
approach is useful to applications and users who are restricted to a single workstation
as well to those requiring the memory and performance of a supercomputer.

We note that the raw performance of our implementation depends heavily on the
local BLAS/LAPACK implementation and the efficiency of the QR decomposition
and related subroutines. For example, we observe significant performance differences
between MKL’s implementations of QR and LQ subroutines, which caused the LRL
ordering of TT-rounding to outperform RLR. We also observe performance differences
among other subroutines, such as triangular matrix multiplication and general matrix
multiplication, again confirming that simple flop counting (even tracking constants
closely) does not always accurately predict running times.

There do exist limitations of the parallelization approach proposed in this paper.
In particular, modes with small dimensions benefit less from parallelization and can
become bottlenecks if there are too many of them. For example, we see the limits of
scalability with T'T Model 2, which has large first and last modes but smaller internal
modes. In fact, the distribution scheme assumes that P < I,, for n = 1,..., N, and
involves idle processors when the assumption is broken. We also note that TSQR may
not be the optimal algorithm to factor the unfolding, which can happen if two succes-
sive ranks differ greatly and P is large with respect to the original tensor dimensions.

Alternative possibilities to avoid these limitations include cheaper but less accu-
rate methods for the SVD, including via the associated Gram matrices or by using
randomization. We plan to pursue such strategies in the future, in addition to consid-
ering the case of computing a TT approximation from a tensor in explicit full format.
Given these efficient computational building blocks, the next step is to build scalable
Krylov and alternating-scheme based solvers that exploit the TT format.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

(1]

(3]

[10]

(11]

18]

[19]

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC Ch1

REFERENCES

H. AL DaAs, Solving linear systems arising from reservoirs modeling, theses, Inria Paris, Sor-
bonne Université, UPMC University of Paris 6, Laboratoire Jacques-Louis Lions, 2018,
https://hal.inria.fr/tel-01984047.

M. ANDERSON, G. BALLARD, J. DEMMEL, AND K. KEUTZER, Communication-avoiding QR de-
composition for GPUs, in Proceedings of the 2011 IEEE International Parallel & Distrib-
uted Processing Symposium, IPDPS ’11, Washington, DC, 2011, IEEE Computer Society,
pp. 48-58, https://doi.org/10.1109/IPDPS.2011.15.

W. AUSTIN, G. BALLARD, AND T. G. KOLDA, Parallel tensor compression for large-scale scien-
tific data, in Proceedings of the 30th IEEE International Parallel and Distributed Process-
ing Symposium, 2016, pp. 912-922, https://www.computer.org/csdl/proceedings/ipdps/
2016/2140/00/2140a912-abs.html.

B. W. BADER, T. G. KOLDA, ET AL., Tensor Toolbox for MATLAB Version 3.2.1, 2021, https:
//www.tensortoolbox.org.

S. BALAY, S. ABHYANKAR, M. F. Apams, J. BROWN, P. BRUNE, K. BUSCHELMAN, L. DALCIN,
A. DENER, V. EukHouT, W. D. Groprp, D. KARPEYEV, D. KAUsHIK, M. G. KNEPLEY,
D. A. MAy, L. C. McInnEs, R. T. MiLLs, T. Munson, K. Rupp, P. SANAN, B. F. SMITH,
S. ZamPINI, H. ZHANG, AND H. ZHANG, PETSc Web page, 2019, https://www.mcs.anl.
gov/petsc.

G. BALLARD, E. CARSON, J. DEMMEL, M. HOEMMEN, N. KNIGHT, AND O. SCHWARTZ, Commu-
nication lower bounds and optimal algorithms for numerical linear algebra, Acta Numer.,
23 (2014), pp. 1-155, https://doi.org/10.1017/S0962492914000038.

G. BALLARD, J. DEMMEL, L. GRIGORI, N. KNIGHT, M. JACQUELIN, AND H. D. NGUYEN, Re-
constructing Householder vectors from tall-skinny QR, J. Parallel Distrib. Comput., 85
(2015), pp. 3-31, https://doi.org/10.1016/j.jpdc.2015.06.003.

G. BALLARD, A. KLINVEX, AND T. G. KoLpA, TuckerMPI: A parallel C++/MPI software
package for large-scale data compression via the Tucker tensor decomposition, ACM Trans.
Math. Software, 46 (2020), 13.

P. BENNER, S. DoLGOv, A. ONWUNTA, AND M. STOLL, Low-rank solvers for unsteady Stokes—
Brinkman optimal control problem with random data, Comput. Methods Appl. Mech. En-
grg., 304 (2016), pp. 26-54.

P. BENNER, S. DOLGOV, A. ONWUNTA, AND M. STOLL, Low-rank solution of an optimal control
problem constrained by random Navier-Stokes equations, Internat. J. Numer. Methods
Fluids, 92 (2020), pp. 1653-1678.

P. BENNER, S. GUGERCIN, AND K. WILLCOX, A survey of projection-based model reduction
methods for parametric dynamical systems, SIAM Rev., 57 (2015), pp. 483-531, https:
//doi.org/10.1137/130932715.

G. BEYLKIN AND M. J. MOHLENKAMP, Numerical operator calculus in higher dimensions,
Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 10246-10251, https://doi.org/10.1073/pnas.
112329799.

M. BHATTARAIL, G. CHENNUPATI, E. SKAU, R. VANGARA, H. DJIDJEV, AND B. ALEXANDROV,
Distributed non-negative tensor train decomposition, in Proceedings of the 2020 IEEE High
Performance Extreme Computing Conference (HPEC), 2020, pp. 1-10, https://doi.org/10.
1109/HPEC43674.2020.9286234.

F. BonNi1zzoNi, F. NOBILE, AND D. KRESSNER, Tensor train approrimation of moment equations
for elliptic equations with lognormal coefficient, Comput. Methods Appl. Mech. Engrg., 308
(2016), pp. 349-376.

J. D. CARROLL AND J.-J. CHANG, Analysis of individual differences in multidimensional scaling
via an n-way generalization of “Eckart-Young” decomposition, Psychometrika, 35 (1970),
pp- 283-319, https://doi.org/10.1007/BF02310791.

E. CHAN, M. HEIMLICH, A. PURKAYASTHA, AND R. VAN DE GELN, Collective communication:
theory, practice, and experience, Concurr. Comput., 19 (2007), pp. 1749-1783, https://
doi.org/10.1002/cpe.1206.

P. G. CONSTANTINE AND D. F. GLEICH, Tall and skinny QR factorizations in mapreduce
architectures, in Proceedings of the Second International Workshop on MapReduce and Its
Applications, MapReduce ’11, New York, 2011, ACM, pp. 43-50, https://doi.org/10.1145/
1996092.1996103.

J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU, Communication-optimal parallel and
sequential QR and LU factorizations, SIAM J. Sci. Comput., 34 (2012), pp. A206-A239,
https://doi.org/10.1137/080731992.

S. DoLcov AND M. STOLL, Low-rank solution to an optimization problem constrained by the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://hal.inria.fr/tel-01984047
https://doi.org/10.1109/IPDPS.2011.15
https://www.computer.org/csdl/proceedings/ipdps/2016/2140/00/2140a912-abs.html
https://www.computer.org/csdl/proceedings/ipdps/2016/2140/00/2140a912-abs.html
https://www.tensortoolbox.org
https://www.tensortoolbox.org
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://doi.org/10.1017/S0962492914000038
https://doi.org/10.1016/j.jpdc.2015.06.003
https://doi.org/10.1137/130932715
https://doi.org/10.1137/130932715
https://doi.org/10.1073/pnas.112329799
https://doi.org/10.1073/pnas.112329799
https://doi.org/10.1109/HPEC43674.2020.9286234
https://doi.org/10.1109/HPEC43674.2020.9286234
https://doi.org/10.1007/BF02310791
https://doi.org/10.1002/cpe.1206
https://doi.org/10.1002/cpe.1206
https://doi.org/10.1145/1996092.1996103
https://doi.org/10.1145/1996092.1996103
https://doi.org/10.1137/080731992

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

C52

21]
22]

23]

24]

(35]

(36]

37]

(38]

(39]

[40]

HUSSAM AL DAAS, GREY BALLARD, AND PETER BENNER

Navier-Stokes equations, STAM J. Sci. Comput., 39 (2017), pp. A255-A280, https://doi.
org/10.1137/15M1040414.

S. Eswar, K. HAavasHi, G. BALLARD, R. KANNAN, M. A. MATHESON, AND H. PARK, PLANC:
Parallel low-rank approximation with nonnegativity constraints, ACM Trans. Math. Softw.,
47 (2021), 20, https://doi.org/10.1145/3432185.

L. GRIGORI AND S. KUMAR, Parallel Tensor Train Through Hierarchical Decomposition, Tech.
Report hal-03081555, INRIA, 2021, https://hal.inria.fr/hal-03081555.

W. HACKBUSCH AND S. KUHN, A new scheme for the tensor representation, J. Fourier Anal.
Appl., 15 (2009), pp. 706-722, https://doi.org/10.1007/s00041-009-9094-9.

R. A. HARSHMAN, Foundations of the PARAFAC procedure: Models and conditions for an
ezxplanatory multimodal factor analysis, Working Papers in Phonetics, 16 (1970), pp. 1-84,
http://www.psychology.uwo.ca/faculty /harshman/wpppfac0.pdf.

M. A. HErouX, R. A. BARTLETT, V. E. HOwLE, R. J. HOEKSTRA, J. J. Hu, T. G. KOLDA,
R. B. LEHoucq, K. R. LoNgG, R. P. PawLowsklI, E. T. PHIpPS, A. G. SALINGER, H. K.
THORNQUIST, R. S. TUMINARO, J. M. WILLENBRING, A. WILLIAMS, AND K. S. STANLEY,
An overview of the Trilinos project, ACM Trans. Math. Software, 31 (2005), pp. 397423,
https://doi.org/10.1145,/1089014.1089021.

J. HESTHAVEN, G. R0zzA, AND B. STAMM, Certified Reduced Basis Methods for Parametrized
Partial Differential Equations, SpringerBriefs in Mathematics, Springer, 2015, Cham,
https://doi.org/10.1007/978-3-319-22470-1.

P. JoLvET, Domain Decomposition Methods: Application to High-performance Computing,
Theses, Université de Grenoble, 2014, https://tel.archives-ouvertes.fr/tel-01155718.

A. KANTIAN, M. DoLFI, M. TROYER, AND T. GIAMARCHI, Understanding repulsively mediated
superconductivity of correlated electrons via massively parallel density matriz renormal-
ization group, Phys. Rev. B, 100 (2019), 075138, https://doi.org/10.1103/PhysRevB.100.
075138.

O. Kaya AND B. UGAR, High performance parallel algorithms for the Tucker decomposition of
sparse tensors, in Proceedings of the 45th International Conference on Parallel Processing
(ICPP '16), 2016, pp. 103-112, https://doi.org/10.1109/ICPP.2016.19.

B. N. KHoroMsKlJ, O(dlog N)-quantics approzimation of N-d tensors in high-dimensional
numerical modeling, Constr. Approx., 34 (2011), pp. 257-280, https://doi.org/10.1007/
s00365-011-9131-1.

T. G. KoLpa AND B. W. BADER, Tensor decompositions and applications, SIAM Rev., 51
(2009), pp. 455-500, https://doi.org/10.1137/07070111X.

J. KossArr1, Y. PANAGAKIS, A. ANANDKUMAR, AND M. PANTIC, TensorLy: Tensor learning in
Python, J. Mach. Learn. Res., 20 (2019), pp. 1-6, http://jmlr.org/papers/v20/18-277.html.

D. KRrRESSNER, R. KuMAR, F. NOBILE, AND C. TOBLER, Low-rank tensor approximation for
high-order correlation functions of Gaussian random fields, SIAM/ASA J. Uncertain.
Quantif., 3 (2015), pp. 393-416, https://doi.org/10.1137/140968938.

D. KRESSNER AND L. PERISA, Recompression of Hadamard products of tensors in Tucker
format, SIAM J. Sci. Comput., 39 (2017), pp. A1879-A1902, https://doi.org/10.1137/
16M1093896.

D. KRESSNER AND C. TOBLER, Krylov subspace methods for linear systems with tensor product
structure, STAM J. Matrix Anal. Appl., 31 (2009/10), pp. 1688-1714, https://doi.org/10.
1137/090756843.

R. LEvy, E. SoLOMONIK, AND B. K. CLARK, Distributed-memory DMRG via sparse and dense
parallel tensor contractions, in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC ’20, IEEE Press, 2020, 24.

J. L1, J. CHo1, I. PERROS, J. SUN, AND R. Vubpuc, Model-driven sparse CP decomposition for
higher-order tensors, in Proceedings of the IEEE International Parallel and Distributed
Processing Symposium, IPDPS, 2017, pp. 1048-1057, https://doi.org/10.1109/IPDPS.
2017.80.

L. L1, W. Yu, AND K. BATSELIER, Faster Tensor Train Decomposition for Sparse Data, pre-
print, https://arxiv.org/abs/1908.02721, 2020.

M. MoOHIYUDDIN, M. HOEMMEN, J. DEMMEL, AND K. YELICK, Minimizing communication in
sparse matriz solvers, in Proceedings of the International Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, 2009, 36, https://doi.org/10.1145/
1654059.1654096.

I. OSELEDETS ET AL., Tensor Train Toolbox Version 2.2.2. 2020, https://github.com/oseledets/
TT-Toolbox.

I. OSELEDETS AND E. TYRTYSHNIKOV, TT-cross approzimation for multidimensional arrays,
Linear Algebra Appl., 432 (2010), pp. 70-88, https://doi.org/10.1016/j.1aa.2009.07.024.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/15M1040414
https://doi.org/10.1137/15M1040414
https://doi.org/10.1145/3432185
https://hal.inria.fr/hal-03081555
https://doi.org/10.1007/s00041-009-9094-9
http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
https://doi.org/10.1145/1089014.1089021
https://doi.org/10.1007/978-3-319-22470-1
https://tel.archives-ouvertes.fr/tel-01155718
https://doi.org/10.1103/PhysRevB.100.075138
https://doi.org/10.1103/PhysRevB.100.075138
https://doi.org/10.1109/ICPP.2016.19
https://doi.org/10.1007/s00365-011-9131-1
https://doi.org/10.1007/s00365-011-9131-1
https://doi.org/10.1137/07070111X
http://jmlr.org/papers/v20/18-277.html
https://doi.org/10.1137/140968938
https://doi.org/10.1137/16M1093896
https://doi.org/10.1137/16M1093896
https://doi.org/10.1137/090756843
https://doi.org/10.1137/090756843
https://doi.org/10.1109/IPDPS.2017.80
https://doi.org/10.1109/IPDPS.2017.80
https://arxiv.org/abs/1908.02721
https://doi.org/10.1145/1654059.1654096
https://doi.org/10.1145/1654059.1654096
https://github.com/oseledets/TT-Toolbox
https://github.com/oseledets/TT-Toolbox
https://doi.org/10.1016/j.laa.2009.07.024

Downloaded 02/04/22 to 152.17.151.1 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

PARALLEL ALGORITHMS FOR TENSOR TRAIN ARITHMETIC Ch3

[41] I. V. OSELEDETS, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295-2317,

https://doi.org/10.1137/090752286.

[42] A.-H. PuaN, P. TicHAVSKY, AND A. CICHOCKI, Fast alternating LS algorithms for high order

[43]

[44]

[45]

[46]

[52]

(53]

[54]

[55]

CANDECOMP/PARAFAC tensor factorizations, IEEE Trans. Signal Process., 61 (2013),
pp. 48344846, https://doi.org/10.1109/TSP.2013.2269903.

A. QUARTERONI, A. MANZONI, AND F. NEGRI, Reduced Basis Methods for Partial Differential

Equations: An Introduction, UNITEXT, Springer, Cham, 2015, https://doi.org/10.1007/
978-3-319-15431-2.

S. RAGNARSSON AND C. F. VAN LOAN, Block tensor unfoldings, STAM J. Matrix Anal. Appl.,

33 (2012), pp. 149-169, https://doi.org/10.1137/110820609.

M. ROHRIG-ZOLLNER, J. THIES, AND A. BASERMANN, Performance of Low-rank Approzimations

in Tensor Train Format (TT-SVD) for Large Dense Tensors, preprint, https://arxiv.org/
abs/2102.00104, 2021.

D. V. SAvosTYANOV, S. V. DoLcov, J. M. WERNER, AND I. KupProv, Ezact NMR simulation

of protein-size spin systems using tensor train formalism, Phys. Rev. B, 90 (2014), 085139,
https://doi.org/10.1103/PhysRevB.90.085139.

. SMiTH AND G. KARYPIS, Accelerating the Tucker decomposition with compressed sparse

tensors, in Euro-Par 2017, Lecture Notes in Comput. Sci. 10417, F. F. Rivera, T. F. Pena,
and J. C. Cabaleiro, eds., Springer, Cham, 2017, pp. 653-668, https://doi.org/10.1007/
978-3-319-64203-1-47.

. SmiTH, N. RAVINDRAN, N. D. SIDIROPOULOS, AND G. KARypPis, SPLATT: Efficient and

parallel sparse tensor-matrix multiplication, in Proceedings of the 2015 IEEE International
Parallel and Distributed Processing Symposium, IPDPS ’15, Washington, DC, 2015, IEEE
Computer Society, pp. 61-70, https://doi.org/10.1109/IPDPS.2015.27.

. SOLOMONIK, D. MATTHEWS, J. R. HAMMOND, J. F. STANTON, AND J. DEMMEL, A massively

parallel tensor contraction framework for coupled-cluster computations, J. Parallel Distrib.
Comput., 74 (2014), pp. 3176-3190, https://doi.org/10.1016/j.jpdc.2014.06.002.

. M. STOUDENMIRE AND S. R. WHITE, Real-space parallel density matriz renormalization

group, Phys. Rev. B, 87 (2013), 155137, https://doi.org/10.1103 /physrevb.87.155137.

. THAKUR, R. RABENSEIFNER, AND W. GROPP, Optimization of collective communication

operations in MPICH, Int. J. High Perform. Comput. Appl., 19 (2005), pp. 49-66, https:
//doi.org/10.1177/1094342005051521.

. R. TUCKER, Some mathematical notes on three-mode factor analysis, Psychometrika, 31

(1966), pp. 279-311, https://doi.org/10.1007/BF02289464.

E. TYRTYSHNIKOV, Tensor approximations of matrices generated by asymptotically
smooth functions, Sb. Math., 194 (2003), pp. 941-954, https://doi.org/10.1070/
sm2003v194n06abeh000747.

. VERVLIET, O. DEBALS, L. SORBER, M. VAN BAREL, AND L.. DE LATHAUWER, Tensorlab 3.0,

http://www.tensorlab.net, 2016.

. WANG, L. T. YANG, Y. WANG, L. REN, AND M. J. DEEN, ADTT: A highly efficient distrib-

uted tensor-train decomposition method for IIoT big data, IEEE Trans. Industr. Inform.,
17 (2021), pp. 1573-1582, https://doi.org/10.1109/TT1.2020.2967768.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/090752286
https://doi.org/10.1109/TSP.2013.2269903
https://doi.org/10.1007/978-3-319-15431-2
https://doi.org/10.1007/978-3-319-15431-2
https://doi.org/10.1137/110820609
https://arxiv.org/abs/2102.00104
https://arxiv.org/abs/2102.00104
https://doi.org/10.1103/PhysRevB.90.085139
https://doi.org/10.1007/978-3-319-64203-1_47
https://doi.org/10.1007/978-3-319-64203-1_47
https://doi.org/10.1109/IPDPS.2015.27
https://doi.org/10.1016/j.jpdc.2014.06.002
https://doi.org/10.1103/physrevb.87.155137
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1007/BF02289464
https://doi.org/10.1070/sm2003v194n06abeh000747
https://doi.org/10.1070/sm2003v194n06abeh000747
http://www.tensorlab.net
https://doi.org/10.1109/TII.2020.2967768

	Introduction
	Notation and background
	TT tensors
	Unfolding TT cores
	TT orthonormalization
	TT rounding
	Parallel cost model

	Parallel algorithms for TT
	Data distribution and layout
	Basic operations
	Summation
	Hadamard product
	Inner product
	Norms
	Matrix-vector multiplication

	TSQR
	Factorization
	Applying and forming Q

	TT orthonormalization
	TT rounding

	Numerical experiments
	Motivating applications
	High-order correlation functions
	Molecular simulations
	Parameter-dependent PDEs

	Synthetic TT models
	Microbenchmarks
	TSQR
	TT rounding

	Parallel scaling
	Norms
	TT rounding

	Conclusions
	References

