

1                   **The 16th Workshop on Antarctic Meteorology and Climate and 6th Year of Polar**  
2                   **Prediction in the Southern Hemisphere Meeting**

3  
4                   David H. Bromwich<sup>1</sup>, Matthew A. Lazzara<sup>2,3</sup>, Arthur M. Cayette<sup>4</sup>, Jordan G. Powers<sup>5</sup>, Kirstin  
5                   Werner<sup>6</sup>, John J. Cassano<sup>7</sup>, Steven R. Colwell<sup>8</sup>, Scott Carpentier<sup>9</sup>, and Xun Zou<sup>1</sup>

6  
7                   <sup>1</sup> Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA

8                   <sup>2</sup> Antarctic Meteorological Research Center, Space Science and Engineering Center, University  
9                   of Wisconsin-Madison, Madison, WI, USA

10                   <sup>3</sup> Department of Physical Sciences, Madison Area Technical College, Madison, WI, USA

11                   <sup>4</sup> Naval Information Warfare Center, Charleston, SC, USA

12                   <sup>5</sup> National Center for Atmospheric Research, Boulder, CO, USA

13                   <sup>6</sup> Year of Polar Prediction (YOPP) International Coordination Office, Alfred Wegener Institute,  
14                   Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

15                   <sup>7</sup> National Snow and Ice Data Center, Cooperative Institute for Research in Environmental  
16                   Sciences and Department of Atmospheric and Oceanic Sciences, University of Colorado,  
17                   Boulder, CO, USA

18                   <sup>8</sup> British Antarctic Survey, Cambridge, United Kingdom

19                   <sup>9</sup> Bureau of Meteorology, Hobart, Tasmania, Australia

21 **1. Overview**

22 In June 2021, the 16<sup>th</sup> Workshop on Antarctic Meteorology and Climate (WAMC) and  
23 the 6<sup>th</sup> Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) Meeting<sup>1</sup> were held  
24 online and hosted by the Polar Meteorology Group at Byrd Polar and Climate Research Center,  
25 The Ohio State University, Columbus, Ohio. (Fig. 1). The WAMC workshop is organized  
26 annually by the WAMC Planning Committee and aims to integrate research and  
27 operational/logistical interests in Antarctic meteorology, numerical weather prediction, and  
28 weather forecasting, as well as related aspects. The 16<sup>th</sup> WAMC was followed by the 6<sup>th</sup> YOPP-  
29 SH Meeting, which updated the research achievements from the YOPP summer Special  
30 Observing Period (SOP) in the Southern Hemisphere (November 16, 2018 to February 15, 2019;  
31 Bromwich *et al.*, 2020). Also, the plans for the upcoming winter SOP in 2022 were highlighted.  
32 The meetings had approximately 140 attendees from over 15 countries, which are listed in the  
33 meeting report<sup>2</sup>.

34

35 **2. Operational Meteorology, Observations and Data Management.**

36 The WAMC opened with a series of presentations related to operational meteorology,  
37 observations and data management. The key results presented in this session are summarized  
38 below.

39 ***2.1 Antarctic Meteorological Research and Data Center***

40 The Antarctic Meteorological Research Center (AMRC) has been a fixture at the  
41 University of Wisconsin-Madison for the past two decades. Matthew Lazzara provided an update

---

<sup>1</sup> [http://polarmet.osu.edu/WAMC\\_2021/](http://polarmet.osu.edu/WAMC_2021/)

<sup>2</sup> [http://polarmet.osu.edu/WAMC\\_2021/BPCRC\\_tech\\_report\\_2021-001.pdf](http://polarmet.osu.edu/WAMC_2021/BPCRC_tech_report_2021-001.pdf)

42 on the new Antarctic Meteorological Research and Data Center (AMRDC), as the follow-on  
43 effort. This is a joint undertaking between UW-Madison and Madison Area Technical College  
44 and funded by the National Science Foundation's (NSF) Office of Polar Programs. The project  
45 establishes a formal data repository for US Antarctic meteorological datasets. The repository  
46 offers a sustained location for Antarctic meteorological datasets from a variety of sources, that  
47 follow FAIR (findable, accessible, interoperable, and reusable) principles, and allow the issuance  
48 of digital object identifiers (DOIs) - all meeting NSF requirements for investigators seeking a  
49 final location to deposit datasets from their projects. The AMRDC will also hold unique datasets  
50 from USAP main stations, field camps, airfields, etc. Creations of Antarctic satellite imagery  
51 composites (Fig. 2), maintaining the Antarctic Internet Data Distribution (Antarctic-IDD; Fig. 3)  
52 and providing expert analysis work (e.g., climatology reports, case studies, white papers, etc.) are  
53 also a part of the new effort.

54

## 55 ***2.2 Automatic Weather Station network.***

56 The largest meteorological network across the Antarctic continent is composed of  
57 Automatic Weather Station networks (AWSs). Presentations by Lee Welhouse, Dave  
58 Mikolajczyk and Mairi Simms discussed the United States (University of Wisconsin-Madison)  
59 and United Kingdom (UK) AWS networks across the Antarctic. Updates on past field season  
60 work (despite the pandemic) were presented along with plans for the upcoming 2021-2022 field  
61 season. The UW-Madison AWS group did not have a field season in 2020-2021 for the first time  
62 in 40 years. During the 2021-2022 field season, activities will include AWS repairs at some  
63 critical AWS sites in West Antarctica, and those in the Ross Ice Shelf/Mcmurdo Station area.  
64 Other work underway include testing new communication systems and improving the observing

65 strategy based on World Meteorological Organization recommendations. Simms presented the  
66 work accomplished on the UK AWS networks during the 2020-2021 field season. The British  
67 Antarctic Survey (BAS) maintains a network of 8 AWS in Antarctica and also services four for  
68 other countries. During the previous summer season all but two (Limbert and Baldrik) were  
69 visited and the Koni Steffen AWS was removed. Next season it is hoped that some of the BAS  
70 AWS will be changed over to a pole mounted system rather than a mast system to reduce  
71 servicing time.

72

### 73 ***2.3 Operational Meteorology***

74 Naval Information Warfare Center, Atlantic, Polar Programs (NPP) provides operational  
75 meteorological forecasting and weather observing services for the United States Antarctic  
76 Program. Meteorological service by NPP has been in place since 1997 supporting aviation, ship,  
77 and station services. This is a continuation of the support provided by the United States Navy  
78 since the construction of McMurdo Station. Support and management over the decades have  
79 been adaptive to provide the National Science Foundation the greatest ability to take advantage  
80 of the science support and improve the accuracy and knowledge through cooperative learning  
81 and data sharing initiatives.

82 Presentations by Arthur Cayette, John Meyer, Michael Johnson and Jeffrey Fournier  
83 discussed the meteorological services provided by NPP. It was noted that NPP provides over  
84 2500 forecasts and briefing services annually. The scope of these responsibilities includes, but is  
85 not limited to:

86 • Antarctic continental weather forecasting and McMurdo Station weather observing  
87 support services for all USAP customers;

88       ● Ship, traverse, station, camp and personnel weather support for any USAP location south  
89            of 60 °S latitude;

90       ● Archival and dissemination of weather data;

91       ● Provision of USAP interface for data sharing with regional and world meteorological  
92            organizations;

93       ● Implementation and maintenance of training and qualification/certification program;

94       ● Maintaining an active quality assurance program that ensures proficiency of assigned  
95            personnel, accomplishment of program objectives, and safety of operations .

96

97       **3. High-Latitude Environmental Prediction**

98       Sessions on high-latitude numerical weather prediction (NWP) and model development  
99       are perennial components of the WAMC. The 2021 WAMC featured talks on various  
100       applications of atmospheric models over Antarctica, for both real-time forecasting and research.  
101       Two presentations by Jordan Powers and Kevin Manning addressed the Antarctic Mesoscale  
102       Prediction System (AMPS) efforts. AMPS is a real-time NWP system maintained by the U.S.  
103       National Center for Atmospheric Research to support the needs of the weather forecasters for the  
104       U.S. Antarctic Program (USAP).

105       The annual update talk focused on upcoming changes to the AMPS archive. The High  
106       Performance Storage System at NCAR, which has housed the archive, is being decommissioned,  
107       and this has forced a shift to a disk-based storage system. Given the new hardware's capacity  
108       constraints, the revised AMPS archive will focus on holding GRIB format model output (mostly  
109       WRF) for the long term, while still making full model output in native netCDF format available  
110       for a period of up to six months. A second AMPS talk covered the system's development plans

111 for the next few years. In addition to this shift to a new AMPS archive infrastructure, the system  
112 will see increasing emphasis on the Model for Prediction Across Scales (MPAS), currently run in  
113 AMPS. MPAS will be applied at higher resolution to match the WRF grid (e.g., 8-km  
114 continental), and it will be tested with a new regional domain capability. Model physics for both  
115 WRF and MPAS will continue to be a focus in AMPS, particularly the areas of microphysics and  
116 the planetary boundary layer. In system computing efforts, AMPS will be moving to a new  
117 community supercomputer at NCAR from 2022 on, and the system will continue to use cloud  
118 computing for support when the mainframe is under service.

119 Also, results from the Atmospheric Radiation Measurement (ARM) West Antarctic  
120 Radiation Experiment (AWARE) project were presented during the meeting. Funded by the  
121 Department of Energy (DOE) and the National Science Foundation (NSF), this project collected  
122 and analyzed observations of atmospheric energy components, air masses, and cloud  
123 microphysics over Ross Island and West Antarctica, with the goal of better understanding the  
124 causes and mechanisms of the changing climate (Lubin *et al.*, 2020). The ongoing AWARE  
125 project provides support for a wide variety of research. In David Kingsmill's presentation, the  
126 forecast ability of AMPS for strong wind and precipitation events was evaluated based on  
127 AWARE observations. Keith Hines presented much improved Polar WRF simulations of frigid  
128 mixed-phase clouds observed at McMurdo during AWARE project. Mckenzie Dice showed an  
129 analysis of the relationship of atmospheric state and boundary layer variability at McMurdo  
130 based on the AWARE dataset<sup>3</sup>. During the austral summer in 2018-2019, data were collected  
131 from the Siple Dome Field Camp for 28 days. Dan Lubin, the lead PI of AWARE project,  
132 introduced the new West Antarctic dataset at the meeting.

---

<sup>3</sup> <https://www.arm.gov/research/campaigns/amf2015aware>

133

134 **4. Research on Antarctic Weather and Climate**

135 The WAMC workshop provides a chance for the Antarctic community to present their  
136 scientific findings and exchange research ideas on polar meteorology, weather forecasting and  
137 climate studies. During the virtual workshop this year, many more participants than usual joined  
138 this session which covered a wide variety of topics.

139 ***4.1 Atmospheric Rivers***

140 Atmospheric rivers (ARs) are narrow corridors of warm moist air, usually forming in  
141 subtropical and mid-latitude regions. ARs can be associated with extra-tropical cyclones and  
142 contribute to the surface melting and extreme precipitation (e.g., Gorodetskaya *et al.*, 2020).  
143 Impacted by the local topography, ARs can amplify the foehn effect over the Antarctic Peninsula  
144 and West Antarctica, and thus accelerate the break-up of ice shelves via surface warming (e.g.,  
145 Bozkurt *et al.*, 2018; Zou *et al.*, 2021). As a major source of atmospheric water content, ARs are  
146 also responsible for cloud formation and affect the surface energy balance (e.g., Nicolas *et al.*,  
147 2017). Thus, the 16th WAMC workshop included several presentations on this topic.

148 During the workshop, the methodology of ARs detection over Antarctica was first  
149 introduced from a climate perspective by Jonathan Wille (Wille *et al.*, 2019). Then, the impacts  
150 of ARs on snowfall/precipitation, surface melting, surface mass balance, and the stability of ice  
151 shelves were analyzed from both climate and weather scales based on observations, reanalysis  
152 data, and model simulations. Finally, Christine Shields discussed the observation and  
153 predictability of ARs over Antarctica, which will benefit climate projection in the future.

154

155 ***4.2 Extreme precipitation events***

Associated with ARs, extreme precipitation events over Antarctica were fully investigated and discussed during the WAMC meeting. Etienne Vignon provided an overview of rainfall occurrence over Antarctica and a projection based on multiple latest-generation climate models, which suggested more frequent and intense precipitation events in the future (Vignon *et al.*, 2021). As mentioned in Diogo Luís's presentation, precipitation is a major factor for surface melting, sea ice loss, and the change of ocean surface salinity. The input of the freshwater has a significant impact on the global hydrological cycle and ocean circulation. Thus, the predictability of extreme precipitation events is critical for the Southern Ocean/Antarctica. As mentioned in Svitlana Krakovska's presentation, extra observations of the vertical structure of weather systems, such as cold fronts and jet streams, can help decrease the uncertainties in weather forecasts. Thus, vertical radiosonde data will be used to adjust model forecasts, especially for microphysical properties of clouds and precipitation.

168

169 *4.3 Antarctic Cyclones and Strong Wind Events*

170 Extra-tropical cyclones are highly associated with the extreme snowfall and strong wind  
171 events over Antarctica (Turner *et al.*, 2019). Participants in the WAMC workshop delivered  
172 presentations on this topic from multiple angles, including interaction between cyclones and a  
173 stratospheric air intrusion and the atmospheric blocking trends over the Antarctic Peninsula  
174 region. In Adrian McDonald’s presentation, the strong relationship between extra-tropical  
175 cyclones and extreme snowfall were discussed. Julio Marín presented his ongoing research on  
176 the seasonality of atmospheric blocking over the AP region, as well as its impact on moisture  
177 transport and temperature. The goal of this section was to build a better understanding of the  
178 formation, impacts, and predictability of the cyclones.

179

180 **4.4 Other Topics**

181 The WAMC workshop also covered other research topics, such as the teleconnection  
182 between tropical Atlantic and Antarctic climate, foehn warming over the AP and West Antarctic  
183 region, high salinity shelf water formation in polynyas, the impact of Antarctic clouds, and the  
184 climate application of an expanded ice core dataset. The broad range of different topics  
185 motivates research and provides all participants a broad perspective in which to practice their  
186 research.

187

188 **5. Plans for the YOPP-SH Winter Special Observing Period (SOP)**

189 As the meeting host, David Bromwich emphasized the two main goals of the YOPP-SH  
190 meeting: 1) give the project investigators and representatives of national agencies that are active  
191 in Antarctica the opportunity to provide updates on their research resulting from the YOPP  
192 summer SOP in the Southern Hemisphere (Nov. 16, 2018 to Feb. 15, 2019); 2) highlight  
193 advanced planning for the upcoming winter SOP in 2022 (mid-April to mid-July) with its  
194 focused activities during a number of Targeted Observing Periods (TOPs).

195 Kirstin Werner from the International Coordination Office for Polar Prediction (ICO)  
196 noted that the Polar Prediction Project (PPP) has moved into its Consolidation Phase (2019-  
197 2022) with a conclusion of the project scheduled for the end of 2022, while the YOPP in the  
198 Southern Hemisphere (YOPP-SH) community continues to be active until 2024. The final phase  
199 of the PPP decade includes the planning and organization of the YOPP Final Summit (1-4 May  
200 2022, Montreal, Canada), the YOPP Final Polar Prediction School, a Fellowship program  
201 (aligned with YOPP Final Summit), and the evaluation of the project's success. The YOPP Final

202 Summit School<sup>4</sup> is planned to take place from 29 April to 1 May 2022 in Rimouski near  
203 Montreal, and will provide around 30 early career scientists the opportunity to develop skills in  
204 Arctic and Antarctic weather and sea-ice forecasting and at the same time establish connections  
205 and develop a network in the polar research community. Besides educational outreach, YOPP-  
206 SH also supports research on social sciences. Victoria Heinrich delivered a presentation to better  
207 understand the relationship between various weather information and decision making over  
208 Antarctica, which will help mitigate operational risks and improve human safety.

209 During the 6th YOPP-SH meeting, the scientific achievements and future plans of each  
210 nation involved in Antarctic efforts to enhance forecasting skill in the high southern latitudes  
211 were presented, as well as potential collaborations among different nations. For example,  
212 research on Antarctic sea ice (e.g., Sea Ice Prediction Network South project), data denial  
213 experiments for the YOPP-SH summer SOP (e.g., Antarctic Mesoscale Prediction System  
214 experiment), and studies on ARs (e.g., extreme events over the Antarctic Peninsula) were all  
215 presented during the meeting. These talks covered multiple aspects of Antarctic research initiated  
216 by the YOPP-SH project and likely feed into the realization of the Antarctic winter SOP in 2022.  
217 In addition, there were two discussion sessions about the winter SOP forecasting teams for i) the  
218 Ross Sea and East Antarctica region, and ii) the Antarctic Peninsula and the Weddell Sea region,  
219 which were led by David Bromwich and Irina Gorodetskaya, respectively. Most of the presented  
220 projects contributing to the Antarctic winter SOP 2022 are already funded for the upcoming  
221 activities, and scientists from different countries expressed their motivation to improve the  
222 weather and sea-ice forecasts and build a better understanding of polar meteorology over  
223 Antarctica during the austral winter.

---

<sup>4</sup> <https://yoppfinalsummit.com/yopp-school>

224

225 **6. Summary and Future Plans**

226 The WAMC and YOPP-SH meetings provide an annual opportunity for the Antarctic  
227 weather and climate communities to discuss their research findings and plan next steps, including  
228 for the YOPP Winter SOP. Despite the inability to meet in person due to the ongoing COVID  
229 pandemic these meetings were well attended (over 140 participants) and had active discussions.  
230 All of the presentations and extended abstracts from the workshops are available online<sup>5</sup>. Cloud  
231 and precipitation conditions are very active topics for Antarctic research. Current NWP models  
232 fail to capture these features accurately due to limited observations and process understanding.  
233 Also, atmospheric rivers play a dominant role in extreme precipitation events resulting in surface  
234 melting in summer and enhanced snowfall in winter. In addition, observational networks, data  
235 archives and model improvements were emphasized during the meeting, which are critical for  
236 real-time forecasts and weather and climate research.

237 For the future, the observation activities for YOPP-SH Winter SOP will be conducted via  
238 international collaboration (Fig. 4). The two target regions are the Antarctic Peninsula region and  
239 the Ross Sea/East Antarctica region, and the scientific foci are major cyclones impacting coastal  
240 Antarctica and associated atmospheric rivers. The impact of extra radiosonde observations on  
241 weather forecasts will be identified and quantified, and better prediction of extreme weather will  
242 be delivered for the benefit of scientific and operational activities in Antarctica. In addition, the  
243 AMRDC will provide a formal data repository for operational meteorology and climate research.

244 It is hoped that the 2022 WAMC and the YOPP-SH meetings will be held, at least  
245 partially, in-person. Planning for these meetings is currently on-going.

---

<sup>5</sup> [http://polarmet.osu.edu/WAMC\\_2021/](http://polarmet.osu.edu/WAMC_2021/)

246 **Acknowledgements.**

247 The authors thank the International Association of Meteorology and Atmospheric Science  
248 (IAMAS)/International Commission on Polar Meteorology (ICPM), Scientific Committee on  
249 Antarctic Research (SCAR), and the World Meteorological Organization (WMO) for supporting  
250 these workshops. Thanks also to David Bromwich and his colleagues from Polar Meteorology  
251 Group, Byrd Polar and Climate Research Center for hosting the meetings. Financial Support  
252 from the Office of Polar Programs, National Science Foundation (NSF 1823135, 1924730,  
253 192473, 1951603), is greatly appreciated. This is a contribution to the Year of Polar Prediction  
254 (YOPP), a flagship activity of the Polar Prediction Project (PPP), initiated by the World Weather  
255 Research Programme (WWRP) of the WMO. We acknowledge the WMO WWRP for its role in  
256 coordinating this international research activity.

257 References:

258 Bozkurt D, Rondanelli R, Marín JC, Garreaud R. 2018. Foehn event triggered by an atmospheric  
259 river underlies record-setting temperature along continental Antarctica. *J. Geophys. Res.*  
260 *Atmos.*, 123(8): 3871–3892. <https://doi.org/10.1002/2017JD027796>.

261 Bromwich DH, Werner K, Casati B, Powers JG, Gorodetskaya IV, Massonnet F, Vitale V,  
262 Heinrich VJ, Liggett D, Arndt S, Barja B, Bazile E, Carpentier S, Carrasco JF, Choi T,  
263 Choi Y, Colwell SR, Cordero RR, Gervasi M, Haiden T, Hirasawa N, Inoue J, Jung T,  
264 Kalesse H, Kim S-J, Lazzara MA, Manning KW, Norris K, Park S-J, Reid P, Rigor I,  
265 Rowe PM, Schmithüsen H, Seifert P, Sun Q, Uttal T, Zannoni M, Zou X. 2020. The Year  
266 of Polar Prediction in the Southern Hemisphere (YOPP-SH). *Bull. Amer. Meteor. Soc.*,  
267 101(10): E1653–E1676. <https://doi.org/10.1175/BAMS-D-19-0255.1>.

268 Gorodetskaya IV, Silva T, Schmithüsen H, Hirasawa N. 2020. Atmospheric river signatures in  
269 radiosonde profiles and reanalyses at the Dronning Maud Land Coast, East Antarctica.  
270 *Adv. Atmos. Sci.*, 37(5): 455–476. <https://doi.org/10.1007/s00376-020-9221-8>.

271 Lubin D, Zhang D, Silber I, Scott RC, Kalogeras P, Battaglia A, Bromwich DH, Cadeddu M,  
272 Eloranta E, Fridlind A, Frossard A, Hines KM, Kneifel S, Leaitch WR, Lin W, Nicolas J,  
273 Powers H, Quinn PK, Rowe P, Russell LM, Sharma S, Verlinde J, Vogelmann AM.  
274 2020. AWARE: The Atmospheric Radiation Measurement (ARM) West Antarctic  
275 radiation experiment. *Bull. Am. Meteorol. Soc.* American Meteorological Society, 101(7):  
276 E1069–E1091. <https://doi.org/10.1175/BAMS-D-18-0278.1>.

277 Nicolas JP, Vogelmann AM, Scott RC, Wilson AB, Cadeddu MP, Bromwich DH, Verlinde J,  
278 Lubin D, Russell LM, Jenkinson C, Powers HH, Ryczek M, Stone G, Wille JD. 2017.

279 January 2016 extensive summer melt in West Antarctica favoured by strong El Niño.

280 *Nat. Commun.*, 8: 15799. <https://doi.org/10.1038/ncomms15799>.

281 Turner J, Phillips T, Thamban M, Rahaman W, Marshall GJ, Wille JD, Favier V, Winton VHL,

282 Thomas E, Wang Z, Broeke M van den, Hosking JS, Lachlan-Cope T. 2019. The

283 dominant role of extreme precipitation events in Antarctic snowfall variability. *Geophys.*

284 *Res. Lett.*, 46(6): 3502–3511. <https://doi.org/10.1029/2018GL081517>.

285 Wille JD, Favier V, Dufour A, Gorodetskaya IV, Turner J, Agosta C, Codron F. 2019. West

286 Antarctic surface melt triggered by atmospheric rivers. *Nat. Geosci.*, 12(11): 911–916.

287 <https://doi.org/10.1038/s41561-019-0460-1>.

288 Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C., Berne, A. 2021. Present and future

289 of rainfall in Antarctica. *Geophys. Res. Lett.*, 48, e2020GL092281.

290 <https://doi.org/10.1029/2020GL092281>.

291 Zou X, Bromwich DH, Montenegro A, Wang S-H, Bai L. 2021. Major surface melting over the

292 Ross Ice Shelf part I: Foehn effect. *Q. J. R. Meteorol. Soc.*, 147(738): 2874–2894.

293 <https://doi.org/10.1002/qj.4104>.

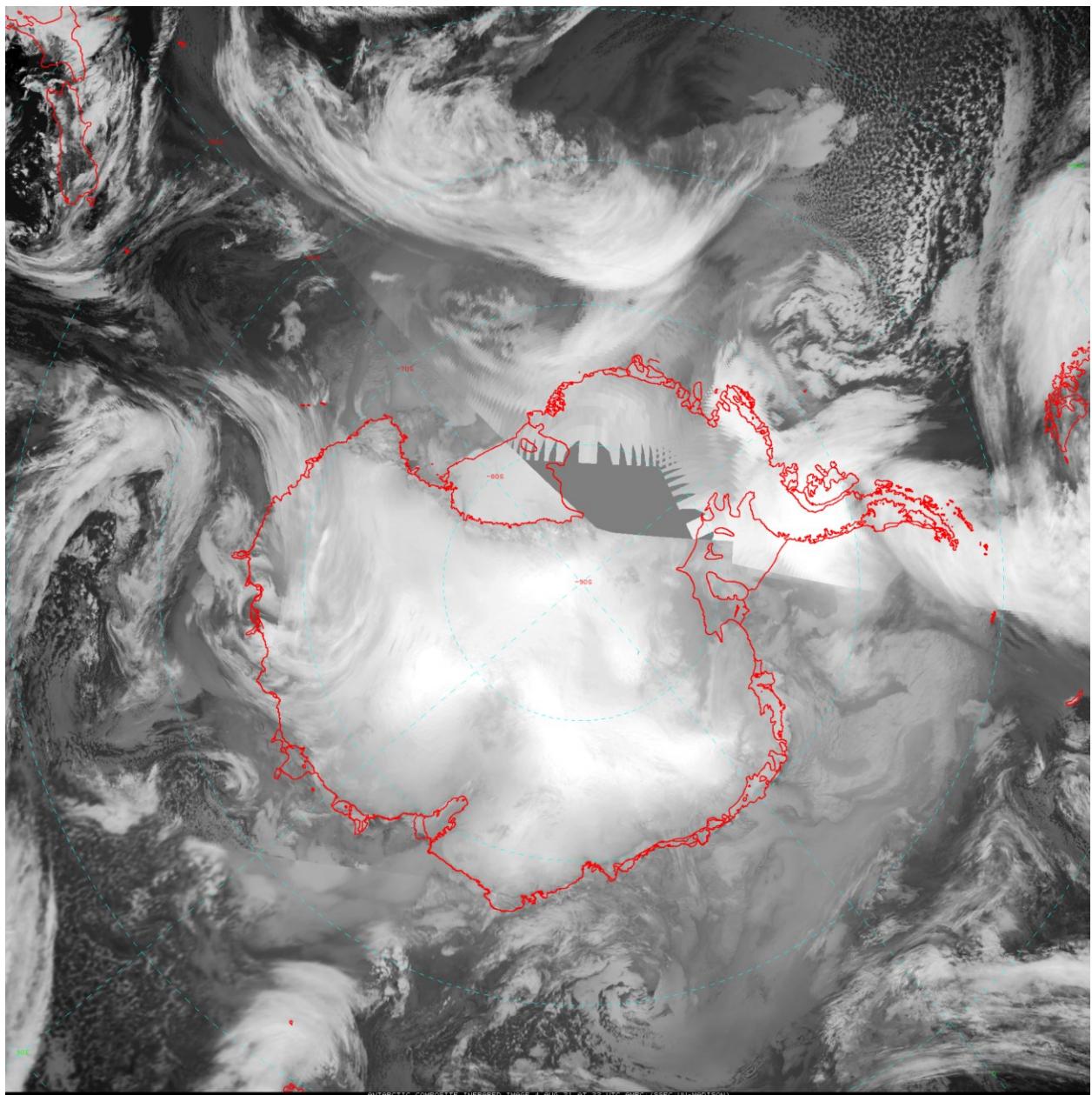



## 16<sup>th</sup> Workshop on Antarctic Meteorology and Climate (Virtual, June 21-23, 2021)

### Committee:

David Bromwich  
Scott Carpenter  
Arthur Cayette

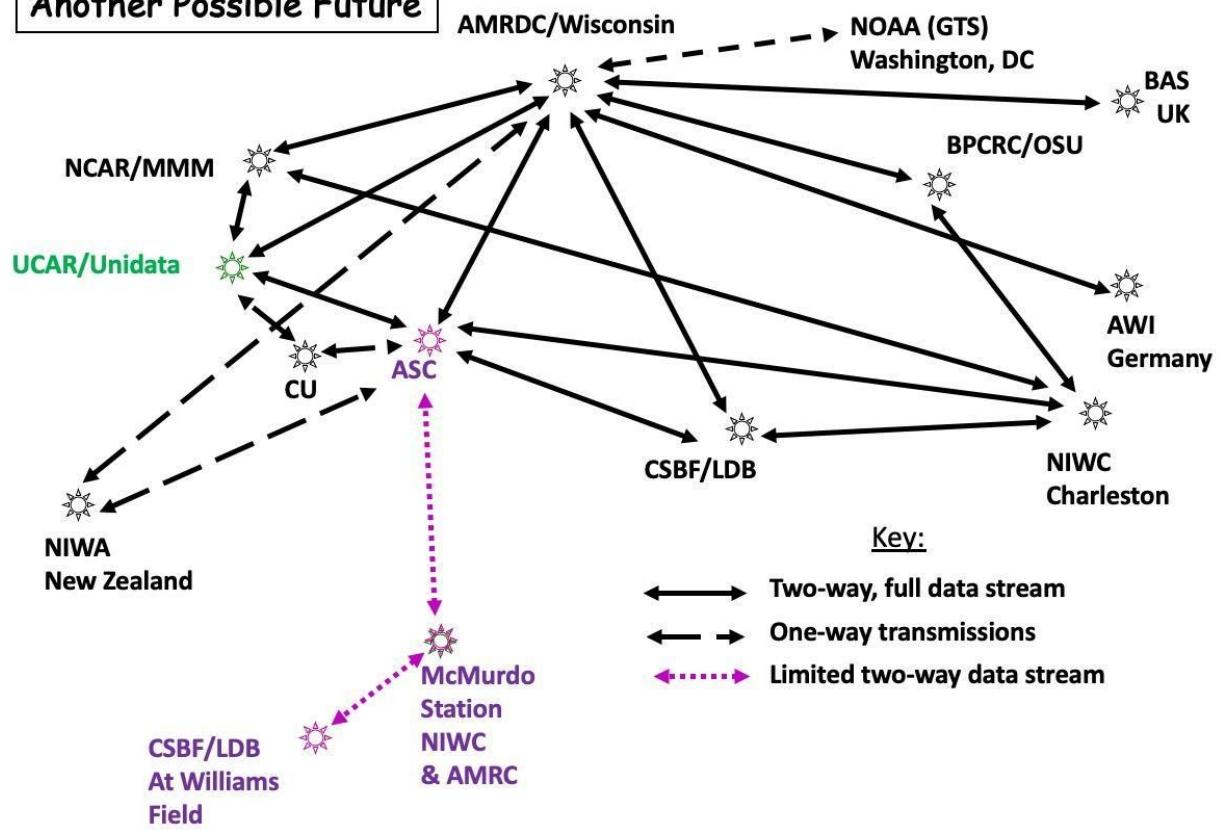
Steve Colwell  
John Cassano  
Matthew Lazzara  
Jordan Powers




Byrd Polar and Climate Research Center  
**Polar Meteorology Group**  
The Ohio State University

294  
295

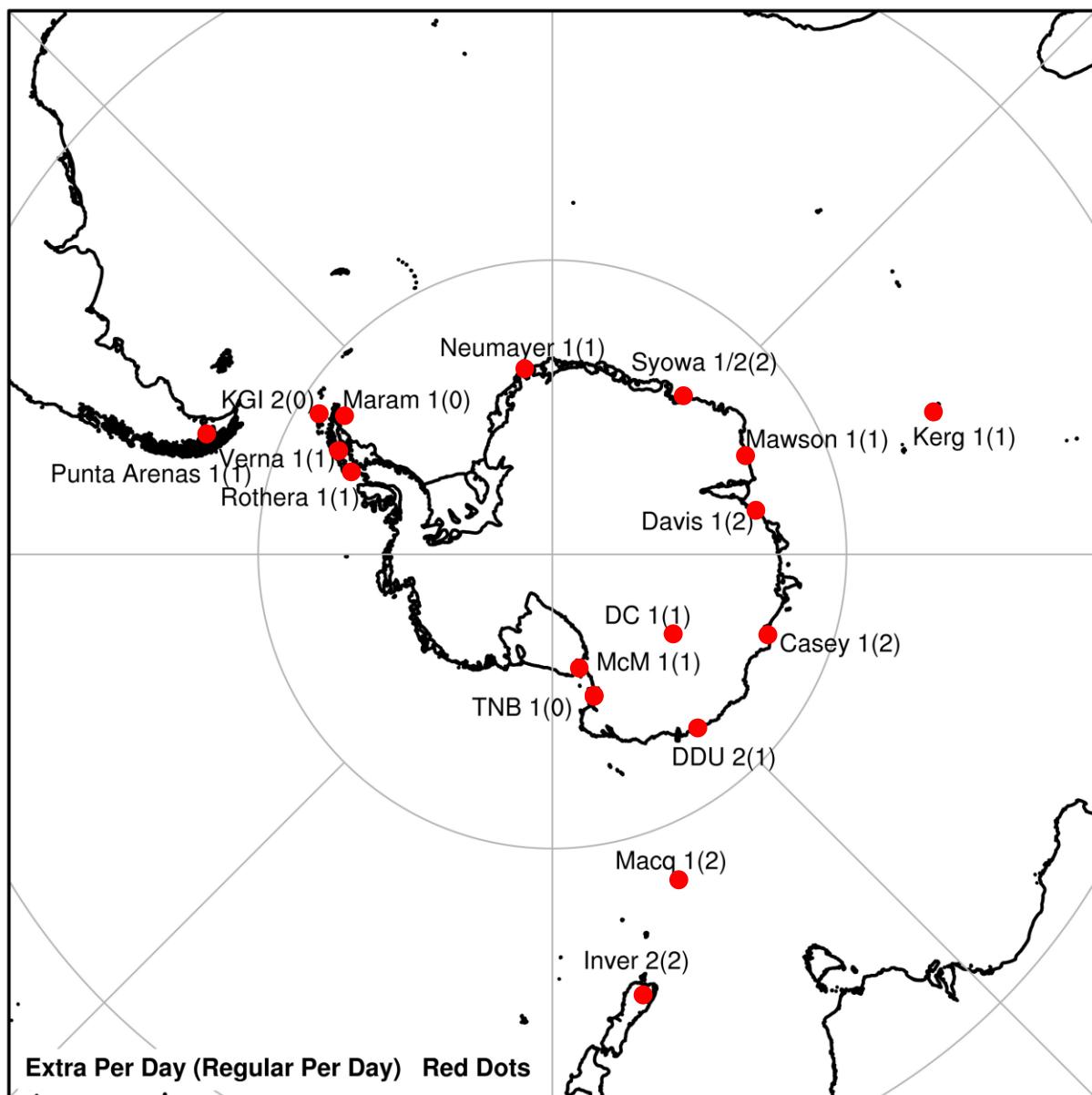
Figure 1. Opening of the 16<sup>th</sup> WAMC Meeting. (Picture on the left is from Antarctica Guide<sup>6</sup>)


<sup>6</sup> <https://www.antarcticaguide.com/antarctica-wildlife-2/antarctica-penguins>



296  
297  
298  
299

Figure 2. A sample infrared Antarctic composite from 22 UTC on August 4, 2021 made operationally at UW-Madison as a part of the AMRDC project.


**Antarctic-IDD  
Another Possible Future**



300  
301  
302  
303  
304  
305

Figure 3. The Antarctic-Internet Data Distribution real-time data relay for Antarctic meteorological data, is a key element of the AMRDC project, in service to the Antarctic meteorological community. It connects operational, education, and research segments with a distribution/sharing of real-time model and observational data. Here a possible future for the network is outlined.

## YOPP-SH Radiosonde Sites (Winter TOPs)



306  
307

Figure 4. Planned radiosonde launches during YOPP-SH Winter TOPs as of August 19, 2021.