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ABSTRACT

Tucker decomposition is a low-rank tensor approximation that gen-
eralizes a truncated matrix singular value decomposition (SVD).
Existing parallel software has shown that Tucker decomposition
is particularly effective at compressing terabyte-sized multidimen-
sional scientific simulation datasets, computing reduced represen-
tations that satisfy a specified approximation error. The general
approach is to get a low-rank approximation of the input data by
performing a sequence of matrix SVDs of tensor unfoldings, which
tend to be short-fat matrices. In the existing approach, the SVD
is performed by computing the eigendecomposition of the Gram
matrix of the unfolding. This method sacrifices some numerical
stability in exchange for lower computation costs and easier par-
allelization. We propose using a more numerically stable though
more computationally expensive way to compute the SVD by pre-
processing with a QR decomposition step and computing an SVD
of only the small triangular factor. The more numerically stable
approach allows us to achieve the same accuracy with half the
working precision (for example, single rather than double preci-
sion). We demonstrate that our method scales as well as the existing
approach, and the use of lower precision leads to an overall reduc-
tion in running time of up to a factor of 2 when using 10s to 1000s
of processors. Using the same working precision, we are also able to
compute Tucker decompositions with much smaller approximation
error.

ACM Reference Format:

Zitong Li, Qiming Fang, and Grey Ballard. 2021. Parallel Tucker Decom-
position with Numerically Accurate SVD. In 50th International Conference
on Parallel Processing (ICPP °21), August 9-12, 2021, Lemont, IL, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3472456.3472472

1 INTRODUCTION

Scientific data is being generated from observations, experiments,
and simulations at an unprecedented pace. The sheer amount of data
is overwhelming conventional methods of storage, transfer, and
analysis, which drives a need for efficient and accurate data reduc-
tion techniques. Many data sets represent multi-way relationships,
such as interactions occurring over time, and are naturally repre-
sented as a multidimensional array, or tensor. For such datasets,
tensor approximations such as the Tucker decomposition provide
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low-rank representations consisting of far fewer parameters than
the original data. Furthermore, a Tucker decomposition can be
computed to satisfy a desired approximation error to ensure the
representation maintains sufficient fidelity. Prior work has demon-
strated the efficacy of Tucker in compressing datasets arising from
a wide range of applications [1, 4, 6, 7, 9, 10, 21, 22, 25].

In order to compress datasets that are too large to store or pro-
cess on a single machine, we need efficient and scalable parallel
algorithms for computing Tucker decompositions that do not sacri-
fice approximation error. We propose in this work a new parallel
algorithm for computing Tucker decompositions of dense tensors
that is more numerically stable than previous approaches. This
algorithm allows us to compute better approximations of large
data than previously available, and it also enables us to reduce the
working precision to cut down on computation and communication
costs, achieving the same approximation error in less time.

Our implementation builds on an existing C++/MPI library called
TuckerMPI [6]. TuckerMPI implements the Sequentially Truncated
Higher-Order SVD (ST-HOSVD) algorithm [28], which requires a
series of matrix singular value decompositions (SVDs) of short-fat
matrices. The existing approach uses the Gram-SVD algorithm,
which we describe in Sec. 2. This approach sacrifices some nu-
merical stability to reduce computational cost. In contrast, our
algorithm is numerically stable, and the parallelization strategy is
based on techniques used in the Tall-Skinny QR algorithm [13], a
communication-efficient approach to computing a QR decomposi-
tion of matrix with many more rows than columns.

Sec. 3 describes our core algorithms, including the matrix SVD
algorithm called QR-SVD and the application of QR-SVD to the
tensor case in both sequential and parallel scenarios. We also pro-
vide complexity analysis to demonstrate the computational and
communication overheads of the numerically stable approach com-
pared to TuckerMPL In addition, our implementation generalizes
the TuckerMPI library to use either single or double precision. This
enables us to use a combination of precision (single/double) and
algorithm (Gram-SVD/QR-SVD) that outperforms the original Tuck-
erMPI, which uses Gram-SVD in double precision, in almost every
scenario. The details of the performance of our algorithm are found
in Sec. 4.

Our main contributions include

o the development of a numerically stable parallel algorithm
for computing Tucker decompositions,

o the generalization (via C++ templates) of the TuckerMPI
library to enable single-precision computation,

e a demonstration of improved running times (of up to 2x
for synthetic data and 60% for application data) for large
approximation error thresholds,

o and the capability of accurately computing decompositions
with very small approximation error thresholds (below 1078).
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2 PRELIMINARIES
2.1 Notation

Following [17], we use bold script letters such as X to denote ten-
sors, bold capital letters such as U to denote matrices, and lower
case letters to denote scalars. We let N be the number of modes
of the data tensor and use 0-indexing, so that Ip X Iy X - - - X Iny_1
specifies the dimensions of a given tensor. In addition, we define the
following notation for products of all dimensions and dimensions
before and after a mode n:
N-1
2= 1] &

N-1 n—1
B-lw #-]x
k=0 k=0 k=n+1

We use Matlab-style indexing to specify sub-tensors, such as
U(;, j) for the jth column of U. A tensor fiber is a vector that is
a sub-tensor with all but one index fixed, such as X(i,: k). We
consider N unfoldings, or matricizations, of a tensor in this work,
in which a single mode is mapped to the rows of a matrix and
all other modes are mapped to the columns. In particular, the nth
unfolding, denoted by Xy, is an I, X I€12 matrix whose columns
corresponding to the n-mode fibers of the tensor. The main tensor
contraction relevant to this work is the tensor-times-matrix (TTM)
operation, which is denoted by Y = X X, U and defined so that
Y(n) = UX(y). A tensor norm is denoted || X|| and is defined so that
XN = Sy, ings X, .- in-1)%.

We perform complexity analysis using the Message Passing In-
terface (MPI) model. In this model, processors communicate via
messages that have latency and bandwidth costs. We assume a mes-
sage of w words costs & + - w, where « is the per-message latency
cost and S is the per-word bandwidth cost. In analyzing the com-
putation costs, we use y to denote the per-floating-point-operation
cost. We note that the y and f costs typically vary depending on
the working precision, which determines the number of bits per
word.

2.2 Tucker and ST-HOSVD

The Tucker decomposition [17, 19, 27], or approximation, of a tensor
X can be viewed as a higher-dimensional generalization of the
matrix singular value decomposition. It consists of a core tensor G
and a set of factor matrices {U,} so that

X ~ X =G xoUp %1 Uy -~ xn-1 Un-1.

Here G has as many modes as X but when used as a low-rank
approximation we expect its dimensions Ry X - - - X Ry—1, which
correspond to the multilinear rank of X, to be much smaller that
those of X. Because the factor matrices have only two dimensions,
the compression ratio provided by a Tucker approximation is close
tolp---IN-1/(Ro- - Rn—1). We measure the relative approxima-
tion error in a normwise sense: || — X||/||X]|.

The core algorithm we employ for computing Tucker decompo-
sitions is the Sequentially Truncated Higher-Order Singular Value
Decomposition (ST-HOSVD) [28], given in Alg. 1. This algorithm
performs a truncated matrix SVD in order to determine a factor
matrix for each mode. An important feature of the algorithm is
that each computed factor matrix is used to truncate the tensor
in that mode before performing the SVD for the next mode in the
sequence. This means that both the data and computation tend to
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Algorithm 1 ST-HOSVD (28]
1: function ST-HOSVD(X, €)
2 Yy=X
3: forn=0to N —1do
4 [U,%, ~] =SVD(Y(p)) » right singular vectors not computed
R, = min {R| . o? < ez||DC||2/N}

> determine rank

5 i=R+1

6: U,=U(,1:Ry) > nth factor matrix
7: Y=Yx, UL > TTM truncation
8: end for

9: G=Y > core tensor

—_

0: return (G, Uy, ...,Un_1)
11: end function

decrease as the algorithm progresses through the modes. Another
feature of the algorithm is that the algorithm is guaranteed (in exact
arithmetic) to produce an approximation that satisfies a prescribed
error tolerance, as the truncation ranks can be determined from the
matrix SVDs. While the algorithm does not necessarily compute
the optimal Tucker approximation with the given ranks, it is quasi-
optimal, with an approximation error within a factor of VN of the
optimal error. Alg. 1 progresses through the modes in increasing
order. However, it can use any mode ordering, which can be tuned
to minimize computation or other metrics if the reduced ranks are
known a priori.

2.3 TuckerMPI and Gram-SVD

TuckerMPI [6] is an open-source C++/MPI software library that
implements the ST-HOSVD algorithm in a distributed-memory
parallel environment. Our implementation builds upon the software,
and we compare our proposed approach with that of TuckerMPI in
this paper. TuckerMPI implements Alg. 1 by parallelizing the SVD
in line 4 and the TTM truncation in line 7.

The algorithm it uses for computing the SVD is known as Gram-
SVD (see [26, Lecture 31], for example). Given an m X n matrix A,
the Gram-SVD algorithm exploits the observation that the SVD of A
is related to the (symmetric) eigenvalue decomposition of its Gram
matrix AAT. If A = UZVT is the SVD of A, then AAT = US?UT is
the eigendecomposition of the Gram matrix, which has dimension
mxm. Note that only the left singular vectors and singular values are
required in line 4 of Alg. 1. Thus, the computational costs of Gram-
SVD are nm?+0(m®), and if m < n, then nearly all the computation
is performed in the (symmetric) matrix multiplication that forms the
Gram matrix. While this is an efficient way to compute all singular
values and left singular vectors, it has numerical consequences as
we will discuss further in Sec. 3.2.

2.4 Tall-Skinny QR

As we describe in Sec. 3, the main computational bottleneck in our
approach to implementing ST-HOSVD is similar to computing the
QR decomposition of a tall-skinny matrix. This is a well-studied
matrix computations problem, and the approach we use is based
on the Tall-Skinny QR (TSQR) algorithm [13], which we briefly
summarize here.

The standard algorithm for QR decomposition is based on House-
holder transformations: for each column of the matrix, a House-
holder vector is computed and its transformation is applied to
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the trailing matrix. Because the Householder transformation ap-
plication consists of matrix-vector operations, it suffers from low
computational intensity and typically poor performance. Consider
an m X n matrix with m > n. In the sequential case, if m is so large
that not even a single column fits into cache, the Householder-based
algorithm must stream the trailing matrix from memory n times. In
the parallel case, the algorithm requires processors to synchronize
n times.

The benefit of the TSQR algorithm is that it streams through
the matrix only once in the sequential case and requires only one
global synchronization across processors in the parallel case. While
the computational costs are nearly the same between the two al-
gorithms, the reduction in communication costs leads to overall
performance improvements, as has been demonstrated on various
platforms [3, 11, 23]. The idea of the algorithm is to reorder the
annihilation of matrix elements below the upper triangle. While
the typical Householder algorithm annihilates entries column by
column, the sequential TSQR algorithm annihilates row block by
row block (where each row block fits entirely in cache), and the
parallel algorithm allows processors to annihilate as many local
entries as possible before communicating with other processors.
The algorithm must be careful not to fill in any previously annihi-
lated entries and respect dependences among annihilations. The
order of annihilation can be organized into a reduction tree, where
the sequential approach is a flat tree and the parallel approach is
a binomial tree. We use both techniques in this work. The local
computational kernels for implementing TSQR-based algorithms
are available as subroutines in current versions of LAPACK.

3 ALGORITHMS

We present our proposed algorithms in this section, starting with
an explanation of the QR-SVD algorithm in Sec. 3.1 and a numeri-
cal comparison with Gram-SVD in Sec. 3.2. Then we explain how
to incorporate QR-SVD in the sequential ST-HOSVD algorithm
in Sec. 3.3 and in the parallel algorithm in Sec. 3.4. Finally, we
compare the complexity analysis of ST-HOSVD via QR-SVD with
TuckerMPT’s approach in Sec. 3.5.

3.1 QR-SVD

While TuckerMPI employs Gram-SVD, we propose to use the QR-
SVD algorithm. This method is also known as R-bidiagonalization
[15, Section 5.4.9]. The idea is that pre-multiplying a matrix by
an orthogonal matrix does not change the singular values or the
right singular vectors. Thus, computing a QR decomposition of
a tall-skinny matrix reduces the SVD problem to a small, upper
triangular matrix.

Likewise, in our case, an LQ decomposition of short-fat matrix
reduces the problem to a small lower triangular matrix. That is,
for m X n matrix A with LQ decomposition A = LQ, the SVD of
L = UXV] yields the SVD of A = UX(Q"V])". When only the
singular values and left singular vectors are desired, neither Q nor
V1 need be computed. The computational cost of QR-SVD in this
case is 2mn? + O(m?), and when m < n the cost is dominated by
the LQ decomposition. Note that this is approximately twice the
cost of Gram-SVD.
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3.2 Numerical Accuracy of SVD Algorithms

In this section we detail the differences in error bounds between
QR-SVD and Gram-SVD. We use ¢ to denote machine precision.
Considering an mxn matrix A, let 0; = 0;(A) denote the ith singular
value of A, and let 6; be its computed approximation. In the context
of ST-HOSVD, we focus on the accuracy of the left singular vector
matrix U of A (also the eigenvector matrix of AAT) consisting of
vectors {uy, ..., Uy} with computed approximations {@y, ..., 0n}.
We define the m X k matrix Uy, to have columns {uy, ..., ug}, which
is approximated by the computed Uy, defined similarly. The angular
difference between subspaces U and V, denoted (U, V), is the
maximum principal (canonical) angle between the subspaces [15,
Section 6.4.3]. In this section we use || - || notation to denote either
the Frobenius or spectral norm of a matrix.

The following result applies to the QR-SVD approach because
the QR preprocessing step is backward stable.

THEOREM 1 ([12, 15, 26]). Using a backward stable algorithm for
SVD, the absolute error of each computed singular value satisfies

l6i — ai| = O(el|Al]). (1)

The angle between each computed and exact left singular vector satis-

fies

1 A
cosil(uiTﬁl—) =0; ~ 5 sin 260; = O( llAl

. ] @
min{o;_1—0j, 0i—0i41}

where 0 ~ % sin 20 when 6 < 1. Furthermore, the angular difference
of the subspace spanned by the leading k computed singular vectors
and the true space satisfies

~ A
0 (range(Uk), range(Uk)) =0 (M) . (3)
Ok ~ Ok+1
The low-rank approximation relative error satisfies
- T
la-ouba] oy, Ja-vipa]
o)
lAll Ok = Ok41 Al

For Gram-SVD, the error bounds for the ith singular value and
left singular vector are larger by a factor of ||A||/o;, and the error
bounds for the leading k computed singular vectors are larger by a
factor of ||A||/oy.-

THEOREM 2. Using the Gram approach, computing the SVD of A
via the eigendecomposition of the Gram matrix AAT, the absolute
error of each computed singular value satisfies

G-l =0 elal- 121 ©)

1

and the angle between each computed and exact left singular vector
satisfies

1 A A
cos™! (u] i) = 0 ~ - sin26; = o( ellAl . U)

min{oj-1-0j,0i=0ix1}  0i

(6)
where 0 ~ % sin 20 when 6 < 1. Furthermore, the angular difference
of the subspace spanned by the leading k computed singular vectors
and the true space satisfies

Al lIAl ) o

Ok — Ok+1 %k

0 (range(Uk), range(fjk)) =0 (
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The low-rank approximation relative error satisfies

”(I - UkU;)AH
[|A]l

H(I—ﬁkﬁl)AH =O( ellAll .w) ®

Al

Ok — Ok+1 Ok

These bounds can be established by applying standard results
(see [12, 15, 26] for example) for the symmetric eigendecomposition
of the Gram matrix. Equations (4) and (8) follow from egs. (3) and (7),
respectively, via [14, Theorem 6].

From eq. (1), we see that for QR-SVD the relative error in the
singular values |6; —o;|/0; = O(1) when ||A||/o; = 1/e. That is, QR-
SVD can compute singular values to the right order of magnitude
until the ratio of the largest singular value to the ith singular value
is O(1/¢). For Gram-SVD, eq. (5) implies that the relative singular
value error becomes O(1) when ||A||/o; = 1/+/e, so Gram-SVD can
compute singular values to the right order of magnitude only in a
range of O(+/¢).

Thus, computed singular values that are smaller than O(||A||¢)
(for QR-SVD) and O(||A||v/¢) (for Gram-SVD) should be consid-
ered noise due to roundoff error and cannot be trusted. This is
particularly important for the rank determination procedure in
ST-HOSVD (line 5 in Alg. 1), and it means that ST-HOSVD can-
not compute a Tucker decomposition with approximation error
smaller than O(¢) if QR-SVD is used or O(+/¢) if Gram-SVD is
used. From egs. (4) and (8), we see that the relative approximation
error bounds depend on two summands, the second of which is
the error of the exact truncated SVD. Again, the first term of the
error for Gram-SVD is amplified by a factor of ||A||/ox compared
to that of QR-SVD. These bounds show the maximum attainable
approximation accuracy of each method. For example, if 031 = 0,
the first term becomes O(1) when [|A||/ox = 1/¢ (for QR-SVD) or
lAll/ox ~ 1/+/e (for Gram-SVD).

To illustrate these properties, we present in Fig. 1 the results of an
experiment using QR-SVD and Gram-SVD algorithms to compute
the singular values of a synthetic matrix. We create the 80x80 matrix
to have geometrically decaying singular values from 10° to 10718
and random singular vectors. We use single (g5 = 2723 ~ 1077)
and double (¢; = 2752 ~ 107!6) precision for each algorithm. In
our experiment, the Gram-SVD algorithm computes some negative
eigenvalues of the Gram matrix corresponding to singular values
that have lost all relative accuracy. To compute the singular values,
we take the square root of the absolute value of the eigenvalues
and then sort them in decreasing order.

Observe that the largest singular values are computed accurately
(at least to the correct order of magnitude) in all cases until approx-
imately /&5 ~ 1074, at which point the Gram-SVD algorithm in
single precision loses accuracy. The next algorithm to lose accuracy
is QR-SVD in single precision, as it hits &5 ~ 1077. Shortly after-
ward, at \/eg ~ 1078, Gram-SVD in double precision loses accuracy.
The QR-SVD algorithm in double precision can compute singular
values to the correct order of magnitude until they become smaller
than g ~ 10716,

3.3 Sequential ST-HOSVD via QR-SVD

To perform ST-HOSVD on a tensor that exists in the memory of a
single processor, we design the computational kernels to operate
on the memory layout of the tensor unfoldings. In this way, we
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Figure 1: Computed singular values of SVD algorithms on
matrix with geometrically decaying singular values

avoid costly reorderings of tensor data in memory. These kernels
are also used as subroutines in our parallel implementation.

Data Layout. The memory layout of a tensor unfolding can be
seen as a series of contiguous row-major column blocks [4, 6, 16,
20, 24]. For the nth unfolding, the number of rows is I,, the number
of columns of each block is I,? , and the number of column blocks is
In® . We use the notation Y ) [j] to denote the jth column block of
the nth tensor unfolding, which is a contiguous row-major matrix.
There are special cases for n = 0, where IS = 1 so that the unfolding
is a single column-major matrix, and n = N — 1, where In® =1so0
that the unfolding is a single row-major matrix.

ST-HOSVD. In our implementation of ST-HOSVD using QR-SVD,
we build upon the previous work of TuckerMPI [6]. As we see in
Alg. 1, the key change is in how the SVD of line 4 is computed.
The algorithm for computing the Gram matrix in the Gram-SVD
approach is performed using successive calls to the syrk BLAS rou-
tine [6, Alg. 2]. Our algorithm for computing the LQ factorization
in the QR-SVD approach is given by Alg. 2 and is described in detail
below. Instead of performing a symmetric eigendecomposition of
the Gram matrix, we compute a singular value decomposition of
the triangular factor L, discarding the right singular vectors. We
use the existing TTM kernel from TuckerMPI [6, Alg. 3] in our
implementation of line 7 of Alg. 1.

Algorithm 2 Sequential LQ of Tensor Unfolding

function L =TENnsorLQ(Y, n)
if n = 0 then
L=1Q(Y(n))
elseif n < N — 1 then

1:

2

3 > Call to gelq, Y(g) is col-major
4.

5: L= LQ(Y(H) [0])

6

7

8

9

> Call to geqr
forj:ltoIn@—ldo
L=LQ([L Y1)
end for
else
10: L= LQ(Y(H))
11: end if
12: end function

> Call to tpgrt

> Call to geqr, Y(n—_1) is row-major
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LQ Decomposition. Alg. 2 is the key to the efficiency of our se-
quential implementation of ST-HOSVD. We consider the first and
last modes as special cases. The first unfolding Y ) is column ma-
jor, so we make a direct call to the LQ driver routine gelq. The
last unfolding Y (n_1) is row major, so we make a direct call to
the QR driver routine geqr, which is equivalent to computing an
LQ of the transpose and accounts for the internal layout. In the
general case, we compute LQ using a TSQR-like algorithm based
on a flat tree [13]. After the first block of the unfolding is reduced
to a triangle, we successively annihilate each block and update the
triangle. At each iteration, we are performing (the transpose of)
a QR decomposition of a triangle on top of a rectangle (or more
generally a pentagon), which is implemented in the computational
subroutine tpqrt. Note that the case N — 1 can be subsumed into
the general case; we separate it in the pseudocode to emphasize
the single call to geqr because the first and last modes are typically
computational bottlenecks. We also point out one implementation
detail that is not performance critical. If Y [0] is not short and
fat, then the LQ factorization in line 5 will not produce a triangular
matrix. In this case, we combine as many blocks as necessary to ob-
tain a submatrix with more columns than rows before performing
the first LQ decomposition.

3.4 Parallel ST-HOSVD via QR-SVD

Performing ST-HOSVD in parallel requires performing a sequence
of parallel matrix operations. Unfortunately, the best matrix distri-
butions for this sequence of operations cannot be simultaneously
achieved. We use a combination of a carefully chosen data distribu-
tion with redistribution of data where necessary to achieve scalable
performance.

Data Distribution. Following TuckerMPI [6], we logically orga-
nize the processors into a processor grid with as many modes as the
data tensor and distribute the tensor across processors in a block
fashion. In this way, given a tensor with dimensions Iy X - - - X Iny_1
and a processor grid P with dimensions Py X --- X Py_1, each
processor owns a contiguous subtensor with dimensions (Ip/Pp) X
-+ X (IN-1/PN-1), assuming even division. In the case of uneven
division, each mode can be handled independently. In mode n we
assign [I,/Py] indices to the first I, mod Py processors in each
fiber and |I,,/Py | indices to the remaining processors. At the end
of the algorithm, the output core tensor has the same distribution
as the input tensor (though with reduced tensor dimensions), and
the output factor matrices are stored redundantly on all processors.

When the tensor is distributed in block fashion, each tensor
unfolding inherits a block matrix distribution [6, Section 4.4]. While
they are not necessarily a standard block or block-cyclic matrix
distribution, the distributions of the unfoldings do correspond to
a 2D block distribution after a column permutation is applied to
the unfolding. Because we are interested in left singular vectors of
each unfolding, this logical column permutation can be ignored,
allowing us to assume a standard 2D block distribution.

ST-HOSVD. As in the sequential case, our contribution is the
efficient implementation of the QR-SVD approach to line 4 of Alg. 1.
TuckerMPI implements the Gram-SVD approach, where perfor-
mance is determined by the parallel computation of the Gram matrix
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of the tensor unfolding [6, Alg. 4]. The efficiency of our approach
depends on computing an LQ decomposition of each unfolding in
parallel, as presented in Alg. 3. We perform a redundant sequential
SVD (using gesvd) of the resulting triangular factor, and we re-use
the existing parallel routines in TuckerMPI for TTM truncation.

LQ Decomposition. In order to compute the LQ decomposition of
each unfolding in parallel, we take the general approach of the Tall-
Skinny QR (TSQR) algorithm [13], as described in Sec. 2.4. TSQR
is based on a 1D distribution of the matrix and consists of a local
QR decomposition phase followed by a reduction-tree phase. The
two main challenges of employing this approach for ST-HOSVD is
(1) the unfolding may not be in 1D distribution, and (2) the local
part of the unfolding may not be in column- or row-major layout.
The parallel LQ decomposition algorithm is given as Alg. 3. The
pseudocode assumes that the number of processors P is a power of
two to simplify the presentation of the reduction-tree phase, but
our implementation works for any P.

To address the first challenge, we perform a redistribution of
the tensor if the unfolding is not in 1D distribution. Note that if
P, = 1, then the nth unfolding is in 1D (column) distribution, so
no redistribution is necessary. If P,, > 1, then we can obtain a 1D
distribution by considering individual processor fibers in mode
n. The submatrix of the nth unfolding collectively owned by a

© 0
processor fiber has dimension I, X ;’é;”@ and is distributed row-

wise across the P, processors in the ‘Biber. By redistributing this
submatrix to column-wise distribution within the fiber (and doing
so within each processor fiber), we obtain a 1D column distribution
of the entire unfolding. Note that this is the same redistribution
used for the most efficient Gram algorithm [6, Alg. 4], and we
re-use existing TuckerMPI code in our implementation. Likewise,
other redistribution optimizations that have been performed for
the Gram-based approach [10] can also be applied to improve our
QR-based approach.

To address the second challenge, we use our sequential TEN-
SORLQ algorithm to tailor the local QR computation to the data
layout for the particular mode. If P,, = 1, then no redistribution
occurs, and the local unfolding is in the natural tensor layout (a se-
ries of row-major submatrices). If P, > 1, and redistribution occurs,
then we tailor the computation to the layout given by the Tuck-
erMPI redistribution routines. For the last mode (n = N — 1), the
output is row major, and the local computation can be performed
by a single call to geqr. For all other modes, the output is column
major, and we use a single call to gelq. The variation across modes
is the result of techniques to avoid packing or unpacking data for
the all-to-all collective where possible.

After the local computation is performed, we perform a butterfly
variant [2, 5] of the TSQR reduction tree, which behaves like an all-
reduce collective on the triangular factors and ends with the result
stored redundantly on every processor. At each of log P steps, each
processor exchanges data with a partner processor and eliminates
the lower-ranked triangular factor using an LQ decomposition as
a reduction operation. Because each block of the concatenated
matrix is a triangle, we can again use the tpqrt routine for the QR
decomposition of a triangle on top of another triangle (or more
generally a pentagon).
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Algorithm 3 Parallel LQ of Tensor Unfolding

1: function L =PARTENSORLQ(Y, 1, P)
2 p=P(po,.--, pN-1) > Get linear index for proc (py, ..., PN-1)
3 myProcFiber = P(po, ..., pn-1,: Pn+ts-- > PN-1)
4 if P,, = 1 then
5: Ll(:)g)P = TeNsORLO (Y (1)) > Call sequential algorithm
6 else
7 Z = REDISTRIBUTE (Y("), myProcFiber) >MPI_Alltoall
8 Ll(:)og)P =LQ(Z) > Call to gelq (geqr forn=N — 1)
9: end if
10: for i = log P — 1 down to 0 do
11: q=2"1p/2"1 | + (p +2) mod 2i*! > Determine partner
12: Exchange L;fl) and L;fl) with proc g > MPI_Sendrecv
13: if p < q then
14: L) = 1Q( [Lﬁf_’f Lj,gl)]) > Call to tpgrt
15: else
16: Lgp) =LQ( [Lffl) Lffl)]) > Call to tpgrt
17: end if
18: end for
19: L= L(()P) > Result computed on all processors

20: end function

We point out another implementation detail that is typically not
performance critical. If, even after redistribution, the local unfolding
is not short and fat, then the LQ decomposition does not produce a
triangular matrix, which is required by the tree reduction. This can
occur if the number of processors is very large or if the product
of all modes but n is very small, which is more likely to occur for
later modes during ST-HOSVD when there is significant dimension
reduction in earlier modes. In this case, the 1D distribution and
TSQR-based approach may not be communication optimal. We
choose to proceed with the tree reduction by padding the first block
with zeros to make it triangular, which adds only a lower order
term to the computational costs. The zeros are quickly filled in after
a few levels of the tree.

SVD of L. After the LQ decomposition is computed from the

butterfly TSQR, every processor has the same triangular L factor.

To complete the SVD of Y ), the SVD of this L matrix is computed
on each processor redundantly. The rest of the algorithm is the
same as the original TuckerMPI.

3.5 Complexity Analysis

We now analyze the computation and communication costs of Alg. 3
and provide a comparison with Gram algorithm used by TuckerMPI
[6, Algorithm 4]. Here assume a generic processor grid, with P®
total processors and Py, in each mode-n processor fiber. We also
use generic tensor dimensions {J, }, as the algorithm will be called
repeatedly within ST-HOSVD with some modes already truncated
to dimension R, and others still the full I,,.

The first computation occurs in lines 5 or 8 and corresponds to
an LQ decomposition of the local tensor unfolding of dimension
JnxJS ]S /P® (recall that the redistribution ensures that the global
unfolding is in a 1D column distribution). In either case, the number
of flops is 2],%],1@],? /P® —2/3]J3. The other local computation is
performed in lines 14 or 16 and occurs log P® times. Each operation
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is the LQ decomposition of a J, X 2], matrix (with structure) and
costs O(J3) flops. Thus, the overall computational cost of Alg. 3 is

v+ (21J°/P° + 0 10g P®)) ©)

Communication occurs in lines 7 and 12. Following [6], we will
assume the all-to-all redistribution is performed with a point-to-
point algorithm using P, —1 messages per processor, each of the size
of the local tensor unfolding divided by Py,. The triangle exchange
between partner processors occurs log P® times and consists of
0(J?) data. The overall communication costs are then

B (]®/P®+J,§1ogp®) +a-0(Py+logP®).  (10)
The Gram algorithm used by TuckerMPI [6, Alg. 4] has costs
v IJ® IS+ B0 (JO/PO ) @O (P). (1)

Comparing eq. (9) and eq. (11), we see that Alg. 3 performs roughly
twice the flops of the Gram algorithm and includes another typically
lower order term. From eq. (10) and eq. (11), note that Alg. 3 also
has higher communication costs, though the increases occur in
typically lower order terms.

In terms of the overall ST-HOSVD algorithm, the differences
in costs between using Gram-SVD and QR-SVD are tightened, be-
cause both approaches share TTM algorithms and redistribution
costs. The most significant difference comes from the increase in
the flops for local Gram/LQ operations, which dominate the SVD
computations and constitute a large fraction of the ST-HOSVD run
time. Thus, for small numbers of processors, when the algorithm
is compute bound, we expect no more than a 2x slowdown from
using the more numerically accurate QR-SVD algorithm. For very
large numbers of processors, when the algorithm becomes more
communication bound (latency bound in particular), we also expect
to see a slight slowdown from QR-SVD. However, we emphasize
that the better stability of QR-SVD allows the algorithm to use
lower working precision and obtain the same accuracy in most
cases. We will see in Sec. 4 that the performance benefits of lower
precision more than compensates for the higher flop counts and
communication costs.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup

We conduct our numerical experiments on Andes, a 704-node clus-
ter at Oak Ridge Leadership Computing Facility. Each node has
256 GB of memory, and two 16-core AMD EPYC 7302 processors
running at 3 GHz. The peak flop rate of each core is 48 GFLOPS
in double precision and 96 GFLOPS in single precision. We link
our implementation to Intel MKL v19.0.3 and OpenMPI v4.0.4. Our
experimental results report the minimum times over 5 trials for
each algorithm and configuration.

To illustrate variability of efficiency of local computations, we
also use a local server with an Intel Cascade Lake processor that has
2 sockets each with 8 physical cores. On the Cascade Lake server,
we use Intel MKL v2021.1.1 and Intel MPI v2021.1.1.

Time breakdowns are reported according to the breakdown
on the slowest processor. We show a breakdown of time across
LQ/Gram, SVD/EVD, and TTM computations. The computations of
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each mode are ordered from 0 at the bottom to N — 1 at the top, so
they do not necessarily correspond to actual order of computation.

4.2 Performance Tuning

The parallel ST-HOSVD algorithm, independent of the SVD algo-
rithm used, has two main opportunities for performance tuning:
mode ordering and processor grid dimensions. In this section we dis-
cuss the implications of these tuning configurations on the QR-SVD
approach and describe the strategies we use in later experiments.
Fig. 2 presents time breakdowns over different configurations of
mode ordering and processor grids to demonstrate their effects on
the two different platforms.

4.2.1 LAPACK Subroutines. An important factor for local compu-
tational efficiency is the underlying implementation of LAPACK
QR-based subroutines. In order to respect the data layout of the
tensor unfoldings (and their submatrices), we use both QR and LQ
variants of the orthogonal factorizations. We use the driver rou-
tines geqr and gelq for orthogonal factorizations of any submatrix
that is row- or column-major, even if they are very short and fat.
Our microbenchmarks indicated that the TSQR-based computa-
tional subroutines sometimes provided an improvement over the
driver routines, but because those improvements were not con-
sistent across platforms, we chose to use the driver routines to
maximize performance portability. For the structured orthogonal
factorizations, we use tpqrt, which is designed for a triangular
block stacked on top of a pentagonal block (which might be rectan-
gular or triangular), and we observe that its use is not performance
critical.

We noticed that geqr routinely outperformed gelq on Cascade
Lake; this distinction is equivalent to performing a QR decomposi-
tion of a matrix stored in column- vs row-major layout. As indicated
in Algs. 2 and 3, geqr is applied to the entire unfolding if n = N -1
(the last mode) and Py_1 = 1, and otherwise, gelq is used. Thus,
we seek to set Py—; = 1 and process the last mode early in the
ordering in order to benefit from the performance of geqr. We
suspect, based on the working memory requested, that the under-
lying implementation of gelq for this version of MKL performs an
explicit transpose before calling geqr. We did not observe the same
behavior on Andes; the two routines exhibited similar performance.

4.2.2  Processor Grid. The processor grid configuration can affect
both communication and computation efficiency. As noted in prior
work [6], the processor grid changes how much data and how many
messages are communicated throughout the algorithm. If a proces-
sor grid dimension is set to 1, then some communication (including
the redistribution in Alg. 3) is avoided altogether. Computation
and communication costs tend to decrease through the course of
ST-HOSVD as the size of the tensor is reduced. Thus, it is gener-
ally beneficial to set processor grid dimensions to 1 (or other small
values) in the modes that are processed first.

4.2.3 Mode Ordering. The mode ordering can have a significant
impact on the amount of computation performed by ST-HOSVD.
For example, significant truncation in one mode will result is less
computation required by later modes. If all dimensions and reduced
ranks are known at the start of the algorithm, the modes can be
ordered to minimize computation or other metrics [6]. However, if
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the ranks are determined at run time based on the error tolerance,
then only heuristics can be used. Mode ordering also has an effect
on computational efficiency, as described above, as it can affect
how much computation is performed by the most efficient LAPACK
subroutines.

In this work, we assume ranks are not known a priori, so that the
optimal mode ordering is not known. We consider the data in the
mode order used to store it on disk and consider only two orderings:
forward and backward. In this way, we can focus on tuning the
performance of the first mode truncated, which corresponds to an
unfolding that is a contiguous matrix in memory.
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(a) Cascade Lake: 300 X 300 X 300 X
300 tensor using 16 cores

(b) Andes: 500 X 500 X 500 x 500
tensor using 512 cores

Figure 2: Time breakdown over various configurations

4.2.4 Cross-Platform Results. We consider the results using various
configurations on Cascade Lake (Fig. 2a) and Andes (Fig. 2b). In
each case, we consider forward and backward mode orderings and
processor grids that range from back-loaded to front-loaded.

On Cascade Lake, we use 16 MPI processes on a 300 X 300 X
300 X 300 tensor and reduce it to a core of dimension 30 X 30 X 30 X
30. Note that because all dimensions are consistent across modes,
mode ordering does not affect the amount of computation. In all
cases, more than half of the overall time is spent in the first LQ
computation (mode 0 for forward and mode 3 for backward). In
each of the mode orderings, the fastest processor grid configuration
is the one with the corresponding mode’s processor dimension set
to 1. We see that the backward ordering with grid 8 x 2 x 1 X 11is
faster than the forward ordering with grid 1 X 1 X 2 X 8, which is
because of the superior performance of geqr over gelq in the LQ.

On Andes, we use 512 MPI processes (16 nodes) on a 500 X 500 X
500X 500 tensor and reduce it to a core of dimension 50X 50 X 50X 50.
We observe the same pattern of time dominated by the first mode
truncated and better performance for grids with dimension 1 in
that mode. However, there is little difference between a forward
order-processor grid configuration and its backward order mirrored
counterpart, due to the similar performance across geqr and gelq
on the AMD nodes.

We note that benchmarks on TuckerMPI’s original Gram-SVD
approach showed similar behavior across processor grids. There
was very little difference between forward and backward orderings
for these synthetic cubical tensors.
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Figure 3: Weak scaling across algorithms and precisions

4.3 Weak Scaling Comparison

To assess the weak scalability of our approach and compare with
TuckerMPI, we generate synthetic tensors following the experiment
of prior work [6, Section 9.4.3] and report results in Fig. 3. We
use a random tensor of dimension 250k X 250k x 250k x 250k
distributed across k* nodes for k € {1, 2,3}, and compress it to core
dimensions 25k x25k X 25k x25k. The local tensor data remains fixed
at approximately 1 GB throughout the experiment. For Gram-SVD,
we use forward ordering with a 1 x 2k x 4k x 4k? processor grid
(as suggested [6]) and backward ordering with a 4k? X 4k X 2k X 1
grid for QR-SVD. We use identical tensor dimensions and ranks
in each mode to control for computational variations across mode
orderings. We are not able to perform the experiment for k = 4
because it requires too high a fraction of Andes’ nodes.

Note that although the local tensor contains the same amount
of data as k increases, the number of columns of each unfolding is
increasing. This results in an increase in computation, which leads
to an increase in overall runtime. In Fig. 3a, we use GFLOPS/Core
performance as a gauge of the weak scaling of the QR-SVD and
Gram-SVD algorithms in single and double precision. On a single
node, QR-SVD achieves 6.4 GFLOPS in double 13 GFLOPS in single
precision (both about 14% of peak). On 81 nodes, QR-SVD maintains
3.8 GFLOPS in double and 12 GFLOPS in single precision (8% and
12.5% of peak, respectively). Recall that QR-SVD performs more
flops than Gram-SVD; in this experiment, it performs approximately
83% more flops. While QR-SVD takes more time than Gram-SVD
in each precision, we observe that its performance is slightly better
and scales similarly.

We present the time breakdown in Fig. 3b. The fastest algorithm
is Gram in single precision, QR in single precision is faster than
Gram in double precision (TuckerMPI’s implementation), and QR
in double precision is the slowest. As expected, more than half the
time is spent in the first LQ or Gram operation that involves very
little communication, which implies that the overall performance is
determined in large part by the performance of the local LQ (geqr)
or Gram (syrk) performance. Compared to the similar experiment
in [6], we see lower performance for Gram-SVD, which we attribute

to suboptimal BLAS/LAPACK implementations available on Andes.

We use Intel’s MKL on an AMD architecture because it has the best
performance over the available libraries in our microbenchmarks;
we expect that AMD’s ACML would have better performance but
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# of Cores | # of Nodes | QR single/double | Gram single/double
32 1 4x4x2x1 I1X1Xx2X16
64 2 8X4x2x1 1X1Xx4Xx16
128 4 8X8X2X1 1X1Xx8X16
256 8 16 xX8x2x1 1X1X16X16
512 16 16 X8x4x1 1X2X16X16
1024 32 16 X16xX4x1 1X4Xx16X16
2048 64 32X16x4x1 1X4x16 %32

Table 1: Strong scaling processor grids

T T T
—e— QR double
—m— Gram double
—e— QRsingle
—+— Gram single

Seconds

1 1 1 1 1 1
64 128 256 512 1024 2048

Number of cores

Figure 4: Strong scaling across algorithms and precisions

is not available. Based on this experiment, we expect that our im-
plementation can scale at least as well as TuckerMPI as long as
the LAPACK implementation is as well optimized as the BLAS
implementation.

4.4 Strong Scaling Comparison

Similar to weak scaling, we use a randomly generated synthetic
tensor with dimension 256 X 256 X 256 X 256 and compress it down
to a32x32x32X%32 core. For the fixed input, we scale the number of
nodes from 1 to 64 using the processor grids specified in Tab. 1 and
forward and backward ordering for Gram and QR, respectively. The
results are given in Fig. 4, and again we see the times decreasing
from QR double to Gram double to QR single to Gram single. The
scaling is consistent across algorithms and precisions, and all scale
to 32 nodes for this problem, which is consistent with prior work
[6]. We note that QR in single precision is consistently faster than
Gram in double precision, typically about 30% faster and achieves
up to a 2x speedup at 32 nodes, and the two algorithms achieve
nearly the same accuracy.

4.5 Application Datasets

4.5.1 Dataset Descriptions. In this section we compare the use of
Gram-SVD and QR-SVD in single and double precision on applica-
tion tensor data. We use three datasets in the following experiments:

e HCCI: the Homogeneous Charge Compression Ignition (HCCI)
dataset is generated from a numerical simulation of com-
bustion [8] and used in prior work [4]. The dimension of
the dataset is 627 X 627 X 33 X 627. Similar to SP, the first
two modes corresponds to spatial dimensions, the 3rd mode
corresponds to 33 variables, and the last mode 627 time steps.
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e SP: the Stats-Planar (SP) dataset is the result from a numerical ol 10 i
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singular values allows, ST-HOSVD will return unreliable results.

4.5.3 ST-HOSVD Comparison. In the following experiments, we Figure 7: Video data singular values
apply the ST-HOSVD algorithm to each data set to compare the
time performance and accuracy of the algorithms and precisions
for various error tolerances.
Fig. 8 shows the result of compressing the HCCI dataset with
tolerances of 1072, 107%, 107%, and 1078. The values plotted in
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Fig. 8a are also given in Tab. 2. In this experiment we use 4 nodes,
backwards mode ordering, and a 16 X 8 X 1 X 1 processor grid for
both QR and Gram. Consider the error tolerance 1072: from Fig. 8a
and Tab. 2 we see that all algorithms attain the same compression
ratio and approximation error, which satisfies the desired tolerance.
In Fig. 8b we see that Gram single is the fastest algorithm and can be
safely used, finishing about twice as fast as Gram double (original
TuckerMPI code). However, at error tolerance 1074, Gram single
cannot compute singular values accurately enough and it fails to
compresses the data at all. The algorithm computes square factor
matrices (corresponding to a full HOSVD [19]) and incurs an error
of 1.3e-6 due to multiplications in single precision. Thus, we do not
report the time for Gram single at this tolerance, and we see that
OR single is the fastest algorithm among the rest, offering a 60%
speedup over Gram double. Likewise, the tolerance 107° represents
a range where QR single is not sufficiently accurate, and double
Gram is preferred, and at tolerance 1078 and smaller, QR double is
the only method accurate enough. However, for this dataset, such
a tight tolerance offers practically no compression.
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(b) Time breakdown
Figure 8: HCCI dataset time and accuracy comparisons

We present the results for the SP dataset in Fig. 9 and Tab. 3.
Again, we consider error tolerances of 1072,107%,107%, and 1078,
and we observe similar behavior to HCCI, though SP is much larger
and more compressible. In order to store the data in memory, we
need 50 nodes on Andes; we use a 40 X 20 X 2 X 1 X 1 processor grid
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OR single OR double Gram single Gram double
Tolerance - - -

p error error p error | compression | _error
le-02 7.85e+02 9.54e-03 7.85e+02 9.54e-03 7.85e+02 9.54e-03 7.85e+02 9.54e-03
le-04 1.48e+01 8.54e-05 1.48e+01 8.54e-05 1.00e+00 1.30e-06 1.48e+01 8.54e-05
le-06 2.01e+00 1.35e-06 2.44e+00 8.51e-07 1.00e+00 1.30e-06 2.44e+00 8.51e-07
1e-08 1.06e+00 | 1.29e-06 | 1.18e+00 | 6.85e-09 | 1.00e+00 | 1.30e-06 | 1.28e+00 | 2.54e-08

Table 2: HCCI reconstruction error and compression ratio
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Figure 9: SP dataset time and accuracy comparisons

OR single OR double Gram single Gram double
Tolerance - - -

p error error p error | compression | error
le-02 6.86e+04 8.63e-03 6.86e+04 8.63e-03 5.98e+04 7.87e-03 6.86e+04 8.63e-03
le-04 1.64e+02 9.46e-05 1.64e+02 9.46e-05 1.00e+00 1.62e-06 1.64e+02 9.46e-05
le-06 5.18e+00 1.75e-06 8.92e+00 8.82e-07 1.00e+00 1.62e-06 8.88e+00 8.70e-07
le-08 1.00e+00 1.81e-06 1.62e+00 7.62e-09 1.00e+00 1.62e-06 1.00e+00 2.18e-15

Table 3: SP reconstruction error and compression ratio

and backwards ordering for all algorithms. At 1072, Gram single is
the method of choice because it is the fastest and all algorithms are
sufficiently accurate. For the tighter tolerance of 10%, QR single is
the fastest sufficiently accurate method, outperforming TuckerMPI
(Gram double) by 50%, and at 1078, QR double is the only method
that is accurate enough.

The video dataset has a much shorter range in singular values,
but it is still very compressible when the error tolerance is large
enough. In this experiment, we follow prior work [1] and specify
the rank to be 200 X 200 X 3 X 200, resulting in 570X compression.
All four variants achieve the same relative error of 0.213, which
is also consistent with prior work. Although the relative error is
higher, the recovered image still retains recognizable features and is
sufficient for the classification task. The time breakdown is shown
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in Fig. 10, where we see that Gram single should be used since
it is fastest and as accurate as the other variants, offering a 2.2x
speedup over the original TuckerMPI code.

100 |-| “ LQ/Gram
SVD/Eig
TTM
80 |-
2
S 60|
S
3
A
40 -
20 |
0
I3 I & A
,-94& :;\‘& b°§ bo:»"
& $ o &
& < 0&§ <

Figure 10: Video dataset time breakdown

5 CONCLUSION

In this work, we generalize the TuckerMPI library to be able to
perform ST-HOSVD with the more numerically stable QR-SVD
algorithm as well as the computationally cheaper Gram-SVD algo-
rithm. We also enable the use of either single or double precision
using C++ templates.

Our numerical results demonstrate that the existing implemen-
tation is eclipsed by these generalizations, either in terms of speed
or accuracy. For large error tolerances of 1073 or larger, the single
precision Gram-SVD is the fastest method, approximately twice as
fast as TuckerMPL For error tolerances between 1073 and 1077, the
single precision QR-SVD is faster by 50-100%. For error tolerances
tighter than 1078, double precision QR-SVD is required to obtain
the desired approximation error. Only in the tight range around
1077 to 1078 is the existing implementation the method of choice.

However, we point out that there are still limitations for our
implementation. In particular, for tensors with modes that have
very large dimension, of 10,000 or more for example, the sequential
SVD will be a computational bottleneck and eventually become
infeasible. Handling such cases would require parallelizing the SVD
of the triangular factor, or perhaps using a different approach to the
SVD of the unfolding altogether. For large tolerances where Gram
single is the preferred method, alternatives such as randomized
and iterative algorithms are likely to be competitive and should be
compared against. In future work, we also plan to explore the use
of mixed precision within the Gram-SVD algorithm.
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