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ABSTRACT

The 2021 Summer Biomechanics, Bioengineering, and Biotransport Conference
(SB3C) featured a workshop titled “The Elephant in the Room: Nuclear Mechanics and
Mechanobiology.” The goal of this workshop was to provide a perspective from experts
in the field on the current understanding of nuclear mechanics and its role in
mechanobiology. This paper reviews the major themes and questions discussed during
the workshop, including historical context on the initial methods of measuring the
mechanical properties of the nucleus and classifying the primary structures dictating
nuclear mechanics, physical plasticity of the nucleus, the emerging role of the linker of
nucleoskeleton and cytoskeleton (LINC) complex in coupling the nucleus to the
cytoplasm and driving the behavior of individual cells and multicellular assemblies, and
the computational models currently in use to investigate the mechanisms of gene
expression and cell signaling. Ongoing questions and controversies, along with

promising future directions, are also discussed.
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INTRODUCTION

The mechanical properties of the nucleus are an important driver of cell
biomechanics and mechanobiology. It is now well established that the effect of nuclear
mechanics on cell function has significant implications in many fields of biology and
medicine, including morphogenesis [1, 2], tissue homeostasis [3], cancer and cell
proliferation [4-6], aging [7, 8], degenerative disease [9, 10], and regenerative medicine
[11]. Over the last two decades, our understanding of the structure-function
relationships within the nucleus and the mechanisms underlying the effect of nuclear
mechanics on cell behavior has rapidly developed and continues to evolve. Given this
recent scientific attention and rapid growth in knowledge, a workshop titled “The
Elephant in the Room: Nuclear Mechanics and Mechanobiology,” was organized at the
2021 Summer Biomechanics, Bioengineering, and Biotransport Conference (SB3C) to
help synthesize the most recent findings within the field and provide potential
directions for future investigation. This paper is the outcome of this workshop and aims
to provide a perspective from experts in the field on the current understanding of
nuclear mechanics and its role in mechanobiology. Note that this is not intended to
serve as a comprehensive review on this topic (see other recent reviews [12-17]), but
rather a brief synopsis of where the field currently stands and where it is headed.
Specifically, Section 1 will provide some historical context summarizing early efforts to
measure the mechanical properties of the nucleus and discuss the primary structures
dictating nuclear mechanics. Section 2 will discuss the mechanics and plasticity of the

nucleus, particularly at the slow time scales at which forces are applied to the nucleus
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during cell migration. In Section 3, we will present the emerging role of the linker of
nucleoskeleton and cytoskeleton (LINC) complex in both physically coupling the nucleus
to the cell and influencing the behavior of individual cells and multicellular assemblies.
Section 4 will elaborate on the computational models currently used to investigate the
mechanisms underlying the effect of nuclear mechanics on genome organization,
signaling pathways, and gene expression. Finally, Section 5 will pose pressing
unanswered questions and controversies within the field as well as outline promising
directions for future investigation. We hope that this information will provide clarity and
context to an emergent and exciting field for researchers new to this topic as well as

those already engaged in active research in this field.

1. Stressing the Nucleus: Measurement Techniques to Probe Nuclear Mechanics
Although reporting on the mechanical properties of cells began in the early 20t
century, a complete appreciation of cells as mechanical entities did not emerge until the
1990s [18, 19]. The development of traction force microscopy, in which cells are plated
on a deformable substrate containing fluorescent beads, allowed for further
guantification of the mechanical properties of cells [19, 20]. The emerging view of the
cell as a mechanical object was later extended to the nucleus, with experiments
investigating nuclear deformation within multiple cell types including endothelial cells,
chondrocytes, and leukocytes [21-23]. The quest of understanding the specific structural
components that contribute to nuclear mechanics started with early studies of the

nuclear lamina in the early 2000s [24-26]. An early model of nuclear mechanics,
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reviewed in [27], included viscoelastic chromatin enveloped by a viscoelastic nuclear
lamina that is then physically coupled to a viscoelastic cytoskeleton network. These
basic elements embody the proposed role of the nucleus as a cellular mechanosensor
whose shape can change, resulting in alterations of the structure and organization of
chromatin, which directly affect transcriptional regulation [28]. Still, these are simplified
descriptions of the nucleus that underestimate its true structural complexity.

The nucleoskeleton is surrounded by the nuclear envelope, consisting of a double
lipid bilayer membrane containing nuclear pore complexes, which allow
macromolecular transport between the nucleus and cell cytoplasm [28]. Under the inner
nuclear membrane lies the intermediate filament meshwork of the nuclear lamina. Of
the lamin proteins, A-type lamins, primarily A and C (both products of the transcription
of the LMNA gene) are thought to contribute significantly to nuclear
mechanotransduction. A-type lamins play major roles in modulating gene expression
and maintaining nuclear shape, stability, and structure, and indeed, many mutations in
human LMNA have been implicated in various disease conditions [28-33]. B-type lamins
are constitutively expressed in metazoans and have essential roles in transcription and
other cell signaling pathways, but probably play less of a prominent role in nuclear
mechanical function [31, 34, 35]. Understanding of the laminar structure has recently
been refined in mammalian cells, facilitated by high-resolution stochastic optical
reconstruction microscopy (STORM). New observations have shown that A- and B-type
lamins are not interconnected, but form an independent and interacting meshwork of

filaments [36] (Fig. 1). The lamin A/C mesh is located farther from the nuclear envelope
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and is tightly organized, with lamin A/C filaments typically present over the entire
nuclear periphery. Lamin B1 is located closer to the nuclear envelope with a more open
configuration, and its peripheral localization is curvature- and strain-dependent [37].
This spatial organization predicts distinct roles for the A- and B-type lamins in imparting
nuclear mechanical properties and their functional roles in the control of chromatin
architecture.

Inside the nucleus, lamins directly or indirectly bind to chromatin at lamin
associated domains [32, 38]. Chromatin exists in different states depending on its
location and function in the cell. Loose euchromatin is associated with more
transcriptional activity, and heterochromatin, which is more densely packed, is generally
transcriptionally inactive. Recent microscopy-based studies suggest that a continuum
exists somewhere between euchromatin and heterochromatin rather than distinct
states, and shifts between the states likely precede changes in gene expression [39, 40].

Physical connection between the cytoskeleton and the nucleoskeleton is mediated
by the LINC complex, formed by interactions between KASH domain proteins (eg,
nesprins) and SUN proteins [41, 42]. Because of this mechanical connection between
the nucleus and cytoskeleton, pores in the nuclear membrane stretch in response to
forces exerted on the cell, activating signaling pathways that result in nuclear
translocation of transcriptional regulators (eg, Yes-associated protein [YAP] and
chromatin modifiers, eg, histone deacetylase [HDAC]) [43, 44]. Thus, alterations in the

shape and structure of the nucleus in response to extracellular forces lead to changes in
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chromatin structure and transcriptional activity, linking nuclear mechanics with cell

function.

2. Nuclear Mechanics in Motile Cells

During cell migration, nuclear movement and deformation are necessary to
allow the cell to pass through a confined space. Experimental models of cell migration
through highly cross-linked collagen gels demonstrate that the initially circular nucleus
becomes highly elongated as the cell elongates during motion through the confined
space [45]. Under conditions in which cells are unable to elongate or deform the
nucleus, they are unable to pass through the confinement. Such migration through
confined spaces is central to cancer cell invasion and metastasis, as well as immune cell
migration [46, 47]. Metastasis relies on migration of cancer cells through tissues and
tight interstitial spaces, driven by cellular deformation and consequent nuclear
deformation [48] (Fig. 2). This extreme nuclear deformation leads to nuclear rupture
and DNA damage, which increases the number of genetic mutations and further
contributes to cancer malignancy [49-51].

Competing explanations have been proposed for how deformation of the
nucleus occurs as a result of cell shape change. In one proposed mechanism, nuclear
deformation is caused by lateral compressive forces, and, to a lesser extent, vertical
compressive forces, derived from actin stress fibers [52, 53]. The compressive stress
arises because tensile stress fibers that adjoin the nucleus at a higher angle will exert an

inward compressive force on the nuclear surface. As the stress fiber distribution
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changes according to the overall cell shape, the nucleus will correspondingly adapt [52].
However, this model has been challenged by experiments in which stress fiber severing
produces no relaxation in the shape of the nucleus [42]. Further, excision of fibroblast
and breast cancer cell nuclei from the cytoplasm using microdissection, which removed
nearly all of the cytoplasm and cytoskeletal structures connected to the nucleus,
produced no relaxation of the nucleus to a circular shape [54]. Finally, stress fibers are
virtually absent on the apical surface of the nucleus during the early phase of cell
spreading when the nucleus flattens, and nuclei flatten during spreading even in the
absence of myosin activity. These observations collectively suggest that the nucleus
does not store elastic energy in its deformed shape, and nuclear shape is not a result of
an equilibrium balance of forces between the elastic nucleus and neighboring stress
fibers.

How might the nucleus be flattened during cell spreading, and what explains the
lack of elastic energy in its shape? Nonelastic deformation of the nucleus during cell
spreading can be considered using an analogy of the nucleus with a spherical object
such as a soccer ball [13]. As the sphere is a shape with minimum surface area-to-
volume ratio, flattening it requires either an extension of its surface area, a reduction in
its volume (releasing the air from the ball), or a combination of both. For nuclei, the
resistance to surface stretching (ie, stretching of the nuclear lamina) results from the
high extensional modulus of the lamina [55], while osmotic coupling with the cytoplasm
and the resistance of chromatin and other subnuclear structures to compression

probably provide the resistance to volumetric changes of the nucleus [56-58].
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Experimental measurements of nuclear flattening during cell spreading showed
that the volume of fibroblast nuclei remained constant as they flattened [59]. Another
recent paper revealed that the nucleus maintains a constant volume by progressively
unfolding its envelope until reaching a fully unfolded state, thus acting as a ruler to
sense the spatial constraints imposed by the mechanical microenvironment [60]. These
findings are consistent with other measurements that showed a constant nuclear
volume as cells move through narrow pores [59, 61]. Further, Li et al [59] hypothesized
that wrinkles in the nuclear lamina in the rounded nucleus in suspended cells (as they
landed on the surface for spreading) represented an excess of surface area for the
nuclear volume, which allowed nuclear flattening with little resistance as the wrinkles
would unfold during the flattening process. The computational model in Li et al
predicted that the nucleus would reach a steady flattened shape once the wrinkles were
fully removed and the lamina became taut, thereby resisting any extension of the
lamina beyond a limiting value (given its high extensional modulus, [55] which made it
stiff to cellular forces). Consistent with these predictions, undulations/wrinkles in nuclei
were indeed observed to be removed upon flattening [59]. Wrinkles in nuclei were also
observed to be removed during spreading of epithelial cells, with no wrinkles visible in
fully spread cells [62]. Furthermore, the level of nuclear wrinkling is associated with
downstream mechanotransduction signaling (e.g., YAP/TAZ localization) [63]. These
observations led to the concept that nuclear changes occur at constant volume and
constant surface area in cells (reviewed in [13, 64]). This explains why the nucleus stores

no energy in its deformed shape, at least in specific contexts such as cell spreading.
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Given that nuclear deformation and recovery does not appear to be determined
by elastic energy storage, what establishes nuclear shape? A series of experiments that
tracked the shape of the nucleus during dynamic cell spreading and during migration on
defined patterns confirmed the computational model proposed by Li et al [59] that
nuclear shape changes incrementally in response to stresses transmitted from the
cytoskeleton intervening between the nuclear surface and the moving cell boundary
(reviewed in [13]). Because of the slow time scales at which changes in cell shape occur,
the cytoskeleton provides a viscous resistance to stretching and compression, thus
transmitting a frictional stress to the nuclear surface from the moving cell boundary.
When cells spread along a 1D fibronectin line, the nuclear boundaries follow the motion
of the cell boundaries. Boundaries that move away from the nuclear surface transmit a
net tensile force on the nucleus while boundaries that move toward the nuclear surface
compress it. These stresses are viscous in nature, and therefore do not exist when the
motion of the boundary stops. These stresses on the nucleus will exist in deforming cells
even when no stress fibers impinge on the nuclear surface and in the absence of myosin
activity. Experiments have demonstrated a causal relation between the motion of cell
boundaries and nuclear deformation, both during migration and spreading [42, 54, 59].
This novel mechanism explains both the coordination of nuclear and cell shape
(elongated in elongated cells, circular in circular cells) and deformation of the nucleus
into dumbbell shapes during cell migration through confined channels (which simply

mimics the elongated cell shape).
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3. LINCing The Nucleus to Cell and Tissue Mechanics: Connections Between the
Nucleus and its Surroundings

The LINC complex is responsible for mediating most of the known nuclear-
cytoskeletal interactions (Fig. 3). It is a well-known regulator of nuclear
mechanotransduction through the cytoskeleton, regulating chromatin structure, nuclear
transport, and nuclear positioning. Disrupting the LINC complex in a single cell also
disrupts force propagation to nearby cells through intercellular connections [16, 20, 65].

Despite its prominent role in cellular function, the LINC complex is not fully
characterized. Unlike focal adhesions and cell-cell adhesions, visualizations of the LINC
complex remain limited, and understanding of its components is generally limited to its
structural proteins. SUN domain proteins span the inner nuclear membrane, extending
into the interior of the nucleus, while nesprins are situated outside the nucleus, with
their C-terminal KASH domains spanning the outer nuclear membrane and interacting
with SUN proteins in the perinuclear space [66]. A comprehensive picture of the

functional role of signaling proteins in the LINC complex are not yet known.

Cell Mechanics: Role of the LINC Complex in the Regulation of Forces on the Nucleus
Nuclear-cytoplasmic connections are important regulators of forces on the nucleus
and throughout the cell [67, 68]. Nuclear deformations can be observed in response to
tension applied by a micropipette on the cell surface at a distance away from nucleus,
demonstrating coupling between cell shape and nuclear deformation. Similar

observations have also been made using a microharpoon technique [41]. These nuclear
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deformations are in part mediated by the LINC complex, whose contribution can be
confirmed by disruption using a dominant negative peptide DN KASH, which results in
attenuated nuclear deformation.[41]

In its role as the mediator of mechanical force transfer from the cytoskeleton to the
nucleus, the LINC complex itself experiences significant mechanical tension [69].
Mechanical forces on the LINC complex have been quantified using a genetically
encoded, calibrated fluorescence resonance energy transfer (FRET)-based tension
biosensor, known as TSmod, previously used to examine mechanical tension across
structural proteins in cell-cell [70-72] and cell-matrix adhesions [73]. Three separate
research groups have designed nesprin-2 giant tension sensors, demonstrating that this
FRET-based approach for measuring tension is well suited for LINC complex proteins, as
well as clearly demonstrating that there are significant tensile forces between the actin
cytoskeleton and the nuclear envelope [69, 74, 75]. These forces have been observed in
several different cell types and appear to be dependent on actomyosin contractility and
cell morphologies. The importance of nuclear-cytoskeletal connectivity in migration
through confined spaces has been previously discussed (Section 2). Additional data
demonstrate that the LINC complex contributes to generating the forces that drive two-
dimensional migration through constricted spaces [76]. In very confined three-
dimensional (3D) spaces, a piston-like behavior of the nucleus has been observed,
where increased pressure exerted by the nucleus is used to pressurize the leading edge

of the cell and push a so-called lobopodium through the space [77, 78]. Importantly, this
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behavior requires both actomyosin contraction and connection to the nucleus via
nesprin-3.

The roles of LINC complex forces, however, remain unclear. Forces across the
LINC complex may impact nuclear movement and positioning, which is of critical
importance in cell polarization during migration [79]. LINC complex forces have also
been thought to regulate nuclear shape and morphology, nuclear-cytosolic transport, as
well as chromatin structure, although there have been limited experiments to
demonstrate these roles [80]. Notably, Ning Wang’s group has shown that pulling on the
surface of cells (using magnetic beads) can deform chromatin, which requires force
transmission through an intact LINC complex [80, 81]. Additionally, recent work by Pere
Roca-Cusach’s group has shown that substrate stiffness affects nuclear pore complex
size, as well as nuclear-cytosolic transport, which ultimately affects translocation of YAP
and other mechanosensitive transcription factors [44, 82]. New approaches, including
new force biosensors for additional nuclear structures (eg, nuclear pore complex,
nuclear lamina) may ultimately be required to better understand how mechanical forces
propagate within the nucleus.

There also exists an apparent relationship between the LINC complex and cell-
ECM traction forces. Using very fine nanopillars, it is possible to quantify the traction
force at high resolution [83]. The resulting data showed that the highest traction forces
exist near the nucleus rather than the cell periphery. Not only were these high stress
regions sensitive to actomyosin tension, they also required an intact LINC complex and

nuclear lamina (ie, lamin A and C expression), suggesting that cytoskeletal-nuclear
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coupling is essential for robust focal adhesion formation [83]. Previous measurements of
traction forces using larger nanopillars may not have had the resolution necessary to
detect these changes. Further supporting the relationship between the LINC complex
and focal adhesions, it was recently shown that the LINC complex is required for
maintaining cell-ECM adhesion when endothelial cells are challenged with physiological
forces, including shear stress and stretch [84]. Interestingly LINC complex disruption also
affected the phosphorylation states of key focal adhesion proteins, suggesting that the

LINC complex may be important in both mechanical and biochemical signaling [84].

Tissue Mechanics: LINC Complex Regulates Force Transmission Across Epithelial Tissues
The LINC complex also plays a role in cellular force propagation across tissues.
Previous studies of multicellular systems using traction force microscopy have shown
that there are significant mechanical forces transferred between cells across cell-cell
adhesions [85, 86]. Chromatin dynamics can be used to detect cellular force propagation
by employing a technique called sensors from intranuclear kinetics (SINK), which is
based on actomyosin forces transmitted to the LINC complex and into the chromatin of
the nucleus [65]. SINK tracks individual points within the nucleus, establishing a
relationship of mean squared displacement with time, and can be used to investigate
the role of the LINC complex in monolayer mechanics [65]. Indeed, SINK measurements
show that disruption of the LINC complex reduces nuclear forces on nearby cells,[65]
suggesting that the LINC complex is important in propagation of force across cell-cell

adhesions to nearby cells.
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The importance of the LINC complex in mediating mechanical force transmission
from the cytoskeleton to the nucleus can be further demonstrated by observing the
effect of LINC complex disruption on cellular structures in 3D culture. Glandular
epithelial cells from the breast and other organs grown in 3D basement membrane
cultures assemble into acini, or hollow spheres consisting of a layer of cells around a
water-filled lumen [87] (Fig. 4). LINC disruption results in the collapse of the acini lumen
due to increased mechanical tension caused by upregulation of Rho-kinase-dependent
non-muscle myosin || motor activity [87]. The significance of these mechanical forces
and the importance of the LINC complex is highlighted when considering their role in
maintaining or changing tissue architecture during cancer progression [88].

The LINC complex has been demonstrated as a critical structure required to
maintain the mechanical stability of cells and tissues. Disruption of the LINC complex
alters force propagation throughout the cell and out to nearby cells and also affects the
mechanical stability of multicellular assemblies. The LINC complex itself is subject to
significant mechanical tension, similar to cell-cell and cell-matrix adhesions.
Unanswered questions remain on how the LINC complex is formed and regulated, as

well as the functional consequences of these forces.

4. Modeling The Modulation Of Chromatin Organization By Cues From The Cell

Microenvironment

Impact of Microenvironment on Cell Morphology and Gene Transcription
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As discussed previously, the cell nucleus constantly changes its morphology as a
result of various mechanical forces on the cell. For example, it has been demonstrated
that nuclear shape is determined by cell shape, which is altered depending on the shape
of its substrate [89]. This occurs as a result of formation of actin cables, which force the
nucleus to mirror the shape of the surrounding cell [89]. Chromatin organization is also
known to vary with cell shape, with a round nucleus known to be transcriptionally
inactive (heterochromatin-dense), and an elongated nucleus observed to have a high
concentration of euchromatin. This effect of cell gecometry on chromatin organization is
dependent on nuclear translocation of epigenetic regulators such as HDAC3. Differential
expression of as many as 400 genes has been observed between rounded and elongated
cell shapes [90]. The mechanical property of chromatin, and the relative stiffness of
intranuclear domains can affect the nuclear deformation under stress. Elucidation of
these mechanical properties of the nucleus has been attempted recently by several
groups [39, 91].

A chemomechanical feedback model can be used to describe the relationship
between cell shape and nuclear shape [53, 89, 92-95] (Fig. 5). A cell that has spread but
not fully adhered to its substrate has weak adhesions, with a fluid-like G-actin in the
cytoplasm, and exhibits uniform and isotropic contractility. However, uniform
contractility on an anisotropic shape gives rise to anisotropic stresses, which will be
concentrated at the cell edges, promoting the formation of mature focal adhesions [83].
A chemomechanical feedback parameter in the model causes the actin stress fibers to

stiffen with increased tension, which leads to a polarized contractility tensor and an
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anisotropic distribution of actin stress fibers. Compression forces from the stress fibers
flatten and elongate the nucleus and stiffens the nuclear envelope by increasing the
assembly of lamin A/C. This positive feedback loop explains the various changes in cell
as well as nuclear structure and mechanics observed on substrates with different
shapes.

These models can also accurately describe changes in cell morphology with the
loss of actomyosin tension [53]. As mentioned above, cells cultured on two extreme
geometries (ie, a large, elongated rectangle and a small circle) have different nuclear
shapes. Specifically, the elongated cell shape generates high stresses due to
concentration of stress at the edges, causing the nucleus to be pushed down and
elongate. In the presence of blebbistatin, which is a myosin inhibitor, actomyosin
contractility is completely eliminated, and the nucleus reverts to its original shape. As
the blebbistatin is washed away, contractility again builds, and the nucleus will re-
compress. Importantly, these alterations in nuclear architecture also result in alterations
in gene expression [53]. Note that these findings do not necessarily contradict the
observations mentioned in Section 2 suggesting that the nucleus does not store elastic
energy [54], since loss of actomyosin tension will change the shape of the cell
membrane, which in turn may drive the rounding of the nucleus [59]. However, more
investigation is necessary to clearly establish the forces driving nuclear shape changes
under these contexts.

An important mediator of gene expression changes are transcriptional and

epigenetic regulators (eg, YAP, HDAC, and MKL), which shuttle between the nucleus and
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the cytoplasm in an actomyosin-dependent fashion. The active 3D chemomechanical
model described above is also able to describe MKL, HDAC, and YAP cytoplasm-nuclear
shuttling kinetics in response to contractility. The model focused on contractility-
dependent shuttling of HDAC and was trained using various shapes to parameterize the
change in nuclear import/export rates. The model was then used to predict the level of
F-actin and the amount of HDAC present in nucleus, which will result in a more
condensed, transcriptionally inactive chromatin [53]. This model was verified
experimentally by applying downward compressive forces to mouse fibroblast cells,
which reduced actomyosin contractility and increased import of HDAC3 into the
nucleus, potentially due to changes in nuclear pore structure [44]. This then triggered an
increase in heterochromatin content and inactivated gene expression [96]. The model
was also able to predict the reversal of chromatin condensation with the removal of the
compressive force [96]. Dr. Shenoy’s lab is currently developing a phase field modeling
approach to better understand the mechanisms driving changes in chromatin
condensation, or conversion from euchromatin to heterochromatin, and its spatial
localization. This approach has the potential to capture chromatin-lamina and
chromatin-chromatin interactions, interconversion between methylation and
acetylation, changes in the size of the chromatin within the nucleus, and the number of

lamin-associated domains.

Modeling the Role Of The Nucleus In Cell Motility
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Nuclear deformation during cell migration can also be described using a
chemomechanical model that describes changes in nuclear shape as the cell migrates
through tight constrictions [97, 98]. By altering the elastic properties of the nucleus, the
size of the constriction that cells are able to pass through can be predicted [99].
Furthermore, modeling approaches can also accurately describe cell migration through
dense 3D tissue networks via nuclear pistons and the formation of migration paths using
lobopodia [97, 98]. Specifically, these models captured the initiation of cell protrusions
in alginate gels through increasing intracellular pressure. As fluid moves into the
protrusion, mechanosensitive channels are activated, allowing calcium to enter the cell,
followed by water transport. The resulting expansion of the protrusion generates a

migration path for the cell.

5. Unanswered Questions and Controversies

To summarize, much progress has been made over the last 20 years in
understanding the importance of the mechanical properties of the nucleus and how
nuclear mechanics drives mechanobiological function. Still, as described above, a
comprehensive view of nuclear mechanics and mechanobiology is complex, and a
plethora of questions remain. In fact, the developments and discoveries made to date
have generated even more exciting questions regarding the fundamental science and
functional significance of nuclear mechanobiology. For example, as discussed in Sections
2 and 4 of this manuscript, competing hypotheses remain regarding energy storage (or

lack thereof) within the nucleus [13]. Additionally, recent advances in measuring cell
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traction forces suggest that perinuclear focal adhesions may have a more important role
in transmitting forces to the nucleus than focal adhesions located at the cell periphery,
which challenges the current general understanding in the field [83]. Mechanical
regulation of nuclear-cytosolic transport and the role of chromatin mechanics in
regulating gene expression are both poorly understood and of great interest, since they
have the potential to provide a direct link between mechanical stimulation and altered
cell behavior. Finally, continuous innovation of novel techniques for the visualization
and measurement of nuclear mechanics and mechanobiology (eg, SINK and tension
sensors) is required to answer such complex questions. These conceptual and technical
advances will provide a better understanding of the biological significance of nuclear

mechanics and mechanobiology as well as provide clarity for future directions.
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NOMENCLATURE

3D three-dimensional

DN-KASH dominant negative KASH

FRET fluorescence resonance energy transfer

HDAC histone deacetylase

LINC linker of nucleoskeleton and cytoskeleton

MKL megakaryoblastic acute leukemia factor-1

SB3C Summer Biomechanics, Bioengineering, and Biotransport Conference
SINK sensors from intranuclear kinetics

STORM stochastic optical reconstruction microscopy

YAP Yes-associated protein
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FIGURES

A B

Fig. 1 Nucleoskeleton: (A) STORM images of cell nuclei dual-color immunolabeled
against lamin A/C (red) and lamin B1 (green). White areas represent colocalization of
the two proteins. Rectangle in top image denotes zoomed area of the nucleus shown in
the bottom image. [Scale bars: Top, 2 um; Bottom, 500 nm.] (B) Simplified schematic
representation of A-type and B-type lamins illustrating interactions between

nucleoskeletal networks. From Nmeazi et al., PNAS 2019;116:10:4307-4315.
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Fig. 2 Image sequence of a breast cancer cell moving through constrictions that induce
nuclear rupture as seen by release of green fluorescent protein fused to a nuclear
localization sequence (NLS-GFP) into the cytoplasm (red arrows). Scale bar, 20 um. From

Denais et al., Science 2016;352(6283):353-358. Reprinted with permission from AAAS.
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Physical links between the cytoskeleton and nucleoskeleton

LINC (linker of nucleoskeleton to cytoskeleton) complex Integration of cellular mechanical elements
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Fig. 3 The physical connection between nucleus and cytoplasm can be modeled using a
combination of springs and dashpots to incorporate the complex viscoelastic nature of
the connection. The cytoskeleton can be modeled using a parallel combination of an
elastic microtubules (MT) with viscoelastic intermediate filaments (IF) and actin. The
nuclear envelope is mostly elastic, which connects the cytoskeletal elements with the
viscoelastic nucleoskeleton, which, in turn, connects with the complex viscoelastic

chromatin architecture. From Dahl et al., J Cell Sci 2011;124(5):675-678.
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Matrigel. Disruption of the LINC complex via expression of SUN proteins restricted to

Fig. 4 Fluorescent images of representative acini formed by breast epithelial cells in

the endoplasmic reticulum (SS-EGFP-SUN1L-KDEL) or KASH proteins lacking connection

with the cytoskeleton (EGFP-KASH2) cause the acini to form without an interior lumen.

Controls expressing constructs lacking the mutated proteins (EGFP and SS-EGFP-KDEL)
or further truncating the mutated KASH proteins to prevent interactions with

endogenous SUN proteins (EGFP-KASH2 AL) are unaffected. Reprinted from Current
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Fig. 5 Comparison of stress fiber formation/organization and nuclear shape between
experimental and chemomechanical models. From Alisafaei et al., PNAS

2019;116:27:13200-13209.
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Fig. 1

Fig. 2

Fig. 3

Figure Captions List

Nucleoskeleton: (A) STORM images of cell nuclei dual-color
immunolabeled against lamin A/C (red) and lamin B1 (green). White areas
represent colocalization of the two proteins. Rectangle in top image
denotes zoomed area of the nucleus shown in the bottom image. [Scale
bars: Top, 2 um; Bottom, 500 nm.] (B) Simplified schematic representation
of A-type and B-type lamins illustrating interactions between
nucleoskeletal networks. From Nmezi et al., PNAS 2019;116:10:4307-

4315.

Image sequence of a breast cancer cell moving through constrictions that
induce nuclear rupture as seen by release of green fluorescent protein
fused to a nuclear localization sequence (NLS-GFP) into the cytoplasm (red
arrows). Scale bar, 20 um. From Denais et al. Science 2016;352(6283):353-
358. Reprinted with permission from AAAS.

The physical connection between nucleus and cytoplasm can be modeled
using a combination of springs and dashpots to incorporate the complex
viscoelastic nature of the connection. The cytoskeleton can be modeled
using a parallel combination of an elastic microtubules (MT) with
viscoelastic intermediate filaments (IF) and actin. The nuclear envelope is
mostly elastic, which connects the cytoskeletal elements with the

viscoelastic nucleoskeleton, which, in turn, connects with the complex
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Fig. 4

Fig. 5

viscoelastic chromatin architecture. From Dahl et al., J Cell Sci
2011;124(5):675-678.

Fluorescent images of representative acini formed by breast epithelial
cells in Matrigel. Disruption of the LINC complex via expression of SUN
proteins restricted to the endoplasmic reticulum (SS-EGFP-SUN1L-KDEL)
or KASH proteins lacking connection with the cytoskeleton (EGFP-KASH2)
cause the acini to form without an interior lumen. Controls expressing
constructs lacking the mutated proteins (EGFP and SS-EGFP-KDEL) or
further truncating the mutated KASH proteins to prevent interactions
with endogenous SUN proteins (EGFP-KASH2 AL) are unaffected.
Reprinted from Current Biology, 29, Zhang et al, Current Biology,
Mechanical Stabilization of the Glandular Acinus by Linker of
Nucleoskeleton and Cytoskeleton Complex, 2826-2839, 2019, with
permission from Elsevier.

Comparison of stress fiber formation/organization and nuclear shape
between experimental and chemomechanical models. From Alisafaei et

al., PNAS 2019;116:27:13200-13209.
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