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INTRODUCTION

Estimates of the percentage of species “committed to extinction” by climate change
range from 15% to 37%. The question is whether factors other than climate need to
be included in models predicting species’ range change. We created demographic
range models that include climate vs. climate-plus-competition, evaluating their
influence on the geographic distribution of Pinus edulis, a pine endemic to the
semiarid southwestern U.S. Analyses of data on 23,426 trees in 1941 forest inven-
tory plots support the inclusion of competition in range models. However, climate
and competition together only partially explain this species’ distribution. Instead,
the evidence suggests that climate affects other range-limiting processes, includ-
ing landscape-scale, spatial processes such as disturbances and antagonistic biotic
interactions. Complex effects of climate on species distributions—through indirect
effects, interactions, and feedbacks—are likely to cause sudden changes in abun-

dance and distribution that are not predictable from a climate-only perspective.

KEYWORDS
climate, competition, complex systems, demography, disturbances, forest inventory, integral
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2004). Static climate envelope models (also called spe-
cies distribution models) rely heavily on this view and are

Climate has long been viewed as an essential determi-
nant of species’ geographic distributions. Ecologists
therefore expect that anthropogenic climate change
(IPCC 2013; Le Quére, 2018) will change species’ distri-
butions and ultimately drive some species to extinction
(Chen et al., 2011; Parmesan & Yohe, 2003; Thomas et al.,

widely used to project future species distributions and
make planning decisions to prevent extinction (Chen
etal., 2011; Parmesan & Yohe, 2003; Thomas et al., 2004).

At the same time, ecologists recognise potential lim-
itations of these models. One concern is whether addi-
tional factors need to be considered, beyond climate,
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to understand or predict species’ distributions. Long-
standing hypotheses about the causes of range limits,
beginning with Darwin (Brown, 1995; Darwin, 1859;
Dobzhansky, 1950; MacArthur, 1972; and others), pro-
pose that biotic interactions should be important, par-
ticularly where abiotic conditions are benign (e.g., in the
tropics). Hence, species’ distributions may be limited by
climate, by biotic interactions, or species may sort along
gradients of opposing forms of stress according to evo-
lutionary trade-offs, such that climate is limiting at one
range edge and competition at another (Austin, 1990;
Barton, 1993; Ettinger et al., 2011; Guisan & Zimmerman,
2000; Louthan et al., 2015; Sexton et al., 2009). Indeed,
Hutchinson (Hutchinson, 1957, 1978) highlighted the im-
portance of biotic interactions by distinguishing between
the fundamental vs. realised ecological niche, pointing
out that competitive biotic interactions can exclude spe-
cies from their fundamental climatic niche (Connell,
1961; Louthan et al., 2015). While the existence of these
biotic interactions at a small scale is undisputed, some
have argued that they are inconsequential at the scale of
geographic distributions (Copenhaver-Parry et al., 2017,
Gotelli et al., 2010; McGill, 2010). A few recent studies
have provided evidence that biotic interactions are im-
portant in shaping distributions (Belmaker, 2015; Gotelli
et al., 2010; Grady et al., 2019), but comparative studies
and reviews have found more evidence for climatic or
biophysical limits on ranges (Brown et al., 1996; Sexton
et al., 2009). Ecologists are thus faced with the expecta-
tion, from first principles, that biotic interactions should
be important, contrasting with sparse evidence that they
are. Successful prediction of species’ future distributions
depends on understanding the governing drivers, and at
present, our understanding is still limited.

A second concern is that static climate envelope mod-
els presume that the conditions needed to support a spe-
cies can be inferred from occurrence data, when in fact
species can be absent from suitable habitat because of
dispersal limitation (Davis & Shaw, 2001; Meier et al.,
2012; Pagel et al., 2020; Soberon, 2007) and present in
unsuitable habitat because of source-sink dynamics
(Pulliam, 2000). Thus the use of occurrence data to infer
the niche and predict distribution may be misleading,
including attempts to account for biotic interactions
using joint species distribution modelling (Pichler &
Hartig, 2020; Record et al., 2018; Warton, 2015). To ad-
dress this problem, the case has been made for a demo-
graphic approach to range modelling (Ehrlén & Morris,
2015; Huntley et al., 2010; Normand et al., 2014; Pagel &
Schurr, 2012; Schurr, 2012), which determines the condi-
tions under which population growth rate is expected to
be at or above the replacement level of 1.0, “permitting
the species to exist indefinitely” (Holt, 2009; Hutchinson,
1957, 1978; Peterson, 2011). That is, a demographic ap-
proach is distinguished by analysis of vital rates rather
than occurrence data to determine the suitability—i.e.,
survival, growth, and fertility. By combining vital rate

responses to environmental variation together in a pop-
ulation model, it is possible to project where popula-
tions are expected to decline, increase, or be stable, and
the species to therefore be present or absent (Figure 1).
There are few examples of demographic range modelling
(Diez et al., 2014; Merow et al., 2011, 2014; Pagel et al.,
2020; Pironon, 2017), and none, to our knowledge, have
included effects of competition (though see dynamic veg-
etation models; Snell et al., 2014).

Here we evaluate how climate and competition influ-
ence the demography and hence the expected geographic
distribution of a tree species. We test two alternative hy-
potheses, which we refer to as hypothesis C1 (climate-
only) and hypothesis C2 (climate-plus-competition). We
focused on a tree species because extensive demographic
data can be derived from national forest inventories.
Specifically, the study organism is Pinus edulis (Engelm.),
two-needle or Colorado pifion, a small-statured pine en-
demic to the semiarid Colorado Plateau in the southwest-
ern U. S. This species may serve as a leading indicator of
climatically driven change in the distribution of forest
ecosystems because of its position at the arid edge of the
forest biome and its documented sensitivity to climate
(Adams, 2009; Allen & Breshears, 1998; Breshears, 2009;
Breshears et al., 2018; Clifford et al., 2013; Williams,
2013). Because the elevation is recognised by ecologists
as an important gradient that organises abiotic and bi-
otic features of the environment (Daubenmire, 1943;
Merriam, 1890; Shreve, 1922; Whittaker, 1967), climate
and competition were evaluated as factors limiting
P. edulis across elevation.

Our analysis follows three lines of evidence. First, we
evaluated the response of vital rates to environmental
gradients (Figure 1, Step 1). Hypotheses C1 and C2 lead
to contrasting predictions about how vital rates should
vary across environmental gradients (Figure 2a—c). If
climate limits both edges of the geographic distribution
(hypothesis C1), vital rates should decline at the margins
of the species’ climatic range. This could be in response
to a single limiting climate variable (dashed orange lines,
Figure 2a, b), or in response to more than one limiting
climate variable (solid orange lines, Figure 2a, b). For ex-
ample, if temperature alone is responsible for range limits
through its effect on one or more vital rates, there should
be a unimodal response to temperature variation with
elevation (dashed orange line, Figure 2b). Alternatively,
precipitation may limit one or more vital rate at the low-
elevation, dry edge of P. edulis’ range (solid orange line,
Figure 2a) whereas temperature may be limiting at the
high-elevation, cold edge of P. edulis’ range (solid orange
line, Figure 2b). In addition, under hypothesis Cl1, vital
rates should be unresponsive to competition (solid or-
ange line, Figure 2c). Under hypothesis C2, vital rates
should decline with climate at one edge and with com-
petitive pressure at another edge (green, Figure 2a—c).
We do not evaluate the hypothesis that biotic interac-
tions limit both edges of P. edulis’ distribution because
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FIGURE 1 Simplified representation of the pipeline of analysis, showing the types of data and analysis used for each step and the outcome

of each step. Step 1, vital rate modelling with generalised additive models (i.e., the influence of environmental drivers on vital rate variation);
Step 2, combination of vital rate models into a demographic model, here shown as a heat map of the probability distribution of tree size at

time t+1, conditional on its size at time t and its survival to time t+1, to predict the asymptotic population growth rate; Step 3 spatial projection
asymptotic population growth rate (1) from the demographic model and maps of climate or climate and competition—where predicted A is at or
above the replacement level of 1.0, population persistence is expected, and the species is expected to be present rather than absent.; and, Step 4,
perturbation analyses of the influence of vital rates and environmental drivers on 4

its lower-elevation distribution limit marks the climatic
(arid) limit of the tree growth form and the forest biome.
We tested these hypotheses using observations on
>20,000 trees sampled in almost 2000 forest inventory
plots using vital rate models of growth, mortality, and
recruitment as a function of climatic factors alone (hy-
pothesis CI) vs. climate in combination with the compe-
tition proxy basal area (hypothesis C2).

Second, we evaluated the fit of two demographic
range models (DR Ms), reflecting hypotheses CI vs. C2,
to P. edulis occurrence data. That is, we combined the
statistical vital rate models (survival, growth, and fer-
tility) for C1 and C2 described above into a population
model known as an integral projection model (IPM), and
from the IPM, created maps of P. edulis’ expected popu-
lation growth rate (1), using maps of climate (hypothesis
Cl) or climate and competition (hypothesis C2; Figure 1,
Steps 2 and 3). The expectation is that the probability

of occurrence of P. edulis should increase with DRM-
predicted A, and in particular, that a high probability
of occurrence is expected where predicted 1 > 1.0, the
threshold above which individuals replace themselves
on average and hence populations should persist. With
this analysis we ask, do demographic predictions based
on hypothesis Cl or C2 better match P. edulis’ observed
distribution?

Third, we used perturbation analyses (Caswell, 2001)
to probe the causes of range limits. Perturbation analyses
examine the effect of small changes in vital rates or en-
vironmental drivers on A. These analyses showed which
vital rates have the greatest proportional influence on 4,
and which vital rates and underlying environmental driv-
ers contribute the most to areas of mismatch between pre-
dicted population growth rate and observed geographic
distribution (Figure 1, Step 4). This combination of de-
mographic analyses—vital rate responses inferred from
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FIGURE 2 Responses of Pinus edulis vital rates to climate and competition. (a—c) Predicted responses to gradients of precipitation,
temperature, and tree basal area under hypothesis C1 (orange; climate limits both range edges) vs. C2 (green; climate and competition each
limit one range edge). Under hypothesis C1, just one vs. more than one climate variable might be limiting (dashed vs. solid orange lines,
respectively). Panels (d-1) shows the inferred response of individual tree growth (d—f), survival (g-i), and the rate of recruitment of new trees
(j-1) to mean cumulative annual precipitation (MAP), mean annual temperature (MAT), and basal area of all live trees per forest inventory
plot. Comparisons between predicted (a—c) and inferred (d-1) vital rate responses can thus be made within each column. Inferred response
curves in panels (d-1) are shown across the full range of environmental conditions observed in the study domain. Those conditions not
occupied by P. edulis are shaded grey. Responses to MAP and MAT are shown for the 25th (dashed line), 50th (solid line), and 75th (dotted
line) percentiles of the other climate variable, illustrating MAT-MAP interactions. Binned averages of the data are overplotted on the model-
inferred response, with symbol size indicating the number of trees per bin

thousands of individuals and locations, the formation of
a structured population model that includes the effects
of climate and competition, and perturbation analyses of
that demographic model—allowed us to test two classic
hypotheses for the causes of range limits in a novel and
rigorous way. This is the first hypothesis-driven test of
process-based distribution models that we are aware of,
and the first time that a demography-based model of a

species’ distribution has been used to decompose the in-
fluences of climate and competition on model-predicted
performance. Based on our results, we suggest how the
two hypotheses may be reconciled to form a more com-
plex and dynamic explanation for species distributions
that is consistent with the data. Finally, we indicate the
implications of this updated hypothesis. While climate
is a dominant and overarching influence on species
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geographic distributions, it is likely that climate-only
models will fail to capture range dynamics, particularly
in cases where climate has both direct and indirect ef-
fects on vital rates, the latter involving additional range-
limiting processes. Climate-driven but complex transient
range dynamics, including sudden changes in abundance
and distribution, may lead the loss of biodiversity to be
much greater than what is predicted from static, climate-
only models.

MATERIALS AND METHODS
Demographic, climate, and competition data

We derived demographic data on P. edulis—including
tree survival, growth, and recruitment—from the
U.S.D.A. Forest Service's Forest Inventory Analysis da-
tabase (see forest inventory data, Appendix S1), leading to
23,069 records of survival and 18,122 records of diameter
growth. Counts of new trees that reached the minimum
size threshold of 2.54 cm were obtained from 1872 plots
where P. edulis was present.

Thesevitalrates—survival, growth, and recruitment—
were predicted as a function of climate-only (hypothesis
Cl) or climate and competition (hypothesis C2; step | in
Figure 1). Historical climate data were extracted from
the PRISM Climate Group web archive (http:/prism.
oregonstate.edu/, data set AN8Im, 4-km resolution), in-
cluding monthly temperature, vapour pressure deficit
(VPD), and precipitation, as well as 1981-2010 climate
normals. A list of the 72 climate variables tested in vital
rate models is found in Table S1 (Appendix Sl).

Across the study domain, temperature declines and
precipitation increases with increasing elevation (Figure
Sla, b, see Appendix Sl). With more precipitation,
the basal area of living trees increases (Figure Slc in
Appendix S1). We used the latter, the basal area of liv-
ing trees (all species) on a plot (BALIVE; from the FIA
Condition Table), as a proxy for the combined effect of
inter- and intra-specific competition for light. Soil mois-
ture is another important limiting factor across the study
domain, but because both supply (precipitation) and de-
mand (basal area of live trees) increase with elevation, it
is difficult to say whether basal area is a good proxy for
soil moisture competition.

Fitting demographic range models

We created demographic range models (DRMs) by first
creating statistical models of how vital rates respond to
environmental drivers (step 1 in Figure 1). These vital
rate models were then combined together to create in-
tegral projection models (IPMs; step 2 in Figure 1).
An IPM consists of a kernel, a function that maps the
state (e.g., size) of an individual in the present to its state

(along with those of offspring) in the next time step. The
IPM kernel is based on estimates of vital rates (survival,
growth, and reproduction) as a function of at least one
continuous state variable (Easterling et al., 2000; Ellner
et al., 2016; Ellner & Rees, 2006)—here, tree size, meas-
ured as the diameter at root collar—and potentially other
predictors (i.e., the environmental drivers). See detailed
methods in Appendix S1 under integral projection model.
These IPMs were constructed using either climate-only
models of vital rates (hypothesis C1) or vital rate models
that included climate and competition as predictors (hy-
pothesis C2), both with interactions between the climate
variables. Other examples of environmentally sensitive
IPMs include Coulson et al. (2011) and Simmonds et al.
(2020).

We used generalised additive models (GAMs) to
predict vital rates as a function of covariates (step 1 in
Figure 1), as in Ozgul et al. (2010), with plot as a ran-
dom effect influencing the model intercept to capture
site-level variation in vital rates caused by unidentified
factors (e.g., soil characteristics). GAMs were chosen be-
cause they can be fit flexibly to data, with extrapolation
based on the response at the edge of the data, rather than
imposed by a particular functional form (Harrell, 2015).
The one exception to this was the response of survival to
temperature, which extrapolated poorly under a GAM,
and instead had a reasonable response using a linear
model without a quadratic term (see additional detail in
vital rate models, Appendix Sl).

To decide which climate variables should enter vital
rate models, we used a forward stepwise approach
guided by Akaike's Information Criterion (AIC). We
first selected between 30-year normals of mean annual
climate variables vs. mean annual climate specific to
the census interval. We then substituted in 3 or 4 sea-
sonal variables, and finally added climate anomalies.
Climate normals of mean annual precipitation and
temperature were the best predictors of variation in
growth, likely a result of the coarse temporal resolu-
tion of forest inventory data (i.e., growth is measured
at ~10-year intervals). Seasonal variables were better
predictors of survival and recruitment (AAIC of 21 and
52, for survival and recruitment, respectively), but these
more complex models also resulted in large uncertainty
where data were sparse (Figure S5), hence we chose to
use 30-year normals of mean annual precipitation and
temperature as covariates in all three vital rate models,
to avoid overfitting (see additional detail in vital rate
models, Appendix SI).

Geographic range projections

We created maps of expected population growth rate
based on the two DRMs described above (C1 vs. C2)
and maps of climate and competition covariates (step
3 in Figure 1). Climate normals (monthly average
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temperature and monthly precipitation) were extracted
from PRISM, then rescaled to 16-km resolution.
Monthly values were summed or averaged to form mean
annual precipitation and temperature, respectively. We
created a raster of tree basal area using a random forest
model trained with basal area observations from all FIA
plots in the study domain as well as climate predictors
(mean annual temperature and precipitation) and spa-
tial coordinates (see under basal area map in Appendix
SI). IPM kernels were then constructed for each grid
cell on the landscape by forcing vital rate models with
grid cell-specific climate data only (hypothesis Cl) or
climate and competition data (hypothesis C2). The as-
ymptotic population growth rate, A, was derived as the
dominant eigenvalue of the discretised IPM. We used
bootstrapping to estimate 95% confidence intervals for
A (see integral projection model in Appendix S1). This
analysis answers the question—what is the expected as-
ymptotic population growth rate, given certain hypoth-
eses (C1 vs. C2)?—indicating whether the population is
expected to decline, be stable, or increase, under speci-
fied, static conditions of climate and the basal area of
live trees.

Comparison of DRM-predicted vs. observed
distribution

We used logistic regression with a cloglog link function
to test the ability of A from DRMs (CI vs. C2) to pre-
dict the observed probability of presence of P. edulis in
FIA plots. Occurrence of P. edulis should increase with
increasing DRM-predicted 4. Deviance from these logis-
tic regressions was used to compare the performance of
DRMs C1 vs. C2. While DRM C2 is slightly more com-
plex than Cl, the presence-absence validation data are
independent of the data used for fitting the vital rate
models, so there is no need to adjust for complexity in
this model comparison. We also plotted residuals from
the logistic regressions against each underlying driver
(climate and competition) to examine the environmental
conditions under which the fit between DRM-predicted
4 and occurrence is poorest.

Perturbation analyses

We used perturbation analyses to examine which vital
rates and environmental drivers are responsible for
changes in A across environmental gradients and across
space (step 4 in Figure 1). First, we used elasticity analy-
sis (Caswell, 2001) to assess the proportional sensitiv-
ity of A to changes in survival-growth vs. recruitment
across elevation—i.e., using average climate and com-
petition values associated with elevation. We then used
a life table response experiment (Caswell, 2001) to de-
compose variation in A across the landscape into the

contributions of the three vital rates and three drivers
of those vital rates. The first step was the calculation of
A under the average environmental conditions where P.
edulis is present (4,,,). We then found the difference in A
between each grid cell on the landscape (4, ,) and 4,,,,
denoted AA(= A, ; — A4e)- Following the methods of
Caswell (2001) for a categorical life table response ex-
periment, we then decomposed A4, into the contribution
made by each vital rate, which is determined by a) the
difference between the value of the vital rate under the
average conditions where P. edulis is present vs. its value
in that cell and b) the sensitivity of A to that vital rate.
This same approach was used to decompose A4; into the
contributions of each environmental driver (tempera-
ture, precipitation, and basal area). See Perturbation
analyses in Appendix SI.

Because the DRMs predicted A greater than the re-
placement value of A = 1.0 at high elevations, we ran an
additional perturbation analysis to determine how much
growth vs. survival vs. recruitment would have to decline
for 4 to be <1.0 at the observed upper-elevation limit of
P. edulis. We used expected values of temperature, pre-
cipitation, and basal area at the upper-elevation limit to
calculate expected vital rates. We then decreased each
vital rate from 100 to 0 percent and recalculated 4 for
each level of perturbation.

Analyses were conducted in R v. 3.6.1 (R Core Team,
2019). Scripts are available through GitHub at https:/
github.com/emilylschultz/DemographicRangeModel.

RESULTS
Vital rate responses to climate and competition

Responses of P. edulis vital rates to competition and cli-
mate followed the predictions of hypothesis C2 (green
in Figure 2a—c). Growth and recruitment increase in re-
sponse to more precipitation (Figure 2d, j), and growth
and survival decline in response to warmer tempera-
tures (Figure 2e, h). Since temperature declines and
precipitation increases with increasing elevation, this
indicates climate is stressful at low elevations and be-
nign at high elevations both with respect to temperature
and precipitation. These climate effects were consist-
ent between climate-only vs. climate-plus-competition
models (compare Figure 2 to Figure S6). In addition,
greater basal area of live trees reduced tree-level growth
(Figure 2f) and, to a lesser degree, recruitment of new
trees (Figure 21), consistent with negative effects of com-
petition. The surprising increase of survival at both
lowest and highest values of mean annual precipitation
(Figure 2g) could be the effect of a confounding variable
not included in survival models, or it might be caused
by local evolution of longevity associated with extreme
drought-tolerance at the low-elevation, dry limit of P.
edulis’ distribution, combined with benign precipitation
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conditions at the upper-elevation, mesic limit (see vital
rate models in Appendix Sl).

Fit of demographic range models to
occurrence data

Population growth rate (1) predicted by the climate-
plus-competition (C2) DRM fit the data on P. edulis’
occurrence in forest inventory plots better than A from
the climate-only DRM, improving the log likelihood
by ~190 units (Figure 3a vs. b). Both DRMs do well
in terms of predicting a low population growth rate
(1) where the probability of P. edulis’ presence is low
(Figure 3a, b), which corresponds to warm, dry parts
of the study domain below 1000 m (Figure 4a, b). In this
same (warm-arid) environmental space, residuals of the
logistic regressions are small, indicating a good fit of 4
to occurrence data (Figure 3c, d). The predictive per-
formance of both DRMs is poorest in regions with high
precipitation (Figure 3c), low temperature (Figure 3d),
and at highest values of predicted A (Figure 3a, b). Both
DRMs predict a population growth rate that increases
with elevation, rapidly at first, then reaching a plateau
slightly above the replacement value of 1.0 (Figure 4d
and Figure S7d).
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Perturbation analyses

Elasticity analysis showed that the survival-growth sub-
kernel has by far the greatest influence on 1 across all
elevations (Figure S8a), as expected for a long-lived spe-
cies. The life table response experiment further revealed
that survival (not growth or recruitment) is chiefly re-
sponsible for low predicted 4 below 1000 m (pink in
Figure 5a). This is caused by higher temperatures, which
make a strong negative contribution to predicted A below
1000 m (pink in Figure 5b). Survival is also responsible
for higher-than-average predicted population growth
rates (green in Figure 5a). High survival is driven by
low temperature and high precipitation, which make
the greatest positive contributions to A4, (Figure 5b). At
high elevation, where the fit of the DRM to occurrence
data deteriorates, recruitment would have to decline by
50% for 4 to be equal to the replacement rate of 1.0, but
survival would only have to decline by 2% (Figure S8b,

c).

DISCUSSION

Demographic analyses revealed greater support for the
hypothesis that both climate and competition influence
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FIGURE 3 Validation of the two demographic range models (DRMs) of Pinus edulis to presence-absence data. (a and b) Probability of
occurrence in forest inventory (FIA) plots, as a function of population growth rates (1) from climate-only (a) and climate-plus-competition
(b) DR Ms, fit by a logistic regression. (c—e) Deviance residuals of the logistic regressions in panels (a and b), as a function of mean annual
precipitation (c), mean annual temperature (d), and tree basal area (¢). Smaller absolute residuals indicate a better fit of model predictions to
observed occurrence. Residuals in panels (c—e) are shown across the full range of environmental conditions observed in the study domain,
illustrating the fit of model predictions extrapolated beyond the range of conditions occupied by P. edulis (grey shading)
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FIGURE 4 Population growth rate (1) of Pinus edulis, from a demographic range model (DRM) including both climate and competition
as predictors (hypothesis C2). (a) Map of 4, with points showing the location of forest inventory plots where P. edulis is present. Note that
changes in 4 are an order of magnitude smaller at high elevation than at low elevation, hence the colour scale above the replacement value
of 1.0 is greatly expanded compared to the scale below 1.0. (b) Distribution of 4 in climate space (mean annual temperature vs. mean annual
precipitation), with contours showing the frequency of FIA plots containing P. edulis. (c and d) 4 as a function of basal area of trees (c) and
elevation (d). For comparison with the climate-only model, see Figure S7

the distribution (C2). First, vital rate responses matched
the predictions from hypothesis C2 (green in Figure 2a—
¢) rather than hypothesis Cl. Vital rates are negatively
impacted by warm-dry conditions at low elevation and
by competition at cool-mesic, high-elevation sites, indi-
cating that climate and competition form opposing gra-
dients of stress with elevation. Second, the population
growth rate predicted by the climate-plus-competition
DRM had a better fit to P. edulis presence-absence data
in forest inventory plots.

Though the difference in fit to presence-absence data
between the two demographic range models is substan-
tial (AAIC~190), the patterns of fit are similar (Figure 3).
For both DRMs, the fit is best at low values of A and
worst at high values of A (Figure 3a, b). Perturbation
analyses identified that low values of 4 are caused by low
predicted survival (Figure 5a), which in turn is caused
by high average temperature (Figure 5b). This indi-
cates that climate limits population growth rate at the
low-elevation, warm and dry edge of P. edulis’ distribu-
tion through temperature-driven mortality. In fact, our
range-wide demographic analysis predicts considerable
range retraction from this edge of P. edulis’ distribution,
based on data spanning the pulse of P. edulis mortality
in the early 2000’s attributed to warm drought: the model
indicates 4 below the replacement level of 1.0 up to an el-
evation of approximately 1800 m, more than 300 m above
the current lower-elevation limit of P. edulis’ distribution
(Figure 4d), consistent with other studies documenting

or predicting climate-induced range change in P. edulis
(Adams et al., 2009; Allen & Breshears, 1998; Breshears
et al., 2009; Clifford et al., 2013; Williams et al., 2013).
Warming temperatures (U.S. Global Change Research
Program et al., 2017) are already impacting this species’
distribution.

However, no upper-elevation range boundary is
predicted by the DRMs: 4 only increases with eleva-
tion, never returning below the replacement level of
1.0, even after P. edulis’ observed upper-elevation
limit is reached (grey shading, Figure 4d). Both DRMs
predict high A in high-elevation, cool-mesic loca-
tions where P. edulis is in fact absent (Figure 4a and
Figure S7a). This adds to a growing body of evidence
of mismatches between predicted demographic per-
formance and observed occurrence (Bohner & Diez,
2020; McGill, 2012; Pagel et al., 2020; Thuiller, 2014).
Ours is the first study in which perturbation analyses
offer an explanation for this mismatch. The life table
response experiment showed that survival is responsi-
ble for high predicted values of 1 (Figure 5a), driven by
lower average temperatures and higher average precip-
itation (Figure 5b), with negligible contribution from
the competition. This is because competition nega-
tively affects two vital rates with little impact on 4, in-
dividual tree-level growth and recruitment (Figure 2f
and 1), and does not affect survival (Figure 2i), the
vital rate with the greatest impact on 4. The finding
that competition is not a detectable agent of mortality
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in P. edulis is corroborated by a recent review of 21
studies of mortality in this species, covering a wide
range of methodologies and scales (Meddens, 2015).
As a consequence, the negative effect of increasing
competition, while detectable, is weak compared to

Note that the colour scales have asymmetric limits

the positive effects of temperature and precipitation
with increasing elevation, and is insufficient to limit
the species’ predicted occurrence (1 > 1.0) at cooler,
wetter locations. This adds support to the conclusion
of the most recent review of evidence on range limits



CLIMATE-DRIVEN, BUT DYNAMIC AND COMPLEX? A RECONCILIATION OF

10|

COMPETING HYPOTHESES FOR SPECIES’ DISTRIBUTIONS

(Sexton et al., 2009): climate and competition both
have detectable effects, but the effect of competition is
weak relative to climate.

If climate and competition are both important factors
influencing vital rates, but they do not suffice to explain
the distribution of P. edulis, how should we understand
its geographic distribution? Dispersal limitation is often
invoked to explain a species’ absence in suitable habitat
(Davis & Shaw, 2001; Meier et al., 2012; Pagel et al., 2020;
Soberon, 2007), and it could well be the reason for ab-
sence of P. edulis at a larger scale, i.e., outside the study
domain. There is evidence for ongoing northward migra-
tion of pifions and other pines in western North America
(Cole et al., 2013; Jackson et al., 2005; Kaye et al., 2010).
But it is an unconvincing explanation for the absence of
P. edulis at higher elevations within the study domain,
given bird dispersal of pifion seeds and the short dis-
tances over which elevation varies in this region.

We propose that the key to understanding P. edulis’
distribution, and perhaps species distributions more gen-
erally, lies in recognising the important grain of truth
in the two classic hypotheses. Our results suggest that
climate is the most important factor determining the dis-
tribution of P. edulis, while also indicating that climate

alone cannot explain its distribution. It is possible to rec-
oncile these two results with a new hypothesis: climate
is such an important driver across scales that it influ-
ences other range-limiting processes—including spatial
processes such as disturbances and disease—potentially
leading to complex range dynamics that are not predict-
able from a climate-only perspective (Figure 6).

To unpack this hypothesis for species’ distributions,
we first reconsider the evidence for P. edulis, as a case
study that illustrates the general mechanisms at work.
Because P. edulis’ population growth rate is most sen-
sitive to survival rate, an additional agent of mortality
could do much to explain the mismatch between pre-
dicted population growth rate and observed distribu-
tion. Indeed, at high elevation, recruitment would have
to decline by 50% for 4 to be equal to the replacement
rate of 1.0, but survival would only have to decline by
2% (Figure S8b, c). Fire could be that missing source of
mortality. Pinus edulis belongs to the subgenus Strobus,
a clade of stress-tolerating pines without evolutionary
adaptations to fire, contrasting the repeated evolu-
tion of fire adaptations in subgenus Pinus (He et al.,
2012; Keeley, 2012; Keeley & Zedler, 1998; Millar &
Richardson, 1998; Pausas, 2015). Forest inventory data

cross-scale
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FIGURE 6 Conceptual models of species’ distributions. (a) Model of the processes influencing the geographic distribution of Pinus edulis,
illustrating three key features: (1) positive direct effects of local mean annual precipitation on vital rates (green arrow) vs. negative indirect
effect mediated through the feedback between plant community and fire regime (red arrows), (2) weak negative direct effect of competition
on P. edulis, and (3) cross-scale interaction between acute, regional-scale drought and attack by the bark beetle, Ips confusus. (b) A general,
conceptual model of the complex effects of climate, biotic community, disturbances, and pathogens on a focal species’ geographic distribution
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confirm this intolerance of fire: mortality of P. edulis
exposed to surface and crown fire is high, ~54.9% and
~96.5%, respectively. But forest inventory data further
indicate the fire was rare in the period of study (2000—
2017), affecting less than 2% of plots and trees (and
vital rate models were nearly identical with vs. without
these fire-killed trees; Figure S6c, d). Historically, fire
would have constrained P. edulis’ distribution at the ec-
otone between fire-infrequent pinon-juniper woodlands
and fire-frequent Pinus ponderosa forest (Allen, 1989,
2007; Swetnam & Baisan, 1996), as well as P. edulis’
abundance in piflon-juniper savannas (Margolis, 2014).
Indeed, the last ~100 years of livestock grazing and fire
suppression have led to increases in the abundance and
distribution of pinons (Margolis, 2014; Miller & Tausch,
2001; Romme, 2009), consistent with the hypothesis
that fire plays a role in limiting P. edulis. We suggest
that this fire-intolerant species finds refuge from fire
on drier parts of the landscape, where productivity of
fine fuels is insufficient for fire spread. That is, while
the direct effects of precipitation on P. edulis vital rates
are positive, its indirect effects are negative (Figure 6a),
through its influence on the landscape-scale process
of fire (Bowman et al., 2015; Staver et al., 2011a, b;
Staver & Levin, 2012), tipping the balance between fire-
infrequent pifion-juniper woodlands (Romme et al.,
2009) and fire-frequent forests and savannas.

The absence of P. edulis from wetter parts of the land-
scape (see grey shading, Figure 2d) could easily have been
mistaken for competitive displacement (for example, by a
joint species distribution model). That is, on the basis of
occurrence data, the replacement of one pine (P. edulis)
by another (P. ponderosa) with increasing mean annual
precipitation could have been interpreted as competi-
tive displacement. But our demographic analysis showed
that the effect of the competition is negligible on the vital
rate that matters most to P. edulis’ population growth
rate (survival), and the direct effects of precipitation on
its vital rates are positive. Intolerance of fire, instead, is
an explanation for the upper-elevation limit of P. edulis’
distribution that is consistent with the demographic in-
ference that climatic and competitive conditions are suit-
able there (1 > 1.0).

Even at the low-elevation limit of P. edulis’ distri-
bution, which our demographic analysis confirms has
the signature of climate limitation, an interaction be-
tween climate and another process (insect outbreak)
has been identified as a driver of range change (Allen,
2007; McDowell, 2011; Shaw et al., 2005). Regional-scale
drought in the early 2000’s interacted with attack by the
bark beetle Ips confusus (Figure 6a), propagating from
individual trees to landscape-scale irruption, leading to
widespread P. edulis mortality (Allen, 2007, McDowell
et al., 2011; Shaw et al., 2005). A stochastic analysis of
the impact of climate, fire, and insect outbreaks on the
expected geographic distribution of P. edulis is a criti-
cal next step to evaluate the hypothesis that indirect in

addition to direct effects of climate, or cross-scale inter-
actions between climate and other factors are important
to be able to describe range dynamics.

The case of Pinus edulis illustrates mechanisms
that may shape species’ distributions more generally
(Figure 6b). There are two notable components to this
hypothesis for species’ distributions. First is that spe-
cies distributions are influenced by processes at the
landscape and macrosystem scales (Franklin, 2010;
Heffernan, 2014)—fire, insect outbreaks, and large-
scale drought, in the case of P. edulis—in addition to
the individual, population, and community scales at
which niches and distributions have historically been
conceived and discussed (Elton, 1927; Grinnell, 1917;
Hutchinson, 1957, 1978). Second is the idea that cli-
mate is important at all scales and affects other range-
limiting processes, operating at a variety of scales. This
potentially leads to a complex systems structure, as
described by Allen, (2007); Peters, (2004); Peters and
Havstad, (2006); Heffernan et al. (2014); Soranno, (2014)
for a variety of ecological systems. Under this hypoth-
esis, climate influences species’ distributions not only
through its direct effects on vital rates, but also through
indirect effects, interactions, or feedbacks involving
other range-limiting processes (Figure 6b). With chang-
ing climate, this has the potential to lead to complex
range dynamics, including threshold behaviour that
manifests as sudden changes in abundance or distribu-
tion. In the example of P. edulis, the interaction between
large-scale drought stress and an (initially) small-scale,
antagonistic biotic interaction (insect attack) led to
such threshold behaviour (Allen, 2007; Heffernan et al.,
2014)—Ilandscape- and regional-scale irruption, with
widespread tree mortality.

This climate-driven, complex systems hypothesis for
species’ distributions offers a candidate explanation for
the rise in mass mortality events (MME’s) in certain an-
imals (birds, fishes, and marine invertebrates)—defined
as rapidly occurring catastrophic demographic events
that punctuate background mortality levels—based on
a survey of 727 published examples of such events (Fey,
2015). MME’s were frequently attributed to disease and
climate (Fey et al., 2015), a combination that can even
lead to sudden extinction (e.g., the Monteverde golden
toad; Anchukaitis & Evans, 2010). The significance is
that while species distributions are strongly determined
by climate, range dynamics, especially a species’ per-
sistence vs. extinction with climate change, may not be
predictable from climate envelope-type models. The
task at hand then is to evaluate to what degree or in
what organisms this climate-driven, complex systems
hypothesis explains dynamic patterns of abundance and
distribution. If this hypothesis holds true, we should
expect further global weirding of the ecology of planet
Earth—sudden changes in species’ abundance and
distribution—accompanying the weirding of the climate
system.
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