Accelerating Neural Network Training using Arbitrary Precision
Approximating Matrix Multiplication Algorithms

Grey Ballard Jack Weissenberger Luoping Zhang
Wake Forest University Wake Forest University Wake Forest University
Winston-Salem, NC, USA Winston-Salem, NC, USA Winston-Salem, NC, USA
ballard@wfu.edu jack.weissenberger@gmail.com zhanl317@wfu.edu
ABSTRACT by the classical algorithm. For example, Strassen’s original fast

Matrix multiplication is one of the bottleneck computations for
training the weights within deep neural networks. To speed up
the training phase, we propose to use faster algorithms for matrix
multiplication known as Arbitrary Precision Approximating (APA)
algorithms. APA algorithms perform asymptotically fewer arith-
metic operations than the classical algorithm, but they compute an
approximate result with an error that can be made arbitrarily small
in exact arithmetic. Practical APA algorithms provide significant re-
duction in computation time and still provide enough accuracy for
many applications like neural network training. We demonstrate
that APA algorithms can be efficiently implemented and parallelized
for multicore CPUs to obtain up to 28% and 21% speedups over the
fastest implementation of the classical algorithm using one core
and 12 cores, respectively. Furthermore, using these algorithms to
train a Multi-Layer Perceptron (MLP) network yields no significant
reduction in the training or testing error. Our performance results
on a large MLP network show overall sequential and multithreaded
performance improvements of up to 25% and 13%, respectively. We
also demonstrate up to 15% improvement when training the fully
connected layers of the VGG-19 image classification network.

CCS CONCEPTS

» Mathematics of computing — Mathematical software per-
formance; « Computing methodologies — Neural networks.

KEYWORDS

neural networks, multilayer perceptrons, APA matrix multiplication

ACM Reference Format:

Grey Ballard, Jack Weissenberger, and Luoping Zhang. 2021. Accelerating
Neural Network Training using Arbitrary Precision Approximating Matrix
Multiplication Algorithms. In 50th International Conference on Parallel Pro-
cessing Workshop (ICPP Workshops °21), August 9-12, 2021, Lemont, IL, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3458744.3474050

1 INTRODUCTION

Fast matrix multiplication algorithms are those that perform fewer
than the 2n® + O(n?) floating point operations (flops) performed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP Workshops 21, August 9-12, 2021, Lemont, IL, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8441-4/21/08...$15.00
https://doi.org/10.1145/3458744.3474050

matrix multiplication algorithm performs O(n?-8!) flops [31]. The
true complexity of matrix multiplication, typically measured as
the exponent o for complexity O(n®) is an open question, but the
current tightest upper bound is 2.37286 [2]. Upper bounds in this
range correspond to theoretical algorithms that are not expected to
be practical.

One of the reasons such algorithms are impractical is that they
are based on so-called Arbitrary Precision Approximating (APA) algo-
rithms, which we describe in detail in § 2. In exact arithmetic, these
algorithms compute an approximation of the correct result, where
the error is polynomial in a nonzero parameter of the algorithm [7].
That is, in exact arithmetic, the error can be made arbitrarily small.
In floating point arithmetic, however, there is a lower bound on the
approximation error that depends on the working precision and
properties of the algorithm. Thus, APA algorithms are often consid-
ered to have insufficient accuracy for most applications and have
largely been overlooked as practical tools despite their performance
potential and ability to outperform exact algorithms [4].

Our goal in this paper is to demonstrate that APA algorithms
can offer practical performance improvements for applications that
are tolerant to error in matrix multiplications, notably the training
phase of neural networks. Training large neural networks can be
incredibly computationally expensive. For example, OpenAI’s most
recent language model, GPT-3, spent the equivalent of thousands
of days training on a petaflop machine [8]. Even a slight reduction
in flops could save a significant amount of time and money. These
steep costs have spurred a surge of research into more efficient
hardware, better algorithms, and innovative techniques for trading
off accuracy for performance. For instance, low-precision arithmetic
has been shown to decrease running time with little to no effect on
the ultimate learning task [12, 16], and new floating point formats
have been developed and supported in hardware to implement
highly efficient low- and mixed-precision computation [17, 34].

Matrix multiplication in particular is a bottleneck computation
for many neural networks. Forward and backward propagation
in training the weights of fully connected layers requires matrix
multiplication with dimensions given by the sizes of the layers and
number of batch samples. Training convolutional and other types of
layers can also be cast as matrix multiplication, either via monolithic
multiplications or batches of smaller multiplications [9, 11]. In this
paper we focus on Multi-Layer Perceptron (MLP) networks that rely
on a sequence of fully connected layers [13]. Because the sizes of the
layers in MLP networks continue to grow, various techniques have
been used to reduce the computational demands of the training
phase. For example, low-rank tensor approximation of the weights
can reduce both memory and computation [21], and fast matrix

https://doi.org/10.1145/3458744.3474050
https://doi.org/10.1145/3458744.3474050

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

multiplication (the Strassen-Winograd algorithm) has been applied
to the bottleneck matrix multiplications [18].

Our contribution is the use of APA matrix multiplication algo-
rithms to address this problem. In particular we

(1) curate a collection of both well-established and recently
discovered practical APA algorithms;

(2) extend the framework of [4] to generate efficient multi-
threaded code for all of them, achieving up to 21% perfor-
mance improvement over the best parallel classical imple-
mentation;

(3) demonstrate the robustness of learning accuracy to approxi-
mate matrix multiplications;

(4) present multithreaded performance improvements of a syn-
thetic MLP of up to 13% over the classical algorithm; and

(5) show performance improvements for training the fully con-
nected layers of the VGG-19 network of up to 15%.

2 PRACTICAL ARBITRARY PRECISION
APPROXIMATING MATRIX
MULTIPLICATION ALGORITHMS

2.1 Fast Matrix Multiplication

Nearly all fast matrix multiplication algorithms are based on a
rule for multiplying matrices of fixed size, and the reduction in
asymptotic complexity stems from using the rule recursively on
general matrices. For example, Strassen’s algorithm is specified by
a rule for multiplying two 2 X 2 matrices (denoted (2, 2, 2)) using
7 multiplications instead of the classical algorithm’s 8 multiplica-
tions. Applying the rule to n X n matrices, we split each matrix
into quadrants, and the 7 multiplications are multiplications of
(n/2) x (n/2) matrices. For even better efficiency, we can consider
larger fixed sizes and find rules that require a lower percentage
of multiplications compared to the classical rule. The number of
multiplications in a rule is known as the rank, so Strassen’s is a
rank-7 algorithm. Algorithms have been derived both analytically
and computationally, and there exists a vast set of improvements
leading to the current world record [2, 10, 22, 33].

2.2 APA Algorithms

A key characteristic of matrix multiplication, first demonstrated by
Bini et al. [6], is that it can be approximated to arbitrary accuracy
with less computation than required by exact algorithms. An APA
algorithm is one that takes as input A, B, and a scalar parameter
0 < A < 1 and computes

C=A-B+AE+0(?), (1)

where E is an error matrix that depends on A and B and corresponds
to the leading term of the error polynomial. Thus, in exact arith-
metic, letting A — 0 achieves arbitrarily small approximation error.
In floating point arithmetic, choosing too small a value for A leads
to accumulation of roundoff error that exceeds the approximation
error. We discuss optimizing A in § 2.3.

In theory, APA algorithms can be converted to exact algorithms
at the cost of an extra logarithmic factor of n, which is typically
hidden by an arbitrarily small increase in the exponent [5]. In

Grey Ballard, Jack Weissenberger, and Luoping Zhang

practice, n is not large enough to ignore the logarithmic factor, so
we consider each APA algorithm as is.

For a concrete example, we reproduce the rule for the algorithm
developed by Bini et al. [6] for the (3, 2, 2) case (multiplying a 3 X 2
matrix A by a 2 X 2 matrix B), where we use the following notation
for input and output matrices:

A A Bii Bi Cin Cr2
A1 Az []— Coa Cox
B B
Az; Asp a he Cs1 Csz

Bini’s rule is given by
My =(A11 + Azz) - (AB11 + B2z)
My =Azz - (—B21 - Ba2)
M3 =A11 - B2z
My =(AA12 + Azz) - (=AB11 + Bz1)
Ms =(A11 + AA12) - (AB12 + Baa)
Mg =(Az1 + Asz) - (B11 + ABa2)
My =Az1 - (-B11 - B12)
Ms =Asz - Biy
My =(Az1 + AAs1) - (B12 — ABzz)
Mio =(AA31 + Asz) - (B12 — ABaz)

o

=N

Cr1 =AY (Mg + My — M3 + My)
Crz =271 (~M3 + Ms)

Ca1 =My + Mg — Myg

Co2 =My — Ms + My

C31 =71 (=Ms + Myo)

Cs2 =271 (Mg + M7 — Mg + Mp).

For example, this rule computes the first entry of the output matrix
as C11 = A11B11 + A12Ba1 — AA12B11. Thus, in this case, the first
entry of the error matrix E in eq. (1) is E11 = A12B11.

We highlight several properties of the rule which are common
across all APA algorithms we consider. First, the rule requires fewer
multiplications than the classical one (rank 10 instead of 12 for
(3,2, 2) here). Next, each multiplication is between a linear combi-
nation of entries of A and a linear combination of entries of B, each
output entry is computed as a linear combination of the outputs of
the multiplications, and each coefficient in the linear combinations
is a (Laurent) polynomial in A. The coefficients include both pos-
itive and negative powers of A, which explains why small values
of A can lead to significant roundoff error. For Bini’s algorithm all
coefficients are monomial with degree between —1 and 1.

Because of this general pattern, we can encode APA and other
fast algorithms succinctly by their linear combination coefficients.
For example, encoding the first multiplication M; in Bini’s algo-
rithm can be done using a triplet of matrices:

1 0 Ao
0 1 [g (1’] o 1| @)
0 0 0 0

Accelerating NN Training using APA Matrix Multiplication Algorithms

The first two matrices specify the linear combinations taken of
entries of A and B, and the third matrix specifies the contributions
of M; to the entries of C. Ten such triplets completely specify Bini’s
algorithm.

2.3 Numerical Error of APA Algorithms

In floating point arithmetic, the lower bound on the numerical
error of APA algorithms depends on the working precision and
two parameters of the algorithm [7]. The working precision, also
referred to as machine precision, is the upper bound on relative
error incurred by basic operations in a given floating point format
and depends on the number of fractional bits used in the format.
We use the notation 2~¢ for working precision, where d = 52 for
double and d = 23 for single precision (note that 2752 ~ 1071¢ and
2723 ~ 1077).

The two parameters of the APA algorithm specify the contribu-
tion of the approximation and roundoff errors, respectively. The
first parameter, o, is the smallest positive exponent of the error
polynomial and represents the approximation error. Equation (1)
shows the error as a polynomial of A whose leading term is linear in
A. If an algorithm satisfies eq. (1) with E # 0, then ¢ = 1. However,
if E = 0, then o > 1 is the degree of the leading monomial. Larger
o implies smaller error due to the algorithm, though all of the APA
algorithms we consider have o = 1.

The second parameter, ¢, is the largest (in absolute value) neg-
ative exponent of the algorithm, computed as the largest sum of
negative exponents across all triplets of matrices. This parameter
represents the effect of roundoff error caused by floating point
arithmetic involving the largest intermediate values computed by
the algorithm. For example, the triplet given in eq. (2) yields a sum
of negative exponents of 0 + 0 + 1 = 1, and in the case of Bini’s
algorithm, no other triplet has a larger sum, so ¢ = 1 for that al-
gorithm. Smaller ¢ implies smaller error due to roundoff, and the
APA algorithms we consider exhibit a range of values.

Given these two contributions to the numerical error, A can
be optimized to balance the effects based on parameters o and ¢
(and d). As shown by Bini, Lotti, and Romani [7], the optimal 1
should be set to @(Z_d/ (‘”‘P)). Using this value of A, the numerical
error incurred by the algorithm will be bounded by o(2~do/(a+e)y,
Taking Bini’s algorithm as an example, we have o = ¢ = 1, so the
error is O(2~%/2), or the square root of working precision. Note that
if multiple recursive steps are used, then ¢ increases proportional
to the number of steps, so straightforward optimization of A results
in error of O(2749/(0+5%)) for s recursive steps. The parameters
and minimum error for the algorithms we consider are presented
in§ 2.5.

We show empirical error results for uniform random inputs of
varying dimension in Fig. 1, as compared to the classical algorithm.
We measure the relative Frobenius norm error, or ||C = C||¢/|IC]|F,
where C is computed by each algorithm and C is computed using
the classical algorithm in double precision. In order to choose the
optimal A value for each algorithm, we tested the 5 powers of 2
closest to the theoretical optimal value and chose the best.

Overall, we see little fluctuation of the error over matrix dimen-
sion, and the theoretical error bound is an upper bound on all
empirical errors. Note that the legend is ordered according to the

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

0 =
107F [(3.3.3;20)
1071 F 4] 22
3| —e— (5.5.5)
1072 A-+- (4,4,4)
5 r 1 -+- (5,52)
5103 E
= F 1|-®- (433)
E 104 E |- (4,4,2)
= E J-e- (522)
£ r 1
-7 1()—5%— Elnas (3,3,2)
F |+ 42.2)
1076 £ E .
E 3| —e—(3,3,3;21)
0w’k T—— 4| (3,2,2)
E))))) 7| —— Classical
512 2048 4096 6144 8192
Dimension

Figure 1: Relative Frobenius norm error for APA algorithms
on random inputs.

error parameters, and the empirical error generally follows this
ordering. The two most accurate APA algorithms are the least re-
cently discovered: Bini’s (3, 2, 2) and Schonhage’s (3, 3, 3; 21) (note
that we indicate the rank of the algorithm here to distinguish from
the alternative rank-20 algorithm with the same dimensions). Algo-
rithms that offer more potential speedup tend to be less accurate.
Two algorithms with smaller error than expected are (5,5,5) and
(7,2,2), which is explained by the coefficients of those algorithms
including fractional pre-factors. While ¢ is computed using the
exponents of the largest intermediate term of A, the leading term
of (5,5, 5) has a constant of 1/4, lessening its magnitude. We study
the effects of the matrix multiplication error on neural network
training and test accuracy in § 4.2.

2.4 Practical Algorithms

We are particularly interested in algorithms with rules for small
fixed sizes because they have more promise for practical perfor-
mance. This is because larger fixed sizes result in multiplications of
small submatrices, and classical matrix multiplication performance
degrades for smaller dimensions. For instance, consider a rule for
dimensions (4, 4, 4) applied to matrices of reasonable size, less than
dimension 10,000. After one recursive call, the submatrices are of
size less than 2500, and after two recursive calls, the dimension is
less than 625. At this size, the reduction in number of flops is offset
by a reduction in performance, which may result in longer running
time.

Instead of focusing on the exponent of the asymptotic complexity
of fast algorithms, for practical algorithms we are more interested
in the constant reduction in flops of a single recursive level (a single
use of the rule of the algorithm). This is because in practice, for
reasonable matrix dimensions, only 1 or 2 recursive levels will
yield performance improvement [4]. We also prefer algorithms
with fewer nonzero coefficients in the linear combinations, because
while less costly than multiplications, the matrix additions are less
efficient (they are memory bandwidth bound) and prevent achieving
the ideal speedup given by the reduction in multiplications. For
dimensions (m,n, k) and rank r, the ideal speedup for a single
recursive step is given by mnk/r, and two recursive steps would

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

Ref | Dims Rank Speedup |oc ¢ Error

S @22 s - 1 0 1.2e-7
6] | (3,2,2) 10 20% 1 1 3.5e-4
1] | 4,2,2) 13 23% 1 2 4.9-3
[25] | (3.3,2) 14 29% 1 3 1.9-2
[25] | (5,2,2) 16 25% 1 3 1.9e-2
[25] | (3,3,3) 20 35% 1 6 1.0e-1
[23] | (3,3,3) 21 29% 1 2 4.9e-3
[27] | (7,2,2) 22 27% 1 5 7.0e-2
[29] | (4,4,2) 24 33% 1 3 1.9-2
[28] | (4,3,3) 27 33% |1 3 1.9e-2
[29] | (5,5,2) 37 35% 1 3 1.9e-2
[26] | (4,4,4) 46 39% 1 3 1.9-2
[30] | (5,5,5) 90 39% 1 3 1.9-2

Table 1: Properties of APA algorithms. Speedup and error
are computed assuming 1 recursive step.

enable a possible speedup of (mnk/r)%. These speedups are typically
not fully attained because of degradation in performance for smaller
matrix dimensions and the overhead of matrix additions. In the
experimental results of this work, we use only 1 recursive step for
all algorithms.

2.5 APA Algorithm Properties

Table 1 shows the key performance and accuracy properties of the
APA algorithms we consider. Each row corresponds to an algorithm,
and the first row includes the classical algorithm for comparison.
For all algorithms, we assume only 1 recursive step is used, though
the speedup and error for more steps can be readily calculated from
the parameters. The first column gives the reference where the
algorithm was first specified. The second block column demon-
strates the possible performance improvement, where speedup is
calculated as (mnk/r — 1) - 100% for {m, n, k) and rank r. The third
block column shows error parameters, and the error is calculated
as 2799/(0+¢) with d = 23, corresponding to single precision.

3 PARALLEL FAST MATRIX
MULTIPLICATION

We exploit the common algorithmic structure across APA (and
exact) algorithms to develop a unified strategy of high performance
multithreaded implementation using C++/OpenMP. We build upon
the work of Benson and Ballard [4], using code generation to apply
the strategy to each algorithm.

3.1 Experimental Platform

All experiments are performed on a dual-socket Intel Xeon E5-
2620 (Sandy Bridge) server with 2 sockets each with 6 cores. Each
socket has a 15 MB L3 cache, and each core has a 256 KB L2 cache
and 32 KB L1 data cache. Each core has a clock rate of 2.00 GHz
(with turbo boost disabled) and peak single precision flop rate of
32 GFLOPS. Our code is compiled with GCC version 7.5.0, and we
use Intel’s Math Kernel Library (MKL) version 2019.4.243. We use
single precision in all experiments.

Grey Ballard, Jack Weissenberger, and Luoping Zhang

Figure 2: Illustration of hybrid parallelization strategy for
r = 10 and 4 threads. Each thread is assigned two multi-
plications to compute using single-threaded gemm and the
two remaining multiplications are performed using multi-
threaded gemm.

3.2 Hybrid Parallelization Strategy

As described in § 2.2, each algorithm can be encoded by a set of
triplets of coefficient matrices. From this representation, we gener-
ate recursive code that computes the linear combinations for the
inputs to each multiplication and combines the outputs. The linear
combinations are computed using a “write-once” strategy that was
found to be most efficient in terms of memory bandwidth and per-
formance. The multiplications are either computed recursively or
via a call to gemm, the interface to a highly efficient BLAS implemen-
tation of the classical algorithm. Because we use only 1 recursive
step in our experiments, there are no recursive calls, and every
multiplication is performed by gemm. We note that the original code
generation tool was designed primarily for exact algorithms, and
we generalized it to apply to all of the APA algorithms we con-
sider here, some of which have more complicated coefficients than
previously considered.

We adopt the “hybrid” parallelization strategy proposed by Ben-
son and Ballard [4]. All linear combinations are parallelized in a
straightforward way, in order to maximize the memory bandwidth
of the machine. The multiplications are parallelized as follows: given
r multiplications and p threads, with r = p - g + ¢ for integers q
and ¢ < p, we assign each thread g multiplications to be performed
independently, and the remaining ¢ multiplications are performed
by all threads using the multithreaded implementation of gemm.
Figure 2 shows the hybrid strategy for r = 10 (Bini’s algorithm)
and p = 4.

The hybrid strategy is efficient because each thread can achieve
close to the peak performance of a core when computing indepen-
dent matrix multiplications, even for relatively small problems. The
alternative strategy of employing multithreaded gemm for each of
the r multiplications (known as “DFS”) suffers performance degrada-
tion for small problems, where the parallel implementation attains a
smaller fraction of peak. The hybrid strategy also perfectly load bal-
ances the computation across threads, as opposed to the alternate
strategy of assigning the ¢ remainder multiplications to ¢ different
threads (known as “BFS”), leaving the other p — ¢ threads idle.

3.3 Sequential Performance

Figure 3a reports the sequential performance of the APA algorithms
in comparison to the most efficient implementation of the classical
algorithm, MKL’s single-precision gemm. The y-axis is the effec-
tive GFLOPS, which is measured as 1e-9 - 2n3/ time. That is, the

Accelerating NN Training using APA Matrix Multiplication Algorithms

GFLOPS reported for APA algorithms is not true performance, as
they perform fewer flops than the classical algorithm. We use this
metric to be able to compare relative times across algorithms per-
forming different amounts of computation. The machine peak for a
classical algorithm is given by the horizontal dotted line.

We vary the dimension from 512 up to 8192 and see that all
algorithms outperform classical for dimensions larger than 2000 or
so. The highest performing algorithm is (4, 4, 4), and at dimension
8192, it is 28% faster than gemm. Ignoring the cost of the matrix
additions, (4, 4,4) performs 39% fewer flops than the classical al-
gorithm; the drop to 28% achieved improvement is because of the
overhead of matrix additions and the reduced performance of gemm
on smaller matrices. We note that (4, 4, 2) is also high performing,
achieving a 25% observed improvement (out of a theoretical 33%),
along with (3,3, 3; 20) and (5, 5, 5).

3.4 Parallel Performance

We report parallel performance in Figs. 3b and 3¢ for running
with 6 threads (one socket) and 12 threads (both sockets). Overall,
speedups of APA algorithms over classical are reduced in the par-
allel case. Again, the theoretical speedup is based on a reduction
in the multiplications, and the overhead of additions is the biggest
impediment to realizing that speedup. In the parallel case, the addi-
tions can become an even larger bottleneck because the additions
are memory bandwidth bound, and the memory bandwidth does
not scale with the number of cores [4]. While we can expect close
to linear speedup with cores on the multiplications (which are per-
fectly load balanced), linear scaling is impossible to achieve with
the additions. We also note that when the hybrid method uses all
threads on remainder multiplications, the smaller dimensions make
it harder for multithreaded gemm to scale as well as it can on the
original matrix dimensions.

In the performance results for 6 threads (Fig. 3b), we see that
many of the algorithms start to outperform classical around di-
mension 2000, though some poor performance is observed for al-
gorithms and particular matrix dimensions. The fastest algorithms
(e.g., (4,4, 4) and (4, 4, 2)) achieve a speedup of up to 25% over gemm
and exceed the machine peak for classical algorithms. We note that
the (4, 4, 2) algorithm has 24 subproblems, which is a multiple of 6,
so there are no remainder subproblems that require all threads.

Figure 3c shows the results for 12 threads. Here we see a ma-
jority of the algorithms are slower than the classical algorithm,
even for large matrices. We attribute the poor performance to the
effect of lower gemm performance for smaller matrices, as well as a
lack of NUMA-aware optimization. The “ramp-up” range of gemm
performance is much shallower for 12 threads than for 6 threads,
not achieving the plateau performance until dimension 4000 or
so. This implies that the dimension of the submultiplications does
not fall on the plateau for any APA algorithm, so the remainder
multiplications suffer from poor parallel performance. The algo-
rithm with no remainder multiplications, (4, 2, 2), does not suffer
this problem and maintains higher performance. It exceeds gemm’s
effective performance at dimension 4000, exceeds the peak parallel
performance of any classical algorithm for larger dimensions, and
achieves a 21% speedup over gemm at dimension 8192 for an effective
rate of 389 GFLOPS.

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

4 APPLICATION OF APA ALGORITHMS IN
MULTI-LAYER PERCEPTRON NETWORK
TRAINING

4.1 MLP Network Structure

To illustrate the effectiveness of APA algorithms in neural network
training, we consider Multi-Layer Perceptron networks, as shown
in Fig. 4. We use TensorFlow 2.2.0 to build the networks and im-
plement custom operators for matrix multiplication. For internal
layers, we use the custom operator for both forward propagation
and gradient calculation. For fair comparison against the classical
algorithm, we use a custom classical operator that directly calls
gemm, which significantly outperformed TensorFlow’s built-in ma-
trix multiplication operator for fully connected layers.

We show an MLP network with two hidden layers in Fig. 4. The
dimensions in the figure match those of the accuracy experiment
described in § 4.2. For the performance experiment of § 4.3, we use
an MLP with four hidden layers and varying numbers of nodes in
the hidden layers.

4.2 Accuracy

To measure the effect of the matrix multiplication error introduced
from the APA algorithms on neural network accuracy, we trained an
MLP network on the MNIST dataset [20] and measured its accuracy
over the course of training.

MNIST is a common machine learning dataset of 70,000 images
of hand-written numerical digits. Each of the images are composed
of 28 by 28 grayscale pixels, which are flattened into a vector of
length 784. The dataset is split into 60,000 examples for the training
set and 10,000 examples for the test set.

The MLP network is composed of 4 fully-connected layers with
784, 300, 300, and 10 nodes, respectively. The output layer has
one node for each digit 0-9. Training is performed using batched
stochastic gradient descent with a batch size of 300. APA algorithms
are used for the middle multiplication of the network (yielding
matrix multiplication dimensions 300 X 300 X 300), while the input
and output layers use the classical matrix multiplication algorithm.
The APA algorithms are also used during back propagation in the
corresponding multiplications in the center of the network. One
network is trained for 50 epochs for each of the APA algorithms, and
one is trained using the classical matrix multiplication algorithm.

Figure 5a plots the accuracy on the training data over each epoch,
and Fig. 5b shows the test accuracy over epochs. The matrix multi-
plication error introduced from these algorithms has minimal effect
on the training error; all algorithms yield convergence to nearly
full accuracy after 20 epochs or so. We see more variability in the
test error due to the sensitivity inherent in the generalizability of
the model, though all algorithms achieve between 97% and 99% test
accuracy.

4.3 Performance

The neural networks used for performance benchmarking were
6-layer MLPs (4 hidden layers), and were trained on the MNIST
dataset. We base the structure of the network on the fully connected
canonical model of ParaDnn [32]. The purpose of these experiments
was to measure the speed up in training time provided by the APA

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

Grey Ballard, Jack Weissenberger, and Luoping Zhang

Effective GFLOPS

o (3,3,3;20)
(7.2,2)
(5.5,5)
(4,4,4)
(5.5,2)
4,3,3)
(4,4,2)
(5.2,2)
(3.3,2)
4,2,2)
| —e—(3.3.3:21)
- (32,2)
—— Classical

REEREREE

L L L L L L L L
512 2048 4096 6144 8192 512 2048 4096

Dimension

(a) One thread

Dimension

(b) Six threads

L L L L L L L
6144 8192 512 2048 4096 6144 8192

Dimension

(c) Twelve threads

Figure 3: Single- and multi-threaded square matrix multiplication performance, relative to 2n> operations. The machine peak

with respect to classical algorithms is given as a dotted line.

S
\\\vﬁg\»q&
N N NSO
m@i’é\@/@
Izs3 |7/ "“‘, ‘

Input Layer

Hidden Layer 1

Hidden Layer 2 Output Layer

Figure 4: Multi-Layer Perceptron network structure

algorithms and not to measure the accuracy of the networks. The
APA algorithms are used only in the multiplications in the hidden
layers during both forward and backward propagation; the standard
operation was used in the input and output layers.

Following the methodology of ParaDnn, we measure the perfor-
mance of each algorithm with the number of nodes in each hidden
layer varying from 512 to 8192. We also match the batch size of each
network to the number of nodes in the hidden layer to produce
square matrix multiplications in the hidden layers. Fig. 6 shows the
empirical results using 1, 6, and 12 threads.

As shown in Fig. 6a, the single-threaded results begin to show
speed up over the classical algorithm when the matrix dimensions
are at least 1024. The highest performing algorithm is (4,4, 4),
which obtains a 25% speed up at dimension 8192. All algorithms
outperform classical for dimensions 4096 and 8192.

Figure 6b shows the results for six threads (one socket). As de-
scribed in § 3.4, the APA algorithms do not scale to higher numbers
of cores as efficiently as gemm, due to both the overhead of matrix
additions (a memory bandwidth bottleneck) and reduced parallel
performance of gemm for smaller dimensions. In this case, not all
APA algorithms outperform the classical algorithm. The highest
performing algorithms are (4,4, 2) and (4, 4, 4), which obtain an
improvement of 13% for dimension 8192.

In the case of 12 threads (both sockets), as shown in Fig. 6c,
most APA algorithms underperform the classical algorithm. These
results match the behavior of standalone matrix multiplications
using 12 threads (see § 3.4); the lack of scaling is due in large
part to the poor performance of multithreaded gemm on remainder
multiplications of small dimensions. The algorithm with a number
of sub-multiplications that is a multiple of 12, (4, 4, 2), continues to
perform well and is slightly faster than the classical algorithm for
dimensions 4096 and 8192, attaining speedups of up to 7%.

5 APPLICATION OF APA ALGORITHMS IN
VGG-19

VGG-19 [24] is a convolutional neural network typically trained on
the ImageNet dataset as a classification task. The model is one of
the highest performing algorithms for this task, and the network
is composed of 19 layers, 16 convolutional and 3 fully connected.
The 3 fully connected layers consist of 25,088, 4096, and 1000 nodes,
creating very large matrix multiplications in forward and backward
propagation. By using faster APA algorithms for the multiplication,
we are able to speed up the training of the network.

Replacing the classic matrix multiplication algorithm in these
layers with the (4, 4, 2) algorithm provides up to a 10% speed up
of the fully connected layers during training with 6 threads and a
15% speed up using a single thread. Figure 7 shows the per-batch
training time of the fully connected layers across batch sizes.

6 CONCLUSION

Arbitrary Precision Approximating algorithms offer significant
practical performance improvements over exact fast matrix multipli-
cation algorithms. They outperform classical matrix multiplication
at smaller matrix dimensions and yield greater benefits as matrix
dimensions increase. APA algorithms sacrifice accuracy, achieving
error of only a fractional root of the working precision, but they
can be practical for applications that do not demand high accuracy.
The results presented here show that neural network training, par-
ticularly for Multi-Layer Perceptron networks, is robust to such
matrix multiplication error, and APA algorithms are a useful tool
for accelerating the costly training computations. We observe that
for APA algorithms offering a theoretical speedup of up to 39%,
we can achieve up to 28% and 21% improvements for single- and

Accelerating NN Training using APA Matrix Multiplication Algorithms

Accuracy

0.94 . .
20 30 40 50

Epoch

(a) Training accuracy

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

Figure 5: MLP network accuracy for MNIST data set

Relative Time
T

1
o (3,3,3;20)
—— (7,2,2)
—e— (55,5)
4 (4,4,4)
0.98 |- B
-+ (55.2)
- 8- (433)
-E- (4,42)
-o- (522)
e
0.96 i (3,3,2)
—— (42,2)
—o— (3,3,3;21)
—=— (3,22)
—— Classical
0.94 | | | | | |
0 10 20 30 40 50
Epoch
(b) Test accuracy
T T T
o (3.3,3,20)
b —— (7.2,2)
m |- G55
S (44,4
i - (5,5,2)
- (433)
sl l-=- @42
e (522
| —— (332
—— (4,2,2)
—e—(3,3,3;21)
0.6 |- J|-—= (322)
1 —— Classical

I L I L I I L
512 1024 2048 4096 8192 512 1024

Dimension

(a) One thread

I
2048

Dimension

(b) Six threads

L I I L I L I
4096 8192 512 1024 2048 4096 8192

Dimension

(c) Twelve threads

Figure 6: Network training time relative to using classical matrix multiplication

multi-threaded implementations of individual matrix multiplica-
tions, respectively, which translate to up to 13% speedup in overall
training time on a multicore CPU.

While the accuracy and performance results are promising for
MLP networks and the MNIST dataset, we believe that APA algo-
rithms can also be effective in state-of-the-art networks and more
difficult machine learning problems. For example, the VGG-19 net-
work for large-scale visual recognition [24] is based on a deep
convolutional network and is bottlenecked by large fully connected
layers. Our result are able to show a 15% performance improvement
using the sequential algorithm, and a 10% improvement using paral-
lel algorithm. This highlights the practical applications on training
large networks.

As illustrated by Benson and Ballard [4], the highest performing
fast algorithms for rectangular matrix multiplications often have
dimensions that match the aspect ratio of the problem. We con-
sider in this paper only square matrix multiplications, and we see
that square (or nearly square) dimensions of (4,4, 4) and (4, 4, 2)
are fastest. Algorithms with more skewed aspect ratios will likely
perform better for problems with matching skewed matrix multi-
plication dimensions. We note that an algorithm for dimensions
(m, n, k) can be translated into an algorithm for (n, m, k) and any
other reordering of the dimensions [4]. For very large matrices, it

may be worth considering more than one recursive step of the same
algorithm or a combination of two or three different algorithms
across recursive steps (uniform, non-stationary algorithms [3]).

Finally, we would like to extend the code generation techniques
to other hardware platforms, including GPUs. Because GPUs can
offer higher efficiency for matrix multiplications, we wish to demon-
strate the potential of APA algorithms in that environment. Tech-
niques used to accelerate Strassen’s algorithm on the GPU [15, 19]
can be generalized to other fast algorithms as done in work for
multicore CPUs [4, 14]. We believe improved performance benefits
can be achieved by APA algorithms on GPU architectures due to
the relatively higher memory bandwidth.

Acknowledgments. This material is based upon work supported
by the National Science Foundation Grant No. 1942892 and a Wake
Forest University Undergraduate Research and Creative Activities
(URECA) Research Fellowship.

REFERENCES

[1] V.B. Alekseev and A.V. Smirnov. 2013. On the exact and approximate bilin-
ear complexities of multiplication of 4x2 and 2x2 matrices. Proceedings of the
Steklov Institute of Mathematics 282, 1 (2013), 123-139. https://doi.org/10.1134/
50081543813070079

[2] Josh Alman and Virginia Vassilevska Williams. 2021. A Refined Laser Method and
Faster Matrix Multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on

https://doi.org/10.1134/S0081543813070079
https://doi.org/10.1134/S0081543813070079

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

T
2 swol |7 Classical B
g —o— (4,4.2)
]
g
5
T 300 N
£
o
g
=1
Kl 200 -
=1
=
2
<
<
g 100 i
~
I I I I
1024 2048 4096 8192
Batch Size
(a) One thread
T
I A Classical B
—o— (4,4,2)

80 B

60 — B

40 - B

20 B

I I I I
1024 2048 4096 8192
Batch Size
(b) Six threads

Figure 7: Per-batch training time on the fully connected lay-
ers of VGG-19 using (4, 4, 2) and Classical

8

[9

[10

]

=

]

Discrete Algorithms (SODA 21). 522-539. https://doi.org/10.1137/1.9781611976465.
32

Grey Ballard, Austin R. Benson, Alex Druinsky, Benjamin Lipshitz, and Oded
Schwartz. 2016. Improving the Numerical Stability of Fast Matrix Multiplication.
SIAM j. Matrix Anal. Appl. 37, 4 (2016), 1382-1418. https://doi.org/10.1137/
15M1032168

Austin R. Benson and Grey Ballard. 2015. A Framework for Practical Parallel Fast
Matrix Multiplication. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (San Francisco, CA, USA) (PPoPP
2015). ACM, New York, NY, USA, 42-53. https://doi.org/10.1145/2688500.2688513
D. Bini. 1980. Relations between exact and approximate bilinear algorithms.
Applications. CALCOLO 17, 1 (1980), 87-97. https://doi.org/10.1007/BF02575865
D. Bini, M. Capovani, F. Romani, and G. Lotti. 1979. O(n?-77%%) complexity for
n X n approximate matrix multiplication. Information Processing Letters 8, 5
(1979), 234-235. https://doi.org/10.1016/0020-0190(79)90113-3

Dario Bini, Grazia Lotti, and Francesco Romani. 1980. Approximate solutions for
the bilinear form computational problem. SIAM J. Comput. 9, 4 (1980), 692-697.
http://epubs.siam.org/doi/10.1137/0209053

Tom Brown et al. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Cur-
ran Associates, Inc., 1877-1901. https://papers.nips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a- Abstract.html

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient Primitives for
Deep Learning. Technical Report 1410.0759. arXiv. http://arxiv.org/abs/1410.0759
D. Coppersmith and S. Winograd. 1987. Matrix multiplication via arithmetic
progressions. In Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing (New York, New York, United States) (STOC '87). ACM, New York,
NY, USA, 1-6. https://doi.org/10.1145/28395.28396

Evangelos Georganas, Kunal Banerjee, Dhiraj D. Kalamkar, Sasikanth Avancha,
Anand Venkat, Michael J. Anderson, Greg Henry, Hans Pabst, and Alexander
Heinecke. 2019. High-Performance Deep Learning via a Single Building Block.

[12

[13

[14

[15

[16

(17

(18]

[19

[20

[21

[22

~
&

[24

[25]

[26]

[27]

[29]

[30]

(31]

(32]

w
&

(34]

Grey Ballard, Jack Weissenberger, and Luoping Zhang

Technical Report 1906.06440. arXiv. http://arxiv.org/abs/1906.06440

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep Learning with Limited Numerical Precision. In Proceedings of the
32nd International Conference on Machine Learning (ICML 15, Vol. 37), Francis
Bach and David Blei (Eds.). PMLR, Lille, France, 1737-1746. http://proceedings.
mlr.press/v37/guptal5.html

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedfor-
ward networks are universal approximators. Neural networks 2, 5 (1989), 359-366.
https://doi.org/10.1016/0893-6080(89)90020-8

Jianyu Huang, Leslie Rice, Devin A. Matthews, and Robert van de Geijn. 2017.
Generating Families of Practical Fast Matrix Multiplication Algorithms. In Pro-
ceedings of the 31st IEEE International Parallel and Distributed Processing Sympo-
sium. 656-667. https://doi.org/10.1109/IPDPS.2017.56

Jianyu Huang, Chenhan D. Yu, and Robert A. van de Geijn. 2020. Strassen’s
Algorithm Reloaded on GPUs. ACM Trans. Math. Software 46, 1, Article 1 (March
2020), 22 pages. https://doi.org/10.1145/3372419

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized neural networks: Training neural networks with low
precision weights and activations. The Journal of Machine Learning Research 18,
1(2017), 6869-6898. https://jmlr.org/papers/v18/16-456. html

Dhiraj D. Kalamkar et al. 2019. A Study of BELOAT16 for Deep Learning Training.
Technical Report abs/1905.12322. arXiv. http://arxiv.org/abs/1905.12322
Ahmed Khaled, Amir F. Atiya, and Ahmed H. Abdel-Gawad. 2020. Applying Fast
Matrix Multiplication to Neural Networks. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing (Brno, Czech Republic) (SAC °20). Association
for Computing Machinery, New York, NY, USA, 1034-1037. https://doi.org/10.
1145/3341105.3373852

P. Lai, H. Arafat, V. Elango, and P. Sadayappan. 2013. Accelerating Strassen-
Winograd’s matrix multiplication algorithm on GPUs. In 20th Annual International
Conference on High Performance Computing. 139-148. https://doi.org/10.1109/
HiPC.2013.6799109

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-Based Learning
Applied to Document Recognition. Proc. IEEE 86, 11 (November 1998), 2278-2324.
https://doi.org/10.1109/5.726791

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry Vetrov.
2015. Tensorizing Neural Networks. In Advances in Neural Information Processing
Systems, Vol. 28. Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2015/file/6855456e2fe46a9d49d3d3af4f57443d- Paper.pdf

V. Pan. 1984. How Can We Speed Up Matrix Multiplication? SIAM Rev. 26, 3
(1984), 393-415. https://doi.org/10.1137/1026076

Arnold Schonhage. 1981. Partial and total matrix multiplication. SIAM . Comput.
10, 3 (1981), 434-455. https://doi.org/10.1137/0210032

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In International Conference on Learning
Representations. https://arxiv.org/abs/1409.1556

AV. Smirnov. 2013. The bilinear complexity and practical algorithms for matrix
multiplication. Computational Mathematics and Mathematical Physics 53, 12
(2013), 1781-1795. https://doi.org/10.1134/S0965542513120129

AV. Smirnov. 2014. The Approximate Bilinear Algorithm of Length 46 for
Multiplication of 4 x 4 Matrices. Technical Report 1412.1687. arXiv. https:
//arxiv.org/abs/1412.1687

AYV. Smirnov. 2015. A bilinear algorithm of length 22 for approximate multiplica-
tion of 2 x 7 and 7 x 2 matrices. Computational Mathematics and Mathematical
Physics 55, 4 (2015), 541-545. https://doi.org/10.1134/50965542515040168

AYV. Smirnov. 2016. An Approximate Bilinear Algorithm of Length 27 for Mul-
tiplication of 3 x 3 and 3 x 4 Matrices. Technical Report. ResearchGate. https:
//www.researchgate.net/publication/299599750

AV. Smirnov. 2016. On the Approximate Bilinear Algorithms for Multiplication
of N x N and N x 2 Matrices. Technical Report. ResearchGate. https://www.
researchgate.net/publication/308992223

AYV. Smirnov. 2018. An Approximate Bilinear Algorithm for Multiplying 5 x 5
Matrices of Length. Technical Report. ResearchGate. https://www.researchgate.
net/publication/329800232

V. Strassen. 1969. Gaussian elimination is not optimal. Numerische Mathematik
13 (1969), 354-356. Issue 4. https://doi.org/10.1007/BF02165411

Yu Emma Wang, Gu-Yeon Wei, and David Brooks. 2020. A Systematic Methodol-
ogy for Analysis of Deep Learning Hardware and Software Platforms. In Proceed-
ings of Machine Learning and Systems (MLSys 20, Vol. 2), 1. Dhillon, D. Papail-
iopoulos, and V. Sze (Eds.). 30-43. https://proceedings.mlsys.org/paper/2020/
hash/c20ad4d76fe97759aa27a0c99bff6710- Abstract.html

V. Williams. 2012. Multiplying matrices faster than Coppersmith-Winograd. In
Proceedings of the 44th Annual Symposium on Theory of Computing (New York,
New York, USA) (STOC ’12). ACM, 887-898. https://doi.org/10.1145/2213977.
2214056

D. Yan, W. Wang, and X. Chu. 2020. Demystifying Tensor Cores to Optimize Half-
Precision Matrix Multiply. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS "20). 634-643. https://doi.org/10.1109/IPDPS47924.2020.00071

https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/15M1032168
https://doi.org/10.1137/15M1032168
https://doi.org/10.1145/2688500.2688513
https://doi.org/10.1007/BF02575865
https://doi.org/10.1016/0020-0190(79)90113-3
http://epubs.siam.org/doi/10.1137/0209053
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/1410.0759
https://doi.org/10.1145/28395.28396
http://arxiv.org/abs/1906.06440
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v37/gupta15.html
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/IPDPS.2017.56
https://doi.org/10.1145/3372419
https://jmlr.org/papers/v18/16-456.html
http://arxiv.org/abs/1905.12322
https://doi.org/10.1145/3341105.3373852
https://doi.org/10.1145/3341105.3373852
https://doi.org/10.1109/HiPC.2013.6799109
https://doi.org/10.1109/HiPC.2013.6799109
https://doi.org/10.1109/5.726791
https://proceedings.neurips.cc/paper/2015/file/6855456e2fe46a9d49d3d3af4f57443d-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/6855456e2fe46a9d49d3d3af4f57443d-Paper.pdf
https://doi.org/10.1137/1026076
https://doi.org/10.1137/0210032
https://arxiv.org/abs/1409.1556
https://doi.org/10.1134/S0965542513120129
https://arxiv.org/abs/1412.1687
https://arxiv.org/abs/1412.1687
https://doi.org/10.1134/S0965542515040168
https://www.researchgate.net/publication/299599750
https://www.researchgate.net/publication/299599750
https://www.researchgate.net/publication/308992223
https://www.researchgate.net/publication/308992223
https://www.researchgate.net/publication/329800232
https://www.researchgate.net/publication/329800232
https://doi.org/10.1007/BF02165411
https://proceedings.mlsys.org/paper/2020/hash/c20ad4d76fe97759aa27a0c99bff6710-Abstract.html
https://proceedings.mlsys.org/paper/2020/hash/c20ad4d76fe97759aa27a0c99bff6710-Abstract.html
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1109/IPDPS47924.2020.00071

	Abstract
	1 Introduction
	2 Practical Arbitrary Precision Approximating Matrix Multiplication Algorithms
	2.1 Fast Matrix Multiplication
	2.2 APA Algorithms
	2.3 Numerical Error of APA Algorithms
	2.4 Practical Algorithms
	2.5 APA Algorithm Properties

	3 Parallel Fast Matrix Multiplication
	3.1 Experimental Platform
	3.2 Hybrid Parallelization Strategy
	3.3 Sequential Performance
	3.4 Parallel Performance

	4 Application of APA Algorithms in Multi-Layer Perceptron Network Training
	4.1 MLP Network Structure
	4.2 Accuracy
	4.3 Performance

	5 Application of APA algorithms in VGG-19
	6 Conclusion
	References

