# THE HESSIAN POLYNOMIAL AND THE JACOBIAN IDEAL OF A REDUCED HYPERSURFACE IN $\mathbb{P}^n$

LAURENT BUSÉ, ALEXANDRU DIMCA<sup>1</sup>, HAL SCHENCK<sup>2</sup>, AND GABRIEL STICLARU

ABSTRACT. For a reduced hypersurface  $V(f) \subseteq \mathbb{P}^n$  of degree d, the Castelnuovo-Mumford regularity of the Milnor algebra M(f) is well understood when V(f) is smooth, as well as when V(f) has isolated singularities. We study the regularity of M(f) when V(f) has a positive dimensional singular locus. In certain situations, we prove that the regularity is bounded by (d-2)(n+1), which is the degree of the Hessian polynomial of f. However, this is not always the case, and we prove that in  $\mathbb{P}^n$  the regularity of the Milnor algebra can grow quadratically in d.

#### 1. Introduction

Let  $S = \bigoplus_k S_k = \mathbb{C}[x_0, ..., x_n]$  be the graded polynomial ring, where  $S_k$  denotes the vector space of degree k homogeneous polynomials. For a homogeneous polynomial  $f \in S_d$ , the Jacobian ideal  $J_f$  is generated by the partial derivatives of f, and the Milnor algebra M(f) is the graded ring  $S/J_f$ .

From a geometric standpoint M(f) is of interest because it encodes the singular subscheme  $\Sigma = \Sigma(f)$  of the projective hypersurface  $V(f) \subseteq \mathbb{P}^n$ . When V(f) is smooth, M(f) is an Artinian complete intersection and plays a central role in the Hodge theory of V(f). A landmark result of Griffiths [17] shows that the Hodge numbers of V(f) can be extracted from M(f), and recent work of Dimca [8] shows that one can obtain related results for an even dimensional nodal hypersurface. The Milnor algebra also has applications in physics, where it is known as the Chiral ring [5], in the study of Bernstein-Sato polynomials (recent work of Walther [29]), in the study of multiplier ideals [13], and in Torelli type theorems.

One case where M(f) has been the object of intense investigation is when V(f) is an arrangement of hypersurfaces. Of course, in this setting  $V(J_f)$  is of codimension two. Even the simplest case, where f is a product of distinct linear forms, is highly nontrivial. A landmark result is Terao's theorem [25] relating the Cohen-Macaulay property of  $J_f$  (often referred to as *freeness*, because in this case the syzygy module of  $J_f$  is free) to the topology of the complement of the arrangement. A second case where much is known about M(f) is when the singularities of V(f) are isolated, see [7].

<sup>2010</sup> Mathematics Subject Classification. Primary 14J70, 32S05; Secondary 13D02, 32S22, 32S25.

Key words and phrases. homogeneous polynomial, Hessian polynomial, Jacobian ideal, Castelnuovo-Mumford regularity, Milnor algebra.

<sup>&</sup>lt;sup>1</sup> This work has been partially supported by the Romanian Ministry of Research and Innovation, CNCS - UEFISCDI, grant PN-III-P4-ID-PCE-2020-0029, within PNCDI III. Schenck<sup>2</sup> was partially supported by NSF 1818646.

Beyond the cases above, in general little is known about algebraic properties of M(f). Our aim in this paper is to investigate one of the fundamental algebro-geometric invariants associated to M(f)-the Castelnuovo-Mumford regularity. The importance of regularity is that it measures, in a precise sense, the complexity of a finitely generated graded S-module M; it is determined by the "shape" of a minimal free resolution of M. For us, the module in question will be the Milnor algebra M(f):

## **Definition 1.1.** Let

$$0 \to F_m \to \cdots \to F_0 \to M \to 0$$
,

be a minimal graded free resolution of the graded S-module M, where

$$F_k = \bigoplus_j S(-a_{k,j})$$
 for  $k = 0, \dots, m$ .

By the Hilbert Syzygy Theorem,  $m \le n+1$  and  $m = \operatorname{pd} M$  is the projective dimension of M. The Castelnuovo-Mumford regularity of M is

regularity 
$$M = \max_{i,j} \{a_{i,j} - i\}.$$

Two other central algebraic invariants are the Hilbert function and Hilbert polynomial:

**Definition 1.2.** For a finitely generated graded S-module M, the Hilbert function is  $H(M,t) = \dim_{\mathbb{C}} M_t$ , for  $t \in \mathbb{Z}$ . Hilbert proved that for  $t \gg 0$ , the Hilbert function is given by the Hilbert polynomial  $P(M,t) \in \mathbb{Q}[t]$ .

P(M(f),t) encodes information about V(f); for example, if V has isolated singularities then P(M(f),t) is a constant which is equal to the sum of the Tjurina numbers at the singular points of V(f). Castelnuovo-Mumford regularity and the Hilbert function are related via the stability threshold, defined as

$$st(f)=\min\{q\ :\ H(M(f),t)=P(M(f),t)\ \text{for all}\ t\geq q\}.$$

By [15, Theorem 4.2],  $st(f) \leq \text{regularity } M(f) + m - n$ .

When the singular subscheme  $\Sigma$  is composed of finitely many points, there is a sharp upper bound for the stability threshold [4], but there are very few results when  $\Sigma$  is of positive dimension. A main motivation for our work comes from the study of arrangements of hypersurfaces in  $\mathbb{P}^n$ ; clearly when  $n \geq 3$  a hypersurface arrangement will have a positive dimensional singular locus.

The square matrix of second order partial derivatives of f is the Hessian matrix, and we write  $hess_f$  to denote the determinant of the Hessian. The polynomial  $hess_f$  has degree T = (n+1)(d-2), and it is easy to show that  $hess_f \in (J_f : \mathfrak{m})$  where  $\mathfrak{m}$  denotes the irrelevant ideal  $(x_0, \ldots, x_n)$ . In fact, Spodzieja shows in [24] (see also Vasconcelos [28]) that for any hypersurface V(f), then  $hess_f \in J_f$  iff V(f) is singular. As noted earlier, when V(f) is smooth, M(f) is an Artinian complete intersection, so  $M(f)_T$  is a one-dimensional  $\mathbb{C}$ -vector space generated by the class of  $hess_f$  in M(f) and st(f) = T + 1. The objective of this paper is to investigate the following question:

**Question 1.3.** Find upper bounds on the regularity M(f), where V(f) is a reduced singular hypersurface in  $\mathbb{P}^n$  of degree d.

In §2 and §3, we prove regularity bounds related to T. It is known that the regularity of M(f) is bounded above by T for a general hypersurface, as well as for hypersurfaces that have at most finitely many singular points. This property, which we recall with more detail in §2, suggests investigating hypersurfaces with positive dimensional singular loci.

**Theorem:** For the following classes of reduced hypersurfaces, regularity M(f) < T:

- (1) V(f) is a generic hyperplane arrangement in any  $\mathbb{P}^n$ .
- (2) V(f) is a generic (or generic symmetric) determinantal hypersurface in any  $\mathbb{P}^n$ .
- (3) V(f) is a hypersurface of degree  $d \geq 3$  in  $\mathbb{P}^n$  which is free or nearly free, or a cone over a plane curve.
- (4) V(f) is a generic arrangement of surfaces with isolated singularities in  $\mathbb{P}^3$ .

The proof of all but (4) is covered in §2; in these cases a graded finite free resolution of M(f) is available. The proof of (4) involves a delicate spectral sequence argument, and we tackle it in §3. Finally, in §4 we show that the hope of finding an upper bound on regularity that is linear in d is vain. We prove:

**Theorem:** There exist reduced, irreducible hypersurfaces of degree d in  $\mathbb{P}^n$  for which

regularity 
$$M(f) \sim \mathcal{O}(d^2)$$
.

For a family of bigraded degree d surfaces in  $\mathbb{P}^3$ , we give an explicit first syzygy of degree  $\frac{d^2+d-2}{3}$ ; the result follows by coning over such a surface.

## 2. Basic definitions and a first analysis of regularity

In this section, we first recall the definitions we shall need. Then, we provide a precise statement for the upper bounds of the stability threshold and regularity of the Milnor algebra that are known for reduced hypersurfaces that are smooth or that have isolated singularities. We will end this section by discussing classes of reduced hypersurfaces where it is relatively easy to show that regularity M(f) < T because a graded finite free resolution of the corresponding Jacobian ideal is known.

2.1. Basic definitions and properties. The stability threshold and the Castelnuovo-Mumford regularity associated to M(f) were defined in the previous section. In this preliminary section, we come back briefly on these two important invariants with a particular emphasis on their connection to the local cohomology modules  $H_{\mathfrak{m}}^{i}(M(f))$ ,  $i \geq 0$ .

Let  $I_f$  be the saturation of the Jacobian ideal  $J_f$  with respect to the ideal  $\mathfrak{m}$  in the graded ring S, i.e.  $I_f = (J_f : \mathfrak{m}^{\infty})$ . The 0<sup>th</sup> local cohomology module measures how far  $J_f$  is from being saturated; we have

$$H^0_{\mathfrak{m}}(M(f)) = I_f/J_f$$

and we denote it by N(f) for simplicity. We notice that when V(f) is smooth we have that N(f) = M(f) so that  $N(f)_T \neq 0$  and  $N(f)_k = 0$  for all k > T.

Coming back to the regularity, one has [15, Theorem 4.3]

regularity 
$$M(f) \ge \max\{e \mid N(f)_e \ne 0\},\$$

which is in fact a consequence of the following characterization of regularity (see for instance [4, Fact 6]) in terms of local cohomology modules:

regularity 
$$M(f) = \min\{e \mid H^i_{\mathfrak{m}}(M(f))_{>e-i} = 0 \text{ for all non-negative integers } i\}.$$

The Hilbert function  $H(M(f)): \mathbb{N} \to \mathbb{N}$  of the graded S-module M(f) is defined by

$$H(M(f))(k) = \dim M(f)_k,$$

and there is a unique polynomial  $P(M(f))(t) \in \mathbb{Q}[t]$ , called the Hilbert polynomial of M(f), and an integer  $k_0 \in \mathbb{N}$  such that [14]

$$H(M(f))(k) = P(M(f))(k)$$

for all  $k \geq k_0$ . The stability threshold is defined as

$$st(f) = \min\{q : H(M(f), t) = P(M(f), t) \text{ for all } t \ge q\}$$

and it is connected to local cohomology modules by means of the Grothendieck-Serre Formula [3, Theorem 4.3.5]: for all  $k \in \mathbb{Z}$  we have

$$H(M(f))(k) = P(M(f))(k) + \sum_{i \ge 0} (-1)^i H(H^i_{\mathfrak{m}}(M(f)))(k).$$

Finally, recall that the depth of M(f) is linked to the projective dimension of M(f) by the Auslander-Buchsbaum formula, see [15, Theorem A2.15]:

$$\operatorname{depth} M(f) = \operatorname{depth} S - \operatorname{pd} M(f) = n + 1 - \operatorname{pd} M(f).$$

Moreover, [15, Theorem A2.14] tells us that

$$\operatorname{depth} M(f) = \inf\{k \mid H^k_{\mathfrak{m}}(M(f)) \neq 0\},\$$

and that depth M(f) = 0 if and only if  $\mathfrak{m}$  is an associated prime of M(f). In particular, depth M(f) > 0 if and only if N(f) = 0.

2.2. Isolated singularities. The behavior of the stability threshold and regularity for reduced hypersurfaces having isolated singularity have been widely studied and are well understood, in particular because the graded S-module N(f) has a nice duality in this situation, see [10, 23, 26].

Given a graded module M we will denote by indeg(M) the initial degree of M, that is the infimum of the degrees of its nonzero elements. We have the following result.

**Proposition 2.3.** If the hypersurface V(f) has isolated singularities then

$$st(f) \leq T - indeg(N(f)) + 1$$

and

regularity 
$$M(f) \le T - \min\{d - 1, \operatorname{indeg}(N(f))\}\$$

unless  $I_f = J_f$  is a complete intersection and  $\deg(J_f) := P(M(f)) = (d-1)^n$ , in which case regularity  $M(f) \le T - \min\{d-2, \operatorname{indeg}(N(f))\}$ .

In particular, regularity M(f) < T except if d = 2 and  $J_f$  is a complete intersection defining a simple point, in which case regularity M(f) = T.

*Proof.* Under our assumption the ideal  $J_f$  is an almost complete intersection of dimension 1 and the claimed inequalities follows by applying the results in [27, Appendix].

The above property has naturally consequences for hypersurfaces whose singular locus can be described from hypersurfaces in smaller dimension and having isolated singularities, as the following result for instance.

Corollary 2.4. For any surface in  $\mathbb{P}^3$  of degree  $d \geq 3$  which is a cone over a plane curve, regularity M(f) < T.

Proof. If  $V(f) \subset \mathbb{P}^3$  is a cone over a reduced plane curve C, we can assume that f depends only on  $x_1, x_2, x_3$  and that g = 0 is an equation for C in  $\mathbb{P}^2$ , with g = f. As explained in [12, Section 3.6], it follows that  $M(f) = M(g) \otimes_{\mathbb{C}} \mathbb{C}[x_0]$ , and hence the minimal resolution of M(f) as a graded module over  $S = \mathbb{C}[x_0, x_1, x_2, x_3]$  and of M(g) as a graded module over  $R = \mathbb{C}[x_1, x_2, x_3]$  have the same numerical invariants. This fact implies that regularity M(f) = regularity M(g) and the claimed result follows from Proposition 2.3.

2.5. Some particular classes of hypersurfaces. We begin with the classes of free and nearly free hypersurfaces in  $\mathbb{P}^n$   $(n \geq 2)$ . A hypersurface is free if the syzygy module of  $J_f$  is free [12]. The notion of nearly free appears for curves and surfaces in [11], [12], and was subsequently generalized by Abe in [1], who also defined plus-one generated arrangements. The natural generalization of this to hypersurfaces is

**Definition 2.6.** A hypersurface is nearly free if its Milnor algebra M(f) admits a graded free resolution of the form

$$(2.1) \quad 0 \to S(-d_n - d) \to S(-d_n - (d-1)) \oplus (\bigoplus_{i=1}^n S(-d_i - (d-1)))$$
$$\to S(-(d-1))^{n+1} \to S$$

for some integers  $d_1 \leq d_2 \leq \ldots \leq d_n$ .

**Proposition 2.7.** For any free or nearly free hypersurface in  $\mathbb{P}^n$  of degree  $d \geq 3$ , we have regularity M(f) < T.

*Proof.* Assume first that V(f) is a free hypersurface in  $\mathbb{P}^n$  with exponents  $(d_1, \ldots, d_n)$ , and  $d_1 \leq \cdots \leq d_n$ . Since the syzygy module of  $J_f$  is free, the Hilbert-Burch Theorem [14] shows that  $\sum d_i = d - 1$ , and hence  $d_n \leq d - 1$ . We deduce that

regularity 
$$M(f) \le d - 1 + d_n - 2 \le 2d - 4 < T$$

where the last inequality holds for all  $d \geq 3$ .

Now, assume that V(f) is a nearly free hypersurface and that M(f) admits a free resolution of the form (2.1) for some integers  $d_1 \leq \ldots \leq d_n$ . The Hilbert polynomial of M(f) has degree at most n-2 so its computation as the alternate sum of the dimensions of the graded slices of (2.1) in sufficiently high degree yields a condition corresponding to the vanishing of the coefficient of degree n-1 of the Hilbert polynomial. A straightforward

computation shows that this condition is  $\sum d_i = d$  (see also [1, Proposition 4.1]). It follows that  $d_n \leq d$  and hence

regularity 
$$M(f) \le d + d_n - 3 \le 2d - 3 < T$$

where the last inequality holds for all  $d \geq 3$ .

We next discuss the case when V(f) is a generic hyperplane arrangement  $\mathcal{A}$ , with  $d = |\mathcal{A}| > n \geq 2$ .

**Proposition 2.8.** Let A be a generic hyperplane arrangement in the projective space  $\mathbb{P}^n$ , with  $d = |A| > n \geq 2$ . Then

regularity 
$$M(f) = 2d - n - 3 < T$$
.

Proof. Using the resolution for M(f) when V(f) is a generic hyperplane arrangement, with  $d > n \ge 2$  given in [22, Corollary 4.5.4], it follows that depth M(f) = 0, a fact stated in [22, Corollary 4.5.5], and regularity M(f) = 2d - n - 3, since the differences  $a_{i,j} - i$  are 0 for i = 0, d - 2 for i = 1 and 2d - n - 3 for i = 2, ..., n + 1. By our assumption,  $2d - n - 3 \ge d - 2$ . The inequality regularity M(f) < T is equivalent to (n - 1) < (n - 1)d, which clearly holds. See Ziegler [30] and Mustata-Schenck [21] for related results.

A much studied class of hypersurfaces are determinantal hypersurfaces; see Beauville [2] for results and open problems. We close this section with a result in this direction.

**Proposition 2.9.** For an  $n \times n$  generic matrix  $A_n$  whose (i, j) entry is  $x_{ij}$ , or for a generic symmetric matrix  $B_n$  whose (i, j) = (j, i) entry is  $x_{ij}$ , we have

regularity 
$$M(det(A_n)) = n - 1$$
 and regularity  $M(det(B_n)) = 2n - 4$ .

So generic and generic symmetric determinantal hypersurfaces have regularity M(f) < T.

*Proof.* Let  $a = \det(A_n)$  and  $b = \det(B_n)$ . Then

$$J_a = I_{n-1}(A_n)$$
 and  $J_b = I_{n-1}(B_n)$ .

The resolution of the ideal of submaximal minors for a generic matrix  $A_n$  is determined by Gulliksen-Negård in [18]: the ideal is Gorenstein of codimension four, and has

regularity 
$$I_{n-1}(A_n) = 2n - 4$$
.

In similar fashion, the ideal of submaximal minors for a generic symmetric matrix  $B_n$  is determined by Józefiak in [19] (and by Lascoux in characteristic zero in [20]): the ideal is Cohen-Macaulay of codimension three, and has an Eagon-Northcott resolution with

regularity 
$$I_{n-1}(B_n) = n - 1$$
.

Since for  $J_a$  we have  $T = n^2(n-2)$ , and for  $J_b$  we have T = (n)(n+1)(n-2)/2, in both cases the regularity of the Milnor ring is much smaller than T.

# 3. On generic arrangements of surfaces with isolated singularities in $\mathbb{P}^3$

In this section we show that the regularity of the Milnor algebra is bounded above by T for surfaces in  $\mathbb{P}^3$  that are obtained as unions of surfaces with isolated singularities and in general position to some extent. These surfaces have a one-dimensional singular locus and they can be seen as a generalization of generic plane arrangements. We set  $S = \mathbb{C}[x_0, \dots, x_3]$  and consider  $f \in S_d$  and its Jacobian ideal  $J_f \subset S$  which is generated in degree d-1 by the four partial derivatives  $f_0, \dots, f_3$  of f.

Recall that, according to Hilbert-Burch Theorem (see [14, Theorem 20.15]), a perfect graded ideal  $I \subset S$  of codimension 2 admits a minimal free resolution of the form

$$(3.1) 0 \to \bigoplus_{i=1}^{r-1} S(-l_i) \xrightarrow{\Psi} \bigoplus_{i=1}^r S(-e_i) \to I \to 0$$

where  $\Psi$  corresponds to an homogeneous matrix. In addition, we have the equality

$$\sum_{i=1}^{r-1} l_i = \sum_{i=1}^{r} e_i =: \sigma$$

and without loss of generality, one can assume that  $1 \le e_1 \le e_2 \le \cdots \le e_r$  and  $l_1 \le l_2 \le \cdots \le l_{r-1}$ . We notice that the minimality assumption implies that  $e_1 < l_1$ . We begin with the following rather general result.

**Theorem 3.1.** Suppose  $I = (g_1, \ldots, g_r)$  be a perfect ideal in S of codimension 2 with a minimal free resolution of the form (3.1), and  $f \in S$  is such that  $J_f \subset I$  and that the ideal  $(J_f : I)$  defines a 0-dimensional subscheme in  $\mathbb{P}^3$  (possibly empty). Then

$$st(f) \le \max\{4d - 7 - 2e_1, l_1 - 3\}$$

and

regularity 
$$M(f) \le \begin{cases} \max\{4d - 8 - 2e_1, l_1 - 2\} & \text{if } e_1 < d - 1, \\ \max\{2d - 5, l_1 - 2\} & \text{if } e_1 = d - 1. \end{cases}$$

Moreover, in these conditions,  $st(f) \leq T$ , and regularity M(f) < T providing  $l_1 \leq T + 1$ .

**Remark 3.2.** Since  $\sum_{i=1}^{r-1} l_i = \sum_{i=1}^r e_i$  we have  $(r-1)l_1 \leq re_r$ . Therefore the condition  $l_1 \leq T+1$  is satisfied if  $e_r \leq \frac{r-1}{r}(T+1)$ .

*Proof.* By the Grothendieck-Serre Formula we have that for all  $k \in \mathbb{Z}$  one has

$$H(M(f))(k) = P(M(f))(k) + \sum_{i>0} (-1)^i H(H^i_{\mathfrak{m}}(M(f)))(k).$$

Moreover, since  $\dim(M(f)) \leq 2$  we have  $H^i_{\mathfrak{m}}(M(f)) = 0$  for all i > 2 by [3, Theorem 3.5.7]. Therefore, to prove the claimed result we need to examine the vanishing of the graded components of the local cohomology modules  $H^i_{\mathfrak{m}}(M(f))$  for i = 0, 1, 2.

The hypotheses of Theorem 3.1 implies that the following graded complex is a minimal free resolution of I:

$$F_{\bullet}: F_2 := \bigoplus_{i=1}^{r-1} S(-l_i) \xrightarrow{\Psi} F_1 := \bigoplus_{i=1}^r S(-e_i) \xrightarrow{(g_1 \dots g_r)} S_r$$

By examining the two spectral sequences corresponding to the filtrations by rows and columns of the double complex  $\mathcal{C}^{\bullet}_{\mathfrak{m}}(F_{\bullet})$ , we deduce immediately that  $H^{0}_{\mathfrak{m}}(S/I) = H^{1}_{\mathfrak{m}}(S/I) = 0$  and the graded isomorphism

$$H^2_{\mathfrak{m}}(S/I) \simeq \ker(H^4_{\mathfrak{m}}(F_2) \to H^4(F_1))$$

where the map  $H^4_{\mathfrak{m}}(F_2) \to H^4(F_1)$  is the canonical one induced by the Koszul complex. In particular, we have  $H^2_{\mathfrak{m}}(S/I)_k = 0$  for all  $k > l_1 - 4$ .

Now, consider the canonical exact sequence

$$(3.2) 0 \to I/J_f \to M(f) = S/J_f \to S/I \to 0.$$

We know that  $H^i_{\mathfrak{m}}(S/I) = 0$  for i = 0, 1. We also have  $H^i_{\mathfrak{m}}(I/J_f) = 0$  for all i > 1 because  $\operatorname{ann}_S(I/J_f) = (J_f : I)$  and  $(J_f : I)$  is assumed to define a 0-dimensional subscheme in  $\mathbb{P}^3$ . Therefore, the long exact sequence of local cohomology of (3.2) implies that

$$H^0_{\mathfrak{m}}(M(f)) \simeq H^0_{\mathfrak{m}}(I/J_f), \quad H^1_{\mathfrak{m}}(M(f)) \simeq H^1_{\mathfrak{m}}(I/J_f)$$
  
and  $H^2_{\mathfrak{m}}(M(f)) \simeq H^2_{\mathfrak{m}}(S/I).$ 

An immediate consequence is that

(3.3) 
$$H_{\mathfrak{m}}^{2}(M(f))_{k} = 0 \text{ for all } k > l_{1} - 4 =: \eta_{2}.$$

To examine  $H^i_{\mathfrak{m}}(I/J_f)$ , i=0,1, we proceed as follows.

From the inclusion  $J_f \subset I$ , one can decompose the  $f_i$ 's on g and g' to get a  $r \times 4$ -matrix H such that

$$(f_0 \ f_1 \ f_2 \ f_3) = (g_1 \ \cdots \ g_r) H = (g_1 \ \cdots \ g_r) \begin{pmatrix} h_{0,1} & h_{1,1} & h_{2,1} & h_{3,1} \\ h_{0,2} & h_{1,2} & h_{2,2} & h_{3,2} \\ \vdots & \vdots & \vdots & \vdots \\ h_{0,r} & h_{1,r} & h_{2,r} & h_{3,r} \end{pmatrix}.$$

This latter corresponds to an homogeneous map

$$K_1 = S(-(d-1))^4 \xrightarrow{H} F_1$$

that gives rise to a finite free graded presentation of the quotient  $I/J_f$ , namely the graded exact sequence

$$K_1' = F_2 \oplus K_1 \xrightarrow{\varphi} F_1 \xrightarrow{(g_1, \dots, g_r)} I/J_f \to 0$$

where the map  $\varphi: K_1' \to F_1$  is defined by the  $r \times (r+3)$  matrix

$$\left(\begin{array}{c|cccc} \psi & h_{0,1} & h_{1,1} & h_{2,1} & h_{3,1} \\ \vdots & \vdots & \vdots & \vdots \\ h_{0,r} & h_{1,r} & h_{2,r} & h_{3,r} \end{array}\right).$$

The Buchsbaum-Rim complex  $E_{\bullet}$  associated to  $\varphi$ , that belongs to the family of generalized Koszul complexes [14, Appendix A.2.6], is the following graded complex

$$E_4 = S_2(F_1^*) \otimes \wedge^{r+3}(K_1')(\sigma) \to E_3 = S_1(F_1^*) \otimes \wedge^{r+2}(K_1')(\sigma) \to$$
$$E_2 = S_0(F_1^*) \otimes \wedge^{r+1}(K_1')(\sigma) \to E_1 = K_1' \xrightarrow{\varphi} E_0 = F_1$$

where  $F_1^*$  denotes the dual of  $F_1$  and  $\sigma = \sum_{i=1}^r e_i = \sum_{i=1}^{r-1} l_i$ . It is a classical property that the homology of  $E_{\bullet}$  is supported on

$$\operatorname{ann}_S(\operatorname{coker}(\varphi)) = \operatorname{ann}_S(I/J_f) = (J_f :_S I)$$

and by the hypotheses of Theorem 3.1 this is a finite subscheme in  $\mathbb{P}^3$ .

Now, consider the double complex  $\mathcal{C}^{\bullet}_{\mathfrak{m}}(E_{\bullet})$ . The spectral sequence corresponding to its filtration by rows converges at the second step and is of the form

(observe that  $H_0(E_{\bullet}) = I/J_f$ ). The spectral sequence corresponding to the filtration by columns of  $\mathcal{C}_{\mathfrak{m}}^{\bullet}(E_{\bullet})$  also converges at the second step with a single non-zero row:  $H_{\bullet}(H_{\mathfrak{m}}^4(E_{\bullet}))$ . Comparing these two spectral sequences, we deduce that

- $H^0_{\mathfrak{m}}(I/J_f)_k = 0$  for all k such that  $H^4_{\mathfrak{m}}(E_4)_k = 0$  and
- $H^1_{\mathfrak{m}}(I/J_f)_k = 0$  for all k such that  $H^4_{\mathfrak{m}}(E_3)_k = 0$ .

But from the description of  $E_{\bullet}$  we have

$$E_4 = S_2(F_1^*) \otimes \wedge^{r+3}(K_1')(\sigma)$$
  
$$\simeq \bigoplus_{1 \le i \le j \le r} S(-4(d-1) + e_i + e_j)$$

from we deduce that  $H^4_{\mathfrak{m}}(E_4)_k = 0$ , hence  $H^0_{\mathfrak{m}}(M(f))_k \simeq H^0_{\mathfrak{m}}(I/J_f)_k = 0$ , for all integers

$$(3.4) k > 4(d-1) - 4 - 2e_1 = 4d - 8 - 2e_1 =: \eta_0,$$

We also have

$$E_3 = S_1(F_1^*) \otimes \wedge^{r+2}(K_1')(e+e')$$
  
 
$$\simeq \bigoplus_{i=1}^r S(-3(d-1) + e_i)^4 \bigoplus_{i=1}^r \bigoplus_{j=1}^{r-1} S(-4(d-1) + l_j + e_i)$$

from we deduce that  $H^4_{\mathfrak{m}}(E_3)_k = 0$ , hence  $H^1_{\mathfrak{m}}(M(f))_k \simeq H^1_{\mathfrak{m}}(I/J_f)_k = 0$ , for all integer

$$(3.5) k > 3d - 7 - e_1 + (d - 1 - l_1)_+ =: \eta_1,$$

where  $(d-1-l_1)_+ = \max\{0, d-1-l_1\}.$ 

From here, the claimed results follows by comparing the constraints given by (3.4), (3.5) and (3.3). Indeed, we have

$$\eta_0 - \eta_1 = (d - 1 - e_1) - (d - 1 - l_1)_+ = \begin{cases} l_1 - e_1 & \text{if } l_1 \le d - 1, \\ d - 1 - e_1 & \text{if } l_1 \ge d - 1. \end{cases}$$

Since  $e_1 \leq d-1$   $(J_f \subset I)$ , and  $l_1 > e_1$  (for otherwise the first column of  $\Psi$  would be identically zero), the quantity  $\eta_0 - \eta_1$  is always non-negative. More precisely,  $\eta_0 > \eta_1$  if  $1 \leq e_1 < d-1$  and  $\eta_0 = \eta_1 = 2d-6$  if  $e_1 = d-1$ .

Gathering all the previous results, we deduce the following properties. First,  $N(f)_k = 0$  for all  $k \geq T$  because  $\eta_0 < T$ , since  $e_1 \geq 1$  (*I* is of codimension 2). Second, we have

$$st(V) \le \max\{\eta_0, \eta_1, \eta_2\} + 1 = \max\{\eta_0 + 1, \eta_2 + 1\}.$$

Finally, since regularity  $M(f) = \max\{\eta_0, \eta_1 + 1, \eta_2 + 2\}$  the claimed inequalities follows from the two cases  $e_1 < d - 1$ , for which  $\max\{\eta_0, \eta_1 + 1\} = \eta_0 = T - 2e_1$ , and  $e_1 = d - 1$ , for which  $\max\{\eta_0, \eta_1 + 1\} = \eta_0 + 1 = 2d - 5$ . Therefore regularity M(f) < T, if  $d \ge 2$  and  $\eta_2 + 2 < T$ , this latter condition being equivalent to  $l_1 \le T + 1$ .

Now we introduce the generic arrangements of surfaces with isolated singularities in  $\mathbb{P}^3$  which appear in the title of this section.

**Theorem 3.3.** Suppose given a collection of r surfaces  $D_i = V(f_i)$ , i = 1, ..., r, in  $\mathbb{P}^3$  of positive degree  $1 \le d_1 \le ... \le d_r$  respectively and consider the surface  $V = \bigcup_{i=1}^r D_i = V(f)$ , where  $f := \prod_{i=1}^r f_i$ , in  $\mathbb{P}^3$  of degree  $d = \sum_{i=1}^r d_i \ge 2$ . Assume that

- f is a reduced polynomial,
- $D_i$  has only finitely many singular points for all i,
- the intersection between any two distinct surfaces  $D_i$  and  $D_j$  is transverse, except at finitely many points,
- the intersections between any three distinct surfaces  $D_i$  consists in finitely many points.

Then

$$(3.6) st(f) < 2d + 2d_r - 7$$

and hence  $st(f) \leq T$  providing  $d \geq 3$ .

Moreover, in the generic setting, more precisely if the surfaces  $D_i$ , i = 1, ..., r, are all smooth surfaces that intersect transversally at all their intersection points (in particular any four distinct surfaces do not intersect), then we have  $I_f = (g_1, ..., g_r)$ , where  $g_i := f/f_i$  for all i = 1, ..., r, and (3.6) is an equality.

*Proof.* Let I be the ideal of S generated by  $g_1, \ldots, g_r$ . A straightforward computation shows that  $J_f \subset I$ . Actually, we have the equality

$$(\partial_0 f \ \partial_1 f \ \partial_2 f \ \partial_3 f) = (g_1 \ g_2 \ \cdots \ g_r) \cdot \begin{pmatrix} \partial_0 f_1 & \partial_1 f_1 & \partial_2 f_1 & \partial_3 f_1 \\ \partial_0 f_2 & \partial_1 f_2 & \partial_2 f_2 & \partial_3 f_2 \\ \vdots & \vdots & \vdots & \vdots \\ \partial_0 f_r & \partial_1 f_r & \partial_2 f_r & \partial_3 f_r \end{pmatrix}$$

where the matrix on the right is the Jacobian matrix of the  $f_i$ 's; we denote it H. It defines a graded map

$$R(-d+1)^4 \xrightarrow{H} \bigoplus_{i=1}^r R(-d+d_i).$$

On the other hand, consider the following matrix:

$$\Psi = \begin{pmatrix} f_1 & 0 & & \cdots & 0 \\ -f_2 & f_2 & 0 & & \cdots & \\ 0 & -f_3 & f_3 & \ddots & \cdots & \vdots \\ \vdots & 0 & \ddots & \ddots & 0 \\ \vdots & 0 & \ddots & \ddots & f_{r-2} & 0 \\ & \dots & 0 & -f_{r-1} & f_{r-1} \\ 0 & \dots & 0 & -f_r \end{pmatrix}.$$

It is of size  $r \times (r-1)$  and its (r-1)-minors coincide with the  $g_i$ 's up to sign. Therefore, assuming that I has codimension 2, i.e. that f is a reduced polynomial, then Hilbert-Burch Theorem implies that I admits the following minimal free resolution

$$(3.7) 0 \to \bigoplus_{i=1}^{r-1} S(-d) \xrightarrow{\Psi} \bigoplus_{i=1}^{r} S(-d+d_i) \to S \to S/I \to 0$$

Now, as already used in the proof of Theorem 3.1, the concatenation of the matrices  $\Psi$  and H provides a free presentation of  $I/J_f$ . Therefore, we deduce that the ideal  $I_r(\Psi \oplus H)$  of r-minors of this concatenated matrix has the same radical as the ideal  $(J_f:I)$  (using a classical property of Fitting ideals [14, Proposition 20.7]). In addition, examining the matrix  $\Psi \oplus H$  we notice that

- If  $p \in D_i \setminus \bigcup_{j \neq i} D_j$  and  $p \notin \operatorname{Sing}(D_i)$ , then  $p \notin V(J_f : I)$ . This is because the partials  $\partial_i(f)$  are obtained as r-minors of  $\Psi \oplus H$  (take  $\Psi$  and add a column of H).
- If for all points  $p \in D_i \cap D_j$ , except finitely many, the intersection of  $D_i$  and  $D_j$  at p is transverse and p is not contained in any other surfaces  $D_l$ , then there exists an r-minor of  $\Psi \oplus H$  that does not vanish: take  $\Psi$ , remove number i and j and replace them by those 2 columns of H corresponding to  $\partial_k$  and  $\partial_l$  such that the Jacobian minor  $\partial_k f_i \partial_l f_j \partial_k f_j \partial_l f_i$  is nonzero.

Under our assumptions, we deduce that  $(J_f:I)$  is supported on finitely many points and hence one can apply Theorem 3.1 with the data:  $e_1 = d - d_r$  and  $l_1 = d$ . The conclusion (3.6) follows because we always have  $2d + 2d_r - 7 \ge d - 3$  as  $d \ge 2$  and  $d_r \ge 1$ .

Now, we turn to the proof of the second part of this theorem. Pushing further the above analysis of r-minors of the matrix  $\Psi \oplus H$ , one can show in the same way that for all point  $p \in V$  there exists an r-minor of the matrix  $\Psi \oplus H$  that does not vanish at p, under our genericity assumptions. Therefore, the ideal  $(J_f : I)$  defines an empty algebraic variety, which means that the ideals  $J_f$  and I have the same saturation, so that  $J_f^{\text{sat}} = I_f = I^{\text{sat}} = I$ . Thus, taking again the proof of Theorem 3.1, this latter property implies that

$$H^0_{\mathfrak{m}}(I/J_f) \simeq \ker \left(H^4_{\mathfrak{m}}(E_4) \to H^4_{\mathfrak{m}}(E_3)\right)$$

because  $H^1_{\mathfrak{m}}(H_i(E_{\bullet})) = 0$  for all  $i \geq 0$ . If  $\eta_0 > \eta_1$ , then  $H^4_{\mathfrak{m}}(E_3)_{\eta_0} = 0$  whereas  $H^4_{\mathfrak{m}}(E_4)_{\eta_0} \neq 0$  so we deduce that  $H^0_{\mathfrak{m}}(I/J_f)_{\eta_0} \neq 0$ . As we already observed, the condition  $\eta_0 > \eta_1$  holds if and only if  $e_1 < d-1$ , and since  $e_1 = d-d_r$ , it holds if and only if  $d_r \geq 2$ . It remains to consider the case  $d_1 = \cdots = d_r = 1$ , for which we have  $l_1 = \ldots = l_{r-1} = d = r$  and

 $\eta_0 = \eta_1 = 2d - 6$ . Again, from the proof of Theorem 3.1 we have

$$E_4 \simeq S(-2(d-1))^{\binom{r+1}{2}}$$
 and  $E_3 \simeq S(-2(d-1))^4 \oplus S(-2(d-1)+1)^{r(r-1)}$ .

It follows that

$$H^4_{\mathfrak{m}}(E_4)_{\eta_0} \simeq H^4_{\mathfrak{m}}(S)_{-4}^{\binom{r+1}{2}} \simeq \mathbb{C}^{\binom{r+2}{2}}$$

and

$$H^4_{\mathfrak{m}}(E_3)_{\eta_0} \simeq H^4_{\mathfrak{m}}(S)^4_{-4} \oplus H^4_{\mathfrak{m}}(S)^{r(r-1)}_{-3} \simeq \mathbb{C}^4.$$

Therefore, if  $\binom{r+1}{2} > 4$ , i.e. if r > 2, then necessarily  $H^0_{\mathfrak{m}}(I/J_f)_{\eta_0} \neq 0$ . In the end, the theorem is proved except for the case where f is the product of two linearly independent planes  $(d=2, r=2, d_1=d_2=2)$ . But this case can be treated directly from the definitions: M(f) is isomorphic to a graded polynomial ring in two variables, hence  $H(M(f))(k) = \max\{k+1,0\}$  and P(M(f))(k) = k+1 for all  $k \in \mathbb{Z}$ , so that  $st(f) = -1 = 2 \cdot 2 + 2 \cdot 1 - 7$ .

**Example 3.4.** In this example we show that the inequality for st(f) in Theorem 3.3 can be either strict, or an equality, even for r=2 surfaces. First we consider the family of surfaces  $V_{d+1} = V(f_1f_2)$ , where  $f_1 = x_3$  and  $f_2 = x_0^d + x_1^d + x_2^d$  with  $d \ge 2$ . Then  $D_1 = V(f_1)$  is a plane,  $D_2 = V(f_2)$  is a surface with a singular point at p = (0:0:0:1) with local Tjurina number  $\tau(D_2, p) = (d-1)^3$ , and the intersection  $C = D_1 \cap D_2$  is transverse. Hence Theorem 3.3 applies and gives the inequality

$$st(f) \le 2(d+1) + 2d - 7 = 4d - 5.$$

Using that the Hilbert polynomial P(M(f)) is a linear function of the form ak + b and the values for a, b given in [12, Formula (2.6) and subsection (3.1)], we see that

$$P(M(f))(k) = ak + b = \deg(C)k + \chi(C, \mathcal{O}_C) + \tau_0(V) = dk - \frac{d(d-3)}{2} + (d-1)^3,$$

since in this case  $\tau_0(V) = \tau(D_2, p)$ . A direct computation of the Hilbert series for  $V_{d+1}$  when  $2 \le d \le 5$  using SINGULAR, shows that in all these cases

$$st(f) = 3d - 5 < 4d - 5.$$

Next we consider the family of surfaces  $V'_{2d} = V(f_1f_2)$ , where  $f_1 = x_1^d + 2x_2^d + x_3^d$  and  $f_2 = x_0^d + x_1^d + x_2^d$  with  $d \ge 2$ . Then  $D_1 = V(f_1)$  is a surface with a singular point at q = (1:0:0:0) with local Tjurina number  $\tau(D_1,q) = (d-1)^3$ , the surface  $D_2$  is as above, and the intersection  $C = D_1 \cap D_2$  is transverse. Hence Theorem 3.3 applies again and gives the inequality

$$st(f) \le 2(2d) + 2d - 7 = 6d - 7.$$

As above, for the Hilbert polynomial, we get

$$P(M(f))(k) = d^2k + d^3 - 4d^2 + 6d - 2,$$

since in this case  $\tau_0(V) = \tau_q(D_1, q) + \tau_p(D_2, p)$ . A direct computation of the Hilbert series for  $V'_{2d}$  when  $2 \le d \le 5$  shows that in all these cases st(f) = 6d - 7.

**Remark 3.5.** By Theorem 3.3 when r = 2 then  $st(f) = 2d + 2d_2 - 7$ , the surfaces  $D_1$  and  $D_2$  are smooth, and the intersection  $C = D_1 \cap D_2$  is transverse; see [12, Question 3.2].

## 4. Regularity of M(f) for hypersurfaces in $\mathbb{P}^n$ singular in codimension one

The main result in this section is in contrast to the results in the previous sections: we prove that a reduced hypersurface  $V(f) \subseteq \mathbb{P}^n$  of degree d which has a non-reduced codimension one singular component can have

regularity 
$$M(f_d) \sim \mathcal{O}(d^2)$$
.

We prove the result for n=3; the general case then follows by coning. In fact, Theorem 4.1 below yields a stronger result, giving an explicit minimal first syzygy of high degree. The surfaces which we analyze are bigraded, so have a singular locus containing two disjoint lines. We utilize the extra structure provided by the bigrading in an essential way.

**Theorem 4.1.** Let  $f_{(k,d-k)} \in \mathbb{C}[x_0,\ldots,x_3]$  be a general bihomogeneous polynomial of bidegree (k,d-k) with  $k,d-k \geq 1$ ; note that  $f \in (x_0,x_1)^k \cap (x_2,x_3)^{d-k}$ . Let  $D = V(f_{(k,d-k)})$  be the corresponding surface in  $\mathbb{P}^3$ , which is of degree d in the  $\mathbb{Z}$ -grading. Then D is reduced, and if d-k is odd,  $M(f_{(k,d-k)})$  has a minimal first syzygy of bidegree

$$(2k,0) + \frac{d-k-1}{2}(3k-2,3).$$

Hence, in the  $\mathbb{Z}$ -grading

$$\text{regularity } M(f_{(k,d-k)}) \geq \frac{3k+1}{2}d - \frac{3k^2+5}{2}$$

and taking  $k = \frac{d-1}{3}$  yields

regularity 
$$M(f_{(\frac{d-1}{3}, \frac{2d+1}{3})}) \ge \frac{1}{3}(d^2 + d - 8).$$

Proof. The fact that D is reduced follows from the hypothesis that f is general. Define the (standard) graded polynomial ring  $A = \mathbb{C}[x_0, x_1]$ , so that the polynomial ring  $S = \mathbb{C}[x_0, \dots, x_3] = A[x_2, x_3]$  inherits a bigraded structure. In particular,  $f_{(k,d-k)} \in S_{k,d-k}$ . Denoting by  $f_i$  the partial derivative of  $f_{(k,d-k)}$  with respect to  $x_i$ , we have  $f_0, f_1 \in S_{k-1,d-k}$  and  $f_2, f_3 \in S_{k,d-k-1}$ . In other words, the Jacobian ideal  $J_{f_{(k,d-k)}} = J = (f_0, \dots, f_3)$  has a bigraded presentation

(4.1) 
$$S(-k+1,-d+k)^2 \oplus S(-k,-d+k+1)^2 \xrightarrow{\phi} S \to S/J \to 0.$$

Since  $x_0f_0 + x_1f_1 = kf_{(k,d-k)}$  and  $x_2f_2 + x_3f_3 = (d-k)f_{(k,d-k)}$ , the ideal J admits the bi-Euler syzygy  $((d-k)x_0, (d-k)x_1, kx_2, kx_3)$ . This syzygy is of bidegree (k, d-k) in the first syzygy module Syz of J, that is the kernel of  $\phi$ .

Henceforth, we use *minimal* to mean a syzygy of the smallest possible degree with respect to the variables  $\{x_2, x_3\}$ , which is not the bi-Euler syzygy. Our goal is to find a minimal syzygy of J; to do this we consider the graded slice of (4.1) in degree  $\eta \in \mathbb{N}$  with respect to  $\{x_2, x_3\}$ :

$$0 \to \operatorname{Syz}_{*,\eta} \to A(-k+1)^{2(\eta-d+k+1)} \oplus A(-k)^{2(\eta-d+k+2)} \xrightarrow{\phi_{\eta}} A^{\eta+1}.$$

By the Hilbert Syzygy Theorem,  $\operatorname{Syz}_{*,\eta}$  is a free A-module. Moreover, taking into account the bi-Euler syzygy we have

$$\operatorname{Syz}_{*n} \simeq M_n \oplus A(-k)^{\eta - d + k + 1}$$
.

In order to have control on the degree of a minimal syzygy, we seek the smallest value of  $\eta$  such that  $M_{\eta}$  is nonzero. If in addition  $M_{\eta}$  has rank one, then the minimal syzygy will be determinantal. If the maps  $\phi_{\eta}$  have expected ranks for small values of  $\eta$  then will occur when

$$2(\eta - d + k + 1) + 2(\eta - d + k + 2) - (\eta - d + k + 1) = \eta + 2,$$

or equivalently  $2\eta = 3(d-k-1)$ . So, if d-k is odd, i.e. if  $d=k+2\mu+1$  for some integer  $\mu \in \mathbb{N}$ , then a minimal syzygy is expected in degree  $(e, \eta = 3\mu), e \in \mathbb{N}$ . We claim that the maps  $\phi_{\eta}$  have expected ranks for all  $\eta \leq 3\mu$ :

(4.2) 
$$M_{\eta} = 0 \text{ for all } \eta < 3\mu \text{ and } M_{3\mu} \simeq A(-e),$$

which implies that this syzygy of degree  $(e, 3\mu)$  is a minimal syzygy of J. To prove the claim we focus on the particular structure of the maps  $\phi_{\eta}$ .

In standard monomial bases, the matrix of  $\phi_{\eta}$  is built from Sylvester blocks:

(4.3) 
$$\left( \begin{array}{c|c} \vdots & \vdots & \vdots \\ \operatorname{Sylv}_{\eta}(f_0) & \operatorname{Sylv}_{\eta}(f_1) & \operatorname{Sylv}_{\eta}(f_2) & \operatorname{Sylv}_{\eta}(f_3) \\ \vdots & \vdots & \vdots & \vdots \end{array} \right).$$

The polynomials  $f_i$  are seen as homogeneous polynomials in  $x_2, x_3$ . The blocks  $\operatorname{Sylv}_{\eta}(f_0)$  and  $\operatorname{Sylv}_{\eta}(f_1)$  are of size  $(\eta + 1) \times (\eta - 2\mu)$  since  $f_0$  and  $f_1$  are of degree  $2\mu + 1$  in  $x_2, x_3$ , and the blocks  $\operatorname{Sylv}_{\eta}(f_2)$  and  $\operatorname{Sylv}_{\eta}(f_3)$  are of size  $(\eta + 1) \times (\eta - 2\mu + 1)$  since  $f_2$  and  $f_3$  are of degree  $2\mu$  in  $x_2, x_3$ . In view of these dimensions, it is clear that  $M_{\eta} = 0$  for all  $\eta < 2\mu$ . Also, the matrix of  $\phi_{2\mu}$  has two columns, namely the coefficients of  $f_2$  and  $f_3$  in degree  $\eta = 2\mu$ ;  $\phi_{2\mu}$  is clearly injective and hence  $M_{2\mu} = 0$ .

For  $\eta \geq 2\mu + 1$  the bi-Euler syzygy appears and yields  $\eta - 2\mu$  independent syzygies in degree  $\eta$  that correspond to the following relations among the columns of the matrix of  $\phi_{\eta}$ , for all  $i = 0, \ldots, \eta - 2\mu - 1$ :

$$0 = x_2^{\eta - 2\mu - 1 - i} x_3^i ((d - k)x_0 f_0 + (d - k)x_1 f_1 - kx_2 f_2 - kx_3 f_3)$$

$$= (d - k)x_0 (x_2^{\eta - 2\mu - 1 - i} x_3^i f_0) + (d - k)x_1 (x_2^{\eta - 2\mu - 1 - i} x_3^i f_1)$$

$$- k(x_2^{\eta - 2\mu - i} x_3^i f_2) - k(x_2^{\eta - 2\mu - 1 - i} x_3^{i + 1} f_3)$$

Removing these relations from the matrix of  $\phi_{\eta}$ , we obtain a new map whose matrix is

(4.4) 
$$\begin{pmatrix} \vdots \\ \operatorname{Sylv}_{\eta}(f_0) \\ \vdots \\ \vdots \\ \end{bmatrix} \begin{array}{c} \vdots \\ \operatorname{Sylv}_{\eta}(f_1) \\ \vdots \\ \vdots \\ \end{bmatrix} \begin{array}{c} \vdots \\ x_2^{\eta-2\mu} f_3 \\ \vdots \\ \vdots \\ \end{bmatrix}.$$

It is obtained by removing the last  $\eta - 2\mu$  columns to (4.3) (the block on the right is a single column). The matrix of (4.4) is of size  $(\eta + 1) \times (3\eta - 6\mu + 2)$  and its kernel is  $M_{\eta}$ . When  $\eta < 3\mu$  it has less columns than rows and to prove the claim we must show that those columns are A-independent, or equivalently by McCoy's Lemma, that there exists a nonzero minor of size  $3\eta - 6\mu + 2$ . To achieve this, we examine in more detail the Sylvester blocks. We set (recall  $d - k = 2\mu + 1$ )

$$f_{(k,d-k)} = x_2^{2\mu+1} h_0(x_0, x_1) + x_2^{2\mu} x_3 h_1(x_0, x_1) + \dots + x_3^{2\mu+1} h_{2\mu+1}(x_0, x_1)$$

where  $h_i(x_0, x_1)$  are homogeneous polynomials of degree k in A. With this notation, the Sylvester blocks can be written more explicitly; for instance we have

$$Sylv_{\eta}(f_0) = \begin{pmatrix} \partial_{x_0} h_0 & 0 & \cdots & 0 \\ \partial_{x_0} h_1 & \partial_{x_0} h_0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & \partial_{x_0} h_{2\mu+1} \end{pmatrix}$$

which is of size  $(\eta + 1) \times (\eta - 2\mu)$  and whose rows are indexed from top to bottom by the monomial basis  $\{x_2^{\eta}, x_2^{\eta-1}x_3, \dots, x_3^{\eta}\}$ . Thus the top maximal minor of this matrix is a lower triangular matrix of determinant  $(\partial_{x_0}h_0)^{\eta-2\mu}$ . Similarly, the bottom minor of  $\operatorname{Sylv}_{\eta}(f_1)$  is a lower triangular matrix of determinant  $(\partial_{x_1}h_{2\mu+1})^{\eta-2\mu}$ . Removing the rows of these two minors from (4.4) we are left with the following submatrix of size

$$(4\mu - \eta + 1) \times (\eta - 2\mu + 2)$$

whose rows are indexed from top to bottom by the monomial basis  $\{x_2^{2\mu}x_3^{\eta-2\mu},\dots,x_2^{\eta-2\mu}x_3^{2\mu}\}$ :

$$\begin{pmatrix} (4\mu - \eta)h_{\eta - 2\mu} & \dots & (2\mu + 1)h_0 \\ (4\mu - \eta - 1)h_{\eta - 2\mu + 1} & \dots & (2\mu)h_1 \\ \vdots & & \vdots & & & \\ h_{2\mu} & \dots & (\eta - 2\mu + 1)h_{4\mu - \eta} \end{pmatrix} \begin{pmatrix} (\eta - 2\mu + 1)h_{\eta - 2\mu + 1} \\ (\eta - 2\mu)h_{\eta - 2\mu + 2} \\ \vdots & & & \\ (2\mu + 1)h_{2\mu + 1} \end{pmatrix}.$$

From here, one can choose the  $(\eta - 2\mu + 2)$ -minor built with the top minor of maximal size  $(\eta - 2\mu + 1)$  in the left block, whose determinant is denoted by  $\Delta$ , and the bottom minor of size 1 in the right block, whose determinant is obviously equal to  $(2\mu + 1)h_{2\mu+1}$ . In the end, we have selected a  $(3\eta - 6\mu + 2)$ -minor in (4.4) whose determinant is equal to

$$(2\mu + 1)h_{2\mu+1} \left(\partial_{x_0} h_0\right)^{\eta - 2\mu} \left(\partial_{x_1} h_{2\mu+1}\right)^{\eta - 2\mu} \Delta.$$

To see that  $\Delta$  is nonzero, we observe that if

$$h_{\eta-2\mu+1} = \dots = h_{2\mu} = 0$$

then  $\Delta$  is the determinant of an upper triangular matrix and its diagonal entries are all equal to  $h_{\eta-2\mu}$  up to a nonzero multiplicative constant. Therefore, by our genericity assumption the determinant (4.5) is nonzero.

The case  $\eta = 3\mu$  follows in similar fashion. The difference in this case is that the matrix (4.4) has one more column than row; it is of size  $(\mu + 1) \times (\mu + 2)$  and we have to show that it is of rank  $\mu + 1$ . We proceed as previously by selecting the same minors in the

blocks  $\operatorname{Sylv}_{\eta}(f_0)$  and  $\operatorname{Sylv}_{\eta}(f_1)$ . Then, in the remaining part of the matrix, the minor whose determinant is equal to  $\Delta$  is of size  $\mu + 1$  and hence there is no need to select an element in the last column. The determinant  $\Delta$  is nonzero by the same argument and the claimed property (4.2) is proved.

Finally, it remains to determine the degree e with respect to  $x_0, x_1$  of the minimal syzygy we found, i.e. the integer e that appears in the exact sequence

$$0 \to A(-e) \oplus A(-k)^{\mu} \to A(-k+1)^{2\mu} \oplus A(-k)^{2\mu+2} \xrightarrow{\phi_{3\mu}} A^{3\mu+1}$$

As explained above, the contribution of the bi-Euler syzygy in this sequence corresponds to a well identified block matrix. It follows that the minimal syzygy we are interested is a generator of the kernel of the matrix (4.4), which corresponds to the following restriction  $\overline{\phi}_{3\mu}$  of the map  $\phi_{3\mu}$ :

$$0 \to A(-e) \to A(-k+1)^{2\mu} \oplus A(-k)^{\mu+1} \oplus A(-k) \xrightarrow{\overline{\phi}_{3\mu}} A^{3\mu+1}.$$

Therefore, we deduce that

$$A(-e) \simeq \wedge^{3\mu+2} \left( A(-k+1)^{2\mu} \oplus A(-k)^{\mu+1} \oplus A(-k) \right) \simeq A(-(3\mu+2)k+2\mu)$$

and hence that

$$e = (3\mu + 2)k - 2\mu.$$

Since  $d-k=2\mu+1$ , we deduce that  $M(f_{(k,d-k)})$  has a minimal first syzygy of bidegree

$$\begin{array}{rcl} (e,3\mu) & = & ((3\mu+2)k-2\mu,3\mu) \\ & = & (2k,0)+\mu(3k-2,3) \\ & = & (2k,0)+\frac{d-k-1}{2}(3k-2,3) \end{array}$$

as claimed.  $\Box$ 

**Remark 4.2.** From the proof of this theorem, we see that the minimal syzygy of  $M(f_{k,d-k})$  we obtained is completely explicit: it is a determinantal syzygy that is built from the minors of maximal size of a submatrix of (4.4).

**Example 4.3.** Suppose d = 19 and k = 6. Then the minimal bigraded first syzygies are of bidegree (with exponent denoting the rank in that bidegree)

The minimal first syzygy of bidegree (108, 18) has degree 126 in the Z-grading, so

regularity 
$$M(f_{6,13})$$
 is  $\geq 124$ .

The betti table (see [15]) for the  $\mathbb{Z}$ -graded minimal free resolution for  $M(f_{6,13})$  is

|            | 0  | 4  | 0      | 2   | 1  |
|------------|----|----|--------|-----|----|
| 4.4.7.     | -  | 1  | 2      | 3   | 4  |
| total:     | 1  | 4  | 66     | 107 | 44 |
| 0:         | 1  | •  | •      | •   | •  |
| :          | •  | •  | •      | •   | •  |
| 17:        | •  | 4  | 1      | •   | •  |
| :          | •  | •  | •      | •   | •  |
| 34:        | •  | •  | 6      | 4   | 1  |
| :          |    | •  | •      | •   | •  |
| 38:        |    |    | 22     | 33  | 10 |
| 39:        |    |    | 9      | 18  | 9  |
| 40:        |    |    | 1      | 2   | 1  |
| 41:        |    |    | 5      | 10  | 5  |
| 42:        |    |    | 2      | 4   | 2  |
| 43:        |    |    |        |     |    |
| 44:        |    |    |        |     |    |
| 45:        |    |    | 5      | 6   |    |
| 46:        |    |    | 5      | 10  | 5  |
| 47:        |    |    |        |     |    |
| 48:        |    |    |        |     |    |
| 49:        |    |    |        |     | 1  |
| 50:        |    |    | 2      | 4   | 2  |
| 51:        | Ĭ. | Ĭ. | 2      | 4   | 2  |
| :          | •  | •  | •      |     | _  |
| 58:        | •  | •  | 2      | 4   | 2  |
| 59:        | •  | •  | 1      | 2   | 1  |
| :          | •  | •  |        |     |    |
| 74:        | •  | •  | ·<br>1 | 2   | 1  |
| 74:<br>75: | •  | •  | 1      | 2   | 1  |
| 15:        | •  | •  | T      |     | Т  |
|            | •  | •  | ٠      | 2   |    |
| 124:       |    | •  | 1      | 2   | 1  |

Note that the bound on d is achieved. To save space we have replaced large empty stretches in the table with an unlabelled row beginning with :

Closing Remarks and Questions: Theorem 4.1 illustrates that the additional algebraic structure of multigraded hypersurfaces provides leverage to obtain interesting results on the regularity of M(f), and we are working on a sequel to this paper to investigate this question. We thank Carlos D'Andrea for pointing out references [24] and [28] to us, and an anonymous referee for helpful comments. Computations in Macaulay 2 [16] and Singular [6] provided evidence for our work.

#### References

- [1] T. Abe, Plus-one generated and next to free arrangements of hyperplanes, *Int. Math. Res. Not.*. doi:10.1093/imrn/rnz099. 2.5, 2.5
- [2] A. Beauville, Determinantal hypersurfaces, Michigan Math. J. 48, 39-64 (2000). 2.5
- [3] W. Bruns and J. Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993. 2.1, 3
- [4] M. Chardin, Applications of some properties of the canonical module in computational projective algebraic geometry. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). J. Symbolic Comput. 29 (2000), 527–544. 1, 2.1
- [5] D. Cox, S. Katz, Mirror symmetry and algebraic geometry. Mathematical Surveys and Monographs, 68. American Mathematical Society, (1999).
- [6] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, SINGULAR 4-1-2 A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2019).
- [7] A. Dimca, S. Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements. Ann. of Math. 158, 473-507 (2003). 4
- [8] A. Dimca, On the syzygies and Hodge theory of nodal hypersurfaces. Ann. Univ. Ferrara Sez. VII Sci. Mat. 6, 87-101 (2017).
- [9] A. Dimca, Syzygies of Jacobian ideals and defects of linear systems, Bull. Math. Soc. Sci. Math. Roumanie Tome 56(104) No. 2, 2013, 191–203. 1
- [10] A. Dimca, M. Saito, Graded Koszul cohomology and spectrum of certain homogeneous polynomials, arXiv:1212.1081v3. 2.2
- [11] A. Dimca, G. Sticlaru, Free and nearly free curves vs. rational cuspidal plane curves, Publ. RIMS Kyoto Univ. 54 (2018), 163–179. 2.5
- [12] A. Dimca, G. Sticlaru, Free and nearly free surfaces in P³, Asian J. Math. 22 (2018), 787–810. 2.2, 2.5, 3.4, 3.5
- [13] L. Ein, R. Lazarsfeld, K. Smith, D. Varolin, Jumping coefficients of multiplier ideals. Duke Math. J. 123, 469-506 (2004). 1
- [14] D. Eisenbud, Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry, 2.1, 2.5, 3, 3, 3
- [15] D. Eisenbud, The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative Algebra, Graduate Texts in Mathematics, Vol. 229, Springer 2005. 1, 2.1, 4.3
- [16] D. Eisenbud, D. Grayson, M. Stillman, Macaulay 2: a software system for algebraic geometry and commutative algebra, http://www.math.uiuc.edu/Macaulay2 4
- [17] P. Griffiths, On the period of certain rational integrals I, II. Ann. Math. 90, 460-541 (1969). 1
- [18] T. Gulliksen, O. Negard, Un complexe résolvant pour certains idéaux déterminantiels, C. R. Acad. Sci. Paris, 274, A16-A18 (1972). 2.5
- [19] T. Józefiak, Ideals generated by minors of a symmetric matrix, Comment. Math. Helv. 53, 595-607 (1978). 2.5
- [20] A. Lascoux, Syzygies des variétés déterminantales, Adv. in Math. 30, 202-237 (1978). 2.5
- [21] M. Mustata, H. Schenck, The module of logarithmic p-forms of a locally free arrangement. J. Algebra 241, 699-719 (2001). 2.5
- [22] L. L. Rose, H. Terao, A free resolution of the module of logarithmic forms of a generic arrangement, J. Algebra 136 (1991), 376–400. 2.5
- [23] E. Sernesi, The local cohomology of the Jacobian ring, Documenta Mathematica, 19 (2014), 541-565.
- [24] S. Spodzieja, On some property of the Jacobian of a homogeneous polynomial mapping, Bull. Soc. Sci. Lett. Lodz 39, no. 5, 1-6 (1989). 1, 4
- [25] H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula. Invent. Math. 63, 159-179 (1981). 1

- [26] D. van Straten, T. Warmt, Gorenstein duality for one-dimensional almost complete intersections—with an application to non-isolated real singularities, Math. Proc.Cambridge Phil. Soc.158, 249-268, (2015).
  2.2
- [27] A. Szanto, with an appendix by Marc Chardin, Solving overdetermined systems by the subresultant method. J. Symbolic Computation 43, 46-74 (2008). 2.2
- [28] W. Vasconcelos, The top of a system of equations. Boletin de la Sociedad Matematica Mexicana, Vol. 37, 549-556 (1992). 1, 4
- [29] U. Walther, The Jacobian module, the Milnor fiber, and the D-module generated by  $f^s$ . Invent. Math. 207, 1239-1287 (2017). 1
- [30] G. Ziegler, Combinatorial construction of logarithmic differential forms, Adv. Math. 76, 116-154 (1989). 2.5

Université Côte d'Azur, Inria, 2004 route des Lucioles, 06902 Sophia Antipolis, France. *Email address*: laurent.buse@inria.fr

Université Côte d'Azur, CNRS, LJAD, France and Simion Stoilow Institute of Mathematics, P.O. Box 1-764, RO-014700 Bucharest, Romania

Email address: dimca@unice.fr

MATHEMATICS DEPARTMENT, AUBURN UNIVERSITY, AL 36849-5310, USA.

Email address: hks0015@auburn.edu

FACULTY OF MATHEMATICS AND INFORMATICS, OVIDIUS UNIVERSITY BD. MAMAIA 124, 900527 CONSTANTA, ROMANIA

Email address: gabriel.sticlaru@gmail.com