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INTRODUCTION

Climate has long been viewed as an essential determi-
nant of species’ geographic distributions. Ecologists 
therefore expect that anthropogenic climate change 
(IPCC 2013; Le Quéré, 2018) will change species’ distri-
butions and ultimately drive some species to extinction 
(Chen et al., 2011; Parmesan & Yohe, 2003; Thomas et al., 

2004). Static climate envelope models (also called spe-
cies distribution models) rely heavily on this view and are 
widely used to project future species distributions and 
make planning decisions to prevent extinction (Chen 
et al., 2011; Parmesan & Yohe, 2003; Thomas et al., 2004).

At the same time, ecologists recognise potential lim-
itations of these models. One concern is whether addi-
tional factors need to be considered, beyond climate, 
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Abstract

Estimates of the percentage of species “committed to extinction” by climate change 

range from 15% to 37%. The question is whether factors other than climate need to 

be included in models predicting species’ range change. We created demographic 

range models that include climate vs. climate-plus-competition, evaluating their 

influence on the geographic distribution of Pinus edulis, a pine endemic to the 

semiarid southwestern U.S. Analyses of data on 23,426 trees in 1941 forest inven-

tory plots support the inclusion of competition in range models. However, climate 

and competition together only partially explain this species’ distribution. Instead, 

the evidence suggests that climate affects other range-limiting processes, includ-

ing landscape-scale, spatial processes such as disturbances and antagonistic biotic 

interactions. Complex effects of climate on species distributions—through indirect 

effects, interactions, and feedbacks—are likely to cause sudden changes in abun-

dance and distribution that are not predictable from a climate-only perspective.
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to understand or predict species’ distributions. Long-
standing hypotheses about the causes of range limits, 
beginning with Darwin (Brown, 1995; Darwin, 1859; 
Dobzhansky, 1950; MacArthur, 1972; and others), pro-
pose that biotic interactions should be important, par-
ticularly where abiotic conditions are benign (e.g., in the 
tropics). Hence, species’ distributions may be limited by 
climate, by biotic interactions, or species may sort along 
gradients of opposing forms of stress according to evo-
lutionary trade-offs, such that climate is limiting at one 
range edge and competition at another (Austin, 1990; 
Barton, 1993; Ettinger et al., 2011; Guisan & Zimmerman, 
2000; Louthan et al., 2015; Sexton et al., 2009). Indeed, 
Hutchinson (Hutchinson, 1957, 1978) highlighted the im-
portance of biotic interactions by distinguishing between 
the fundamental vs. realised ecological niche, pointing 
out that competitive biotic interactions can exclude spe-
cies from their fundamental climatic niche (Connell, 
1961; Louthan et al., 2015). While the existence of these 
biotic interactions at a small scale is undisputed, some 
have argued that they are inconsequential at the scale of 
geographic distributions (Copenhaver-Parry et al., 2017; 
Gotelli et al., 2010; McGill, 2010). A few recent studies 
have provided evidence that biotic interactions are im-
portant in shaping distributions (Belmaker, 2015; Gotelli 
et al., 2010; Grady et al., 2019), but comparative studies 
and reviews have found more evidence for climatic or 
biophysical limits on ranges (Brown et al., 1996; Sexton 
et al., 2009). Ecologists are thus faced with the expecta-
tion, from first principles, that biotic interactions should 
be important, contrasting with sparse evidence that they 
are. Successful prediction of species’ future distributions 
depends on understanding the governing drivers, and at 
present, our understanding is still limited.

A second concern is that static climate envelope mod-
els presume that the conditions needed to support a spe-
cies can be inferred from occurrence data, when in fact 
species can be absent from suitable habitat because of 
dispersal limitation (Davis & Shaw, 2001; Meier et al., 
2012; Pagel et al., 2020; Soberón, 2007) and present in 
unsuitable habitat because of source-sink dynamics 
(Pulliam, 2000). Thus the use of occurrence data to infer 
the niche and predict distribution may be misleading, 
including attempts to account for biotic interactions 
using joint species distribution modelling (Pichler & 
Hartig, 2020; Record et al., 2018; Warton, 2015). To ad-
dress this problem, the case has been made for a demo-
graphic approach to range modelling (Ehrlén & Morris, 
2015; Huntley et al., 2010; Normand et al., 2014; Pagel & 
Schurr, 2012; Schurr, 2012), which determines the condi-
tions under which population growth rate is expected to 
be at or above the replacement level of 1.0, “permitting 
the species to exist indefinitely” (Holt, 2009; Hutchinson, 
1957, 1978; Peterson, 2011). That is, a demographic ap-
proach is distinguished by analysis of vital rates rather 
than occurrence data to determine the suitability—i.e., 
survival, growth, and fertility. By combining vital rate 

responses to environmental variation together in a pop-
ulation model, it is possible to project where popula-
tions are expected to decline, increase, or be stable, and 
the species to therefore be present or absent (Figure 1). 
There are few examples of demographic range modelling 
(Diez et al., 2014; Merow et al., 2011, 2014; Pagel et al., 
2020; Pironon, 2017), and none, to our knowledge, have 
included effects of competition (though see dynamic veg-
etation models; Snell et al., 2014).

Here we evaluate how climate and competition influ-
ence the demography and hence the expected geographic 
distribution of a tree species. We test two alternative hy-
potheses, which we refer to as hypothesis C1 (climate-
only) and hypothesis C2 (climate-plus-competition). We 
focused on a tree species because extensive demographic 
data can be derived from national forest inventories. 
Specifically, the study organism is Pinus edulis (Engelm.), 
two-needle or Colorado piñon, a small-statured pine en-
demic to the semiarid Colorado Plateau in the southwest-
ern U. S. This species may serve as a leading indicator of 
climatically driven change in the distribution of forest 
ecosystems because of its position at the arid edge of the 
forest biome and its documented sensitivity to climate 
(Adams, 2009; Allen & Breshears, 1998; Breshears, 2009; 
Breshears et al., 2018; Clifford et al., 2013; Williams, 
2013). Because the elevation is recognised by ecologists 
as an important gradient that organises abiotic and bi-
otic features of the environment (Daubenmire, 1943; 
Merriam, 1890; Shreve, 1922; Whittaker, 1967), climate 
and competition were evaluated as factors limiting   
P. edulis across elevation.

Our analysis follows three lines of evidence. First, we 
evaluated the response of vital rates to environmental 
gradients (Figure 1, Step 1). Hypotheses C1 and C2 lead 
to contrasting predictions about how vital rates should 
vary across environmental gradients (Figure 2a–c). If 
climate limits both edges of the geographic distribution 
(hypothesis C1), vital rates should decline at the margins 
of the species’ climatic range. This could be in response 
to a single limiting climate variable (dashed orange lines, 
Figure 2a, b), or in response to more than one limiting 
climate variable (solid orange lines, Figure 2a, b). For ex-
ample, if temperature alone is responsible for range limits 
through its effect on one or more vital rates, there should 
be a unimodal response to temperature variation with 
elevation (dashed orange line, Figure 2b). Alternatively, 
precipitation may limit one or more vital rate at the low-
elevation, dry edge of P. edulis’ range (solid orange line, 
Figure 2a) whereas temperature may be limiting at the 
high-elevation, cold edge of P. edulis’ range (solid orange 
line, Figure 2b). In addition, under hypothesis C1, vital 
rates should be unresponsive to competition (solid or-
ange line, Figure 2c). Under hypothesis C2, vital rates 
should decline with climate at one edge and with com-
petitive pressure at another edge (green, Figure 2a–c). 
We do not evaluate the hypothesis that biotic interac-
tions limit both edges of P. edulis’ distribution because 
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its lower-elevation distribution limit marks the climatic 
(arid) limit of the tree growth form and the forest biome. 
We tested these hypotheses using observations on 
>20,000 trees sampled in almost 2000 forest inventory 
plots using vital rate models of growth, mortality, and 
recruitment as a function of climatic factors alone (hy-
pothesis C1) vs. climate in combination with the compe-
tition proxy basal area (hypothesis C2).

Second, we evaluated the fit of two demographic 
range models (DRMs), reflecting hypotheses C1 vs. C2, 
to P. edulis occurrence data. That is, we combined the 
statistical vital rate models (survival, growth, and fer-
tility) for C1 and C2 described above into a population 
model known as an integral projection model (IPM), and 
from the IPM, created maps of P. edulis’ expected popu-
lation growth rate (λ), using maps of climate (hypothesis 
C1) or climate and competition (hypothesis C2; Figure 1, 
Steps 2 and 3). The expectation is that the probability 

of occurrence of P. edulis should increase with DRM-
predicted λ, and in particular, that a high probability 
of occurrence is expected where predicted λ  ≥  1.0, the 
threshold above which individuals replace themselves 
on average and hence populations should persist. With 
this analysis we ask, do demographic predictions based 
on hypothesis C1 or C2 better match P. edulis’ observed 
distribution?

Third, we used perturbation analyses (Caswell, 2001) 
to probe the causes of range limits. Perturbation analyses 
examine the effect of small changes in vital rates or en-
vironmental drivers on λ. These analyses showed which 
vital rates have the greatest proportional influence on λ, 
and which vital rates and underlying environmental driv-
ers contribute the most to areas of mismatch between pre-
dicted population growth rate and observed geographic 
distribution (Figure 1, Step 4). This combination of de-
mographic analyses—vital rate responses inferred from 

F I G U R E  1   Simplified representation of the pipeline of analysis, showing the types of data and analysis used for each step and the outcome 
of each step. Step 1, vital rate modelling with generalised additive models (i.e., the influence of environmental drivers on vital rate variation); 
Step 2, combination of vital rate models into a demographic model, here shown as a heat map of the probability distribution of tree size at 
time t+1, conditional on its size at time t and its survival to time t+1, to predict the asymptotic population growth rate; Step 3 spatial projection 
asymptotic population growth rate (λ) from the demographic model and maps of climate or climate and competition—where predicted λ is at or 
above the replacement level of 1.0, population persistence is expected, and the species is expected to be present rather than absent.; and, Step 4, 
perturbation analyses of the influence of vital rates and environmental drivers on λ
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thousands of individuals and locations, the formation of 
a structured population model that includes the effects 
of climate and competition, and perturbation analyses of 
that demographic model—allowed us to test two classic 
hypotheses for the causes of range limits in a novel and 
rigorous way. This is the first hypothesis-driven test of 
process-based distribution models that we are aware of, 
and the first time that a demography-based model of a 

species’ distribution has been used to decompose the in-
fluences of climate and competition on model-predicted 
performance. Based on our results, we suggest how the 
two hypotheses may be reconciled to form a more com-
plex and dynamic explanation for species distributions 
that is consistent with the data. Finally, we indicate the 
implications of this updated hypothesis. While climate 
is a dominant and overarching influence on species 

F I G U R E  2   Responses of Pinus edulis vital rates to climate and competition. (a–c) Predicted responses to gradients of precipitation, 
temperature, and tree basal area under hypothesis C1 (orange; climate limits both range edges) vs. C2 (green; climate and competition each 
limit one range edge). Under hypothesis C1, just one vs. more than one climate variable might be limiting (dashed vs. solid orange lines, 
respectively). Panels (d–l) shows the inferred response of individual tree growth (d–f), survival (g–i), and the rate of recruitment of new trees  
(j–l) to mean cumulative annual precipitation (MAP), mean annual temperature (MAT), and basal area of all live trees per forest inventory 
plot. Comparisons between predicted (a–c) and inferred (d–l) vital rate responses can thus be made within each column. Inferred response 
curves in panels (d–l) are shown across the full range of environmental conditions observed in the study domain. Those conditions not 
occupied by P. edulis are shaded grey. Responses to MAP and MAT are shown for the 25th (dashed line), 50th (solid line), and 75th (dotted 
line) percentiles of the other climate variable, illustrating MAT-MAP interactions. Binned averages of the data are overplotted on the model-
inferred response, with symbol size indicating the number of trees per bin
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geographic distributions, it is likely that climate-only 
models will fail to capture range dynamics, particularly 
in cases where climate has both direct and indirect ef-
fects on vital rates, the latter involving additional range-
limiting processes. Climate-driven but complex transient 
range dynamics, including sudden changes in abundance 
and distribution, may lead the loss of biodiversity to be 
much greater than what is predicted from static, climate-
only models.

M ATERI A LS A N D M ETHODS

Demographic, climate, and competition data

We derived demographic data on P. edulis—including 
tree survival, growth, and recruitment—from the 
U.S.D.A. Forest Service's Forest Inventory Analysis da-
tabase (see forest inventory data, Appendix S1), leading to 
23,069 records of survival and 18,122 records of diameter 
growth. Counts of new trees that reached the minimum 
size threshold of 2.54 cm were obtained from 1872 plots 
where P. edulis was present.

These vital rates—survival, growth, and recruitment—
were predicted as a function of climate-only (hypothesis 
C1) or climate and competition (hypothesis C2; step 1 in 
Figure 1). Historical climate data were extracted from 
the PRISM Climate Group web archive (http://prism.
orego​nstate.edu/, data set AN81m, 4-km resolution), in-
cluding monthly temperature, vapour pressure deficit 
(VPD), and precipitation, as well as 1981–2010 climate 
normals. A list of the 72 climate variables tested in vital 
rate models is found in Table S1 (Appendix S1).

Across the study domain, temperature declines and 
precipitation increases with increasing elevation (Figure 
S1a, b, see Appendix S1). With more precipitation, 
the basal area of living trees increases (Figure S1c in 
Appendix S1). We used the latter, the basal area of liv-
ing trees (all species) on a plot (BALIVE; from the FIA 
Condition Table), as a proxy for the combined effect of 
inter- and intra-specific competition for light. Soil mois-
ture is another important limiting factor across the study 
domain, but because both supply (precipitation) and de-
mand (basal area of live trees) increase with elevation, it 
is difficult to say whether basal area is a good proxy for 
soil moisture competition.

Fitting demographic range models

We created demographic range models (DRMs) by first 
creating statistical models of how vital rates respond to 
environmental drivers (step 1 in Figure 1). These vital 
rate models were then combined together to create in-
tegral projection models (IPMs; step 2 in Figure 1).   
An IPM consists of a kernel, a function that maps the 
state (e.g., size) of an individual in the present to its state 

(along with those of offspring) in the next time step. The 
IPM kernel is based on estimates of vital rates (survival, 
growth, and reproduction) as a function of at least one 
continuous state variable (Easterling et al., 2000; Ellner 
et al., 2016; Ellner & Rees, 2006)—here, tree size, meas-
ured as the diameter at root collar—and potentially other 
predictors (i.e., the environmental drivers). See detailed 
methods in Appendix S1 under integral projection model. 
These IPMs were constructed using either climate-only 
models of vital rates (hypothesis C1) or vital rate models 
that included climate and competition as predictors (hy-
pothesis C2), both with interactions between the climate 
variables. Other examples of environmentally sensitive 
IPMs include Coulson et al. (2011) and Simmonds et al. 
(2020).

We used generalised additive models (GAMs) to 
predict vital rates as a function of covariates (step 1 in 
Figure 1), as in Ozgul et al. (2010), with plot as a ran-
dom effect influencing the model intercept to capture 
site-level variation in vital rates caused by unidentified 
factors (e.g., soil characteristics). GAMs were chosen be-
cause they can be fit flexibly to data, with extrapolation 
based on the response at the edge of the data, rather than 
imposed by a particular functional form (Harrell, 2015). 
The one exception to this was the response of survival to 
temperature, which extrapolated poorly under a GAM, 
and instead had a reasonable response using a linear 
model without a quadratic term (see additional detail in 
vital rate models, Appendix S1).

To decide which climate variables should enter vital 
rate models, we used a forward stepwise approach 
guided by Akaike's Information Criterion (AIC). We 
first selected between 30-year normals of mean annual 
climate variables vs. mean annual climate specific to 
the census interval. We then substituted in 3 or 4 sea-
sonal variables, and finally added climate anomalies. 
Climate normals of mean annual precipitation and 
temperature were the best predictors of variation in 
growth, likely a result of the coarse temporal resolu-
tion of forest inventory data (i.e., growth is measured 
at ~10-year intervals). Seasonal variables were better 
predictors of survival and recruitment (ΔAIC of 21 and 
52, for survival and recruitment, respectively), but these 
more complex models also resulted in large uncertainty 
where data were sparse (Figure S5), hence we chose to 
use 30-year normals of mean annual precipitation and 
temperature as covariates in all three vital rate models, 
to avoid overfitting (see additional detail in vital rate 
models, Appendix S1).

Geographic range projections

We created maps of expected population growth rate 
based on the two DRMs described above (C1 vs. C2) 
and maps of climate and competition covariates (step 
3 in Figure 1). Climate normals (monthly average 

http://prism.oregonstate.edu/
http://prism.oregonstate.edu/
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temperature and monthly precipitation) were extracted 
from PRISM, then rescaled to 16-km resolution. 
Monthly values were summed or averaged to form mean 
annual precipitation and temperature, respectively. We 
created a raster of tree basal area using a random forest 
model trained with basal area observations from all FIA 
plots in the study domain as well as climate predictors 
(mean annual temperature and precipitation) and spa-
tial coordinates (see under basal area map in Appendix 
S1). IPM kernels were then constructed for each grid 
cell on the landscape by forcing vital rate models with 
grid cell-specific climate data only (hypothesis C1) or 
climate and competition data (hypothesis C2). The as-
ymptotic population growth rate, �, was derived as the 
dominant eigenvalue of the discretised IPM. We used 
bootstrapping to estimate 95% confidence intervals for 
� (see integral projection model in Appendix S1). This 
analysis answers the question—what is the expected as-
ymptotic population growth rate, given certain hypoth-
eses (C1 vs. C2)?—indicating whether the population is 
expected to decline, be stable, or increase, under speci-
fied, static conditions of climate and the basal area of 
live trees.

Comparison of DRM-predicted vs. observed 
distribution

We used logistic regression with a cloglog link function 
to test the ability of � from DRMs (C1 vs. C2) to pre-
dict the observed probability of presence of P. edulis in 
FIA plots. Occurrence of P. edulis should increase with 
increasing DRM-predicted �. Deviance from these logis-
tic regressions was used to compare the performance of 
DRMs C1 vs. C2. While DRM C2 is slightly more com-
plex than C1, the presence-absence validation data are 
independent of the data used for fitting the vital rate 
models, so there is no need to adjust for complexity in 
this model comparison. We also plotted residuals from 
the logistic regressions against each underlying driver 
(climate and competition) to examine the environmental 
conditions under which the fit between DRM-predicted 
� and occurrence is poorest.

Perturbation analyses

We used perturbation analyses to examine which vital 
rates and environmental drivers are responsible for 
changes in � across environmental gradients and across 
space (step 4 in Figure 1). First, we used elasticity analy-
sis (Caswell, 2001) to assess the proportional sensitiv-
ity of � to changes in survival-growth vs. recruitment 
across elevation—i.e., using average climate and com-
petition values associated with elevation. We then used 
a life table response experiment (Caswell, 2001) to de-
compose variation in � across the landscape into the 

contributions of the three vital rates and three drivers 
of those vital rates. The first step was the calculation of 
� under the average environmental conditions where P. 
edulis is present (�ave). We then found the difference in � 
between each grid cell on the landscape (�cell.i) and �ave,  
denoted Δ�i(= �cell.i − �ave). Following the methods of 
Caswell (2001) for a categorical life table response ex-
periment, we then decomposed Δ�i into the contribution 
made by each vital rate, which is determined by a) the 
difference between the value of the vital rate under the 
average conditions where P. edulis is present vs. its value 
in that cell and b) the sensitivity of � to that vital rate. 
This same approach was used to decompose Δ�i into the 
contributions of each environmental driver (tempera-
ture, precipitation, and basal area). See Perturbation 
analyses in Appendix S1.

Because the DRMs predicted � greater than the re-
placement value of � = 1.0 at high elevations, we ran an 
additional perturbation analysis to determine how much 
growth vs. survival vs. recruitment would have to decline 
for � to be <1.0 at the observed upper-elevation limit of 
P. edulis. We used expected values of temperature, pre-
cipitation, and basal area at the upper-elevation limit to 
calculate expected vital rates. We then decreased each 
vital rate from 100 to 0 percent and recalculated � for 
each level of perturbation.

Analyses were conducted in R v. 3.6.1 (R Core Team, 
2019). Scripts are available through GitHub at https://
github.com/emily​lschu​ltz/Demog​raphi​cRang​eModel.

RESU LTS

Vital rate responses to climate and competition

Responses of P. edulis vital rates to competition and cli-
mate followed the predictions of hypothesis C2 (green 
in Figure 2a–c). Growth and recruitment increase in re-
sponse to more precipitation (Figure 2d, j), and growth 
and survival decline in response to warmer tempera-
tures (Figure 2e, h). Since temperature declines and 
precipitation increases with increasing elevation, this 
indicates climate is stressful at low elevations and be-
nign at high elevations both with respect to temperature 
and precipitation. These climate effects were consist-
ent between climate-only vs. climate-plus-competition 
models (compare Figure 2 to Figure S6). In addition, 
greater basal area of live trees reduced tree-level growth 
(Figure 2f) and, to a lesser degree, recruitment of new 
trees (Figure 2l), consistent with negative effects of com-
petition. The surprising increase of survival at both 
lowest and highest values of mean annual precipitation 
(Figure 2g) could be the effect of a confounding variable 
not included in survival models, or it might be caused 
by local evolution of longevity associated with extreme 
drought-tolerance at the low-elevation, dry limit of P. 
edulis’ distribution, combined with benign precipitation 

https://github.com/emilylschultz/DemographicRangeModel
https://github.com/emilylschultz/DemographicRangeModel
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conditions at the upper-elevation, mesic limit (see vital 
rate models in Appendix S1).

Fit of demographic range models to 
occurrence data

Population growth rate (�) predicted by the climate-
plus-competition (C2) DRM fit the data on P. edulis’ 
occurrence in forest inventory plots better than � from 
the climate-only DRM, improving the log likelihood 
by ~190 units (Figure 3a vs. b). Both DRMs do well 
in terms of predicting a low population growth rate 
(λ) where the probability of P. edulis’ presence is low 
(Figure 3a, b), which corresponds to warm, dry parts 
of the study domain below 1000 m (Figure 4a, b). In this 
same (warm-arid) environmental space, residuals of the 
logistic regressions are small, indicating a good fit of � 
to occurrence data (Figure 3c, d). The predictive per-
formance of both DRMs is poorest in regions with high 
precipitation (Figure 3c), low temperature (Figure 3d), 
and at highest values of predicted λ (Figure 3a, b). Both 
DRMs predict a population growth rate that increases 
with elevation, rapidly at first, then reaching a plateau 
slightly above the replacement value of 1.0 (Figure 4d 
and Figure S7d).

Perturbation analyses

Elasticity analysis showed that the survival-growth sub-
kernel has by far the greatest influence on λ across all 
elevations (Figure S8a), as expected for a long-lived spe-
cies. The life table response experiment further revealed 
that survival (not growth or recruitment) is chiefly re-
sponsible for low predicted λ below 1000  m (pink in 
Figure 5a). This is caused by higher temperatures, which 
make a strong negative contribution to predicted λ below 
1000 m (pink in Figure 5b). Survival is also responsible 
for higher-than-average predicted population growth 
rates (green in Figure 5a). High survival is driven by 
low temperature and high precipitation, which make 
the greatest positive contributions to Δ�i (Figure 5b). At 
high elevation, where the fit of the DRM to occurrence 
data deteriorates, recruitment would have to decline by 
50% for λ to be equal to the replacement rate of 1.0, but 
survival would only have to decline by 2% (Figure S8b, 
c).

DISCUSSION

Demographic analyses revealed greater support for the 
hypothesis that both climate and competition influence 

F I G U R E  3   Validation of the two demographic range models (DRMs) of Pinus edulis to presence-absence data. (a and b) Probability of 
occurrence in forest inventory (FIA) plots, as a function of population growth rates (λ) from climate-only (a) and climate-plus-competition 
(b) DRMs, fit by a logistic regression. (c–e) Deviance residuals of the logistic regressions in panels (a and b), as a function of mean annual 
precipitation (c), mean annual temperature (d), and tree basal area (e). Smaller absolute residuals indicate a better fit of model predictions to 
observed occurrence. Residuals in panels (c–e) are shown across the full range of environmental conditions observed in the study domain, 
illustrating the fit of model predictions extrapolated beyond the range of conditions occupied by P. edulis (grey shading)



8  |    
CLIMATE-DRIVEN, BUT DYNAMIC AND COMPLEX? A RECONCILIATION OF

COMPETING HYPOTHESES FOR SPECIES’ DISTRIBUTIONS

the distribution (C2). First, vital rate responses matched 
the predictions from hypothesis C2 (green in Figure 2a–
c) rather than hypothesis C1. Vital rates are negatively 
impacted by warm-dry conditions at low elevation and 
by competition at cool-mesic, high-elevation sites, indi-
cating that climate and competition form opposing gra-
dients of stress with elevation. Second, the population 
growth rate predicted by the climate-plus-competition 
DRM had a better fit to P. edulis presence-absence data 
in forest inventory plots.

Though the difference in fit to presence-absence data 
between the two demographic range models is substan-
tial (ΔAIC~190), the patterns of fit are similar (Figure 3). 
For both DRMs, the fit is best at low values of λ and 
worst at high values of λ (Figure 3a, b). Perturbation 
analyses identified that low values of λ are caused by low 
predicted survival (Figure 5a), which in turn is caused 
by high average temperature (Figure 5b). This indi-
cates that climate limits population growth rate at the 
low-elevation, warm and dry edge of P. edulis’ distribu-
tion through temperature-driven mortality. In fact, our 
range-wide demographic analysis predicts considerable 
range retraction from this edge of P. edulis’ distribution, 
based on data spanning the pulse of P. edulis mortality 
in the early 2000’s attributed to warm drought: the model 
indicates λ below the replacement level of 1.0 up to an el-
evation of approximately 1800 m, more than 300 m above 
the current lower-elevation limit of P. edulis’ distribution 
(Figure 4d), consistent with other studies documenting 

or predicting climate-induced range change in P. edulis 
(Adams et al., 2009; Allen & Breshears, 1998; Breshears 
et al., 2009; Clifford et al., 2013; Williams et al., 2013). 
Warming temperatures (U.S. Global Change Research 
Program et al., 2017) are already impacting this species’ 
distribution.

However, no upper-elevation range boundary is 
predicted by the DRMs: λ only increases with eleva-
tion, never returning below the replacement level of 
1.0, even after P. edulis’ observed upper-elevation 
limit is reached (grey shading, Figure 4d). Both DRMs 
predict high λ in high-elevation, cool-mesic loca-
tions where P. edulis is in fact absent (Figure 4a and 
Figure S7a). This adds to a growing body of evidence 
of mismatches between predicted demographic per-
formance and observed occurrence (Bohner & Diez, 
2020; McGill, 2012; Pagel et al., 2020; Thuiller, 2014). 
Ours is the first study in which perturbation analyses 
offer an explanation for this mismatch. The life table 
response experiment showed that survival is responsi-
ble for high predicted values of λ (Figure 5a), driven by 
lower average temperatures and higher average precip-
itation (Figure 5b), with negligible contribution from 
the competition. This is because competition nega-
tively affects two vital rates with little impact on λ, in-
dividual tree-level growth and recruitment (Figure 2f 
and l), and does not affect survival (Figure 2i), the 
vital rate with the greatest impact on λ. The finding 
that competition is not a detectable agent of mortality 

F I G U R E  4   Population growth rate (λ) of Pinus edulis, from a demographic range model (DRM) including both climate and competition 
as predictors (hypothesis C2). (a) Map of λ, with points showing the location of forest inventory plots where P. edulis is present. Note that 
changes in λ are an order of magnitude smaller at high elevation than at low elevation, hence the colour scale above the replacement value 
of 1.0 is greatly expanded compared to the scale below 1.0. (b) Distribution of λ in climate space (mean annual temperature vs. mean annual 
precipitation), with contours showing the frequency of FIA plots containing P. edulis. (c and d) λ as a function of basal area of trees (c) and 
elevation (d). For comparison with the climate-only model, see Figure S7
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in P. edulis is corroborated by a recent review of 21 
studies of mortality in this species, covering a wide 
range of methodologies and scales (Meddens, 2015). 
As a consequence, the negative effect of increasing 
competition, while detectable, is weak compared to 

the positive effects of temperature and precipitation 
with increasing elevation, and is insufficient to limit 
the species’ predicted occurrence (λ  >  1.0) at cooler, 
wetter locations. This adds support to the conclusion 
of the most recent review of evidence on range limits 

F I G U R E  5   Decomposition of differences in population growth rate (�) of Pinus edulis, from a life table response experiment. In both 
panels, Δ�i is �cell.i − �ave, the difference in � predicted for each grid cell (�cell.i) compared to � predicted under the average climate and 
competition conditions where P. edulis is found (�ave). Colour indicates the contribution of (a) three vital rates and (b) three environmental 
predictors to Δ�i, using three divergent colour scales centred on zero and overplotted with transparency. The absolute value on each scale 
indicates the magnitude of the influence of a vital rate or environmental predictor on Δ�i, with negative values indicating that a vital rate or 
environmental predictor causes �cell.i to be smaller than �ave. Note that the colour scales have asymmetric limits
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(Sexton et al., 2009): climate and competition both 
have detectable effects, but the effect of competition is 
weak relative to climate.

If climate and competition are both important factors 
influencing vital rates, but they do not suffice to explain 
the distribution of P. edulis, how should we understand 
its geographic distribution? Dispersal limitation is often 
invoked to explain a species’ absence in suitable habitat 
(Davis & Shaw, 2001; Meier et al., 2012; Pagel et al., 2020; 
Soberón, 2007), and it could well be the reason for ab-
sence of P. edulis at a larger scale, i.e., outside the study 
domain. There is evidence for ongoing northward migra-
tion of piñons and other pines in western North America 
(Cole et al., 2013; Jackson et al., 2005; Kaye et al., 2010). 
But it is an unconvincing explanation for the absence of 
P. edulis at higher elevations within the study domain, 
given bird dispersal of piñon seeds and the short dis-
tances over which elevation varies in this region.

We propose that the key to understanding P. edulis’ 
distribution, and perhaps species distributions more gen-
erally, lies in recognising the important grain of truth 
in the two classic hypotheses. Our results suggest that 
climate is the most important factor determining the dis-
tribution of P. edulis, while also indicating that climate 

alone cannot explain its distribution. It is possible to rec-
oncile these two results with a new hypothesis: climate 
is such an important driver across scales that it influ-
ences other range-limiting processes—including spatial 
processes such as disturbances and disease—potentially 
leading to complex range dynamics that are not predict-
able from a climate-only perspective (Figure 6).

To unpack this hypothesis for species’ distributions, 
we first reconsider the evidence for P. edulis, as a case 
study that illustrates the general mechanisms at work. 
Because P. edulis’ population growth rate is most sen-
sitive to survival rate, an additional agent of mortality 
could do much to explain the mismatch between pre-
dicted population growth rate and observed distribu-
tion. Indeed, at high elevation, recruitment would have 
to decline by 50% for λ to be equal to the replacement 
rate of 1.0, but survival would only have to decline by 
2% (Figure S8b, c). Fire could be that missing source of 
mortality. Pinus edulis belongs to the subgenus Strobus, 
a clade of stress-tolerating pines without evolutionary 
adaptations to fire, contrasting the repeated evolu-
tion of fire adaptations in subgenus Pinus (He et al., 
2012; Keeley, 2012; Keeley & Zedler, 1998; Millar & 
Richardson, 1998; Pausas, 2015). Forest inventory data 

F I G U R E  6   Conceptual models of species’ distributions. (a) Model of the processes influencing the geographic distribution of Pinus edulis, 
illustrating three key features: (1) positive direct effects of local mean annual precipitation on vital rates (green arrow) vs. negative indirect 
effect mediated through the feedback between plant community and fire regime (red arrows), (2) weak negative direct effect of competition 
on P. edulis, and (3) cross-scale interaction between acute, regional-scale drought and attack by the bark beetle, Ips confusus. (b) A general, 
conceptual model of the complex effects of climate, biotic community, disturbances, and pathogens on a focal species’ geographic distribution
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confirm this intolerance of fire: mortality of P. edulis 
exposed to surface and crown fire is high, ~54.9% and 
~96.5%, respectively. But forest inventory data further 
indicate the fire was rare in the period of study (2000–
2017), affecting less than 2% of plots and trees (and 
vital rate models were nearly identical with vs. without 
these fire-killed trees; Figure S6c, d). Historically, fire 
would have constrained P. edulis’ distribution at the ec-
otone between fire-infrequent piñon-juniper woodlands 
and fire-frequent Pinus ponderosa forest (Allen, 1989, 
2007; Swetnam & Baisan, 1996), as well as P. edulis’ 
abundance in piñon-juniper savannas (Margolis, 2014). 
Indeed, the last ~100 years of livestock grazing and fire 
suppression have led to increases in the abundance and 
distribution of piñons (Margolis, 2014; Miller & Tausch, 
2001; Romme, 2009), consistent with the hypothesis 
that fire plays a role in limiting P. edulis. We suggest 
that this fire-intolerant species finds refuge from fire 
on drier parts of the landscape, where productivity of 
fine fuels is insufficient for fire spread. That is, while 
the direct effects of precipitation on P. edulis vital rates 
are positive, its indirect effects are negative (Figure 6a), 
through its influence on the landscape-scale process 
of fire (Bowman et al., 2015; Staver et al., 2011a, b; 
Staver & Levin, 2012), tipping the balance between fire-
infrequent piñon-juniper woodlands (Romme et al., 
2009) and fire-frequent forests and savannas.

The absence of P. edulis from wetter parts of the land-
scape (see grey shading, Figure 2d) could easily have been 
mistaken for competitive displacement (for example, by a 
joint species distribution model). That is, on the basis of 
occurrence data, the replacement of one pine (P. edulis) 
by another (P. ponderosa) with increasing mean annual 
precipitation could have been interpreted as competi-
tive displacement. But our demographic analysis showed 
that the effect of the competition is negligible on the vital 
rate that matters most to P. edulis’ population growth 
rate (survival), and the direct effects of precipitation on 
its vital rates are positive. Intolerance of fire, instead, is 
an explanation for the upper-elevation limit of P. edulis’ 
distribution that is consistent with the demographic in-
ference that climatic and competitive conditions are suit-
able there (λ > 1.0).

Even at the low-elevation limit of P. edulis’ distri-
bution, which our demographic analysis confirms has 
the signature of climate limitation, an interaction be-
tween climate and another process (insect outbreak) 
has been identified as a driver of range change (Allen, 
2007; McDowell, 2011; Shaw et al., 2005). Regional-scale 
drought in the early 2000’s interacted with attack by the 
bark beetle Ips confusus (Figure 6a), propagating from 
individual trees to landscape-scale irruption, leading to 
widespread P. edulis mortality (Allen, 2007; McDowell 
et al., 2011; Shaw et al., 2005). A stochastic analysis of 
the impact of climate, fire, and insect outbreaks on the 
expected geographic distribution of P. edulis is a criti-
cal next step to evaluate the hypothesis that indirect in 

addition to direct effects of climate, or cross-scale inter-
actions between climate and other factors are important 
to be able to describe range dynamics.

The case of Pinus edulis illustrates mechanisms 
that may shape species’ distributions more generally 
(Figure 6b). There are two notable components to this 
hypothesis for species’ distributions. First is that spe-
cies distributions are influenced by processes at the 
landscape and macrosystem scales (Franklin, 2010; 
Heffernan, 2014)—fire, insect outbreaks, and large-
scale drought, in the case of P. edulis—in addition to 
the individual, population, and community scales at 
which niches and distributions have historically been 
conceived and discussed (Elton, 1927; Grinnell, 1917; 
Hutchinson, 1957, 1978). Second is the idea that cli-
mate is important at all scales and affects other range-
limiting processes, operating at a variety of scales. This 
potentially leads to a complex systems structure, as 
described by Allen, (2007); Peters, (2004); Peters and 
Havstad, (2006); Heffernan et al. (2014); Soranno, (2014) 
for a variety of ecological systems. Under this hypoth-
esis, climate influences species’ distributions not only 
through its direct effects on vital rates, but also through 
indirect effects, interactions, or feedbacks involving 
other range-limiting processes (Figure 6b). With chang-
ing climate, this has the potential to lead to complex 
range dynamics, including threshold behaviour that 
manifests as sudden changes in abundance or distribu-
tion. In the example of P. edulis, the interaction between 
large-scale drought stress and an (initially) small-scale, 
antagonistic biotic interaction (insect attack) led to 
such threshold behaviour (Allen, 2007; Heffernan et al., 
2014)—landscape- and regional-scale irruption, with 
widespread tree mortality.

This climate-driven, complex systems hypothesis for 
species’ distributions offers a candidate explanation for 
the rise in mass mortality events (MME’s) in certain an-
imals (birds, fishes, and marine invertebrates)—defined 
as rapidly occurring catastrophic demographic events 
that punctuate background mortality levels—based on 
a survey of 727 published examples of such events (Fey, 
2015). MME’s were frequently attributed to disease and 
climate (Fey et al., 2015), a combination that can even 
lead to sudden extinction (e.g., the Monteverde golden 
toad; Anchukaitis & Evans, 2010). The significance is 
that while species distributions are strongly determined 
by climate, range dynamics, especially a species’ per-
sistence vs. extinction with climate change, may not be 
predictable from climate envelope-type models. The 
task at hand then is to evaluate to what degree or in 
what organisms this climate-driven, complex systems 
hypothesis explains dynamic patterns of abundance and 
distribution. If this hypothesis holds true, we should 
expect further global weirding of the ecology of planet 
Earth—sudden changes in species’ abundance and 
distribution—accompanying the weirding of the climate 
system.
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