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Abstract

Satisflability Modulo Theories (SMT) solvers have been widely
applied in automated software analysis to reason about the

queries that encode the essence of program semantics, reliev-
ing the heavy burden of manual analysis. Many SMT solving

techniques rely on solving Boolean satisfiability problem

(SAT), which is an NP-complete problem, so they use heuris-
tic search strategies to seek possible solutions, especially

when no known theorem can efficiently reduce the problem.

An emerging challenge, named Mixed-Bitwise-Arithmetic

(MBA) obfuscation, impedes SMT solving by constructing

identity equations with both bitwise operations (and, or,

negate) and arithmetic computation (add, minus, multiply).
Common math theorems for bitwise or arithmetic computa-
tion are inapplicable to simplifying MBA equations, leading

to performance bottlenecks in SMT solving.

In this paper, we first scrutinize solvers’ performance on
solving different categories of MBA expressions: linear, poly-
nomial, and non-polynomial. We observe that solvers can
handle simple linear MBA expressions, but facing a severe
performance slowdown when solving complex linear and
non-linear MBA expressions. The root cause is that com-
plex MBA expressions break the reduction laws for pure
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arithmetic or bitwise computation. To boost solvers’ perfor-
mance, we propose a semantic-preserving transformation to
reduce the mixing degree of bitwise and arithmetic opera-
tions. We first calculate a signature vector based on the truth
table extracted from an MBA expression, which captures
the complete MBA semantics. Next, we generate a simpler
MBA expression from the signature vector. Our large-scale
evaluation on 3000 complex MBA equations shows that our
technique significantly boost modern SMT solvers’ perfor-
mance on solving MBA formulas.

CCS Concepts: » Software and its engineering — For-
mal software verification.
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fication
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1 Introduction

Satisfiability modulo theories (SMT) solvers have been widely
adopted in various software engineering areas, such as soft-
ware analysis [43], verification [11], symbolic/concolic exe-
cution [10, 25, 27, 38], and test-case generation [8, 22, 23, 41].
In general, these techniques abstract software behavior as
certain forms of math formulas and then use an SMT solver
to decide their satisfiability. How efficiently the SMT solver
solves these formulas directly impacts the effectiveness of
those methods.

As the basics of SMT solving, Boolean satisfiability prob-
lem (SAT) is the first proved NP-Complete problem [15], so
a practical SMT solver implementation inevitably relies on
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#!/usr/bin/python3
from z3 import x

X = BitVec('x', 64)
y = BitVec('y', 64)
solve(xxy != (x&y)*(~x&y) + (x&y)*(x]y))

R W N =

Figure 1. An MBA example impedes SMT solving. Z3 solver
cannot return a result in 1 hour on a machine with quad-core
3.6GHz CPU and 64 GB RAM.

heuristic-based search. However, these heuristic strategies
tend to be highly customized for groups of known prob-
lems (e.g., SMT-LIB benchmarks [3]), easily leading to poor
performance on new problems not anticipated by solver de-
velopers [16]. This is a rising challenge because SMT solvers
are applied to diverse new research areas in programming
language, software engineering, and security.

One recent challenge comes from a newly proposed tech-
nique called Mixed Bitwise and Arithmetic (MBA) transfor-
mation [2]. It transforms a simple expression to a complex
structure with mixed bitwise and arithmetic computation,
still equivalent to the original expression. This technique
has been adopted by multiple software protection products
to obfuscate data flow relationship [13, 24, 28, 33, 39]. Re-
cent study [17] has demonstrated that the Z3 solver [34] and
mathematical software [31, 40, 45] fail to simplify complex
MBA expressions. Please note that MBA expressions do not
contain those well-known challenges for SMT solvers, such
as floating-point computation [19, 29], high-order logic [32],
string solving [21, 46], or crypto hash functions [42]. In
contrast, MBA expressions only contain basic bitwise and
arithmetic operations such as A, V, =, +, —, X. They are chal-
lenging to simplify because existing math reduction rules
only work either on pure bitwise expressions (e.g., via nor-
malization and constraint solving) or on pure arithmetic
expressions (e.g., via arithmetic reduction). The mixed usage
of bitwise and arithmetic computation invalidates the reduc-
tion heuristics in solvers, so the solving procedure resorts
to expensive brute-force search heuristics, incurring a high
performance penalty.

Figure 1 presents a hard-to-solve MBA equation written
in Z3’s Python interface. Lines 4 and 5 declare x and y as two
64-bit variables. Line 6 verifies an MBA identity equation.
On our testing machine with quald-core 3.6GHz CPU and 64
GB RAM, Z3 cannot return a result in one hour.

In this paper, we first present a comprehensive study to
evaluate the performance of state-of-the-art SMT solvers
when solving MBA expressions. Our test cases include MBA
expressions collected and synthesized from existing docu-
ments with diverse complexity categories: linear, polynomial,
non-polynomial. These MBA formulas are fed to SMT solvers,
and the solving time is measured. The testing result reveals
that SMT solvers can solve simple linear MBA but suffers
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from severe performance overhead when solving complex
linear, polynomial, and non-polynomial MBA. Enlightened
by this finding, we design a novel, semantic-preserving trans-
formation to translate complex MBA expressions to simple,
easy-to-solve forms. The key idea is to translate complex
MBA computation to a normalized MBA set, which has much
less mixing bitwise and arithmetic operations. More specif-
ically, we first calculate a signature vector to capture the
essential semantics of an MBA expression. Then our method
generates simple, normalized MBA expressions from the
signature vector. Because the mixing degree of bitwise and
arithmetic calculation is reduced in the simplified form, the
math reduction laws inside SMT solvers are more applicable
and hence solvers’ performance is boosted.

Our study involves modern SMT solvers including Z3 [34],
STP [20], and Boolector [9] on a large-scale corpus contain-
ing 3000 MBA expressions. The study result demonstrates
that these solvers encounter performance problems on solv-
ing MBA expressions. They can only solve up to 15.6% of
MBA expressions. We implement our MBA simplification
method as a prototype named MBA-Solver. With the help
of MBA-Solver, solvers achieve a significant performance
improvement, solving 96.5% of MBA expressions.

Contributions. In a nutshell, our paper makes the fol-
lowing three key contributions.

e We investigate and reveal the performance problem

when applying modern SMT solvers to MBA expres-

sions. Our in-depth study shows that SMT solvers can

solve simple linear MBA, but they are seriously im-

peded when solving more complex cases, such as poly-

nomial and non-polynomial MBA.

We develop a new technique to boost solvers’ per-

formance on solving MBA expressions. Our method

introduce a semantic-preserving transformation to re-
duce complex MBA to a simple, easy-to-solve form.

The key idea is to reduce the mixing degree of bitwise

and arithmetic operations so that arithmetic reduction

rules become effective again.

e We implement our method as a prototype called MBA-
Solver and evaluate it with the state-of-the-art solvers.
The result shows MBA-Solver can effectively reduce
MBA expressions to easy-to-solve forms, increasing
the percentage of solved MBA equations from 15.6% to
96.5%. Our implementation and datasets are publicly
available in the artifact of this paper.

2 Background

To better explain our work, we first introduce the basics of
MBA identity equations. Then we discuss the existing efforts
on solving MBA, pointing out the limitations which also set
up the research tasks in this paper.
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2.1 Mixed Bitwise and Arithmetic

Generally speaking, an MBA expression mixes the usage of
bitwise operations and integer arithmetic computation. Here
is an example. Note that the bitwise expressions like x Ay and
x @ y are used arithmetically as an addend or multiplicand.

(1)

MBA expressions can be used to construct an MBA identity
equation, which means, for any input, the MBA expression on
the left and right side of the equation are always equivalent.
The example shown in Figure 1 in the introduction section
is actually an MBA identity equation, for all x, y as integers.
Note that the arithmetic operations in MBA are restricted
on integers, because they can be encoded as bitvectors for
bitwise operations.

Historically, MBA identity equations are known as pro-
gramming tricks for solving specific problems or optimiz-
ing performance. For example, HAKMEM Memo [4] and
Hacker’s Delight [44] collect plenty of these equations. We
show two examples as follows.

X+2y+xAy-3xdy)+4

(2)
()

For all integers, these two MBA equations always hold.
Equation (2) shows how to use A, -, + to calculate x V y.
Similarly, Equation (3) calculates x @ y using Vv, —, A. Com-
bine them together, we can calculate x @ y using +, —, A, —.
Therefore, these MBA identity equation can be used for im-
plementing new instructions from a basic instruction set,
e.g., on a RISC instruction architecture.

MBA identity equations essentially expose the equiva-
lence relationship between two MBA expressions. Inspired
by this characteristic, Zhou et al. [47, 48] extend the exist-
ing MBA equations and generalize an abstract model named
“Boolean-arithmetic algebras”. In this model, the concept of
MBA is specified as linear MBA and polynomial MBA, whose
definitions are shown as follows. Their relation is shown in
Figure 2.

xVy=xAN-y+y
x®y=xVy—-xAy

Definition 1. A linear MBA expression is:

Z aiei(xl, N

iel

LX)

a; is a coefficient (integer constant).

e; is a bitwise expression of variables x1,x2, . . ., X¢.

The bitwise operators include inclusive-or V, and A, exclusive-
or &, and not —.

a;e; is called a term.

Expression (1) is a linear MBA expression. It contains five
terms: x, 2y, x A y, —3(x ® y), 4. If the bitwise expression e;
is tautology True, then the term becomes a constant term
only including the coefficient like 4.
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Polynomial MBA

Linear MBA

Figure 2. The relation between all MBA expressions, poly-
nomial MBA, and linear MBA.

Definition 2. A polynomial MBA expression is:
Z ai( 1_[ ei,j(xla cee ,xz))
iel jeJ

a; is a coefficient (integer constant).
e;,j are bitwise expressions of variables x1, . . .
al—( Hje] e j(x1,. .. ,xt)) is called a term.

> Xt

Polynomial MBA extends linear MBA by allowing the
multiplication of bitwise expressions in each term. In the
following example, each term is the product of a coefficient
and one or more bitwise expressions.

Xy+2(x Ay)+3(xA-y)(xVy) -5 (4)

With the formalized MBA definition, previous work [48]
proposes a method to construct linear MBA identity equa-
tions. First, it enumerates all possible values in the truth table
of every bitwise expression. Then it treats the truth table
as the matrix of a linear equation system and tries to find a
solution. Lastly, the solution is applied as the coefficients in
MBA. We present a concrete example as follows to explain
these steps in details.

Example 1. We will build an MBA identity equation from
the following truth table:

x y xdy xV-oy -1
0 0 0 1 1
M=1]0 1 1 0 1
1 0 1 1 1
1 1 0 1 1

The column with all "1" is encoded as —1 to guarantee it also
works on 2’s complement integers. Using the truth table as a
matrix M, we can calculate an MBA identity equation that
always equals to zero as follows, where C1,C,, . . .,Cs are co-
efficients.

Cix+Coy+Cs(x@y)+Cy(xV-y)+Cs(-1)=0 (5)
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Solving the following linear equation system:

Ci
C;
G
Cy
Cs

MC=0,C=

produces the following solution.

C1=1
C4+C5=0

Cy,=-1
Co+C3+C5=0 Ci = -1
Ci1+C3+C4+C5=0 C3: 9
C1+C2+C4+C5=0 ‘T

C5=2

Substituting the solution to equation (5) produces an MBA
identity equation.

x—y—-(x®y)—2*x(xV-y+2x(-1)=0

So,
X—y=x®y+2(xV-y+2

Note that MBA identity equation holds on n-bit 2’s com-
plement integers, which forming an integer modular ring
Z[(2"™). When the arithmetic calculation overflows, it starts
from the minimum value. This is why the all "1" column
is encoded as "-1". All bits being "1" encodes the boundary
value in the integer modular ring. In MBA calculation, every
bit is computed separately as the coefficient of 2". Because
the identity equation holds on every bit, it also holds on the
n-bit vector. The formal math proof can be found in the MBA
algebra work [48].

This method is a generic approach for generating non-
trivial, complex expressions involving bitwise and integer
operations. It lays the theoretical foundation of building
MBA identity equations.

2.2 MBA Application

MBA identity equations expose the equivalence between two
expressions, thus one direct application is software obfusca-
tion, i.e., transforming a simple program into a complex form.
For example, the MBA equation we built in Example 1 can
be used for obfuscating x — y. Hacker’s delight [44] collects
numerous MBA equations. Eyrolles [17] and Banescu [1] im-
plement and extend the above method to produce a collection
of MBA identity equations. Here are some examples where
the right part of each equation can be used as an obfuscated
form of integer addition x + y.

x+y—(xVy +(xVy) - (-x)
x+y—->xVy+y—-(—-xAvy)
xX+y—> (xdy)+2y—2(-xAy)
X+y—-oy+xA-y+(xAy)
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Due to the solid theoretic foundation and implementation
simplicity, MBA has been applied to many practical obfusca-
tion tools. For example, Quarkslab [39], Cloakware [28], and
Irdeto [24] include MBA obfuscation in their commercial
products. Tigress [12], an academic C source code diversi-
fier/obfuscator, encodes integer variables and expressions
into complex MBA forms [13, 14]. Mougey and Gabriel [33]
present a real-world MBA example found in an obfuscated
Digital Rights Management (DRM) software system. Blazy
and Hutin [6] integrate formally verified MBA obfuscation
rules into the generated binaries by the CompCert C com-
piler [26]. Recently, Xmark adopted MBA obfuscation to
conceal the static signatures of software watermarking [30].
ERCIM News also reported in 2016 that MBA obfuscation
has been detected in malware compilation chains [5].

Some preliminary investigations have shown that MBA
obfuscated expressions are a big hurdle for people trying to
understand a program. Eyrolles [17] applies multiple sim-
plification methods (e.g., mathematical reduction, compiler
optimization, and solver simplification) to complex MBA ex-
pressions, but cannot effectively produce simplified results.
Bardin et al. present a novel technique in IEEE S&P’17 to
assist obfuscated binary analysis, called backward-bounded
dynamic symbolic execution [2]. However, the authors admit-
ted that MBA obfuscation introduces hard-to-solve predi-
cates and is a major obstacle to their approach [36, 37]. In
our experiment, the state-of-the-art SMT solver Z3 [34] fails
to return any result in one hour, when solving the MBA
identity equation presented in Figure 1. These preliminary
results inspire us to conduct an in-depth study to investigate
SMT solvers’ performance on MBA equations.

3 Study of Solvers’ Performance on
Solving MBA Equations

This section reports our comprehensive study of solvers’
performance on solving MBA equations. Our goal is to fully
expose the capability of SMT solvers on solving diverse MBA
equations. More specifically, we seek for answers to the
following research questions (RQs).

1. RQ1: How much time do SMT solvers spend on solv-
ing a MBA equation?

2. RQ2: For different categories of MBA equations, how
different is the solving time?

3. RQ3: What are the key factors that affect the solving
time?

The best way to answer these questions is to run state-of-
the-art SMT solvers on a large scale of diverse MBA equa-
tions and observe their solving performance. The rest of this
section describes our experiment and result in details.

3.1 Experiment Setup

MBA Equation Corpus. We collect a large corpus includ-
ing all MBA equations from existing books, research papers,
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Table 1. The complexity distribution of the MBA corpus. Poly MBA is short for non-linear polynomial MBA.

Metrics Linear MBA Poly MBA Non-poly MBA
Min Max Average | Min Max Average | Min Max Average
Num of Variables 1 4 2.5 1 4 2.4 1 4 2.9
MBA Alternation 0 14 9.1 4 15 9.1 0 44 17.2
MBA Length 4 362 116.5 25 307 88.0 6 478 161.6
Number of Terms 2 14 9.8 2 13 7.4 2 49 17.1
Coefficients 1 35 7.2 1 294 16.0 1 293 221

technical report, and other documents. We collect 3,000 MBA
from the following sources:

1. Syntia [7]. It adopts program synthesis for synthesiz-
ing obfuscated code’s semantics. The authors use MBA
samples to evaluate their methods. These MBA sam-
ples are public available on GitHub.

2. Eyrolles’s PhD thesis [17]. Eyrolles’s work is one of the
earliest research works on MBA. Her thesis includes
many MBA samples and also extends the original MBA
generation method.

3. Tigress [12]. It is an automated software obfuscation
tool which translates normal arithmetic expressions
into obfuscated MBA expressions.

. MBA obfuscation papers [47, 48]. These papers include
numerous MBA samples to illustrate the effectiveness
of MBA obfuscation.

5. Hacker’s Delight [44] and HAKMEM memo [4]. These

documents include MBA samples for software opti-
mization.

MBA Complexity Metrics. To anatomize how MBA com-
plexity affect the solving performance, we measure MBA
complexity in terms of the following metrics. Table 1 shows
the distribution of these metrics.

1. MBA Type. The MBA expression is linear, poly, or
non-polynomial. To avoid ambiguity, poly MBA in
the rest sections of this paper refers to “non-linear”
polynomial MBA.

2. Number of Variables. How many variables are in-
volved in the MBA expression.

3. MBA Alternation. The number of operations that
connect arithmetic and bitwise operations. For exam-
ple, in (x Ay)+2z, the + represents an MBA alternation
operation, because its left operand is a bit-vector gen-
erated by (x A y), and its right operand is an integer
arithmetic 2z.

. MBA Length. Considering an MBA expression as a
character string, the string length is measured as the
MBA length.

5. Number of Terms. How many terms are included in
an MBA expression.

. Coefficient. How large the coefficients are in every
terms.
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SMT Solvers. We test three popular SMT solvers: Z3 [34],
Boolector [9], and STP [20]. Z3 and STP are broadly used in
software analysis and verification. Boolector is the winner in
SMT-COMP [35]. All these solvers support Python interface,
which enables us to conveniently generate MBA expressions
in normal Python syntax. In our experiment, the solving
timeout threshold is set as 1 hour.

Machine Configuration. Our experiments are performed
on a server with the following configuration.

e CPU: Intel Xeon W-2123 4-Core 3.60GHz
e Memory: 64GB 2666MHz DDR4 RAM

e Hard Drive: 2.5TB SSD

e Operating system: Ubuntu 18.04

3.2 Experiment Result

Overall, the testing result shows that all three solvers can
only solve a small portion (less than 16%) of the MBA equa-
tions in the corpus. Z3 and STP solved less than 3% of the
MBA, and Boolector performs better, solving 15.6% of the
MBA. On average, Z3 and STP spend more than 300 sec-
onds solving each test case. Boolector is faster, spending
183 seconds for each case on average. Figure 4 presents the
solving time distribution of the three solvers. It shows that
the solving time drastically grows when handling different
MBA equations. All of three solvers do not return a result for
majority MBA equations within the time threshold (1 hour).
This result demonstrates that SMT solvers indeed suffer from
performance bottleneck on solving MBA expressions.

We further compare the solving time of different cate-
gories of MBA equations and the result is shown in Table 2.
The interesting finding is that, while SMT solvers can han-
dle simple linear MBA equations, they suffer from heavy
performance problems on non-linear MBA (poly MBA and
non-poly MBA). As shown in Table 2, Boolector can solve
467 linear MBA equations in an average time of 184 seconds
for each one. For non-linear MBA equations, only 29 can be
solved.

To more precisely understand which complexity factors
affect the solving performance, we carefully analyze and com-
pare the solving time with different metrics. The analysis
result is shown in Figure 3. We observe that MBA alternation
is the dominant factor influencing solvers’ performance. In
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Figure 3. The relation between various metrics and solver’s performance.
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Figure 4. Solver’s performance on our MBA testing dataset.

Figure 3, solving time drastically increase when the MBA al-
ternation number grows. This observation demonstrates that
the solving difficulty comes from the heterogeneous mixture
of bitwise and arithmetic operations in MBA equations.

3.3 Conclusion

This MBA solving study helps us gain a clear picture of
modern SMT solvers’ performance on solving MBA identity
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equations. We summarize the most important findings as
follows.

1. Solvers can solve simple linear MBA equations.

2. The solving difficulty resides in complex linear MBA,
poly MBA, and non-poly MBA.

. MBA alternation is the critical factor impairing SMT
solving.

These interesting findings enlighten us to search for a
semantic preserving transformation that reduces the MBA
alternation in MBA expressions.

4 MBA Simplification

Enlightened by the study result, we develop a new MBA
simplification method. The key insight is to design a semantic
preserving transformation to reduce MBA alternation, because
our study has shown that: 1) solvers can process simple MBA
equations; 2) MBA alternation is the dominant factor for
solving time. If we translate a complex MBA expression into
a equivalent form with less MBA alternation, SMT solvers
will have a higher chance to solve it.

Following this idea, we inspect the MBA design as shown
in Section 2.1 and find a semantic-equivalent transforma-
tion to reduce MBA alternation. First, we extract a signature
vector, which uniquely captures the mathematical semantics
of an MBA expression. Our analysis proves that any MBA
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Table 2. The experiment result of each SMT solver solving different categories of MBA equations. N is the number of solved
MBA equations. [Tiin, Timax] presents the range from minimum to maximum solving time. Tay is the average solving time.

Solving time is measured by seconds.

MBA Type Z3 STP Boolector
N [Tmins Tmax] TAvg N [ min» max] TAvg N [Tmin’ Tmax] TAvg
Linear MBA 55 [0.0,2831.1] 394.7 | 69 [0.0,3070.2] 336.6 | 467 [0.0, 2686.4] 184.0
Poly MBA 1 [0.1,0.1] 01 1 [0.1,01] 01| 1 [0.1,0.1] 0.1
Non-poly MBA 28 [0.1,1204] 16.1 |28 [0.1,143.3] 17.2| 28 [0.0,124.1] 15.0
Total Solved Number 84 (2.8%) 98(3.3%) 496 (16.5%)
expressions with the same signature vector are always equiv-
alent. The next step is to reduce the MBA alternation. We = M3 =

achieve this by transforming MBA expressions to a set of
normalized expressions, whose MBA alternation is much
lower than the original expressions.

Different from previous black-box methods such as pat-
tern matching, fuzzing, and machine learning, our method
demystifies MBA’s mathematical mechanism, so it’s directly
built on the solid theoretical foundation. The simplification
procedure is pure semantic preserving transformation, so it
does not introduce false positives or false negatives. The rest
of this section provide a detailed description of our method.

4.1 MBA Signature Vector

As the basics, we first introduce a concept called signature
vector, which can represent the semantics of a group of equiv-
alent linear MBA expressions. This concept derives from the
MBA design in § 2.1. The principle is to encode all MBA
calculation into an integer vector, so that two linear MBA ex-
pressions are equivalent, if and only if their signature vectors
are equivalent. Therefore, for every linear MBA expression,
we may calculate its signature vector and use it for deriving
more equivalent MBA expressions.

Precisely, we define the signature vector as follows. Ex-
ample 2 shows the procedure of calculating the signature
vector for 2(x V y) — (=x A y) — (x A —y).

Definition 3. The signature vector s of an linear MBA ex-

pression is the product of the MBA truth table matrix M and

the coefficients vector v.
§=Mov

Example 2. For linear MBA expression E = 2(x V y) — (=x A

y) = (x A-y),

xVy —xAy xA-y
0 0 0 2
M= 1 1 0 B=-1
1 0 1 1
1 0 0
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N == O

Based on this definition, for any two linear MBA expres-
sions, if their signature vectors are equivalent, the product
of their truth table and coeflicients are equivalent. Because
their truth tables enumerate all possible cases, it further im-
plies that, for any input to the two MBA expressions, the
calculation result is always the same. Theorem 1 presents an
accurate proof showing that two signature vectors are equiv-
alent, if and only if the two MBA expressions are equivalent.
Hence signature vectors capture the essential semantics of
an linear MBA expression. More importantly, it paves the
way to simplifying more complex MBA expressions.

Theorem 1. Given two linear MBA expressions E; and E,
E; = E,, if and only if the signature vectorss; = s,

Proof. First prove sufficiency. If 51 = 55,

$1 = Mlvl, Sy = MzUz

M; and M, are the truth table matrices. 7; and o, are
coeflicient vectors.

“ M161 = M252

Ml’Z_J)l - lejz =0

0}
[M; M;] (_52) =0
El - Eg =0

= E,

The necessity is proved by reversing the steps for sufficiency.
]

4.2 Generating MBA from Signature Vectors

The benefit of calculating signature vectors is they are handy
for generating equivalent MBA expressions. By linear alge-
bra knowledge, we know that any vector can be represented
by a linear combination of a set of base vectors. This math
attribute is also applicable to signature vectors. As shown
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Table 3. The truth table of bitwise expressions correspond-
ing to the base vectors.

—|x/\—|y
1

XAY XAy
0

_ O O R
_= O = Ol
= o O O >

S O Rk O

0 0
0 1
0 0

below, the signature vector § = can be split to the sum

N ==k O

of four base vectors.

—_—— O

DN

0

It indicates that, if we can find those bitwise expressions
corresponding with the base vectors, then we will build a
new, equivalent MBA expression from the linear combina-
tion! All we need is to treat the base vectors as truth values
in a truth table and construct the bitwise expressions. Table 3
shows such expressions and the corresponding truth table.
Substituting the base vectors with the bitwise expressions,
we get a new MBA expression E’:

E=(xAy)+(xA-y)+2x(xAy)
Because E’ and E in Example 2 have the same signature
1

vector:
1

2
sions are equivalent.

. As proven by Theorem 1, the two MBA expres-

2xVy) = (x Ay) = (x A-y) = (~x Ay) +(x A-y) +2(x Ay)

4.3 Reducing MBA Alternation

The signature vector and base vectors provide a semantic-
preserving way to represent any linear MBA expressions by
a linear combination of base vectors. We further notice that
this feature can be used for reducing the MBA alternation in
an MBA expression, if an appropriate set of base vectors are
selected.

The idea is to minimize the number of bitwise expressions
in the base vectors. Because the result is a linear combination
of base vectors, the operations connecting those base vectors
are arithmetic operations, i.e., X, +, —. If the expression cor-
responding with the base vector is only one integer variable
or constant, then there will be no MBA alternation around
it. Therefore, our goal is to find a set of base vectors that has
the minimum number of bitwise expressions.
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Table 4. Normalized base vectors to reduce MBA alternation.

_ O O R
= O =k ol

Table 4 shows such a set of base vectors for two-variable
linear MBA. The corresponding base expressions are x, y,
x Ay, and —1, where only one is bitwise expression.

When using these base vectors to represent the signature

1
n we need to solve the following

2
linear equation system.

vector of Example 2:

0 0 0 0 1
1 0 1 1 1
1 =C1* 1 +C2* 0 +C3* 1 +C4* 1
2 1 1 1 1
The result is
Ci=1
Cy =
C3=
C4=
Therefore,
0 0 0
1 _fof, [
1] |1 0
2 1 1

Substituting the base vectors with the expressions in Ta-
ble 4 produces the following simplification result. Note that
the simplification eliminates all bitwise expressions, produc-
ing a pure arithmetic expression x + y. It reduces the MBA
alternation from 3 to 0. Because MBA alternation is the key
factor impeding SMT solving, this simplification will improve
solvers’ performance of processing MBA expressions.

2xVy)—(xAy)—-(xA-y)=x+y

4.4 Simplifying Non-linear MBA

The method we introduced so far can translate a complex
linear MBA to a simple one with low MBA alternation. As
indicated in our MBA study, non-linear MBA (poly MBA
and non-poly MBA) placed the major challenges for SMT
solvers. Thus we further investigate how to use this method
to simplify non-linear MBA expressions.
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In principle, we still focuses on reducing the degree of
MBA alternation, because it is the major barrier to SMT solv-
ing. More specifically, we first simplify the sub-expressions
in non-linear MBA and then expose more simplification op-
portunities. We generates a pre-computed mapping table
to enumerate the signature vectors and the corresponding
normalized MBA expressions. Table 5 illustrates such an
example table for two-variable MBA expressions. The first
four rows are the base vectors. Other rows are derivative
ones, which are generated by solving linear systems as in
Section 4.3.

Using the mapping table, we can transform any bitwise
sub-expression in a non-linear MBA, to a normalized and sim-
ple form. Note that the signature vector column enumerates
all possible truth values involving two variable. Therefore,
for any bitwise expressions in non-linear MBA, we first cal-
culate its signature vector, look it up in the mapping table,
and substitute it with the simplified MBA. The substitution
result is an MBA expression including only one type of bit-
wise expression: x A y, so the MBA alternation is largely
reduced. Traditional math rules can be further applied to
merge terms and produce a concise form.

The following procedure shows how to use Table 5 to
simplify the poly MBA example in the Introduction section.
First, we calculate the signature vector of x A -y and the

0

result is (1) . Looking it up in Table 5, the simplified MBA

0
expression is x — x A y. Similarly, -x A y is transformed
toy—x Ayand x Vyis transformed to x + y — x A y.
The substitution and simplification procedure is shown as
follows.

(x A=y)x(=x Ay)+(x Ay) = (x Vy)
=(x—xAY)xY-xAy+xAy=x+y—xAY)
=xy—x*(x/\y)—(x/\y)*y+(x/\y)2+(x/\y)*x+

(x Ay)xy—(x Ay)
=xy

4.5 Optimization

MBA-Solver also includes several optimization methods to
further improve the simplification performance.

Look-up table. Caching the simplification transformation
in a look-up table can improve MBA-Solver’s performance,
because it saves us from re-computing the signature vector
for every MBA expression. Also, the same sub-expression
may appear multiple times when simplify an MBA expres-
sion.
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Table 5. A pre-computed simplification table for two-
variable MBA expressions. The first four rows are the base
vectors and the rest rows enumerate other derivative signa-
ture vectors and show the corresponding MBA expressions.
Signature vectors are shown horizontally for better presen-
tation.

Type Signature Vector | MBA Expression
(0,0,1,1) X
(0,1,0,1) y
Base (0,0,0,1) XAy
(1,1,1,1) -1
(0,0,0,0) 0
(0,0,1,0) x—(xAy)
(0717070) y_(X/\y)
(0,1,1,0) X+y—2%(xAy)
(0,1,1,1) x+y—(xAvy)
o (1,0,0,0) x-—y+(xAy) -1
Derivative (1,0,0,1) e Z 2% (xy/\ y) -1
(1,0,1,0) —y—1
(1,0,1,1) —-y+(xAy)—1
(1,1,0,0) —x—1
(1,1,0,1) -x+(xAy)—1
(1,1,1,0) —(xAy)—1

Common Sub-expression. During the simplification pro-
cedure, common sub-expressions can be replaced by a inter-
mediate variable to expose further simplification opportuni-
ties. One example is shown as follows. After the first round
of expression substitution, x — y is shown as the common
sub-expression. By replacing x — y with an temporary vari-
able t, the MBA expression can be further simplified. At the
last step, t is substituted back with x — y to produce the final
result.

(xA=y—=xAyYV)+({(x A-y—=-xAYy)Az)
=((x-xAy-y+xAyY)Va)+({(x—-xAy
—y+xAY)Az)
=((x-y)va)+(x-y)Az)

=(tVvz)+(tAz) x—-y—ot)
=(t+z—-tAz)+tAz

=t+z

=x-y+z t—x-y)

This strategy is especially effective when handling non-
poly MBA, because non-poly MBA expressions are usually
generated by applying MBA transformation to different parts
of an expression. The common sub-expression optimization
actually reverses this procedure.

Final-step optimization. This optimization is performed
at the last step of the simplification to further reduce MBA
alternation. Our simplification result only include x, y, x A



PLDI 21, June 20-25, 2021, Virtual, Canada

Algorithm 1 MBA-Solver Algorithm.

1: Input: MBA expression E and look-up table T
2: function MBASOLVER(E)
3 if E € linear MBA then

4 E’ « ApplyTransTable(E, T)
5: forec E'Ane¢T do

6: § « SignatureVector(e)
7: e’ «— GenerateMBA(5)

8: Update(E’, e’)

9: end for

10: ArithReduce(E’)

11 FinalOptimize(E")

12: return E’

13: else

14: for e € SubExpr(E) do

15: e’ « MBASOLVER(e)

16: E’ « ReplaceExpr(E, e, e’)
17: ArithReduce(E’)

18: CommonSubExprOpt(E’)
19: FinalOptimize(E")

20: return E’

21: end for

22: end if

23: end function

y, 1, which may not be the optimal form for some expressions,
especially for pure bitwise expressions. For example, x +y —
2(x A y) actually can be further simplified to x @ y so that
MBA alternation further decrease from 1 to 0.

To produce the optimal result, at the last step, MBA-Solver
will calculate the signature vector of the MBA and then
try to replace it with the one bitwise operation. Note that
this optimization is only performed at the final step, because
using it in the middle will introduce extra bitwise expressions
and impede the simplification effectiveness.

4.6 MBA-Solver Algorithm

We integrate the simplification and optimization methods
into Algorithm 1. The algorithm takes an MBA expression
E and a look-up table T as the input and returns its simpli-
fied form E’. First, it check the MBA expression is a linear
MBA or not. For linear MBA, the algorithm applies the rules
in the look-up table T. For those expressions not in T, it
computes the signature vector and generate the normalized
MBA. Then, an arithmetic reduction and the final optimiza-
tion are performed before returning the simplification result.
For non-linear MBA, the algorithm is applied to each sub-
expression and replace it with the simplified result. It also
invokes the common sub-expression optimization for further
simplification. At last, it performs the final-step optimization
and returns the simplification result.
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5 Implementation

We implemented the MBA simplification method as a pro-
gram analysis prototype called MBA-Solver. It is designed as
a preprocessing pass before the MBA equation is passed to
an SMT solver. The strength of this design is that our simpli-
fication can serve as a separate preprocessing pass without
changing SMT solvers. It takes a complex MBA as the in-
put and outputs the simplified result , which can be further
solved by any SMT solver. An overview of MBA-Solver’s
architecture is shown in Figure 5.

Inside MBA-Solver, the total simplification consists of four
major components. First, a parser reads the MBA equation
and translates it to Abstract Syntax Tree (AST). Second, a tree
substitution module substitutes proper expressions with nor-
malized MBA expressions. The substitution is either directly
derived from the look-up table, or produced by calculating
the signature vector and then solving a linear equation sys-
tem. A math arithmetic simplification is further performed
to reduce the complexity. Then the optimization module
performs common sub-expression optimization and final op-
timization. The last step is to translate the result from AST
to an MBA formula.

The whole prototype is written in around 1800 lines of
Python code. We leverage the SymPy library for math re-
duction, and NumPy library for matrix-vector product and
solving linear equation system. MBA-Solver uses the Python
interface to communicate with SMT solvers. MBA-Solver
also includes utilities for measuring the MBA metrics such
as counting MBA alternation.

6 Evaluation

In this section, we conduct experiments to evaluate MBA-
Solver’s effectiveness on boosting SMT solvers’ performance
when solving MBA equations. We are particularly interested
in answering the following research questions (RQs).

1. RQ1: Compare with solving the original MBA expres-
sions, how much performance improvement can MBA-
Solver bring to SMT solvers?

2. RQ2: How is MBA-Solver’s simplification result com-
paring with its peer tools?

3. RQ3: How much overhead does MBA-Solver intro-
duce?

To answer these questions, we first run MBA-Solver and
the peer tools on the same dataset as the MBA solving study
in § 3, and then pass the simplification result to the three SMT
solvers. As the answer to RQ1, we compare the number of
solved MBA equations and the solving time with the ones in
§ 3. To address RQ2, we compare MBA-Solver’s simplification
result and SMT solving time with the peer tools. For RQ3,
we report MBA-Solver’s performance data such as execution
time and memory usage.

Peer Tools for Comparison. We compare MBA-Solver
with two state-of-the-art peer tools for MBA simplification:
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Figure 5. An overview of MBA-Solver’s architecture.

SSPAM [18] and Syntia [7]. We download their latest open
source version from GitHub. SSPAM (Symbolic Simplifica-
tion with PAttern Matching) simplifies MBA expressions by
pattern-matching. It uses SymPy for arithmetic simplifica-
tion, and Z3 for flexibly matching equivalent expressions
with different representations. Syntia is a program synthe-
sis framework for synthesizing obfuscated code’s semantics,
including MBA expressions. It produces input-output pairs
from instruction traces and then synthesizes a code snippet’s
semantic based on these input-output pairs. These two tools
represent the state-of-the-art solutions from recent work on
MBA simplification.

6.1 Boost SMT Solving MBA Equation

We apply MBA-Solver to the MBA equation corpus in § 3
and output the simplification result to the three SMT solvers.
The evaluation result is presented in Table 6. Comparing it
with Table 2, we observe a significant performance boost.
After MBA-Solver’s simplification, all three solvers success-
fully solve over 95% of MBA equations, while originally the
solvers can only solve a small portion (Z3 2.8%, STP 3.3%,
Boolector 16.5 %). An interesting finding is that Boolector’s
performance was notably better than the other two, but
after MBA-Solver’s simplification, the distinction becomes
insignificant. It indicates that MBA-Solver simplification is a
generic method, rather than over-fitting to a certain search-
ing heuristic strategy or one specific solver.

Inspecting the detailed result, we find that all 1000 linear
MBA and 1000 polynomial MBA equations are solved in a
very short time (average solving time is 0.1 second). We also
manually checked the simplification result and verify that
the transformation in MBA-Solver effectively reduced linear
and poly MBA to a normalized and concise form. For the
majority of the non-poly MBA (894 out of 1000), MBA-Solver
successfully reduce their complexity to a solver-friendly level
(before MBA-Solver’s simplification, only 28 of them can be
solved).

We also manually check those non-poly MBA equations
that cannot be solved. The main reason is that the non-poly
MBA category contains numerous ad-hoc cases that escape
from the normalization model in MBA-Solver. One such
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exception is when non-poly MBA includes sub-expression
=(x—1). MBA-Solver cannot reduce it because x —1 is already
the normalized form. However, the correct simplification
result is =(x — 1) = —x. Even for this exception, MBA-Solver
still successfully processed several cases by treating x — 1
as a common sub-expression. Overall, non-poly MBA is not
a well-defined model. Any MBA expression is considered
as a non-poly MBA, if it does not satisfy Definition 2. At
last, MBA-Solver demonstrates its capability by successfully
simplifying 89.4% of them.

6.2 Comparison with Peer Tools

In this experiment, we run SSPAM and Syntia on the MBA
equation corpus and send their output for SMT solving. The
evaluation result is shown in Table 7 and Figure 6.

Correctness. As the peer tools, SSPAM relies on pattern
matching and Syntia employs program synthesis. These
techniques are not necessarily semantic-preserving transfor-
mation, which may produce incorrect simplification result.
Therefore, we first investigate and compare the correctness.
Note that all equations in the corpus are MBA identity equa-
tions, so the equivalence checking result from solvers must
be “Yes”. If a solving result is nonequivalent, then the simpli-
fication result must be wrong. Besides, the solver certainly
may not be able to return the solving result due to MBA’s
complexity, so those cases are counted as timeout. The “Num-
ber of Correctness” column in Table 7 present the correct-
ness result. SSPAM does not introduce wrong simplification
result, because their pattern matching rules are semantic-
equivalent. However, only 89 MBA equations are solvable
after SSPAM’s simplification. Solvers still experience timeout
on the remaining 2911 MBA equations. The reason is due to
the limited number of cases in SSPAM’s pattern library.
Syntia simplification employs stochastic program synthe-
sis, which approximates program semantics using Monte
Carlo Tree Search (MCTS). Its effectiveness largely relies
on the quality of sampling input-output pairs. When the
sampling points perfectly represent the MBA expression, it
can achieve a correct, simplified form, and its complexity
reduction is on a par with MBA-Solver. In our experiment,
Syntia can output a simplified expression for every MBA
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Table 6. SMT solving time on MBA-Solver’s simplification result. N is the number of solved MBA equations. [Tmin, Imax]
presents the range from minimum to maximum solving time. Tay, is the average solving time. All time is measured by seconds.

73 STP Boolector
MBA Type N [ min» max] TAvg N [ min» max] TAvg N [Tmim Tmax] TAvg
Linear MBA 1000 [0.01,0.03] 0.02 | 1000 [0.01,0.03] 0.02 | 1000 [0.01,0.01] 0.01
Poly MBA 1000 [0.01,0.04] 0.02 | 1000 [0.01,0.04] 0.02 | 1000 [0.01,0.02] 0.01
Non-poly MBA 894 [0.01,53.9] 0.21| 894 [0.01,46.7] 0.20 | 894 [0.01,43.9] 0.18
Total Solved Number 2894 (96.5%) 2894(96.5%) 2894 (96.5%)

Table 7. Comparing MBA-Solver simplification result with the peer tools. In “Number of Correctness” column, “Y” means
equivalent, “N” means not equivalent, and “O” means time out (solvers fails to return a result in one hour), and “Ratio” indicates
the ratio of outputs passing equivalence checking. “Average MBA Alternation” and “Average Solving Time” only report the
result of correctly simplified samples. “Before” and “After” means before and after the simplification. “Average Solving Time”
reports the average time that a solver takes for solving one MBA sample.

Tools Number of Correctness Average MBA Alternation | Average Solving Time
Y N O Ratio (%) | Before After A/B (%) Z3 STP Boolector
SSPAM 89 0 2911 3.0 4.8 4.3 89.6 | 242.35 231.9 156.6
Syntia 512 2488 0 17.1 33 0.4 12.1 0.03 0.03 0.02
MBA-Solver | 2894 0 106 96.5 11.9 2.8 23.5 0.08  0.07 0.06
Table 8. MBA-Solver’s performance on MBA expressions
; ® SSPAM with different complexit
10% 4 . ® Syntia P ¥
® MBA-Solver
ok Complexity of .
% 1099,
2 MBA Alternation Time (Second) Memory (MB)
g i 10 0.05 0.2
g 20 0.68 1.5
2 o0l . 30 0.79 3.6
é : l 40 0.93 6.7
101 § .
102 | /J that before the simplification, which is the lowest among

1000 1500 2000 2500

MBA expressions in Dataset

0 500 3000

Figure 6. Z3 solving time with MBA-solver’s simplification.

equation, but up to 82.9% of them are incorrect. For the rest
of correct outputs, Syntia’s effect rivals MBA-Solver, which
is reflected by Figure 6.

In MBA-Solver’s result, all 2894 simplified results are
solved as equivalent, so it does not introduce any incorrect
simplification result. This result demonstrates the semantic-
preserving transformation in MBA-Solver.

Effectiveness. For all correct simplification results, the rest
part of Table 7 compares their effectiveness. One interesting
finding is that, SSPAM and Syntia can also handle simple
MBA expressions well (average MBA alternation is around
3.0), but MBA-Solver can simplify much more complex MBA.
MBA-Solver achieves the best simplification effectiveness.
After the simplification, MBA alternation is only 23.5% of
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the peer tools. Moreover, the average solving time for MBA-
Solver’s simplification result is the fastest. It is because MBA-
Solver significantly reduces MBA alternation, which is the
key factor affecting the solving performance.

6.3 Performance

This section reports MBA-Solver’s performance data. Table 8
presents the time and memory cost when MBA-Solver pro-
cess different complexity of MBA expressions measured by
MBA alternation. MBA-Solver is very effective because it
does not rely on any search or heuristic method. Our im-
plementation adopts the Python NumPy library to efficiently
perform matrix-vector product. Overall, MBA-Solver only
introduces a negligible overhead.

7 Discussion

MBA-Solver has demonstrated the feasibility of simplifying
MBA expressions. We also notice some potential enhance-
ments that can be further investigated as future work.
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Table 9. The truth table of another set of base vectors.
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Base vector selection. For the majority of the cases in our
experience, using (x,y,x A y,—1) as the normalized base
vector can effectively reduce MBA alternation and produce a
concise result. However, some other cases can be simplified
more effectively if using a different set of base vectors. Table 9
shows a set of base vectors different from the ones in Table 4.

In our observation, combing x, y, —1 with one bitwise ex-
pression usually produces a set of base vectors that reduce
MBA alternation. Note that x A y is used in Table 4 and x V y
is used in Table 9. The optimal selection of that bitwise oper-
ation might depend on the specific input MBA expressions.
A more in-depth analysis of the input MBA expression can
be investigated to guide the selection of base vectors.

MBA mixing with other transformation. One possible
threat to MBA-Solver is combining MBA transformation
with other data encoding techniques to create complex ex-
pressions using bitwise and arithmetic operations. MBA-
Solver is designed for solving MBA expressions, so it may
correctly output some intermediate results for certain MBA
sub-expressions, but cannot handle the remaining non-MBA
part. It will be interesting to further investigate whether
MBA-Solver can collaborate with other simplification tech-
niques such as arithmetic reduction or machine learning to
produce better results.

8 Conclusion

Mixed-Bitwise-Arithmetic (MBA) expression, which mixes
both bitwise and arithmetic operations to generate an unin-
telligible expression, is an imminent threat to SMT solvers.
The cost of applying MBA transformation is rather low, but
the resulting expression becomes an insurmountable obsta-
cle to both human analysts and SMT solvers. MBA obfusca-
tion has been adopted by commercial software protection
projects. The existing efforts to counter MBA obfuscation
either work in an ad-hoc manner or suffer from unacceptable
error rates. Our work is the first to study the SMT solving
performance problem on MBA expressions and address this
challenge by transfoming MBA expressions to easy-to-solve
forms. We conduct a thorough study to reveal modern SMT
solvers’ performance on solving different types of MBA. We
then investigate the underlying mechanism of MBA expres-
sion and represent the complete semantics of an MBA ex-
pression as a signature vector. Given a signature vector, we
can calculate a linear combination of bitwise expressions to
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get a simplified version of the MBA expression. Our large-
scale experiment with existing work demonstrates our proto-
type, MBA-Solver, is able to significantly boost SMT solvers’
performance on solving MBA expressions. The impact of
MBA-Solver can advance the application of SMT solving
technique in automated software reverse engineering and
malware analysis.
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