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Recent years have seen growing interest in modeling visitor engagement in museums with multimodal learning
analytics. In parallel, there has also been growing concern about issues of fairness and encoded bias in machine
learning models. In this paper, we investigate bias detection and mitigation techniques to address issues of
algorithmic fairness in multimodal models of museum visitor visual attention. We employ slicing analysis using the
Absolute Between-ROC Area (ABROCA) statistic to detect encoded bias present in multimodal models of visitor
visual attention trained with facial expression and posture data from visitor interactions with a game-based
museum exhibit about environmental sustainability. We investigate instances of gender bias that arise between
different combinations of modalities across several machine learning techniques. We also measure the effectiveness
of two different debiasing strategies—learned fair representations and reweighing—when applied to the trained
multimodal visitor attention models. Results indicate that patterns of bias can arise across different modality
combinations for the different visitor visual attention models, and there is often an inherent tradeoff between
predictive accuracy and ABROCA. Analyses suggest that debiasing strategies tend to be more effective on
multimodal models of visitor visual attention than their unimodal counterparts
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1 Introduction

Measuring visitor engagement in informal learning environments, such as museums and science centers, poses
significant challenges. Visitor engagement is a core component of learning in museums [7]. Engagement influences
how visitors interact with museum exhibits, form understanding, and follow up to learn more after museum visits
[7]- Recent advances in multimodal learning analytics have been used to detect patterns of learner engagement by
utilizing multiple sensor-based data streams such as facial expression, posture, eye gaze, and interaction log data
[3, 14, 28, 39]. Although the benefits of incorporating multimodal data streams into models of learner engagement
has been demonstrated in both classroom and laboratory settings [13, 27, 28, 31], investigating multimodal
analytics in informal settings is still in its early stages [17].

Recent years have seen significant advances in utilizing multimodal machine learning for a wide range of tasks
[3, 5]. In parallel, questions about algorithmic fairness for machine learning models have also been a topic of
growing concern [1, 12, 19, 18, 21, 26, 34]. Conceptualizations of algorithmic fairness often range from individual
and group fairness to quantitatively measurable “distance metrics” that can be minimized through a fairness
optimization process [10]. Statistical formulations of fairness, such as equalized odds, demographic parity, and
equal opportunity, also come into play [8, 4, 19]. In this work, we conceptualize algorithmic fairness in terms of
encoded bias, which emphasizes the potential risk of machine learning models that have differential impact on
different groups of individuals. Considerations of algorithmic fairness in machine learning-based models of
museum visitor engagement are important because museums often have missions to serve learners from a broad
range of socio-cultural backgrounds. As machine learning techniques are utilized to model visitor engagement in
museums, there is a risk of inheriting implicit biases as well. Museums that utilize biased machine learning models
to measure visitor engagement may unwittingly tailor their exhibits in favor of these biases, leading to different
qualities of visitor experience across different populations. This process can further reinforce encoded biases
during future data collection and model refinement phases, causing further downstream effects [9].

A central component of visitor engagement is visual attention. In this paper, we investigate automated detection
and mitigation of encoded bias in multimodal models of visitor visual attention with an interactive science museum
exhibit. We utilize data that was captured from visitor interactions with a museum exhibit about environmental
sustainability, FUTURE WORLDS. We examine four standard machine learning methods (random forest, support vector
machine, Naive Bayes, decision tree) for predicting levels of visitor visual attention using posture and facial
expression data. We investigate the predictive accuracy of multimodal variations of each model compared to
unimodal baselines. We also measure encoded bias present within each model by performing slicing analysis across
gender groups using the Absolute Between-ROC Area (ABROCA) statistic [19]. The ABROCA statistic measures the
amount of bias present by looking for differential behavior in model performance between two sub-populations in
the data. In combination with a modality-level ablation study, slicing analysis aids in identifying sources of bias that
may necessitate corrective measures. Finally, we examine the impact of two debiasing techniques, reweighing (RW)
[22] and learned fair representations (LFR) [43], on the accuracy and fairness of multimodal machine learning
models of museum visitor attention.

2 Visitor Modeling in Museums

We draw on and extend the literatures on visitor modeling in museums, multimodal learning analytics, and
algorithmic fairness. We discuss each of these in turn.

2.1 Museum Visitor Engagement

Prior work has explored modeling learner engagement in formal settings, such as schools and universities [11, 13,
14,15, 42]. While formal and informal learning environments share many core objectives, museum-based learning
presents distinctive challenges for measuring learner engagement, including short dwell times and an emphasis on
free-choice learning. Well-designed, engaging exhibits frequently have very brief visitor interactions, and even



highly engaged visitors can have short dwell times [17]. Furthermore, museums often attract a diverse range of
visitors in terms of age, gender, and socio-cultural background. A promising approach for measuring visitor
engagement is to instrument an exhibit with physical sensors, including webcams, depth cameras, eye trackers, and
microphones dependent upon the context, to capture rich multimodal data that can be modeled using multimodal
learning analytic techniques.

2.2 Multimodal Learning Analytics

Multimodal learning analytics has been the subject of increasing attention in recent years and has shown significant
example, Slimer et al. examined learner engagement using pose estimation and facial expression data in school
classrooms [35]. The authors generated feature representations from student interactions with their neighbors
using the pose and motion data. The multimodal features were used to train deep learning models for creating
separate feature embeddings for affect detection and attention detection, respectively. Sawyer et al. showed that
student models enhanced with facial action unit data outperformed baseline unimodal models as well as models
trained only on composite emotions for predicting student engagement [31]. Other studies have found that
decision-level fusion with data from multiple modalities, including temporal posture information extracted from a
Microsoft Kinect sensor, yields increased predictive performance over unimodal models for affect detection [28].
Eye gaze has also been found to be a useful modality for measuring engagement in classrooms [27, 30].

2.3 Algorithmic Fairness

To date, there has been limited work investigating algorithmic fairness in multimodal learning analytics [24, 25].
Solutions to algorithmic fairness often focus on statistical notions of fairness. Barrio et al. provide a review of
common conceptualizations of fairness and other fair learning techniques [8]. The authors detail the mathematical
frameworks underlying these definitions and propose a probabilistic framework to compare definitions of fairness
with statistical independence. Mehrabi et al. present an extensive survey of types of biases, and they also evaluate
a series of bias mitigation strategies [26]. Other recent work has focused on bridging the gap between statistical
notions of fairness and individual fairness. Rich subgroup fairness, a formulation of fairness proposed by [23] and
closely related to [20], extends prior fairness metrics to include the constraint that it must hold for all possible
subgroups of the data. An application of fast subset scanning, which is an anomaly detection algorithm, has been
applied to detect bias across all subgroups of the data in a black box fashion [44]. Slicing analysis using the ABROCA
statistic has been proposed as a generalizable method for detecting bias over various thresholds, overcoming the
limitations of many statistical definitions of fairness [19]. In this paper, we extend this line of investigation by using
slicing analysis to examine the effectiveness of different de-biasing strategies (learning fair representation and
reweighing) in multimodal machine learning-based models of visitor visual attention in science museums.

3 FUTURE WORLDS Testbed Exhibit

FUTURE WORLDS is a prototype game-based museum exhibit about environmental sustainability [17]. In FUTURE
WORLDs, visitors interact with a touch-based display to learn about environmental sustainability by investigating
the impacts of alternative decisions made within a 3D virtual environment. FUTURE WORLDs offers learners the ability
to touch, swipe, and tap the screen while they improve aspects of the virtual environment. The exhibit’s science
content centers on themes of water, energy, and food. The primary objective of FUTURE WORLDS is to enable visitors
to learn about sustainability in an engaging way by exploring alternative modifications to a simulated environment
with the goal of improving its sustainability. Visitors’ interactions enable them to test hypotheses about different
environmental decisions by exploring cause-and-effect relationships between different components of the
simulated environment and examining informational dialogs that impart knowledge about environmental elements
(e.g., forests, rivers, solar power, industrial farms, etc.). The science content in FUTURE WOoORLDS is designed for
learners ages 10-11. Prior studies have shown that learner interactions with FUTURE WORLDs yield enhanced



knowledge about environmental sustainability concepts and promising levels of observed visitor engagement [38].
Figure 1 shows an example of a visitor interacting with the Future Worlds game-based exhibit.

Figure 1: FUTURE WoORLDs interactive museum exhibit on sustainability.

4 Multimodal Dataset

To investigate bias detection and mitigation in multimodal models of museum visitor attention, we utilized a
multimodal dataset capturing visitor interactions with FUTURE WORLDS in a science museum. Learners from three
different schools participated in the study. Each school served a student population in which over 70% of students
came from economically disadvantaged homes. In total, 116 visitors between the ages of 10-11 participated. Each
learner completed both pre- and post-surveys that captured visitor information such as demographics, science
interest, sustainability content knowledge, and engagement. The participant sample was 32.4% Hispanic or Latino,
21.6% Black or African American, 11.8% Native American, 8% Asian, 3% Caucasian, and 7.5% mixed races. The
remaining 15.7% of students indicated that they preferred not to respond. The gender makeup of the sample
included 47 females and 55 males while the remaining students did not provide gender information. Data from 65
students were used to train the multimodal visitor attention models after removing students that were missing
either survey data or multimodal data.

Prior to engaging with FUTURE WORLDs, visitors were introduced to the exhibit and the physical sensors were
calibrated for each visitor. Visitors interacted with FUTURE WoRLDS for a maximum of 10 minutes (M = 3.97, 5D =
2.24). During the study, the FUTURE WoRLDs exhibit was instrumented with physical sensors and logging software
to capture real-time posture, facial expression, eye gaze, and interaction trace log data. Features extracted from
these data channels were utilized to develop multimodal machine learning-based models of visitor visual
attention.

Facial expression data was captured from an externally mounted Logitech C920 USB webcam, and the video
recordings were analyzed in real-time using the OpenFace facial behavioral analysis toolkit [4]. Facial expression
data has been widely used for modeling and predicting engagement [6, 27, 32, 33, 35, 37, 40]. OpenFace allows for
the automated detection of 17 distinct facial action units (AU) for each face captured in the webcam’s field of view
as well as head pose and eye gaze estimation.

Using the Microsoft Kinect V2 for Windows, visitors’ postural movements were tracked for 26 distinct vertices
in 3D coordinate space along with RGB and depth channel representations. Posture has also been shown to be
predictive of different affective states through bodily pattern mining [13]. Analyzing a learner's body position and
movement has also been shown to be effective when combined with emotion templates in emotion recognition



tasks [28]. The Kinect sensor was positioned approximately five feet away from each visitor in a front-facing
arrangement.

Timestamped records of visitors’ interactions with the exhibit’s multi-touch interface were captured through
interaction trace log data. These interactions were recorded at the millisecond granularity and captured actions
such as requesting more information about a particular concept or modifying the in-game virtual environment. A
benefit of using an interaction-based modality to model visitor attention is that such sensor-free modalities are
more robust against issues that frequently impact sensor-based modalities such as noise, mis-tracking,
miscalibration, and hardware failure.

Visitors’ eye gaze patterns were captured by employing an externally mounted Tobii EyeX eye tracking sensor.
Prior work has shown that eye gaze can be used effectively in measuring engagement [27]. Ray casting techniques
were utilized to automatically identify in-game targets of visitor’s attention. This process yielded information
including timestamps, eye gaze targets, and durations of visitors’ fixations on regions of the exhibit’s interface.

4.1 Multimodal Features

Several predictive features were extracted from the collected data based on prior work using multimodal learning
analytics to predict museum visitor engagement [17]. Eight features were distilled from the interaction trace log
data, including the total number of times that a visitor tapped on the interactive display and the total number of
times a visitor tapped to examine informational texts about several in-game elements. Additional features distilled
from the trace logs included whether a visitor solved the game’s problem scenario and the total number of times a
visitor interacted with the exhibit’s interface through actions such as opening and swiping through different dialogs
and modifying the virtual environment.

Facial expression features were extracted from the facial action unit data captured by the OpenFace software.
To calculate the duration of each AU’s presence during a visitor’s interactions with the exhibit, the intensity of each
AU was standardized and subsequently recorded only if the present intensity exceeded one standard deviation
above the mean intensity. Each AU’s calculated duration only includes intervals when the recorded intensity was
prolonged for more than a half-second to avoid capturing noise due to micro expressions. The duration was
calculated for 18 AUs, and 36 additional features were generated using the standard deviation and maximum values
for each AU'’s intensity.

Posture-based features were extracted from four skeletal vertices tracked by the Microsoft Kinect: head, upper
back, mid back, and neck. The minimum, maximum, median, and variance of the (x, y, z) coordinates for each vertex
were used as features. Two additional posture-based features were also extracted. Total postural change was
calculated from the summative change across all vertex coordinates. Total change in terms of the Euclidean distance
from the Kinect sensor was calculated across all vertices as well. In total, 18 posture-based features were extracted
from the raw Kinect data.

Eye tracking data captured from each visitor was mapped to predetermined areas of interest (AOIs) to quantify
the duration a visitor was fixated on a particular region of the exhibit’s interface. Informed by prior research, gaze
fixations longer than 210 milliseconds were included as part of an AOTI’s total gaze duration. Gaze durations were
calculated for four distinct AOI categories: virtual location (AOI-Location), environmental sustainability selection
menus (AOI-Menu), environmental sustainability textual information and imagery (AOI-Information), and the
navigational interface (AOI-Interface). This categorization was determined based upon the gaze targets’ functional
role in the game (e.g., imparting information about science content, navigating the interface, enacting a change to
the simulated environment, etc.) AOI-Location refers to nine distinct regions within the virtual environment. AOI-
Menu encompasses the in-game elements a visitor interacts with while modifying the virtual environment or
querying a specific element for more information. AOI-Information represents the interface within FUTURE WORLDS
that presents science content to the visitor, such as informational text or imagery pertaining to a particular aspect
of the virtual environment (Figure 2). Finally, AOI-Interface represents elements within the navigational interface
such as the arrows and buttons used to begin, pause, or exit the game. It should be noted that the four AOIs are
disjoint groups: a visitor’s eye gaze can only fall into a single AOI at a time, as AOIs do not overlap in this work.
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Figure 2: Visualization of visitor attention captured by AOI-Information.

To serve as a measure of visitor attention toward the exhibit’s science content, we utilized the proportional time
that visitors spent visually fixating on AOI-Information. Specifically, we calculated AOI-Information’s proportional
gaze fixation time by dividing the AOI's total duration by the total gameplay time for each visitor. The proportional
fixation time of the AOI was categorized into “high” and “low” groups based on a median split (median =.031) across
all visitors. This feature served as the target variable for our visitor attention models. This feature was chosen based
upon the premise that the greater amount of time spent visually fixating on AOI-Information, the more visual
attention was being dedicated toward the exhibit’s science content. Attentional management has been shown to be
correlated with high levels of engagement in classroom settings [11, 29, 41].

5 Method

We investigate encoded bias in multimodal models of visitor visual attention using four machine learning
techniques: random forest (RF), support vector machine (SVM), Gaussian Naive Bayes (NB), and decision trees (DT).
We evaluate the predictive performance of these models for identifying visitors who spend a high amount of time
fixating on science-related informational dialogs in the FUTURE WORLDS exhibit. We then performed a slicing analysis,
in which we evaluated the predictive performance of the models on different “slices” of the data—across gender
lines in our case—to detect the presence of bias using the ABROCA statistic. Finally, we investigate the use of the
ABROCA statistic to measure the effectiveness of two debiasing techniques, learned fair representations and
reweighing using Al Fairness 360 (AIF360). AIF360 is an extensible toolkit for detecting and mitigating bias in
machine learning models [9]. The toolkit supports a broad range of debiasing strategies in the preprocessing, in-
processing, and post-processing stages of the model training pipeline.

5.1 Visitor Visual Attention

During preprocessing, we removed the interaction-based modality because it was linearly related with the target
variable. Interaction data included information such as whether a visitor completed the game, the total number of
gameplay interactions within the environment, the duration of a visitor’s interaction as well as any variable
associated with the four main AOIs. Each visitor attention model was evaluated using nested cross-validation.
Hyperparameter tuning was performed using 3-fold inner cross-validation within 5-fold outer cross-validation. For
the random forest models, we optimized the number of features used as splits, the maximum tree depth, and the
maximum number of trees used before majority voting. The hyperparameters tuned for the SVM models were the



margin width, the kernel type, and the gamma weighting parameter. The decision tree hyperparameters included
the splitting criterion, the maximum number of features used, the maximum tree depth, and the minimum number
of samples per split. The Gaussian Naive Bayes model needed no hyperparameter tuning by design. Prior to training
the models, the input features were normalized between 0 and 1, and univariate feature selection was performed
using the chi-squared distribution, with the ten most predictive features for each modality being retained. Data
normalization and feature selection were performed using the training set to protect against data leakage. Area
Under Curve (AUC) was selected as the primary metric to assess model accuracy, and it was used to determine the
optimal hyperparameter configurations for each model during the inner cross-validation step. The optimal
hyperparameter values were then used to train and evaluate each model during the outer cross-validation step.

5.2 ABROCA

The models trained during this phase were also used to perform slicing analysis. To perform the slicing analysis,
the data was split along gender lines to evaluate the model’s performance in terms of ABROCA [19]. ABROCA
examines a model’s predictive performance across a range of classification confidence thresholds rather than
restricting comparisons to fixed thresholds. The ABROCA metric is calculated by taking the absolute value of the
difference between a model's AUC scores for different subpopulations of the data. ABROCA values closer to 0 show
that a model's performance across subgroups is equal and therefore represents a lower amount of bias. The
ABROCA statistic was chosen because it does not rely on a “similarity metric”; it is applicable across a range of
confidence thresholds and can be empirically computed without requiring additional data collection. Each model’s
predictions from the cross-validation phase were used to generate an ROC curve to evaluate the model’s predictive
performance in terms of AUC and to generate the ABROCA score to quantify the bias present.

We evaluated the predictive performance and ABROCA score of the four machine learning models using
multimodal data consisting of facial expression and posture combined using feature-level data fusion. The
multimodal models were compared against unimodal models induced from each individual modality. We then
performed a series of ablations to examine alternative combinations of modalities and machine learning techniques.
The relationships and tradeoffs between the AUC and ABROCA metrics were examined to determine whether
enhancing a model’s fairness using debiasing techniques had a substantial impact on a model’s predictive capacity.

5.3 Debiasing

Two debiasing strategies were evaluated: learned fair representation [43] and reweighing [22]. Learned fair
representation (LFR) formulates fairness as an optimization problem of finding an intermediate representation of
the data with opposing goals of encoding the data well while simultaneously attempting to obfuscate information
related to protected attributes such as ethnicity and gender. The authors achieve this by mapping everyone,
represented as a point in the input space, to a probability distribution in a new representation space. In this new
space any protected information about an individual, such as ethnicity or gender, is lost while trying to maximally
preserve information about the other attributes. A fair representation of the data is learned through an optimization
process of mapping to a prototypical representation of the data that minimizes statistical parity. The intermediate
representation can be used in fair transfer learning such that downstream models may benefit from less biased
predictions.

Reweighing (RW) is a technique that attaches weights to each (group, label) combination in the dataset to ensure
fair classification. It assigns tuple objects that belong to a particular group (e.g., gender) and contain a positive class
label (e.g., high attention) a higher weight than objects in the same group with a negative class label. The weights
are proportional to the expectation for group membership given class labels to the observed counts. Bias is defined
by the difference in expected probabilities and the observed probabilities. If the expected probability is higher than
the observed probability then the predictions are said to be biased. By assigning weights to each tuple according to
its class label and group membership and then multiplying by its frequency it can be shown that the resulting
dataset becomes unbiased and can further be used to train a bias-free classifier.



6 Results

The results of the experiments are summarized in Tables 1 and 2. Table 1 shows the AUC scores for each model
with the top 20% best performing classification techniques shown in bold. Random forest tended to achieve higher
performance on average across all modality combinations and debiasing strategies. The highest overall predictive
accuracy was achieved by the multimodal random forest model (AUC = .832). Although Naive Bayes had on average
better scores than decision trees (Mean =.721, Mean =.627) across all modalities and debiasing strategies, the latter
exhibited the next most accurate classification performance (AUC = .783). In contrast, SVM models achieved
comparatively low AUC scores (Mean = .459). In general, the results indicate that random forest and Naive Bayes
models yielded the highest AUC scores on average across all experiments (Table 1). Further analyses indicate that
Naive Bayes showed the least variance from Table 1 (Var =.001) when compared to both random forest and SVM
both containing a variance of .003, implying that Naive Bayes may not be as strongly impacted by changes in
modalities or debiasing strategy.

The ABROCA results are shown in Table 2 with the lowest ABROCA values in bold, signifying the models
containing the least amount of bias. Bolded values denote the lowest 20% of ABROCA scores. The lowest mean
ABROCA score was achieved by the Naive Bayes models across all non-debiased and debiasing methods. The
multimodal decision tree and the Kinect-only SVM with LFR were tied for the lowest ABROCA scores across all tests
(ABROCA =.002). Random forest and SVM had similar mean ABROCA scores and were associated with some of the
least biased scores after debiasing. The results show that both Naive Bayes and Random Forest exhibit the lowest
amount of variance of .001 and .002, respectively, across both debiasing techniques. Figures 3, 4 and 5 show the
slice plots for the multimodal random forest model that achieved the highest AUC score.




Table 1: AUC values for multimodal, Kinect, and OpenFace models across debiasing strategies.

No Debiasing
Model Multimodal Kinect OpenFace
Random Forest 0.832 0.811 0.807
SVM 0.398 0.453 0.398
Decision Tree 0.724 0.599 0.616
Naive Bayes 0.730 0.704 0.722
LFR
Model Multimodal Kinect OpenFace
Random Forest 0.777 0.659 0.664
SVM 0.538 0.530 0.531
Decision Tree 0.446 0.538 0.630
Naive Bayes 0.694 0.754 0.685
RW
Model Multimodal Kinect OpenFace
Random Forest 0.788 0.811 0.807
SVM 0.402 0.456 0.425
Decision Tree 0.661 0.647 0.783
Naive Bayes 0.777 0.704 0.722




Table 2: ABROCA values for multimodal, Kinect, and OpenFace models across debiasing strategies.

No Debiasing
Model Multimodal Kinect OpenFace
Random Forest 0.140 0.147 0.111
SVM 0.247 0.040 0.056
Decision Tree 0.002 0.098 0.054
Naive Bayes 0.183 0.126 0.203
LFR
Model Multimodal Kinect OpenFace
Random Forest 0.050 0.119 0.035
SVM 0.084 0.002 0.016
Decision Tree 0.017 0.117 0.251
Naive Bayes 0.133 0.174 0.089
RW
Model Multimodal Kinect OpenFace
Random Forest 0.022 0.147 0.111
SVM 0.196 0.121 0.123
Decision Tree 0.063 0.073 0.111
Naive Bayes 0.106 0.126 0.203
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Figure 3: Slice plot along gender showing bias in the multimodal random forest model.
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Figure 4: Slice plot along gender showing the reduction in bias for the random forest model with
reweighing.
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Figure 5: Slice plot along gender showing the reduction in bias for the random forest model using
learned fair representations.
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7 Discussion

With regard to predictive accuracy, random forest was the best performing model across all experiments, producing
6 of the 7 highest AUC scores. The multimodal and posture-only (Kinect) models yielded the highest ABROCA values
before the application of debiasing techniques, suggesting a risk of encoded bias. After applying the LFR debiasing
approach to random forest to generate a latent representation of the data, we saw a reduction in ABROCA values
for each modality, with the facial expression modality showing the largest reduction in bias (0.111 to 0.035; 68%).
Application of debiasing via reweighing for random forest reduced bias in the multimodal model by 84% (0.140 to
0.022) although it did not reduce bias for either of the unimodal models. These findings demonstrate that the two
debiasing strategies are effective in mitigating bias present in the random forest models of visitor visual attention
based upon using the ABROCA statistic for comparing models’ bias. In addition, we observed that debiasing via
reweighing for the multimodal data greatly reduces bias while having a minimal impact on the model’s visual
attention classification accuracy.

Visitor attention models trained on multimodal data without debiasing achieved the highest ABROCA scores,
implying that the bias present in the underlying features from each modality may be associated with increasing
complexity of the multimodal data. The effectiveness of our debiasing strategies for the multimodal feature set can
be observed as both the LFR and RW debiasing strategies achieved greater decreases in ABROCA scores for the
multimodal models than when applied to the unimodal baseline models. This illustrates that the tradeoff between
the ABROCA and AUC scores was critical for the multimodal models, as there was a significant impact from the
application of the debiasing strategies.

The results in Table 2 also indicate that each machine learning model responded differently to each debiasing
technique. The RW method had little effect on the random forest and Naive Bayes models in terms of ABROCA, and
it did not significantly impact the predictive performance of the unimodal baselines. Both models are robust to noise
and outliers and therefore may be minimally impacted by the weights of the RW method applied to the dataset.
However, the additive bias from the combination of modalities was diminished by the RW technique, and in the
case of random forest, it benefited by having one of the lowest ABROCA scores overall. Decision tree and SVM
experienced an increase in classification performance, but each model had varied results in terms of the slicing
analysis. The ABROCA scores for the facial expression-based models increased for each model after debiasing, and
the posture modality showed an increase with the SVM as well. The increase in classification accuracy for the SVM
may be caused by a balance in the separation between classes introduced by reweighing. The LFR debiasing
technique decreased the bias present in at least one model for each modality, with the lone exception of Naive Bayes.
The latent representations of the features provided by LFR-based debiasing appear to be a more effective means of
debiasing when compared to reweighing in general. RW was effective by demonstrating the lowest ABROCA values
with low impact on AUC for multimodal random forest models (Table 2).

We can categorize each of these techniques by looking at to what extent the decrease in a model’s classification
accuracy affects the model’s decrease in bias. LFR performs a more complex transformation on the training data
compared to RW, and subsequently it has a larger impact on a model’s predictive accuracy. This debiasing technique
can also have a generally large, possibly adverse impact on bias reduction. The RW technique employs a relatively
simple transformation on the data that has a smaller impact on predictive performance and ABROCA scores.

When determining which visitor visual attention models to deploy within a museum, considerations of the
models’ overall accuracy should be weighed against the risks associated with biased performance. It is possible that
biased performance within certain subgroups has little tangible impact on visitors’ learning experiences, thus
imposing a negligible cost to the users of the model (e.g., visitors, exhibit designers, museum educators, museum
researchers). Conversely, bias present in models of visitor attention may introduce unfair treatment between
different groups, reinforcing existing biases and creating new sources of inequity. Most immediately, biased models
of visitor attention could translate into the creation of exhibits that are less engaging for many learners, reducing
overall engagement across the museum and visitor population. Thus, it is likely advisable to balance between model
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accuracy and bias minimization. The issue of determining an “acceptable” amount of bias remains domain-specific
and is a promising area of future research.

8 Conclusion

Multimodal learning analytic techniques hold significant promise for modeling visitor attention in museums by
modeling multiple concurrent perspectives on visitors’ behavioral cues. Many museums serve diverse learner
populations with respect to age, gender, socio-economic status, and cultural background. Algorithmic fairness is a
critically important issue in developing multimodal machine learning-based models of visitor attention that are
accurate and free of encoded bias. We have presented a slicing analysis approach for identifying and mitigating
encoded bias in multimodal models of visitor visual. This approach utilizes the ABROCA metric to quantify and
evaluate bias within multimodal and unimodal visitor visual attention models, enabling analysis of different
debiasing strategies in terms of predictive performance and performance differences between sub-groups. Results
from a study using multimodal visitor interaction data from the FUTURE WORLDS game-based museum exhibit suggest
that multimodal random forest models yield accurate predictions of visitor visual attention, but these models suffer
from bias along gender lines. Debiasing via reweighing was found to be effective in mitigating bias from multimodal
attention models while having low impact on predictive performance. In addition, we found that different
combinations of machine learning techniques and modalities responded differently to applications of different
debiasing methods.

The findings suggest several promising avenues for future work. Investigating encoded bias in multimodal visual
attention models based upon alternative machine learning architectures, including deep neural networks, is an
important direction for future investigation. Another promising direction is developing an algorithmic approach to
debiasing that explicitly optimizes for the ABROCA statistic; neither reweighing nor learned fair representations
utilize ABROCA to guide debiasing. Extending the debiasing strategies to optimize for ABROCA may enable them to
encompass both group and individual fairness. A key attribute of the debiasing strategies used in this work is that
they focus on preprocessing data to address sources of encoded bias. Further work should explore whether the
findings observed in this study hold when using other debiasing techniques such as adversarial debiasing. Finally,
it will be important to investigate the integration of debiased multimodal models of visitor visual attention into
museum exhibits to enable run-time measurement and support of visitor experiences. This capability has promise
for enhancing museum exhibits’ capacity to create learning experiences that are effective and engaging for all
learners.
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