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Phoretic motion in active matter
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A new continuum perspective for phoretic motion is developed that is applicable to
particles of any shape in ‘microstructured’ fluids such as a suspension of solute or bath
particles. Using the reciprocal theorem for Stokes flow it is shown that the local osmotic
pressure of the solute adjacent to the phoretic particle generates a thrust force (via a ‘slip’
velocity) which is balanced by the hydrodynamic drag such that there is no net force on
the body. For a suspension of passive Brownian bath particles this perspective recovers the
classical result for the phoretic velocity owing to an imposed concentration gradient. In a
bath of active particles that self-propel with characteristic speed Uy for a time 7 and then
change direction randomly, taking a step of size ¢ = Uytg, at high activity the phoretic
velocity is U ~ —UplV ¢y, where ¢, is a measure of the ‘volume’ fraction of the active
bath particles. The phoretic velocity is independent of the size of the phoretic particle
and of the viscosity of the suspending fluid. Because active systems are inherently out of
equilibrium, phoretic motion can occur even without an imposed concentration gradient.
It is shown that at high activity when the run length varies spatially, net phoretic motion
results in U ~ —¢pUp VL. These two behaviours are special cases of the more general
result that phoretic motion arises from a gradient in the swim pressure of active matter.
Finally, it is shown that a field that orients (but does not propel) the active particles results
in a phoretic velocity U ~ —¢,Upf V¥, where ¥ is the (non-dimensional) potential
associated with the field.
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1. Introduction

The study of micron-scale self-propelled objects such as bacteria, algae and synthetic
Janus particles has become a dynamic field of research, both for the motion of individual
bodies (Lauga & Powers 2009) and for the collective behaviour of suspensions of active
particles (Ramaswamy 2010; Marchetti et al. 2013; Bechinger et al. 2016; Gomper et al.
2020). Owing to the particles’ self-motion, active matter can spontaneously phase-separate

+ Email address for correspondence: jfbrady @caltech.edu

© The Author(s), 2021. Published by Cambridge University Press 922 A10-1

@ CrossMark


mailto:jfbrady@caltech.edu
https://crossmark.crossref.org/dialog?doi=10.1017/jfm.2021.530&domain=pdf
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.530

Downloaded from https://www.cambridge.org/core. Caltech Library, on 07 Mar 2022 at 21:52:40, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2021.530

J.F. Brady

into dense and dilute regions (Cates er al. 2010; Fily & Marchetti 2012; Bialké, Lowen
& Speck 2013; Buttinoni et al. 2013; Palacci et al. 2013; Stenhammar et al. 2013;
Takatori, Yan & Brady 2014; Wysocki, Winkler & Gompper 2014; Takatori & Brady 2015;
Digregorio et al. 2018) and can move collectively under an orienting field (Takatori &
Brady 2014). Active particles can also be harnessed to do work, for example by turning
a micro-gear (Angelani, Costanzo & Di Leonardo 2011), or can flow spontaneously in a
channel without an applied pressure difference (Lushi, Goldstein & Shelley 2012; Guo
et al. 2018). It has also been observed in simulations and experiments that a passive object
with an asymmetric shape can achieve net directed motion in a bath of active particles
(Kaiser et al. 2015).

Directed motion in a bath of passive particles, e.g. a chemical solute, is also
possible when there is a concentration gradient of bath particles, a phenomenon
known as diffusiophoresis. To achieve diffusiophoretic motion, not only must there
be a concentration gradient, but there must also be an interactive force between the
larger phoretic particle and the smaller ‘bath’ or solute particles. The interactive
force couples with the concentration gradient to drive a hydrodynamic flow adjacent
to the phoretic particle surface, and the phoretic particle, being force-free, moves in
response to the combined shear and interactive force. The system is out of equilibrium
owing to the imposed concentration gradient. In classical diffusiophoresis, a uniform
macroscopic concentration gradient is maintained by some external means (Anderson
1989). More recent examples concern self-diffusiophoresis where a chemical reaction
occurs asymmetrically on the particle surface, leading to a local concentration gradient
that drives the phoretic motion (Paxton et al. 2004; Howse et al. 2007; Cérdova-Figueroa
& Brady 2008; Brady 2011).

Passive, Brownian or solute, particles are characterized by their thermal diffusivity
given by the Stokes—Einstein—Sutherland relation: Dy = kT /¢, where kpT is the thermal
energy and ¢ = 67na is the Stokes drag coefficient of a Brownian particle of size a in a
fluid of viscosity . When interacting with a larger phoretic particle of size R through a
short-range repulsive interactive force with characteristic length scale » and an imposed
concentration gradient Vn, the passive bath particles drive the phoretic particle with the
well-known velocity
—1b2kiTVn, (1.1)

2
where n is the number density of bath particles (see §2 and (2.34)). This phoretic
velocity is independent of the size of the phoretic particle (and of the Brownian bath
particles). Because of the assumed repulsive interactions, the motion is from regions of
high concentration to low — the phoretic particle lowers its free energy by moving to
regions with fewer unfavourable interactions. For attractive interactions the motion is in
the opposite direction.

The main question we wish to address in this work is: What diffusiophoretic motion
occurs in a bath of active particles?

The simplest description of active particles is the so-called active Brownian particle
(ABP) model where, in addition to normal thermal Brownian motion with diffusivity Dr,
the particles self-propel with a ‘swim’ velocity Uy in a direction g, as illustrated in figure 1.
The orientation of the swimming direction changes on a reorientation time scale tx that
results from either random Brownian rotations or from the run-and-tumble behaviour often
observed with bacteria. The ABPs take a step of magnitude £ = Uytg, which defines the
run length £, and at long times undergo a random walk with a ‘swim diffusivity’ D**""" =
(Up€/6)I in three dimensions. In analogy with the Stokes—Einstein—Sutherland relation,
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Phoretic motion in active matter

Figure 1. A large particle of size R is immersed in a bath of smaller colloidal particles of size a. Each bath
particle has thermal diffusivity Dr and can be active and self-propel with a swim speed Uy in the direction g
that reorients on the time scale tg. The bath particles interact with the large particle via an interparticle force
[ ata characteristic distance b from the particle surface. A concentration gradient of bath particles can result
in motion of the large particle with a phoretic velocity U.

we can define an ‘energy’ scale for active matter via DSWim — kT /¢, and thus define
the ‘activity’ kT = ¢ Upl/6 (Takatori & Brady 2015). An important parameter then is
the relative importance of the activity to thermal energy, ksTs/kgT = D™ /Dr. In many
active matter systems this ratio can easily exceed 10° (Takatori et al. 2016).

We show by explicit calculation that in the high-activity limit, k7 /kpT > 1, the classic
phoretic velocity (1.1) becomes

geeive = L kT, (12)
3.1

where the activity kT replaces the thermal energy kpT. Note, however, that it is not a
simple replacement; the coefficient in front is different, 1/3 versus 1/2. While the form
(1.2) has a natural appeal and also shows the independence of the size R of the phoretic
particle, from the definition of the activity k7 (1.2) may be better understood as

U“ive = _ otV gy,. (1.3)

For active matter, the phoretic velocity is proportional to the swim speed Uy, the run
length £ = Uytg and the gradient in the ‘volume’ fraction of ABPs, ¢, = b*>amn/3. Note,
importantly, that it is now independent of the viscosity of the suspending fluid as both
the propulsive swim force of the ABPs, ¢Upq, and the viscous drag of the phoretic
particle, 6TtnR U, are proportional to the viscosity; this should be familiar from the
swimming behaviour of micro-organisms, which is also independent of the fluid viscosity.
Interestingly, at high activity the phoretic motion is always down the concentration
gradient even if there are favourable interactions between the phoretic particle and the
active bath particles (see § 4).

Since active matter is inherently out of equilibrium, there are other mechanisms for
phoretic motion that do not require a concentration gradient. When the run length varies
with spatial position, £(x), net phoretic motion can occur. A spatially dependent run length
can result because the reorientation time, tr(x), varies, and/or because the swim speed
varies with position, Up(x). These variations may arise from a spatially varying fuel source
or a chemoattractant that affects the swim speed/reorientation time, or certain bacteria and
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synthetic swimmers can be light-activated, allowing control of swim speed and direction.
In § 3.2 we show that at high activity the phoretic velocity is given by

U“ive — — g, UgV L. (1.4)

And we show further that (1.2)—(1.4) are special cases of the more general high-activity
form
active 1b ’ i
U = ———Vrmm, (1.5)
3n

where IT™ = nk,Ty = n¢ D™™ is the swim pressure (Takatori et al. 2014).

A physical explanation for the swim pressure gradient as the driving force for phoretic
motion is the following. Each ABP exerts its swim force of magnitude ¢Uy when
contacting the phoretic particle. An active bath particle must be within a run length ¢ of the
phoretic particle surface in order to hit it, and thus the number of bath particles that strike
the phoretic particle scales as 4tR”¢n. A net force results from the change from one side to
the other, F" ~ A(¢UpdntR*{n) ~ 47R*> AIT*W™ ~ 4nR3V IT"™ . This force is reduced
in magnitude by (b/R)? owing to the hydrodynamic flow adjacent to the phoretic particle
(see § 2), and is balanced by the Stokes drag, —6mnRU, to give the phoretic velocity (1.5).

The result (1.4) predicts a surprising phenomenon: a spatially varying run length can
lead to a reverse phoretic effect in which the particle moves towards regions of higher bulk
active bath particle concentration even though it is repelled by the ABPs.

It is interesting to note that for passive Brownian bath particles, when there is a spatial
variation in the temperature 7" in addition to concentration, the motion of the colloidal
particle is also given by the form (1.5) but with the osmotic pressure 1% = nkgT
replacing I7°""™ (Dhont 2004).

Finally, we consider a field that biases the orientation of the ABPs but does not propel
them. The phoretic velocity is

U“ive = ¢, UgtV W, (1.6)

where ¥ is a non-dimensional ‘potential’ that has the form —H- x/{ for an orienting field

with direction the unit vector H. Indeed, all three mechanisms for phoretic motion can be
written in the form (1.6) with the ‘potential’ being + In n for a concentration gradient and
+ In ¢ for spatially varying activity.

To obtain the results for phoretic motion, in §2 we derive a new formulation and
perspective that is applicable to both passive and active systems. This development is
at the ‘continuum’ level, where the phoretic particle is large compared with the size of
the bath particles so that we can model the bath as a suspension. By recognizing that
the suspension stress is composed of two contributions, the usual Newtonian fluid stress
and a contribution from the bath particles, we use the reciprocal theorem for Stokes flow
to write the hydrodynamic force on the phoretic particle as a composition of two parts:
() the drag force —Rpy - U for translating the particle with velocity U, where Rry the
well-known hydrodynamic resistance tensor coupling the force and the velocity, and (ii)
a ‘propulsive’ or thrust force that can be expressed as a volume integral of the fluid
velocity field generated by translating the particle times the sum of the divergence of
the non-hydrodynamic stress tensor and the interactive force between the bath and the
phoretic particle (see (2.13)). This formulation is similar to treatments of the swimming of
micro-organisms (Stone & Samuel 1996; Swan et al. 2011) and applies to bodies of any
shape and to any form of the interactive force between the bath and phoretic particle.
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From this perspective we show that when the interactive force is short-ranged and
repulsive, the local osmotic pressure of the bath particles, 71" = nkpT, drives a ‘slip’
velocity adjacent to the phoretic particle surface, which then moves so as to satisfy the
constraint of no net force on the phoretic particle. The result for a spherical phoretic
particle is then the classical expression (1.1). The behaviour for passive particles in § 2
is generalized to have any form and range of interactive force.

Owing to their persistent motion, active particles accumulate at no-flux surfaces,
and at high activity there is a thin accumulation boundary layer in which the
surface concentration is n®“k,Ty/kgT, where n°" is the concentration just outside the
accumulation boundary layer (Yan & Brady 2015). The local osmotic pressure is replaced
by the swim pressure [TV = n®k,T; and (1.2) follows for motion driven by a bulk
concentration gradient, as we show by detailed calculation in § 3. Also in § 3 we show that
motions due to a concentration gradient and to a spatially varying run length (spatially
varying activity) are both expressible in terms of the gradient in the swim pressure (1.5).

Finally, we conclude in § 4 with a discussion of the limitations and extensions of this
treatment of phoretic motion for passive and active bath particles, and of its use for other
microstructured fluids such as nematic or polymeric fluids.

2. Phoretic motion in a bath of passive particles

Consider a ‘phoretic’ particle of characteristic size R immersed in a fluid containing
a dilute suspension of colloidal bath particles of characteristic size a, as illustrated in
figure 1. We take a ‘continuum’ perspective by which we mean that a volume element
of size §V exists that contains a sufficient number of bath particles to form a continuum:
a < (8V)'3 « R.The number density of bath particles at the ‘continuum point’ is n(x, ).
The continuum momentum balance for the suspension — the mixture of fluid plus particles
—1is
Du

pE:V-G+nfp, Veu=0, (2.1a,b)
where p is the mass density of the suspension, u is the suspension average velocity, o is
the suspension stress and f, is the interactive force exerted on a bath particle by the larger
phoretic particle.

The continuum and interactive force and torque exerted on the phoretic particle are

F=y§ a-ndS—/ nf,dv, 22)
Sp V

L:f rxa-ndS—/ rxnfpdV, 2.3)
Sp Vs

where each bath particle exerts the force — f, on the phoretic particle, n is the outer normal
to the phoretic particle surface, r is measured relative to the phoretic particle ‘centre’ and
we have assumed that the torques arise only from force moments. The volume integral is
over the fluid volume exterior to the phoretic particle.

The motion of the phoretic particle follows from the force and torque balances

dU
ma =F + Fexr, (24)
d ext
&(M-.Q)=L+L , (2.5)

922 A10-5


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.530

Downloaded from https://www.cambridge.org/core. Caltech Library, on 07 Mar 2022 at 21:52:40, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2021.530

J.F. Brady

where m and M are the particle’s mass and moment of inertia, and F* and L are any
external forces or torques exerted on the phoretic particle; e.g. an external gravitational
force would be F" = (m — pVRg)g, where Vj is the volume of the phoretic particle.

We are primarily interested in the motion of small particles such that the acceleration of
both the suspension and the phoretic particle are negligible. In this low-Reynolds-number
limit, the definition of phoretic motion is that there is no external force/torque on the
particle; thus, from (2.4) and (2.5), F =0 and L = 0.

In order to make the presentation as clear as possible, in going forward we will not
discuss the torque balance on the phoretic particle. The full detailed expressions including
the torque are given in Appendix A.

The constitutive law for the suspension stress is composed of two terms,

0 =0f+0p, (2.6)

where the fluid stress tensor is oy = —psI + 2ne, with py the pressure in the fluid, 7
the shear viscosity and e the rate of strain tensor of the suspension velocity u, and the
contribution from the bath particles is o', whose form is specified below.

The bath particle number density satisfies the usual conservation equation

an .

o7 +V.j=0, (2.7)
where j is the flux of bath particles. The boundary condition at the phoretic particle surface
would be either no net flux, n-j =0, or a net rate of production/consumption due to
a chemical reaction for self-propelled catalytic motors, n - j = rxn (Paxton et al. 2004;
Howse et al. 2007; Cérdova-Figueroa & Brady 2008; Brady 2011).

In the absence of the phoretic particle, there is a given distribution of bath particles
n®(x, 1), the associated bath particle flux j°°, and fluid motion and stress fields #*° and
0. These fields satisfy the conservation equations in the absence of the phoretic particle:
V.6 =0, V-u* =0 and dn*>°/dr+ V -j>* = 0. For example, we might have an
imposed concentration gradient of bath, or solute, particles: n°°(x, t) = x - Vn®, with
constant concentration gradient Vn®. We could also have a constant flow at infinity, e.g.
u® = U®°. What is relevant for the motion of the phoretic particle is the departure from
this “far-field’ distribution — the disturbance problem — which takes the form

V.o;=-V.o,— @ +n0)f, (2.8)
V.u =0, (2.9)

p}, u~0 asr— oo, (2.10)
u=U-U> onSp, (2.11)

where U is the unknown translational velocity of the phoretic particle to be found from
the force balance on the particle. Since the ‘field at infinity’ does not exert any net force,

F=7§ a}-nds+y§ a[’,-ndS—/ (' +n>)f,dv. (2.12)
Sp Sp Vs

The interactive force only exists because of the phoretic particle, and thus the ‘disturbance
quantity’ n°° f', appears in (2.8) and (2.12). (We also assume that the interactive force f,

and particle stress o;, decay sufficiently fast that all integrals are convergent.)
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We can make use of the reciprocal theorem for Stokes flow to bypass the determination
of the velocity and stress fields in (2.8) and compute directly the hydrodynamic force,
fSP o ]’c - ndS, on the particle. For any body shape, the hydrodynamic force is given by

7§ a}-ndS:—RFU-(U—UOO)+ UU-(V-GE,—i—nfp)dV, (2.13)
Sp Vy

where we have used the total concentration n = n’ + n®. Here, Ry is the hydrodynamic
resistance tensor coupling the force to the velocity for the given phoretic particle body
geometry and Uy is a second-order tensor field that gives the fluid velocity at any point
outside the particle when it translates with a constant velocity of unit magnitude. (When
there is translational-rotational coupling, i.e. chiral particles, the torque balance is also
necessary as discussed in Appendix A.) For example, for a spherical particle of radius
R the resistance tensor is isotropic and given by Rry = 67tnRI, while the second-order
tensor velocity field outside the sphere is

3 (1 rr 1 /1 3rr
Up=-|-+—= = -—, 2.14
v 4<r+r3)+4<r3 r5) (19)

where 7 has been scaled with the particle radius R.

Combining the expression (2.13) for the hydrodynamic force with the remaining terms in
(2.12) and making use of the divergence theorem for o/, we have for the phoretic velocity
of the particle

U—U°°=R;§,-/(uU—I).V.a;dVJFR;g,-/(uU—I).nfpdV. (2.15)
Vr Vr

Equation (2.15) for the translational velocity of a phoretic particle is valid for any phoretic
particle shape and for any departure of the bath particles from their distribution in
the absence of the particle n°°. (There should be no convergence issues in the volume
integrals as the original expression for the force, (2.12), is absolutely convergent.) The
only assumption made is that we may treat the distribution of Brownian bath particles as a
continuum. This expression holds at each instant in time.

Using the divergence theorem, (2.15) can be written as

U-U>®=Ry,- / Uy —I)-nf,dV — Ry, - / o,: VUydv, (2.16)
\% Vy

where we have used the fact that at the particle surface (Uy — I) = 0 because of the
no-slip condition for the fluid velocity field Uy .

In writing (2.15) and (2.16) we have stipulated that there is no external force acting on
the phoretic particle. An external force would simply add R;llj - F®" to the right-hand side
of these equations.

We are now in a position to specify the form of the constitutive law for the particle
stress and flux. For passive Brownian bath particles the particle stress is just the osmotic
pressure,

o, = —nkpTI, 2.17)

where kpT is the thermal energy. Bath particles are advected with the flow, move under
the action of the interactive force and diffuse due to Brownian motion; the flux is thus

Jj=un+ %(nfp — kgTVn), (2.18)

where ¢ = 6mna is the Stokes drag of the bath particles.
922 A10-7
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The disturbance concentration satisfies

on’
—4+V.j/=0, 2.19
Py +V.j (2.19)
n~0 asr— oo, (2.20)
n.j=-n-j onSp, (2.21)

where the disturbance flux is
1

Jj = (un — u>*n) + Z(nfp — kgTVn') (2.22)

and we have assumed the boundary condition of no bath particle flux at the surface of the
phoretic particle. For self-propelling catalytic motors, the boundary condition would be
that the flux of bath particles is equal to the rate of reaction.

For passive Brownian bath particles, o}, = —n'kgTI and the integrand o), - VUy =

—n'kgTV « Uy = 0 because Uy is an incompressible Stokes velocity field. Thus, (2.16)
becomes without approximation

U=Ry,- fv Uy —1I) - nf,dV, (2.23)
2

and we have dropped the flow at infinity U to emphasize the phoretic motion.

This exact expression for the phoretic velocity, which is valid for particles of any
shape, shows clearly that in the absence of an interactive force f', between the bath
and phoretic particles there is no motion. Furthermore, when the interactive force can
be written as the gradient of a potential, f,, = —VV),, and in the absence of a forcing to
drive the bath particle distribution out of equilibrium, the Boltzmann distribution holds:
nf, =—nVV, =kgTVn, and application of the divergence theorem shows that U = 0.
This is as it should be for, no matter what the particle shape or form of interactive potential,
there can be no phoretic motion at equilibrium.

In this formulation, there is no requirement that the interactive force between the
phoretic and bath particles be short ranged as is common in the ‘thin interfacial limit’
approximation where the motion is determined from a fluid slip layer adjacent to the
phoretic particle surface. An expression analogous to (2.23) was shown by Shklyaev, Brady
& Cérdova-Figueroa (2014) to be equivalent to the conventional slip velocity expression
in the thin interfacial limit.

As an example to show that (2.16) is a correct formulation for phoretic motion, we
consider the classic problem of an imposed concentration gradient of bath particles
(or chemical solute) that experience hard-sphere excluded volume interactions with the
phoretic particle at a distance b from the particle surface (see figure 1); that is,

Sp=—VVp=+kpTns(S.), (2.24)

where 6(S.) is the Dirac delta function at the contact surface S., which for a spherical
particle is at the radius R, = R + b. The + sign arises because f, is the force exerted on
the bath particle by the phoretic particle and the normal points out of the phoretic particle.
The amplitude of the hard-sphere force is such that it cancels the diffusive flux at the
surface.
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For such a hard-particle force, the phoretic velocity can be written as
U =Ry, f Uy —I) - 1*"nds, (2.25)
Se

where 1% = nkpT is the local osmotic pressure of the Brownian bath particles and S,
is the ‘contact’ surface at which the hard-particle force enforces no flux. The force density
I1%" p drives local fluid motion (U y — I) relative to the phoretic particle — a local ‘slip
velocity’ — and the average slip velocity gives the net velocity of the phoretic particle.
Alternatively, rather than interpret the integrand of (2.25) as a local slip velocity, we can
view the total integral over S, as the net osmotic force exerted by the bath particles. The
osmotic force density is reduced from I7°" because each ‘collision” by a bath particle
must now also push the fluid out of the way past the no-slip phoretic particle surface.
For a spherical phoretic particle, (2.25) becomes
LR

U= I*"nds, 2.26
61'[7]R R. " ( )

where the integral is over the contact surface at R, = R + b and we have used Rry =
6mtnRI. At the contact surface the velocity of the fluid relative to the particle defines
L(R.),

Uy —1) - nlg, = —L(Rc)n, (2.27)
and from (2.14) we have
3A%(1+24) b
LR)==-——"—", A=—, 2.28a,b
R =31 ¥ 2y R (2-28a.,5)

which is the hydrodynamic mobility function introduced by Brady (2011).

To determine the disturbance concentration we need to know the actual velocity field
u, which requires solving in detail (2.8), which we avoided by use of the reciprocal
theorem. In many situations, the advection due to the flow is small compared with
Brownian diffusion — small Péclet number — and we may neglect the effect of the fluid
velocity disturbance on the concentration distribution. This simplifies the problem for the
concentration disturbance, and we shall exploit this in the examples given below, but it is
a convenience only; the result (2.23) applies quite generally.

For a hard-sphere force, the steady disturbance problem (2.19)—(2.21) becomes

Vi =0, (2.29)
n~0 asr— oo, (2.30)
n.-Vvo'=—-n-Vn®™ atr=R.=R+b, (2.31)

where Vn® is the constant imposed concentration gradient. The hard-sphere potential

only affects the location of the no-flux condition, which is now at the distance R, = R + b
rather than at the actual particle surface R at which the fluid satisfies the no-slip boundary
condition. The solution to (2.29)—(2.31) is

1 (R+b)
" = 5% X Ve, (2.32)
r
And the concentration field n°°(x) is
n>®(x) = x - Vi + ny, (2.33)

where ng is an arbitrary constant that has no effect on the phoretic velocity.
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Carrying out the integration in (2.26) gives
1 2 kT 1
U= —§b2 (1 + gA) ”T [1 + 5} Vi, (2.34)

where we have left the two contributions from n° and n’ separate; their sum gives the
well-known result 1/3 x 3/2 = 1/2 in the thin interfacial limit when A < 1. The range
of the hard-sphere potential, b, sets the level of the hydrodynamics, L(A), that governs the
magnitude of the phoretic motion, as discussed in detail by Brady (2011).

The resultant phoretic velocity (2.34) is down the concentration gradient — from high
concentration to low. Since we have assumed repulsive interactions between the bath and
the phoretic particles, the phoretic particle does not ‘like’ the bath particles and moves
away. Thermodynamically, the phoretic particle can lower its free energy by moving to
regions with a lower concentration of repulsive bath particles. If the bath particles attracted
the phoretic particle, then the motion would be in the opposite direction, towards the
increased ‘favourable’ interactions with the bath particles.

In the limit where the interactive length is of the same order or larger than the phoretic
particle, the hydrodynamics of the flow due to the forcing by the bath particles is reduced.
This limit corresponds to A >> 1, which in figure 1 corresponds to the interactive force at b
being very far from the phoretic particle. The repulsive hard-sphere force acts as a screen
that prevents the bath particles from entering but permits the fluid to pass unobstructed
with a uniform velocity. In this limit (2.34) becomes

U~—=——Vn™ forA=b/R> 1. (2.35)

This limit provides a simple physical interpretation: upon ‘collision’ with the repulsive
screen, the bath particles are able to transmit their entire force to the particle (via the
screen), and thus the force on the phoretic particle is the osmotic pressure jump kpT An
exerted over the screen surface area 41b? to give a net force of 4wb*kpThV n®. This force
is balanced by the Stokes drag on the phoretic particle, 6tnRU, which, to within a factor
of 2, predicts the exact result (2.35).

As the repulsive force range moves closer to the phoretic particle surface, not only does
the surface area for the osmotic pressure decrease, but, as (2.25) clearly shows, the local
osmotic force density drives a fluid flow that must now satisfy the no-slip condition on
the phoretic particle surface, and this reduces the force transmitted by the colliding bath
particles. When b > R, the no-slip surface of the phoretic particle is so far removed from
the contact surface at b that flow induced by the local osmotic pressure flows freely —
this is the ‘free-draining’ approximation often used in polymer physics. This physical
interpretation was revealed in exquisite (but perhaps excruciating) detail in the microscopic
‘colloidal’ treatment of phoretic motion by Brady (2011).

When the interactive force has an extended range, the expression (2.23) must be
used. For a spherical phoretic particle this can be written in a simple form. We take
the interactive force to be derivable from a potential that is radially symmetric: f, =
—VV =-0V/drn, and so Uy —1)-f,=—-Uy—1)-ndV/dr=+L(r)dV/drn.
Noting further that n = (1 + f(r))x - Vn, (2.23) becomes

U=-—""R? |:/1 L(r)%(l +H)r dr:| Vn, (2.36)

where the interactive potential has been made dimensionless with kg7 and all lengths,
with the exception of Vn®!, have been scaled with the phoretic particle radius R.
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The disturbance concentration f satisfies

4 . A A
1+ (; - V/)f’ +A+f) (V” + %V’) =0, (2.37)
f~0 asr— o0, (2.38)
f4+f+A+HV ==1 atr=1, (2.39)

where " denotes the derivative with respect to r. If the interactive force is localized near
the phoretic particle surface then the hydrodynamic function L(r) ~ %(b/R)2 and (2.36)

scales as b” rather than R?; this is the usual form one sees for phoretic motion.

It should be noted that (2.23) for the phoretic velocity applies quite generally. It is
not restricted to an isolated phoretic particle in unbounded fluid. If the phoretic particle
is adjacent to a surface or enclosed in a container, or there are other phoretic particles
present, then one only needs the appropriate hydrodynamic resistance tensor Rrpy and
Stokes velocity field Uy for the given macroscopic geometry. For example, the recent
paper by Marbach, Yoshida & Bocquet (2020) presented results for a porous spherical
phoretic particle, which, from this perspective, requires no separate derivation; one simply
requires the known Stokes solutions for the drag, R;Ll, and fluid velocity disturbance,
Uy — I), for the porous particle. Indeed, several of the results presented in Marbach
et al. (2020) are all variations of (2.36).

Furthermore, the more general expression (2.15) can be applied to more complex fluids
where the ‘particle’ stress o, in addition to the osmotic pressure of the bath particles, may
now describe, say, a nematic or polymeric fluid. What is necessary is that we be able to
split out the Newtonian fluid stress and use the reciprocal theorem to express the phoretic
velocity in terms of a volume integral of V - a;,.

As an example of such an approach, we outline how the classic problem of
electrophoresis can be treated from this new perspective. The ‘particle’ stress, o, is
now the sum of the osmotic pressure, 0% = —nkgTI, and the Maxwell stress, o7 =
¢EFE — %(6 — (0€/0p)p)(E - E)I, where E is the electric field and € is the dielectric
permittivity. The electrophoretic phoretic velocity is then

U=Ry,- ; Uy —D - (V-0))dV + Ry}, - : Uy =) -nf,dV, (240
! !

where f, corresponds to the non-electrostatic colloidal force exerted on the ions (bath
particles) by the phoretic particle (and importantly includes the force necessary to ensure
no flux at the phoretic particle surface). The electric body force has been replaced by
the Maxwell stress V - oy = prE, where pr (= n) is the free charge density, and thus
V . g/, is the local disturbance electrostatic body force density. For thin double layers, this
local body force density is restricted to a region very close to the phoretic particle surface
and drives the ‘slip’ velocity, (Uy — I), in a manner exactly analogous to a short-range
colloidal force. Of course, one still needs to solve for the local ion concentrations and
electric field, as must be done for the disturbance concentration field for diffusiophoresis,
but this new formulation is completely general and applies to any particle shape. It may
also provide a convenient starting point for incorporating additional bath particle transport
mechanisms, as we now illustrate for active matter.
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3. Phoretic motion in a bath of active particles

We now show how this new continuum treatment of phoretic motion can be extended
to active matter. The simplest description of active matter is the so-called ABP model,
wherein each active particle undergoes the usual dynamics of a passive Brownian particle,
with the addition of an active ‘swimming’ motion characterized by a swim velocity Uy in
a direction g, as illustrated in figure 1. The orientation of the swimming direction changes
on a reorientation time scale tx that results from either random Brownian rotations or from
run-and-tumble behaviour often observed with bacteria. The ABPs take a random step of
magnitude £ = Ugtg, which defines the run length ¢, and at long times undergo a random
walk with a ‘swim diffusivity’ D*""" = (Uy€/6)I in three dimensions. The reorientation
process also introduces a new microscopic length 6 = +/Drtg, where Dy = kpT /¢ is the
translational diffusivity of the ABPs. The reorientation process may or may not be thermal
in origin. For a thermal Brownian reorientation process, tg = kg7 /¢r, where (g is the
rotational drag. For a spherical ABP, ¢z = 8mna’ and 8§ = \/4/3a is of the order of the
active particle size.

Even though the run length is often much larger than the active particle size, our
continuum treatment where the bath particle motion is described by a Smoluchowski
equation only requires that a < R; the run length ¢ can be arbitrary — even larger than
the phoretic particle!

At this Smoluchowski level of description, the swim pressure [TV = pgDSWim
introduced by Takatori et al. (2014) does not directly enter the analysis. The particle
contribution to the stress is still o, = —nkgTI. In certain cases, however, as we show in
§ 3.2, at high activity, ksTs/kgT > 1, the phoretic motion results not from the osmotic
pressure nkgT, but from the swim pressure I7T swim — pk T, where the activity kT =
¢ Dswim‘

The distribution of active bath particles now requires the probability density in both
position and orientation space relative to the phoretic particle P(x, g, t), which is governed
by the Smoluchowski equation

opP . .

where the translational and rotational fluxes are

) 1
Jjr = uP + UpqP + Epr — D7VP, 3.2)
Jjr = 3V x uP — DRVgP. (3.3)

Here, V = V, is the gradient in position space, while the orientational space operator
Vr =¢q x Vg4 The vorticity of the suspension velocity field, (V x u)/2, gives a
deterministic reorientation of the active particles. Here we have assumed spherical ABPs;
non-spherical particles have additional contributions to the flux expressions (Saintillan &
Shelley 2015). In the treatment below we shall neglect the advection of the fluid (small
flow Péclet numbers) as we did for the passive case.

Since the active particles’ contribution to the suspension stress is the same as for
passive particles, o), = —n'kgTI, (2.23) still applies for the velocity of the phoretic
particle in an active bath. And from (2.23) we see that what is needed is the number
density n(x, t) = f P(x, q, 1) dgq, which is found by taking the orientational moments of
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the Smoluchowski equation. The zeroth moment gives the number density

Yy =0 (3.4)
ot Jn =" ’
with the number density flux
1
J, = Uom + Efpn — DrVn. 3.5)

(We have assumed that the interactive force between the phoretic and active particle does
not depend on the orientation of the active particle. This restriction can be relaxed if
desired.) In (3.5) m = f qP dq is the polar order, which satisfies

om .
rr +V.j,+2Drm =0, (3.6)

with polar order flux
1 1
Jm = gUonI + UpQ + Efpm — DrVm. (3.7)

In 3.7) Q= [(qq — %I )P dq is the nematic order field. The hierarchy of equations
continues with higher moments, and a truncation is necessary. We shall close here with
the first two moments by setting Q = 0, as this is sufficient to illustrate the basic physics
as shown by Yan & Brady (2015), Row & Brady (2020) and Kjeldbjerg & Brady (2021).

In the examples below, we shall assume that the same hard-sphere force operates at the
contact surface S, so that the phoretic velocity is the same as (2.25) and the interactive
force no longer appears in (3.5) or (3.7), being replaced by the no-flux condition #n - j; =
n-j,=n-j, =0onS.. Again, we have neglected the effects of the fluid advection on
the distribution of ABPs, which is valid for small flow Péclet numbers, UR./D7 < 1, and
for ABPs, U/Uy <« 1 — the phoretic velocity is small compared with the swim speed (see
the discussion in § 4).

3.1. Active diffusiophoresis: phoretic motion due to an external concentration gradient

In this first example we consider the classic problem of diffusiophoresis — the motion down
a concentration gradient of active particles (see figure 1). If there is a number density
gradient of active particles, then there will also be a net polar order field. To see this, note
that at steady state (3.6) has the solution

m>® = —%UQ‘CRVHOO = _%UOTRvnexr' (3-8)

Since the probability density at infinity must be linear in the imposed constant gradient
Vn®"! and there are two vectors in the problem, x and g, P*°(x, q) takes the form

P®(x,q) = ino + ix - V™ 4 iq em>, (3.9)
47 47 47

where ng is a constant, from which follow (3.8) and n*°(x) = ng + x - Vn®. The active

particle flux from the imposed concentration gradient is found from substituting (3.9) into

(3.5):j° = Uym™ — DrVn® = —(Dr + D*""™)Vn®" — a flux with both the thermal and

swim diffusivities.
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Figure 2. The accumulation boundary layer adjacent to the particle surface. The surface concentration is
n® (1 + kT /kgT) = n°(1 + D*™ /Dr). In the boundary layer there is net polar order pointing into the
boundary for the simple reason that particles oriented away from the boundary would swim away. The thickness
of the concentration boundary layer scales as 6/+/2(1 + ksT5/kpT) (Yan & Brady 2015).

To make analytical progress we consider a spherical phoretic particle and, with the
QO = 0 closure, the steady disturbance problem for the number density becomes

V' = Pe,V - ml, (3.10)
n~0 asr— oo, (3.11)
n- (Vi — Pesm') = —(1 + D™ /Dr)n - R.Vn®™ atr=1, (3.12)
and the polar order satisfies
Vem' — y*m' — LPe,Vn' =0, (3.13)
m ~0 asr— oo, (3.14)
n-(Vm' — Pegn'l) = LPesn(ng + Ren - Vn™) atr= 1. (3.15)

In (3.10)—(3.15) we have scaled all lengths with the contract radius R, = R + b, with the
exception of Vn®" which remains dimensional, as do n’ and m’.

There are actually only two dimensionless groups that characterize the behaviour: the
swim Péclet number Pe; = UoR./Dr, and the ratio of the swim to thermal diffusivity
D" Dy = kTs/kgT, which is also the ratio of the activity to the thermal energy. The
parameter 2 = 2(R./8)?, which is the ratio of the phoretic particle size to the length
of a thermal diffusive step during a reorientation time and sets the scale for the spatial
relaxation of polar order, can also be written as )/2 = 12(ksT/kpT) /Pe?. In fact, the
problem can be discussed completely in terms of the three lengths R, £ and §, where
keTs/kgT = (£/8)%/6 and Pe; = R.€/8>.

The disturbance problem is linear in both nyp and Vn®’. The absolute level of the
concentration at infinity ng generates a disturbance concentration profile via m’, which was
determined by Yan & Brady (2015), who showed that there is an accumulation boundary
layer adjacent to the particle surface: n(y) = n® (1 + (k;Ty/kpT) e~Y), where y = r — R,
and A = /2(1 + ksTs/kpT)/8. The concentration rises from the far-field value n* to
n>®kTs/kpT = n°°D*""" /Dy at contact, as illustrated in figure 2. For a spherical phoretic
particle this accumulation layer does not result in any net motion. For a non-spherical
particle net motion may result, however, as discussed in § 4.
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ext

Phoretic motion is driven by Vn*" and the disturbance fields must be of the form

n' =f(r)x - R.-Vn, (3.16)
m' = (g(NI + h(r)xx) « R.Vn™, (3.17)

where f(r), g(r) and h(r) are functions of the radial coordinate only and satisfy a coupled
set of ordinary differential equations that are straightforward to derive (Yan & Brady 2015).
The phoretic velocity from (2.26) becomes

U= —%bz (1 + %A) kel [14 ()] Vn, (3.13)
n

where the ‘1’ corresponds to the far-field n°° contribution and f(1) is the perturbation to
the concentration field at contact, which depends on Peg and kT /kpT.

In the limit of small Pey, corresponding to weak active swimming, a regular perturbation
shows that the phoretic velocity is

1 2 kT 1 kT 2
U=—b|1+Za)=2]1+=(1 O(Pe?) | Vn®™, 3.19
3 (+3>77|:+2(+kBT)+(eS) n (3.19)

It is important to note that kT /kpT = szef /12 and so is also proportional to Pe?.

While a general solution for all values of the non-dimensional parameters can be
obtained from the functions f, g and A, the parameter 2 is very large for the continuum
model to hold (if the ABPs are comparable to the size of the phoretic particle, a more
detailed ‘colloidal’ analysis is needed, as was done by Brady (2011) for passive particles),
and this implies that there will be an accumulation boundary layer of thickness O(y ~!) at
contact (see figure 2). Defining a new coordinate ¥ = y (r — 1), the disturbance problem
to leading order is

8%’ Pe;\ om,
=5 S (3.20)
y aY
n~0 asY — oo, (3.21)
on’ Pes\
o (Z=)m, atv=0 (3.22)
aY y
and
3Pmly 1 [ Pey an’ 0 3.23)
—_— — m —_—— — —_— = 5 .
Y2 Y3\ y oy
my ~0 asY — oo, (3.24)
om, 1 /P 1 /P
My (V= = (B eV aty =o. (3.25)
Y 3 \vy 3\ y
The solution is easily obtained:
1 (Pes\?
W= - (i) e ¥ . Ve, (3.26)
3\vy
1 /P
mly = —— <i> ae Y. Vi, (3.27)
3\vy
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where o2 = 1 4+ %(Pes/y)z. Now, the factor %(Pes/y)2 = kyTs/kpT and thus the phoretic
velocity is

1 2\ (kgT + kT
U= —gbz (1 + gA) KeT +1T0) g e (3.28)
n

This expression, which is valid for all Pe; (with the exception of very small Pe; where
(3.19) holds), has a thermal contribution from the imposed gradient and an active
contribution from the disturbance due to the accumulation boundary layer.

At high activity, k;Ts/kpT > 1, the phoretic velocity becomes (when A = b/R <K 1)

1 kT, 1 Ut
U~ —gbZ%VHEH — —§b2§6—;’wm = —UptVes, (3.29)

where we have used the Stokes drag ¢ = 6mna and expressed the number density in
terms of the volume fraction of ABPs within the interactive length b of the repulsive
force: ¢ = b*amn® /3. The result (3.29) has the expected form of the phoretic velocity,
proportional to the swim speed Uy times the gradient in concentration but now measured
over the run length scale £. Interestingly, as might be expected for hydrodynamic
self-propulsion, the phoretic speed is independent of the viscosity of the suspending fluid
as both the propulsive swim force of the ABPs, ¢ Upq, and the fluid drag of the phoretic
particle, Rpy = 6mtnRI, are proportional to the fluid viscosity. As is the case for passive
diffusiophoresis, the diffusiophoretic velocity is independent of the size R of the phoretic
particle.

It is important to note that the phoretic velocity is independent of the thermal energy,
even though the interactive force driving the motion f, is directly proportional to kg7 (see
(2.24)). The accumulation boundary layer raises the local concentration at the phoretic
particle surface to n®k;T/kpT, where n°" is the concentration just outside the boundary
layer. The motion is down the concentration gradient — from high concentration to low —
as there are more impacts with the ABPs on the high-concentration side.

One can derive this athermal result as follows: as the accumulation boundary layer
shows (see figure 2 and/or (3.27)), the ABPs at the phoretic particle surface are all pointing
inwards, towards the particle, and pushing with their swim force ¢ Upq ~ —¢ Upn. The
active bath particles must be within a run length £ of the phoretic particle surface in
order to hit it, and thus the number of bath particles that strike the phoretic particle
scales as 4TcRan. A net force results because of the slightly higher concentration in the
accumulation layer on one side than the other: An ~ R.Vn®". This force is reduced by the
hydrodynamic flow L(A) ~ %(b/R)2 for b < R, i.e. by pushing the fluid out of the way
past the no-slip phoretic particle surface, and is balanced by the Stokes drag, —6mnRU, to
give the phoretic velocity (3.29).

Note that our neglect of the effect of the fluid motion on the ABP distribution requires
U/Uy ~ |€V¢Z’” | < 1, a condition which could be violated in concentrated and very
active suspensions. This is discussed further in § 4.

3.2. Active phoretic motion due to a spatially varying run length £(x)

Another way to achieve motion is to have a spatially varying run length ¢ = Uytg. The
run length can vary because of a spatial dependence of the reorientation time 7z (x) and/or
a spatially varying swim speed Up(x). These variations may arise from a spatially varying
fuel source or from a chemoattractant that affects the swim speed/reorientation time, or
certain bacteria and synthetic swimmers can be light-activated, allowing control of swim
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speed and direction. As was first shown by Razin ef al. (2017), a variation in run length
leads to an ‘Archimedes’ principle in active fluids.

The motion of a phoretic particle due a spatial variation in run length is easily obtained
in the high-activity limit, k;7/kgT > 1, where the accumulation boundary layer exists.
The concentration and polar order are written as sums of the distributions in the absence
of and caused by the phoretic particle:

n(x) = n™(x) +n'(x), (3.30)
m(x) = m™(x) + m (x). (3.31)
Following the accumulation boundary-layer analysis of § 3.1, the concentration at the
particle surface r = R, can be shown to be (cf. (3.26))
ksTs
kgT
Recall that the activity k,Ts = ¢ Upl/6 and the result (3.32) applies even when Uy (x) and

Tr(x) are functions of position. (They are functions of position along the particle surface
within the boundary layer.) Thus, from (2.26), the phoretic velocity is given by

LR

U= stim ds; 3133
6TWIR£C o () (3.33)

n(R.) = n™(x) (3.32)

the accumulation boundary layer raises the osmotic pressure to the swim pressure, IT%" =
n(Re)kpT = n*>k,Ts = [T,
For slow spatial variations we can expand about the particle centre, x = 0, to obtain
L(R.) 47R>
6TnR 3

: 157 2 :
VIT"(0) = 3, (1 + §A) VI (0). (3.34)
n
The expression (3.34) applies quite generally, including in the case of an externally
imposed concentration gradient considered in §3.1. In that case, VIT3)"™(0) =
cUptVn® /6, where Uy and £ are constants, and (3.34) agrees with (3.29).
When the run length varies, (3.34) becomes
1b? ¢n®U,
U—_-7" ¢n=—~Uo
3 6

2 2
14 §A> Vi =—¢; Uy (1 + §A) Ve, (3.35)
where ¢,° = 7h%an®™ /3. The run length can vary via either 7z or Uy. When 1 varies and
Uy is constant, the bulk concentration n°° is constant. When Uy varies spatially, so too
does n™°. Outside the boundary layer, for high activity (no Dr) the particle flux j, = Upm,
and since V - j, = 0, we have m = 0. From the j,, -flux balance (3.6),

m=—{rV(nlUp) =0 = nUy= const, (3.36)

a result first described by Schnitzer (1993) and Tailleur & Cates (2008). It is a unique
behaviour of active matter that the product of the concentration and swim speed is
constant, and it leads to particle accumulation in regions where the speed is low and
a deficit where the speed is high, a behaviour that has been exploited to ‘paint’ with
photo-kinetic bacteria (Arlt et al. 2018; Frangipane et al. 2018) and which has been verified
experimentally (Arlt et al. 2019).

A physical explanation for the swim pressure gradient as the driving force for phoretic
motion is the generalization of the discussion following (3.29). Each ABP exerts its swim
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force ¢ Upg ~ —¢ Upn when contacting the phoretic particle surface (see figure 2). The
number of active bath particles that strike the phoretic particle scales as 4nR3€n. A
net force results from the change from one side to the other, F"* ~ A(¢ U04TERZEn) ~
AR2AITV™ ~ 4RIV [T™, This force is reduced by the hydrodynamic flow L(A) ~
%(b/R)2 for b < R, and is balanced by the Stokes drag, —6mtnRU, to give the phoretic
velocity (3.34).

This result predicts a very interesting and surprising behaviour: the phoretic particle
moves towards regions of higher bulk concentration even though it is repelled by
the active bath particles. Although there are more particles in the bulk on the
higher-bulk-concentration side, the actual particle density in the accumulation boundary
layer on the lower-bulk-concentration side is higher, leading to a net force up the bulk
concentration gradient — a reverse phoretic effect (Row & Brady 2020).

The result (3.33) can be generalized to particles of arbitrary shape. As shown by Yan
& Brady (2018), to leading order at high activity (3.32) is valid for any particle shape
with a hard-particle repulsive force, and thus the general expression (2.25) applies and the
phoretic velocity becomes

U=Ry- /S Uy — D) - I"nds, (3.37)

where the ‘slip” velocity is now driven by the swim pressure I75¥" = n*k;T;. A Taylor
series expansion about the particle ‘centre’ then gives for slow variations in the swim
pressure

U=Ry, / Uy — 1) - nrdS - VIIZ™(0), (3.38)
Se

where 7 is the position vector from the particle centre to a point on the surface of contact

Se¢. Note that we can expand I715Y im about the particle centre because it is continuous there,
whereas U is singular within the particle and so cannot be expanded.

This swim pressure variation may cause a non-spherical particle to rotate as well as
translate, and from (A8) in Appendix A the angular velocity is given by

2 =R;} / Ug — €+ 1) - nrdS - VIIZ™(0) (3.39)
Se

to leading order in VITS¥"™(0), where Ry is the resistance tensor coupling torque and
angular velocity and U ; is the velocity field in the fluid due to the rotation of the particle.
For a body that can be characterized by a single orientation vector d, the angular velocity
is proportional to

2 ~d x VIT™0), (3.40)

showing that the particle will rotate until it aligns with VI3 im(Q) (stable if parallel and
unstable if anti-parallel). If the body possesses fore—aft symmetry such that the behaviour
must be quadratic in d, the angular velocity from (3.39) is zero.

In this discussion we have assumed that the body is not chiral. A chiral body
has translational-rotational coupling that affects its phoretic motion, as discussed in
Appendix A.

3.3. Active phoretic motion due to an external orienting field

In the diffusiophoretic problem the external concentration gradient generated net polar
order, which was ultimately responsible for the phoretic motion. For active particles there
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Ve @
¢ " n e e
Figure 3. Motion of a phoretic particle in response to an orienting field H in a bath of active particles. The
field does not propel the active particles; it only biases their orientation in the field direction. The parameter

XrR = $2.7Tg, where £2. is the rate of rotation of the particles in response to the field, characterizes the process.
No net concentration gradient of active particles is created by the field.

are several means to produce net polar order even when the number density is uniform.
An illustrative case is when a external field can orient swimmers to move in one direction,
as sketched in figure 3. A biological example is magnetotactic bacteria. Takatori & Brady
(2014) examined the behaviour of a uniform suspension of orientable ABPs and showed
that the particles can achieve net directed motion of the following form:

u®™® =0, n* =const, (3.41)
6% = —(pp° + n®kg DI, (3.42)
J = Upm™ = n®UyU(xp)H, (3.43)

where U (xr) 1s a non-dimensional function of the strength of the orienting field xr and is
given by the Langevin function,

U(xr) = coth(xr) — xg - (3.44)

For weak fields U/ (xR) ~ % Xr as xg — 0, while for strong fields all particles align and
move with the field: U (xr) ~ 1 as xg — o0. Here, H is a unit vector in the direction of
the external field.

The only change to the dynamics of the ABPs is that there is now an external torque
from the orienting field coupled to the orientation of the particles. The orientational flux
isnow jp = 2.9 x HP — DrV P, where §2. measures the rate of reorientation due to the
field. The number density satisfies the same equation (3.4) with the same flux expression
(3.5) as before. The equation for the polar order now becomes

om

2 A
o7 +V . j,,+2Drm — $2, (gnl - Q) -H =0, (3.45)

and the polar order flux is unchanged. The strength of the orienting field is xg = £2.7r.
For small xr, when the orienting field is weak we can neglect the nematic order Q as

we did for diffusiophoresis. For strong fields, however, the ABPs are aligned with H and

Q is no longer small. Takatori & Brady (2014) solved for the exact orientation distribution

922 A10-19


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.530

Downloaded from https://www.cambridge.org/core. Caltech Library, on 07 Mar 2022 at 21:52:40, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2021.530

J.F. Brady

for all xg for a uniform concentration n = n°°, and we may use their results to ‘close’ the
polar order equation and its flux, which now take the forms

om

—, Y Jm+ 2Dglm nU(xp)H] =0 (3.46)
and
jm = Uon | Dy G HEL + D1 () — HED | = DrVm, (3.47)

where bll and D | are non-dimensional functions of yr = £2.tg, which can be found
in Takatori & Brady (2014). In the absence of any spatial variations, the solution of

(3.46) gives m = nU (XR)IEI , which is just the undisturbed behaviour (3.43). For slow
spatial variations at steady state, the functions DH and D, when substituted into Jn
give an effective swim diffusivity D" = %UérR{lA)” (XR)I:II:I +IA)J_(XR)(I —ﬁf[)}.
The expression (3.47) for j,, implies a form for Q, which has the property that Q - H
is in the direction of H.

Neglecting any advective motion of the suspension and taking the interactive force to be

a hard-particle force at a contact surface R, = R + b as before, the disturbance problem
for the steady concentration distribution becomes

V2n' = Pe,V -m, (3.48)
n~0 asr— oo, (3.49)
n- (Vi — Pesm') = Pen®Un-H atr=1, (3.50)

and the disturbance polar order satisfies

VZml _ y2(m’ _ n'f]f{) _ %Pesi)swim Vi = 0, (351)
m ~0 asr— oo, (3.52)
n-(Vm' — LPe, D™y = LPen - D™ atr =1, (3.53)

where D™ is the non-dimensional swim diffusivity, D™ = Dy(xz)HH +
by (xw) I — HH). o

Since the parameter 2 is very large, (3.51) shows that m’ &~ n’ UH; the polar order is
slaved to the concentration field. An examination of the accumulation boundary layer as
was done in the previous section shows that this slaving of m’ applies in the boundary
layer as well. Thus, the problem for the concentration field is

V20 = PegU(xr)H - V1, (3.54)
n~0 asr— 0o, (3.55)
n-(Vn' — Pe,U(xp)Hn') = Pesn™®U(xg)n - H atr =1, (3.56)

which we recognize as the microrheology problem for passive bath particles (Squires &
Brady 2005).
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For small Pe; this concentration disturbance is the source dipole
1 A
0 = ——n®Pe,UH - =, (3.57)
2 r3
and the phoretic velocity becomes
U =3UoUGw)én(1 + 30)H, (3.58)

where ¢p, = h?an®/3 is the ‘volume fraction’ of active bath particles in the interactive
length b. If we take the excluded volume contact length b to be of the same order as the
active particle size a, both of which are small compared with R, then (3.58) reduces to

U ~ 3UoU(xr)$H., (3.59)

which is independent of the size of the phoretic particle and the viscosity of the suspending
medium and is directly proportional to the average swimming speed Uy U( Xr). Here, ¢ =
41a®n® /3 is the actual volume fraction of the ABPs. It is important to note that the field
does not propel the ABPs but only orients them; their speed still scales with the intrinsic
swim speed Up.

At the other extreme of high Pej, the microrheology problem of Squires & Brady (2005)
shows that there is a Pes_1 boundary layer on the ‘upstream’ surface of the particle, which
leads to the same result (3.58) but with a factor of 1/2. Thus, we have the general result

3 b 2 2 3 1’ PeS << 1 ’
U=-¢ (—) <1 + —A) UoU(xp)H ~ = oUgU(xp)H x { 1 (3.60)
4 a 3 4 5, PeS >> 15
with a smooth transition from 1 to 1/2 as Pe; increases, as seen in figure 6 of Squires &
Brady (2005).

In this case, with an orienting field generating net polar order and motion of the ABPs
in the field direction, the physical explanation follows along the lines of the microrheology
problem. The net force on the phoretic particle is F™¢" ~ 47[R%kBTAn. The concentration
jump is proportional to Is\esnoo, where P\es = Uy U (xr)R./Dr (see (3.54)). This applies at
both large and small Pe;. Accounting for the hydrodynamic flow, L(R.), and balancing
with the Stokes drag on the phoretic particle gives (3.60). The run length does enter into
these results as the polar order is slaved to the orienting field; indeed, the run length goes
to zero for large xr (Takatori & Brady 2014).

3.4. Active phoretic motion due to an internal orienting field

For a second example of an orienting field driving active particle motion consider
a spherical phoretic particle with a permanent magnetic moment M immersed in a
bath of magnetotactic ABPs. The phoretic particle will create a magnetic field B(x) =
V(x - M/r®) that will orient and thus both attract and repel magnetotactic bacteria. The
only change required in the above discussion is that everywhere H appeared, one needs
to replace it with B(x). Further, for the cases considered above, the forcing in the flux
boundary condition at contact becomes —2n - M, which is a factor of 2 larger than for
the external field. Thus, all one needs to do is replace H in (3.58), (3.59) and (3.60) with
—2M (the” denoting a unit vector); the internal orienting field is a factor of 2 stronger than
the external field. And note that the field does not propel the active particles; it only affects
their orientation. Thus, the phoretic velocity scales with the intrinsic swim speed Uy and
does not depend on the magnitude of the orienting field. It would be very interesting to see
if these predictions are borne out in experiment.
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3.5. General form of the phoretic velocity

These few examples show that the phoretic motion at high activity can be expressed in the
general form

U= —4ab%a(1+34) nlotve, (3.61)

where ¥ represents the non-dimensional driving ‘potential’ for the phoretic motion:

¥ = +1Inn for a concentration gradient, (3.62)
- —-H. x/¢ for an orienting field, (3.63)
= +1In¢ for a spatially varying run length. (3.64)

As a final note, if we take the interactive length b to be of the same order as the ABP
size a, which is small compared with the phoretic particle A < 1, then (3.61) takes a very
simple and suggestive form

U~ —¢UplVY. (3.65)

The phoretic velocity is proportional to the volume fraction of active bath particles ¢ =
47tna’ /3, the swim speed Up and the run length £. It is independent of the phoretic particle
size R and the viscosity of the suspending fluid n. Note that the gradient is measured on
the scale of the run length, which can be smaller or larger than the phoretic particle size.
Note also that the phoretic velocity is completely athermal; the thermal energy does not
enter even though the interactive hard-sphere force is proportional to kgT.

4. Conclusions

Equations (3.61) and (3.65) are the final results of this study of phoretic motion in active
matter. Although the detailed numerical coefficients are for spherical phoretic particles,
the general forms should apply to particles of any size and shape. And there may well
be other mechanisms for motion in active baths that can be analysed from this new
perspective. But here we would like to clarify some of the approximations and possible
limitations of this analysis.

The phoretic velocity depends on the number density n(x, f) at the contact surface S..
This number density in turn depends on the polar order m, the nematic order Q etc.
in the hierarchy of moment equations. We closed the equations by setting Q = 0. This
approximation revealed the essential physics and is expected to have only a quantitative,
not qualitative, effect on the results, as has been the case in other studies of forces in active
matter (Yan & Brady 2015; Row & Brady 2020; Kjeldbjerg & Brady 2021).

We have also considered only a hard-sphere repulsive force at the contact surface S
at r = R, = R+ b. If the repulsive force is longer ranged, then the formula (2.23) for
a distributed force density must be used to compute the phoretic velocity. A typical
extended-range force may have a magnitude of a few to tens of kp7. At high activity
ksTs > kpT, which is readily achieved experimentally (Takatori et al. 2016), the swim
force greatly exceeds this long-range interparticle force and the ABPs will be jammed up
against the phoretic particle surface where the no-flux condition is enforced, either by a
hard-sphere repulsion or by a steep repulsive interparticle force of magnitude Fy. Indeed,
the force per unit area on a boundary at high activity is given by the swim pressure nk,T
regardless of the precise nature of the repulsive force, and therefore neither the magnitude
Fo nor kT enter into the phoretic velocity at high activity.
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This raises an interesting question about the role of attractive forces. For conventional
passive Brownian systems, if there is attraction between the bath and the phoretic particle,
then a concentration gradient of bath particles will lead to motion up the concentration
gradient. The phoretic particle can lower its free energy by moving to a region of greater
attraction. An attractive potential depth is typically of the order of a few kg7, and at high
activity the swimming motion will completely swamp any attraction and the ABPs will
again be forced up against the phoretic particle surface where the no-flux condition is
enforced. The phoretic motion will then be down the concentration gradient — from high
concentration to low — even though there is underlying thermodynamic attraction to the
bath particles.

The accumulation boundary layer at contact in active systems gives the impression that
the ABPs are ‘attracted’ to the phoretic particle just as if there were a real attractive
interparticle force. The motility-induced phase separation (MIPS) often seen in active
matter systems can be understood as a consequence of this ‘effective’ attraction (Cates
et al. 2010; Bialké et al. 2013; Buttinoni et al. 2013; Palacci et al. 2013; Stenhammar
et al. 2013; Takatori et al. 2014; Wysocki et al. 2014; Digregorio et al. 2018). Indeed,
models to predict MIPS have been put forward using the notion of a non-equilibrium
free energy. However, this notion of attraction does not extend to phoretic motion as it
would predict that the phoretic particle should move to regions of higher concentration
to reduce its ‘free energy’. The opposite occurs — the particle moves towards regions of
lower density because it is actually repelled by the ABPs. This illustrates the challenges in
using thermodynamic-like concepts to explain and predict the behaviour of active systems
which are inherently out of equilibrium.

We explicitly formulated and computed the phoretic velocity from the actual
interparticle forces f), and the number density at contact, showing that what governs

the behaviour is the local osmotic pressure I71°" = n(x, f)kgT driving a slip velocity
at the phoretic particle surface (see (2.25)). In the high-activity limit the accumulation
boundary layer allows us to replace I7°*" with IT swim: — oo (x 1)k Ty, where n® is the
undisturbed ABP concentration outside the boundary layer. We could have used this
physical approximation at the outset, but we thought it best to proceed with the direct
calculation of I7°°™ to ensure that aspects were not missed.

In obtaining the phoretic velocity we assumed that the ‘phoretic’ Péclet number Pe =
UR./Dr was small and neglected the effects of fluid advection on the distribution of bath
particles. This is a standard assumption in phoretic problems. For active matter, however,
the phoretic velocity is proportional to the swim speed Uy and we now require in addition
that U/Uy < 1 in order to neglect the effects of advection. Since the run length ¢ can
be large in active systems, for reasonable volume fractions and gradients it is possible
that this condition is violated. The general formulation (2.25) still applies, but now the
concentration disturbance n’ depends explicitly on U/Uy, in addition to the parameters
Peg and kT /kpT, and so the phoretic velocity must be determined self-consistently. This
is similar to what happens in the osmotic motor problem addressed by Cérdova-Figueroa
& Brady (2008) and Brady (2011).

In this continuum perspective of phoretic motion the bath particles must be small
compared with the size of the phoretic particle, a < R. (Note, however, that there is no
such restriction on the size of the run length £.) While this is fine for passive Brownian
bath particles, which are often molecular-scale solutes, active particles themselves are
often microns in size and thus comparable in size to a phoretic particle. (Very small active
particles rotate so quickly due to thermal Brownian torques that their swim steps, £, are
small and thus their activity is comparable to the thermal energy, k;Tx =~ kT, and their
behaviour is not very different from that of passive Brownian particles.) For finite-size
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ABPs the continuum approach must be replaced by a ‘colloidal’ perspective that treats
both the ABPs and the phoretic particle as finite-size colloidal particles immersed in a
continuum solvent. Just such an approach was developed by Brady (2011), who showed
how diffusiophoresis can be viewed as multicomponent diffusion wherein a concentration
gradient of one species can drive the flux of another species. In this colloidal perspective
any size ratio is permitted, including having the ‘bath’ particle be larger than the phoretic
particle! This approach also includes full hydrodynamic interactions between the two
species of particles. It is straightforward to add self-propulsion to this approach by making
one (or both) type(s) of particle active. Indeed, the formulation can be used with little
modification and thus is the proper starting point for finite-sized ABP systems (Burkholder
& Brady 2018). The challenge is computational, not conceptual.

Finally, we noted that even in the absence of an imposed macroscopic concentration
gradient there is a non-uniform concentration of active particles about the phoretic particle
owing to the accumulation boundary layer. As seen from (3.15), to a first approximation
n(R.) = nokT, which for an asymmetric phoretic particle can lead to a net swim force and
therefore motion. Such motion has been observed in experiments with B. subtilis and in
simulations of ABPs, but only in the ‘free-draining’ limit where hydrodynamics is ignored
(Kaiser et al. 2015). Yan & Brady (2018) showed that the leading-order departure from
sphericity does not yield a net force in the free-draining limit; one needs to go to higher
order. It is not known if the combined leading-order perturbation to the concentration and
slip velocity will lead to net motion. In any case, the formulation presented here allows one
to properly include the hydrodynamics of the flows generated by the ABPs and investigate
the motion of asymmetric particles in an active bath.

As a last remark, the key idea behind this new formulation for phoretic motion is the
separation of the stress into a fluid part o'y and a ‘particle’ part o ,. The particle stress could
be the osmotic pressure 0" = —kpT1, as used in this work, or it might be the Maxwell
stress for electrophoresis. But it could also be a non-Newtonian stress corresponding to a
polymeric or nematic fluid. In that case one would have an equation for this contribution
to the stress that would couple the stress to the evolution of a microscopic field very much
like the field equations for the number density. We hope that this new formulation will
prove useful in other situations where one wants to know how objects move in complex
microstructured media.
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Appendix A. Expressions for force and torque on a particle

To generalize the treatment to include the torque on the phoretic particles, we note that now
we allow the flow at infinity to have a solid body rotation, i.e. u™® = U + 2% x x, with
U and 2°° constants (a linear shear flow E°° - x could also be added). The disturbance
problem for the stress now becomes

V.o =—V.a,— 0 +n7)f, (A1)
V.u =0, (A2)
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p}-, u~0 asr— oo, (A3)
U=U-U®+(2—-R2%) xr onSp, (A4)

where U and £2 are the unknown translational and rotational velocities of the phoretic
particle to be found from the zero-force and zero-torque conditions, which, since the ‘field
at infinity’ does not exert any net force or torque, become

F:f a;-nds+7§ o -ndS— | o +n™)f,dv, (AS)
Sp Sp \%

sz‘ rxa}-ndS+7§ rxa;-ndS—/ rx(n’+n°o)fpdV. (A6)
Sp Sp Vi

For the interactive force to exert no net force or torque, we require that |; v SpdV =0and

fvfrxfpdV:O.

Combining this expression for the hydrodynamic force with the remaining terms in (AS)
and making use of the divergence theorem for o/, we have for the phoretic velocity of the
particle

U_UOOZR;[B./ (V.a;).(uU—I)dV+R;§,-/ Uy =1 - (' +n>)f,dV.
14 vy

(A7)
And the corresponding expression for the angular velocity is
SZ—SZOO:RL(IZ-/V(V-GI’,)-(L{Q—G-r)dV
f
+R; - ; Ug —€-1) - (' +n0)f,dV, (A8)
!

where Ry ¢ is the hydrodynamic resistance tensor coupling torque to angular velocity, U o
is a second-order tensor that gives the velocity outside a rotating particle, and € is the unit

alternating tensor. For a spherical particle, Rz o = 8mnR*I and

r-e€

Also, in writing (A7) and (A8) we have assumed that the phoretic particle is not chiral,
so that there is no translational-rotational coupling. The generalization is straightforward:
(2.13) for the hydrodynamic force has the additional term —Rpg - (2 — 2°°) on the
right-hand side, where Rpg is the hydrodynamic resistance tensor coupling force to
angular velocity. There is a similar expression with Ry (= R;_Q) coupling torque to linear
velocity. Thus, one needs to invert the grand resistance matrix to obtain the mobility matrix

1
Myr Mgor\ _ (Rru Rro (A10)
My, Mgop Ry Rio ’

Again, if there are external forces/torques acting on the particle, then one needs to add

R;llj - F*" and RL_.(IZ - L% to the right-hand sides of (A7) and (A8) and the corresponding
matrix form for chiral phoretic particles.
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