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Abstract—The design and analysis of parallel algorithms are
both fundamental to the set of high-performance, parallel, and
distributed computing skills required to use modern computing
resources efficiently. In this work, we present an approach of
teaching parallel computing within an undergraduate algorithms
course that combines the paradigms of dynamic programming
and multithreaded parallelization. We have developed a visualiza-
tion tool built with the Thread Safe Graphics Library that enables
interactive demonstration of parallelization techniques for two
fundamental dynamic programming problems, 0/1 Knapsack and
Longest Common Subsequence. We describe the implementation
of the tool, the real-time animation it produces, and the results of
using it in class. The tool is publicly available to be used directly
or as a basis on which to build visualizations of other parallel
dynamic programming algorithms.

I. INTRODUCTION

High-performance computing (HPC) and parallel and dis-
tributed computing (PDC) topics are being incorporated into
undergraduate computer science curricula in various ways,
from dedicated topics courses to individual modules dis-
tributed across core courses. While HPC and PDC topics are
often categorized into the systems side of the curriculum (e.g.,
the CC2020 curricular report classifies the PDC knowledge
area into the Systems Architecture and Infrastructure category
[1]), teaching parallel algorithmic thinking is just as important
on the theory side of the curriculum. In particular, the Knowl-
edge Units of Parallelism Fundamentals, Parallel Algorithms,
Analysis, and Programming and Parallel Decomposition as
specified within the PDC Knowledge Area of the CS2013
report [2] can all be incorporated into courses where students
learn the fundamentals of design and analysis of sequential
algorithms. This possibility is already realized in one of the
popular textbooks used for algorithms courses [3, Chapter 27].

In this work, we describe an effort to enhance the pre-
sentation of PDC concepts in an algorithms course, using a
visualization tool to present parallel algorithms for dynamic
programming problems. The visualization tool is implemented
using the Thread Safe Graphics Library (TSGL) [4], which
is designed for educational use, enabling graphics rendering
using multithreaded code and real-time animation of parallel
algorithms. In Sec. II, we provide background on the dy-
namic programming problems and parallel computing model
we consider, along with a summary of the capabilities and
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effectiveness of TSGL. We describe our approach of teaching
parallel dynamic programming in an algorithms course at
Wake Forest University in Sec. III, with a focus on designing
and analyzing parallel algorithms for the 0/1 Knapsack and
Longest Common Subsequence (LCS) problems. In Sec. IV
we present the visualization tool we have implemented with
TSGL to illustrate the parallel algorithms for those problems.
We provide screenshots of the animation to show how the in-
structor can display the dynamic programming table and draw
table entry values as they are computed within the execution
of the parallel algorithm. During the Spring 2020 semester,
we used the tool in class (a remote-learning environment due
to the COVID-19 interruption of the semester). We report in
Sec. V on the student assessments we used that semester in
homework assignments and on the final exam, and we suggest
alternative possibilities for reinforcement and assessment of
the ideas. Finally, we describe our experiences developing
and using the visualization tool in Sec. VI. Our source codes
for Knapsack and LCS are available as example applications'
distributed with the TSGL library, and can be used directly or
as a basis to extend the ideas to other dynamic programming
problems.
The main contributions of our work are

1) an approach for combining elements of dynamic pro-
gramming and parallel algorithms into a course on the
design and analysis of algorithms (see Sec. III),

2) a visualization tool for presenting two parallel dynamic
programming algorithms built with TSGL (see Sec. IV),

3) a description of the student assessment instruments we
used for the topic of parallel dynamic programming along
with suggested alternatives (see Sec. V).

II. BACKGROUND
A. Dynamic Programming Problems

Dynamic programming is an algorithmic paradigm covered
in typical algorithms courses and textbooks [3], [5], [6]. We
focus on two example problems in this work, which we briefly
review here.

The first problem is the 0/1 Knapsack problem: given a set
of n items with values {v;} and weights {w;} and a knapsack

Uhttps://github.com/Calvin-CS/TSGL/tree/master/src/examples/



of capacity W, what is the subset of items that maximizes the
total value subject to the constraint that the total weight does
not exceed W? In this 0/1 variant of the problem, an item is
either included or not; it cannot be included multiple times.

The dynamic programming solution to the problem is based
on the following recursive rule for the value of the optimal
knapsack:

K(w, j) 0 ifw=0o0rj=0
w,j) = , .
J max{K (w,j—1),v;+K(w—wj,j—1)} else,
ey

where K (w, j) is defined as the value of the optimal knapsack
with capacity w considering the first 5 items.

The second problem is the Longest Common Subsequence
problem: given two strings of characters = and y of lengths
m and n, respectively, what is the longest string that appears
as a subsequence in both x and y?

The dynamic programming solution is based on the recur-
sive rule for the length of the LCS:

0 ifi=0o0rj=0
L(i.j) = { L(i~1,j-1) + 1 if li] = ylj]
max{L(i—1,7), L(i,j—1)} if z[i] # y[j],

where L(i,7) is defined as the length of the longest common
subsequence of the th prefix of x and the jth prefix of y.

Other popular problems for which dynamic programming
provides a reasonable solution include longest increasing sub-
sequence, sequence alignment/edit distance, subset sum, all-
pairs shortest paths, and matrix chain multiplication.

B. Multithreaded Programming Model

The multithreaded programming model [3] is based on the
PRAM machine model, which is an abstract shared-memory
parallel machine in which each processor can instantaneously
access data in the single, unbounded shared memory. In the
programming model, a program starts execution with a single
thread that is able to spawn or fork other threads (which
can themselves spawn new threads) to perform operations in
parallel. To maintain correctness, threads are synced or joined
before the results of their computations are used for later
operations that depend on those results. A nice feature of this
parallel programming model is that only two keywords spawn
and sync need to be added to the sequential pseudocode
language. For cleaner expression of loop-oriented code, the
parallel for keyword can also be used in place of a
sequential for if all loop iterations can be performed inde-
pendently.

The complexity of a multithreaded algorithm is determined
using work-span analysis. The work of an algorithm, denoted
Ty (n) for input of size n, is the total number of operations
performed, and coincides with the sequential computational
complexity: the time it would take to finish with 1 processor.
The span of an algorithm, denoted T (n), is the length of
the critical path, which is the longest path in the dependency
graph of the algorithm’s operations: the time it would take to
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finish with an infinite number of processors. Given a machine
with P processors, the algorithm’s time to completion is given
by Tp(n) = ©(T1(n)/P + Ts(n)), assuming an efficient
scheduler assigns threads to processors in the PRAM model.

C. Thread Safe Graphics Library (TSGL)

TSGL is a multithreaded graphics library written in C++
that provides various functions and classes for drawing shapes,
text, images, and lines in parallel to a canvas screen using
multiple threads [4]. Designed as an educational tool for
teaching multithreaded programming, TSGL presents a novel
approach for visualizing parallel algorithms. Students can
observe how multiple threads are called in parallel to draw a
visualization in real time and can better understand the benefits
of leveraging multiple threads.

TSGL has been used for many applications, such as visualiz-
ing parallel loops and the actor parallel design pattern. Specific
examples include image processing for color inversion, com-
puting integrals numerically, and drawing the Mandelbrot set
[7]. Other applications being explored include parallel merge
sort and the task queue pattern.

In the Spring of 2015, an assessment on the effectiveness of
using TSGL for visualizing parallel loops was performed in
a CS2 course at Calvin College [8]. The assessment demon-
strated that students who were provided with an interactive
TSGL visualization for learning OpenMP scored higher on
an exam question than students who were not. Not only has
TSGL proven effective for teaching parallel algorithms, it can
also help illuminate coding errors when testing and debug-
ging. When executing code, TSGL enables a programmer to
visualize different components of the code and compare the
output to their expected result.

The TSGL library is available for download on a Windows,
MacOS X, or Linux. A guide for installing the library is
included in the TSGL GitHub repository?, as well as tutorial
videos and examples for the various features offered in the
library. Integration of these functions into a programmer’s C++
program requires a few import statements of the proper classes,
installation of certain graphics libraries (if necessary), and the
appropriate configuration of a Makefile for compilation.

III. TEACHING PARALLEL DYNAMIC PROGRAMMING

The Algorithms course at Wake Forest University is required
of BS majors and is typically taken in the 3rd or 4th un-
dergraduate year. The prerequisites ensure that students have
already been exposed to a variety of data structures, including
heaps, graphs, and hash tables, as well as algorithmic tech-
niques, such as divide and conquer and dynamic programming.
Students will also have gained experience writing rigorous
proofs and will understand how time and space complexity are
computed. The learning outcomes of the Algorithms course are
set so that at the end of the course, students should be able to
1) analyze algorithms using asymptotic complexity analysis
using Big-Oh and related notation; 2) prove correctness of

Zhttps://github.com/Calvin-CS/TSGL



algorithms using rigorous techniques such as mathematical
induction and proof by contradiction; 3) design efficient al-
gorithms for combinatorial problems, using approaches that
include divide and conquer, dynamic programming, greedy
methods, randomization, and parallelization; 4) identify NP-
complete problems and devise strategies to deal with them.
The focus of the course is on the design and analysis of
algorithms, but there are typically programming assignments
in addition to theoretical assignments used for reinforcement
of the ideas and assessment of the learning outcomes.

A. Course Topics

The semester-long course is typically structured into 7
units, each allocated roughly 2 weeks, that follow mostly
from [5]. The units are (in order) 1) integer arithmetic and
RSA encryption; 2) divide and conquer; 3) graph algorithms;
4) greedy techniques; 5) dynamic programming; 6) parallel
programming; and 7) NP-complete problems. Readings are
assigned from the required textbook [5] for all units except
for parallel programming. The content of the parallel pro-
gramming unit largely follows [3, Chapter 27], and reading
is assigned using either online access to the chapter through
the publisher’s website or from a technical report that was the
precursor to the chapter being added to the 3rd edition [9].

The course topics help students to achieve the learning
outcomes by introducing powerful techniques for designing
algorithms and demonstrating analysis of both the correctness
and complexity of a multitude of clever algorithms for solving
combinatorial problems. The order of the topics also allows
for smooth transitions between them, including using divide-
and-conquer integer multiplication to transition between the
first two topics (integer arithmetic and RSA encryption, divide
and conquer) and using Kruskal’s minimum spanning tree
algorithm to transition between graph algorithms and greedy
techniques. Highlighting the overlap among topics helps both
to reinforce the old topic from earlier in the course and to
scaffold the new topic using context the students are already
comfortable with. As described in Sec. III-C, we continue this
trend in exploring parallel algorithms for dynamic program-
ming problems.

B. Parallel Programming Unit

The objective of the parallel programming unit is for stu-
dents to learn how to design and analyze parallel algorithms.
We choose to use the multithreaded programming model in
the Algorithms course for several reasons. First, it aligns
well with the Parallel Algorithms, Analysis, and Program-
ming Knowledge Unit within the Parallel and Distributed
Computing Knowledge Area as specified in the ACM/IEEE
computer science curriculum guidelines [2]. The topics in this
Knowledge Unit include work-span analysis, which is central
to the multithreaded programming model. Second, the PRAM
model is the easiest generalization of the (implicit) RAM
model used in the complexity analysis of the sequential algo-
rithms covered in the course. For example, using a distributed-
memory machine model would force students to reason about
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data locality, which is not required of the previous sequential
analysis, and would add to the cognitive load. Because work
analysis is identical to the sequential analysis, students need
to learn only how to analyze the span of a parallel algorithm,
which helps them focus on dependencies among tasks and the
core concepts of thinking in parallel. Third, the model’s syntax
is a lightweight extension of the pseudocode with which the
students are already familiar. Many sequential algorithms can
be revisited and parallelized simply by annotating them with
spawn and sync keywords.

The parallel programming unit is scheduled near the end
of the semester, as parallelization is used most effectively in
combination with other algorithmic paradigms. Because of the
fork-join property of the multithreaded programming model,
the ideas of parallelization build most naturally from the
divide-and-conquer technique. By analyzing the dependency
graph among recursive calls, one can choose a correct par-
allelization by spawning threads to execute independent calls
and syncing to satisfy dependencies among calls. Furthermore,
performing span analysis involves deriving and solving recur-
rences, reinforcing use of the Master theorem and introducing
unique recurrences that are not considered in sequential anal-
yses. Divide-and-conquer matrix multiplication and mergesort
are the main algorithms studied in [3, Chapter 27]. These are
illustrative examples for demonstrating dependency analysis
(write conflicts between pairs of memory-efficient matrix
multiplication calls) and the effects of Amdahl’s law (if the
merge is not parallelized in mergesort).

C. Parallel Dynamic Programming

In addition to applying parallelization to divide-and-conquer
algorithms in the Algorithms course, we also demonstrate
parallel dynamic programming. Sequential dynamic program-
ming solutions typically use nested loops in order to fill
in the dynamic programming table. Because the sequential
computation of table entries must respect the dependencies
of the recursive rule, students have already been exposed to
(usually simple) dependency analysis in this context. Also,
because the sequential code is typically written with loops,
parallel dynamic programming provides compelling examples
of the use of parallel for instead of the combination
of spawn and sync used for divide-and-conquer algorithms.
Thus, dynamic programming is another natural platform on
which to build parallel algorithmic thinking.

Many dynamic programming algorithms can work well to
illustrate parallelization, but we focus on Knapsack and LCS
problems. These are convenient because they both have 2D
tables that are amenable to visualization, and more impor-
tantly, they have different dependency structures that affect
parallelization strategies. This latter distinction forces students
to reason about the available task parallelism in each problem.

1) Knapsack: As specified by eq. (1), the Knapsack table
is 2D with rows corresponding to capacity values and columns
corresponding to items. Fig. 1 shows two valid sequential
orders of filling in the table. As shown in the dependencies
of a sample entry, each entry has two entries whose values
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Fig. 1. Valid sequential orders for Knapsack table and sample entry’s

dependencies. The column-wise ordering is parallelizable but the row-wise
ordering is not.

it depends on, both of which are in the previous column.
Therefore, the table can be filled in column-by-column, from
top to bottom and working left to right, as shown in Fig. 1a, or
it can be filled in row-by-row, from left to right and working
top to bottom, as shown in Fig. 1b. While both orderings are
valid for sequential algorithms, only the column-wise ordering
is easily parallelized. This is because all of the entries in a
column are independent, while there is a chain of dependence
within a row that prevents parallel computation. Contrasting
these two sequential approaches demonstrates the dependency
analysis required for designing correct parallel algorithms.

Algorithm 1 Parallel Knapsack
# loop over items
1: for j =1ton do
# parallelize over entries in column

2 parallel for w =1 to W do

3 if w; < w then

4 K(w,j) = K(w,j-1)

5: else if K(w,j—1) > v;+K(w—wj,j—1) then
7 else

8 K(w,j) = v; + K(w—wj, j—1)

9 end if

10: end for

11: end for

The parallel algorithm implementing the column-wise or-
dering is given in Alg. 1. Only the main nested loops are
shown; the code assumes the base case values have already
been set and backtracking is not shown. The sequential outer
loop is over columns and the parallel inner loop is over rows
within a column. The work of the algorithm is ©(nWW) and
the span is ©(nlog W), for n items and capacity W.

2) LCS: The LCS rule is defined in eq. (2) and adds a useful
complication compared to Knapsack. The table is again 2D,
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Fig. 2. Valid sequential orders for LCS table and sample entry’s dependencies.
The anti-diagonal ordering is parallelizable but the column- and row-wise
ordering are not.

with rows corresponding to the characters of the 1st string and
columns corresponding to characters of the 2nd string. Fig. 2
shows three different orderings of filling in the table, all of
which satisfy the dependencies shown for the example entry.
For LCS, each entry depends on either its west and north
neighbors or its northwest neighbor, depending on whether
the corresponding characters match. This dependency structure
implies that column- and row-wise orderings (Figs. 2a and 2b)
are not easily parallelized because of the dependencies within
columns and rows. Finding the parallelism in anti-diagonals
as shown in Fig. 2c is a nice challenge for students after
understanding the Knapsack parallelization.

The pseudocode with the main loops of the anti-diagonal
approach is given in Alg. 2. Recall that m and n are the
lengths of the strings. The sequential outer loop is over anti-
diagonals and the parallel inner loop is over entries within an
anti-diagonal. For each anti-diagonal, the starting row and the
length of the anti-diagonal can vary depending on whether the
diagonal is within or after the first m and whether m > n or
not; the logic of line 2 through line 6 handle these cases. The
k variable indexes which entry of the anti-diagonal is being
processed, and the row and column indices (4, j), which sum
to d + 1 for the dth anti-diagonal, are computed in line 8.
The work of the algorithm is ©(mn) and the span is O((m +
n) log(min{m,n})), because the maximum length of an anti-
diagonal is the minimum of the two strings’ lengths.

We note that another parallelization of LCS can be done via
a divide-and-conquer approach that applies the anti-diagonal
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Fig. 3. Code snippet of drawing LCS grid with TSGL. The bgp pointer points to an object that holds a canvas that can be drawn on by multiple threads

simultaneously using functions such as drawLine and drawText.

// loop over columns (items)
for(j = 1; j < items+1; Jj++){
vj = values[]j-1];

wj = weights[j-11];
// parallelize over the entries
#pragma omp parallel for

}

// pause a second and then fill

bgp->sleepFor(l);

P bt e
OO NEWN—=OOVOJIN N A WN—

(capacities)

for(w = 0; w <= capacity; wt+) {
if (knap[w][J-1] < vj + knap[w-wj][J-1]
// include the Jjth item
knap([w] [j] = vj + knap[w-wj][j-1];
} else {
// don’t include jth item
knap([w] [J] = knap[w][]j-1];

in table entry on

bgp->drawText (x1+ (h-0.5) xcol_wid, y2-(k+0.5) *row_wid, 0,to_string (knap[k] [h]) ;

within column

&& w-wj >= 0) |

canvas

Fig. 4. Code snippet of parallel Knapsack code with TSGL visualization. The s1leepFor function call controls the speed of visualization, and the drawText
function call displays the value of the table entry in the correct location on the canvas. Because the drawText calls are within a parallel for loop, multiple

entries will appear on the canvas simultaneously.

ordering to submatrices rather than entries (see [3, Problem
27-5] or [10]). For example, one can divide the table into
quadrants, recursively complete the top-left quadrant first, then
the top-right and bottom-left quadrants in parallel next, then
the bottom-right quadrant last. This approach has more in
common with the divide-and-conquer algorithms for matrix
multiplication and mergesort, though the dependency structure
among recursive calls is more complicated. When m = n, the
span of this approach is O(n'°823), which exceeds that of the
loop-based approach.

IV. TSGL VISUALIZATION

Using TSGL, we developed visualizations for both Knap-
sack and LCS algorithms to demonstrate their behaviors while
running in parallel. We use library functions to draw and label
the dynamic programming table on a canvas, and then within
the loops of the algorithms, add function calls to draw the
value of each entry as it is computed. Because TSGL is thread
safe, we can draw to the canvas within parallel for loops
and allow multiple threads to add entries simultaneously to
demonstrate execution of the algorithm. Using the sleepFor
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function, we can control how long a thread pauses before
drawing, which controls the speed of the visualization and
also keeps the threads roughly synchronous.

In Fig. 3, we show a C++ code snippet of (simplified)
calls to TSGL to draw the dynamic programming table for
LCS and label each row and column by the character of the
corresponding string. The bgp variable is a pointer to an
object that holds the canvas and has member functions for
drawing text, lines, and other shapes. Other variables that are
defined before the code snippet set parameters such as the
corners of the table, the widths of the rows and columns, and
the lengths of the strings. Note that there is no parallelism in
these loops (though there could be) because the table is drawn
and displayed before the parallel algorithm for filling the table
is executed.

The C++ code snippet in Fig. 4 shows the main loops of
the Knapsack algorithm given in Alg. 1. Here we see the use
of OpenMP’s #pragma omp parallel for directive for
the inner loop. The code matches the pseudocode presented
earlier, but we added two TSGL function calls within the inner
loop: line 16 causes the thread to pause for 1 second, and



0-1 Knapsack Problem
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Values 4 5 1 1 3 3 3 4

Fig. 5. Visualization of parallel Knapsack with 5 threads filling 4th column

line 17 writes the computed value to the correct entry location
on the canvas’s table. Though not shown in the code snippet,
our implementation uses a unique color for each thread.

We show a screen capture of the TSGL animation of the
Knapsack algorithm in Fig. 5. In this example, the capacity
is 11, the number of items is 8, and the number of threads
used is 5. In this way, each column of length 12 is unevenly
divided over 5 threads, and we can see the default behavior of
OpenMP scheduling with one chunk per thread and the first
two threads each assigned one more iteration than the others.
Fig. 5 shows the moment after all threads complete their first
entry of the 4th column; note that each entry is a unique color
corresponding to the thread that computed it.

Fig. 6 shows a screen capture of the LCS animation. In

Algorithm 2 Parallel LCS
# loop over diagonals
I: ford=1tom+n—1do
# set starting row and length of diagonal

2: if d < m then

3: io = d, £ = min{d,n}

4: else

5: io =m, £ =min{m,m+n —d}
6: end if

# parallelize over entries in diagonal
7: parallel for £ =1 to ¢ do
# set row and col indices

8: i=tg—k+1,j=d—io+k

9: if z; = Yj then

10: L(i,j)=L(i—1,j-1)+1

11: else

12: L(i,7) = max{L(i—1,5),L(i,j—1)}
13: end if

14: end for

15: end for
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Fig. 6. Visualization of parallel LCS using 4 threads working on 12th diagonal

0-1 Knapsack Problem
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Fig. 7. Visualization of backtracking for the Knapsack example of Fig. 5

this case, each DNA-inspired string is 12 characters long and
4 threads are used. The figure shows the main anti-diagonal
of length 12 being filled in by the four threads. Because the
lengths of the anti-diagonals vary, the animation demonstrates
all possibilities of uneven division of loop sizes over threads.

While not apparent in the screen captures, the main strength
of the TSGL visualization is the real-time animation of the
progression of the algorithms. Students can watch the column-
by-column or diagonal-by-diagonal progression of the algo-
rithm, they can see the assignment of loop iterations to threads
as the number of iterations and threads vary, and they can
request demonstrations of certain configurations. It is easy
to ask questions, such as “What if we use 100 threads?” or
“Do you think 5 threads will finish faster than 4 threads?”,
have the students develop their hypotheses, and then run
the demonstration. When showing the visualizations during
the Spring 2020 semester, multiple students asked their own



questions that were answered by demonstration.

Our implementation also demonstrates a sequential back-
tracking process,® as we show for Knapsack in Fig. 7. The
visualization of backtracking can be toggled on or off. After
the table is filled, we show the measured time and speedup.
We considered but did not implement highlighting previously
computed entries that an entry depends on in order to show
the dependency pattern and why other parallelizations are
infeasible.

V. REINFORCEMENTS AND ASSESSMENTS

In this section, we discuss how the ideas of parallel dynamic
programming can be reinforced and how students’ abilities
to design and analyze parallel algorithms can be assessed.
We report the instruments and results for the Spring 2020
semester, when the TSGL demonstration for Knapsack and
LCS was used, as well as propose several alternate strategies
and exercises.

A. Spring 2020 Instruments and Results

As a reinforcement exercise in our Spring 2020 Algo-
rithms course, two questions on dynamic programming were
presented to students on a homework assignment. The first
question asked students to provide a sequential algorithm for
the subset sum problem:

Suppose we are given a set of positive integers
{a1,...,an} and a single positive integer S. Give an
O(nS) algorithm to answer the following question:
does there exist a subset of the integers that add
up to exactly S? Justify its correctness and running
time, and describe its memory footprint.

The second question followed from the first, asking students
to provide a parallel solution for the subset sum problem and
to analyze the algorithm:

Give an efficient parallel algorithm for solving the
previous problem. Justify its correctness, and derive
its work, span, and parallelism.

Responses to the first question were mostly accurate, with
only 4 of 21 students answering incorrectly. Wrong answers
were a result of students either choosing methods other than
dynamic programming or lacking full understanding of the
Knapsack algorithm and its relation to the subset sum problem.
Responses to the second question were more varied, with 10
students receiving full credit; 5 students performing incorrect
analysis, particularly for the computation of span; 2 students
that did not submit; and 4 students submitting an incorrect
algorithm, in which they either did not identify the proper
data dependency or parallelized both inner and outer loops of
the algorithm. These results correspond to 15 of 21 students
(71%) correctly designing the parallel algorithm, a success rate
we attribute in large part to the use of TSGL during lecture.

To further assess students’ ability to design parallel algo-
rithms, we consider one question on the final exam of our

3Parallelizing the backtracking process using a divide-and-conquer ap-
proach can be considered as an advanced topic [11].
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Spring 2020 Algorithms course on comparing the paralleliza-
tion scheme of Knapsack to that of LCS. The question was as
follows:

The recursive function for computing subproblem
values of Longest Common Subsequence is

0 ifi=00rj=0
L(i,j) = {L(ile)H if 2[i] = y[4]
max{L(i—1,7), L(i,j—1)} if z[i] # yl3]

Explain why the parallelization scheme for this dy-
namic programming solution must be different than
that of 0/1 Knapsack (i.e., items can be chosen at
most once).

In response, we expected students to highlight the distinct
dependency structures of the two algorithms and to emphasize
the need to parallelize LCS within the diagonals of the table
while Knapsack can be parallelized within columns (items). Of
the 21 students in the course, 11 (52%) correctly responded.
Responses varied in detail, but for incorrect answers, students
tended to focus more on the difference in definitions of the
algorithms rather than the schemes used to parallelize them.

The correct response rate for this problem was lower than
the homework problem, which we attribute in part to it being a
timed, cumulative assessment. Because the incorrect responses
failed to highlight the differences in dependency structure, we
believe emphasizing the dependencies within the visualization
would solidify students’ understanding.

B. Alternate Strategies

There are many dynamic programming solutions whose
dependency structures are variants of Knapsack and LCS that
can be used as tools for reinforcement of the parallelization
ideas. For example, like subset sum to Knapsack, the edit
distance problem has identical structure to LCS. The all-pairs
shortest-paths problem extends the ideas of Knapsack to a 3D
table, where the two innermost of the three nested loops can
be parallelized. Like Knapsack, only two slices of the table
need to be maintained in memory during the course of the
algorithm. For a more difficult extension, the Knapsack with
replacement and longest increasing subsequence problems
both involve 1D tables where the available parallelization
occurs within the computation of each entry. Designing the
parallel algorithm for these problems requires students to
apply parallel reduction, a technique that is not used in either
Knapsack or LCS. Finally, the matrix chain multiplication
problem is an example with a 2D table that, like LCS, allows
for the opportunity to parallelize within diagonals, but also
enables parallelization within the computation of each entry
via parallel reduction.

Another possibility is to ask students to design, debug,
and analyze their parallel algorithms using TSGL. Provided
a template sequential program with TSGL function calls
already included, students could write their own OpenMP
code (perhaps only annotating with OpenMP pragmas) and
use TSGL visualization as a tool to debug their code as they
develop their algorithms or to test their theoretical analysis



of work and span. This possibility requires students to install
TSGL and its dependencies, which can present obstacles for
some students but enables hands-on interaction with the tool.

VI. CONCLUSION AND EXPERIENCES

In this work, we describe a means of incorporating parallel
and distributed computing ideas into an undergraduate algo-
rithms course. Using the multithreaded programming model,
students can extend their learning of the design and analysis
of algorithms into the parallel context. While the divide-and-
conquer paradigm is a natural platform on which to build the
ideas of task parallelism, we argue here that dynamic pro-
gramming is another algorithmic technique that combines well
with parallelism, in terms of both efficiency and pedagogy.
Using the TSGL library as a tool for visualizing parallelization
strategies, we propose a novel technique for presenting parallel
dynamic programming to students using 0/1 Knapsack and
LCS as examples with distinct dependency structures.

The development of this tool progressed over the course
of the 2019-2020 academic year. The authors first learned
of TSGL when Ballard attended the CSinParallel Piedmont
Regional Workshop* at Winston-Salem State University in the
summer of 2019. During the following semester (Fall 2020),
Ballard taught a graduate course on parallel algorithms, and,
as a graduate student in that class, Parsons chose to complete a
final project focused on PDC pedagogy. Parsons implemented
the first versions of the Knapsack and LCS visualizations using
TSGL, targeting use in the undergraduate algorithms course, as
the two algorithms are studied in both undergraduate and grad-
uate courses. In the Spring 2020 semester, Ballard presented
the TSGL tool in the undergraduate course on algorithms to
demonstrate parallel dynamic programming. The Spring 2020
semester was interrupted by the COVID-19 pandemic, and
both dynamic programming and parallel programming units
occurred after the switch to remote learning, so the TSGL
visualization was presented virtually. After presenting the tool
at the CSinParallel Summer 2021 Virtual Workshop, Ballard
and Parsons updated the implementations and submitted them
as additional examples available with the TSGL library.

In our experience, the visualizations were well received
by students, and we plan to use them regularly in future
semesters of the undergraduate algorithms course, as well as
in graduate courses where applicable. In particular, TSGL
allows for an interactive demonstration that is often more
effective than lecturing with presentation slides, even when
they are well animated. We believe using TSGL increases
student engagement in class by eliciting more discussion in
the form of questions and suggestions from students. While
the demonstration in the Spring 2020 course seemed to convey
the algorithmic design ideas well, we hope in the future to
use it more effectively to clarify the work/span analysis and
its relation to the time taken by a specified number of threads.
Due to the unfortunate circumstances of the Spring 2020
semester, we also learned that TSGL visualizations can be

“https://csinparallel.org/csinparallel/workshops
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used as easily in remote settings as in-person classes. It is
possibly even more valuable in remote settings where student
engagement can be more challenging to foster.

We found that developing and running TSGL code requires
significant effort, particularly in configuring the environment.
Because it involves graphics, there are several dependencies
required for both compilation and execution, and these must
be installed on the machine used in class to perform the
demonstrations. The TSGL library includes installers for each
operating system, which are helpful. After the environment is
correctly configured, we found the use of the TSGL library to
be straightforward, especially given the large set of available
example codes. We hope that our implementations will be
useful for others as is, but we also think that extending our
examples to develop new dynamic programming visualizations
is a promising direction.
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