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Abstract. Mixed Boolean-Arithmetic (MBA) expression mixes bitwise
operations (e.g., AND, OR, and NOT) and arithmetic operations (e.g.,
ADD and IMUL). It enables a semantic-preserving program transforma-
tion to convert a simple expression to a difficult-to-understand but equiv-
alent form. MBA expression has been widely adopted as a highly effective
and low-cost obfuscation scheme. However, state-of-the-art deobfuscation
research proposes substantial challenges to the MBA obfuscation tech-
nique. Attacking methods such as bit-blasting, pattern matching, pro-
gram synthesis, deep learning, and mathematical transformation can suc-
cessfully simplify specific categories of MBA expressions. Existing MBA
obfuscation must be enhanced to overcome these emerging challenges.

In this paper, we first review existing MBA obfuscation methods and
reveal that existing MBA obfuscation is based on “linear MBA”, a simple
subset of MBA transformation. This leaves the more complex “non-linear
MBA” in its infancy. Therefore, we propose a new obfuscation method to
unleash the power of non-linear MBA. Non-linear MBA expressions are
generated from the combination or transformation of linear MBA rules
based on a solid theoretical underpinning. Comparing to existing MBA
obfuscation, our method can generate significantly more complex MBA
expressions. To present the practicability of the non-linear MBA obfusca-
tion scheme, we apply non-linear MBA obfuscation to the Tiny Encryp-
tion Algorithm (TEA). We have implemented the method as a prototype
tool, named MBA-Obfuscator , to produce a large-scale dataset. We run
all existing MBA simplification tools on the dataset, and at most 147
out of 1,000 non-linear MBA expressions can be successfully simplified.
Our evaluation shows MBA-Obfuscator is a practical obfuscation scheme
with a solid theoretical cornerstone.

Keywords: Software obfuscation · Mixed Boolean-Arithmetic
expression · Expression transformation

1 Introduction

Software obfuscation [26] performs a semantics-preserving transformation to hide
the implementation of a program, which leads the program is hard to understand
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and analyze. Many obfuscation techniques have been developed in the literature
to hide the behavior of code in different ways, Mixed Boolean-Arithmetic(MBA)
obfuscation is such a prominent example. Zhou et al. [32] define MBA expression
that mixes bitwise operations(e.g., ¬,∧,⊕, . . . ,) and arithmetic operations(e.g.,
+,−,×). MBA obfuscation transforms a simple expression like x+y to a complex
but equivalent expression with mixed bitwise and arithmetic operators. Multi-
ple academic tools and industry projects [6,13,17,21,23] have embedded MBA
obfuscation into their products.

The wide application of MBA obfuscation has attracted researchers to explore
how to recover the initial form of the MBA expression. Guinet et al. [11] presents
a tool, Arybo, which normalizes MBA expressions to bit-level symbolic represen-
tation with only ⊕ and ∧ operations. Eyrolles et al. [9] simplify MBA expressions
by a pattern matching method. Blazytko et al. [4] apply program synthesis tech-
niques [12] to learn the underlying semantics of obfuscated code and generate
another simpler but equivalent expression. Feng et al. [10] introduce a novel solu-
tion based on deep learning, named NeuReduce, to simplify MBA expression. Liu
et al. [18] prove a hidden two-way transformation feature and present a novel
technique to simplify MBA expression. These methods propose a great chal-
lenge to the MBA obfuscation technique. However, we note that existing MBA
obfuscation rules are generated from linear MBA expressions, because non-linear
MBA research is still at an early stage and related non-linear MBA translation
rules are rare.

To improve the resilience of the MBA obfuscation technique, we explore a
new research direction: non-linear MBA obfuscation, which is the relative com-
plement of linear MBA expression in the MBA obfuscation area. Firstly, multi-
ple methods are demonstrated to create unlimited non-linear MBA expressions,
whose correctness is guaranteed based on the basic math rules. Next, we present
a practical application of the non-linear MBA obfuscation technique on the Tiny
Encryption Algorithm(TEA), which hides the key and transforms the original
operation into another different format. We have implemented the method as an
open-source tool named MBA-Obfuscator . Given a simple expression as input,
MBA-Obfuscator generates a related complex non-linear MBA expression. To
the best of our knowledge, MBA-Obfuscator is the first tool to generate diversi-
fied non-linear MBA expressions.

To demonstrate the strength of MBA-Obfuscator , we evaluate it on a compre-
hensive dataset containing 1, 000 diversified linear and related non-linear MBA
expressions. The evaluation demonstrates that existing deobfuscation methods
cannot effectively simplify non-linear MBA expressions. On the other hand, the
overhead to use non-linear MBA expression is low. Our evaluation results show
that the non-linear MBA technique is an practical obfuscation scheme.

In summary, we make the following key contributions:

– We propose how to use linear MBA rules to generate non-linear MBA expres-
sion and guarantee its correctness.

– We discuss one concrete application of non-linear MBA expression, which
obfuscates the Tiny Encryption Algorithm(TEA).
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– Our large-scale evaluation shows that MBA-Obfuscator outperforms existing
linear MBA obfuscation in terms of better resilience, potency, and cost. MBA-
Obfuscator ’s source code and the benchmark are available at https://github.
com/nhpcc502/MBA-Obfuscator.

The rest of the paper is structured as follows. Section 2 illustrates the back-
ground of existing MBA obfuscation and simplification methods. Section 3 intro-
duces our methods to generate infinite non-linear MBA expressions. Next, we
present one practical application (Sect. 4) of non-linear MBA obfuscation on the
Tiny Encryption Algorithm(TEA). Finally, we give the details on our evaluation
results (Sect. 5) and conclude (Sect. 6)

2 Preliminaries

In this section, we provide background on Mixed-Boolean-Arithmetic (MBA)
transformation and deobfuscation techniques. Zhou et al. [31,32] formally present
how to generate unlimited linear MBA expressions. Since MBA rules are applied
as an information hiding technique, it has already generated follow-up deob-
fuscation research to simplify MBA expressions, including bit-blasting, pattern
matching, program synthesis, deep learning, and mathematical transformation
approaches.

2.1 MBA-Based Obfuscation

Zhou et al. [31,32] firstly define an MBA expression as the mixture usage of
bitwise operations (∨, ∧, ⊕, ¬) and integer arithmetic operations(+, −,×). The
formal definition of polynomial MBA expression is denoted as follows:

Definition 1. A polynomial MBA expression is:
∑

i∈I

ai ∗ (
∏

j∈Ji

ei,j(x1, . . . , xt)),

where ai are constants, ei,j are bitwise expressions of variables x1, . . . , xt over
Bn, and I, Ji ⊂ Z, ∀i ∈ I. ai ∗ (

∏
j∈Ji

ei,j(x1, . . . , xt)) is called a term.

Definition 2. A linear MBA expression is a polynomial MBA expression of the
form: ∑

i∈I

ai ∗ ei(x1, . . . , xt),

where ai are constants, ei are bitwise expressions of variables x1, . . . , xt over Bn,
and I ⊂ Z. ai ∗ ei(x1, . . . , xt) is called a term.

Examples of linear and polynomial MBA expression are shown as follows:

x + (x ∧ y) + y − 2 ∗ (x ⊕ y) + (x ∨ y),
x + y ∗ (x ⊕ y) − 2 ∗ (¬x ∨ y) ∗ (¬x) − 1.

https://github.com/nhpcc502/MBA-Obfuscator
https://github.com/nhpcc502/MBA-Obfuscator
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In addition, Zhou et al. [32] present an approach, which uses truth
tables(linearly dependent column vectors) to generate a linear MBA identity,
as shown in Example 1. They propose a formal theoretical foundation to guar-
antee the correctness of this method to build unlimited linear MBA rules.

Example 1. The 0,1-matrix

M =

x y x ⊕ y ¬(x ∨ y) −1
⎛

⎜⎝

⎞

⎟⎠

0 0 0 1 1
0 1 1 0 1
1 0 1 0 1
1 1 0 0 1

, �v =

⎛

⎜⎜⎜⎜⎝

1
1
1
2

−2

⎞

⎟⎟⎟⎟⎠
,

⇒ M�v = [0, 0, 0, 0, 0]T .

It produces a linear MBA identity:

x + y + (x ⊕ y) + 2 ∗ ¬(x ∨ y) − 2 ∗ (−1) = 0.

This linear MBA identity can be transformed into multiple MBA rules:

x + y = −(x ⊕ y) − 2 ∗ ¬(x ∨ y) − 2,
2 = −x − y − (x ⊕ y) − 2 ∗ ¬(x ∨ y).

Example 1 presents how to transform x+ y into a much more complex form:
−(x ⊕ y)− 2 ∗ ¬(x ∨ y)− 2, another example of the code before and after linear
MBA obfuscation is shown in Fig. 1.

Unfortunately, Zhou et al. [32] only propose the formation of polynomial
MBA expression, without any further research. Therefore, all existing MBA
obfuscation work is mainly based on the linear MBA rules. For example, Cloak-
ware [17], Irdeto [13], and Quarkslab [23] apply MBA transformation in their
commercial products. Tigress1 [5], an academic C source code obfuscation tool,
applies MBA rules to encode integer variables and expressions [6,7]. Mougey
and Gabriel [21] use MBA rules to do instruction substitution in a Digital
Rights Management (DRM) system. Recently, Blazy and Hutin [3] strengthen
the CompCert C compiler [16] to generate programs with formally verified MBA
obfuscation rules. Xmark applies MBA obfuscation to hide the static signatures
of software watermarking [19]. ERCIM News reported in 2016 that the MBA
obfuscation technique had been used in malware compilation chains [1].

2.2 MBA Deobfuscation

After the MBA obfuscation technique was proposed, researchers have explored
how to simplify MBA expressions. Eyrolles’s PhD thesis [8] is the first work to
explore this subject at full length. She focuses on simplifying MBA expressions by
1 https://tigress.wtf/index.html.

https://tigress.wtf/index.html
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(a) Original program. (b) Linear MBA obfuscated program.

Fig. 1. An example of MBA obfuscation for x + y.

applying various analyzing tools. Her experiments show that popular computer
algebra software such as Maple [20], SageMath [25], Wolfram Mathematica [29],
and Z3 [22] fail to simplify MBA expression, because existing reduction rules
only work either on pure bitwise expressions or pure arithmetic expressions.
Furthermore, LLVM compiler optimization passes [15] have a very limited effect
on MBA simplification. Therefore, Eyrolles et al. [9] propose a pattern matching
method to simplify MBA expressions. Multiple MBA rules are hard-coded in
the tool, named SSPAM. However, the pattern matching method only detects
and simplifies MBA expressions by a range of fixed patterns. Such an approach
cannot reduce generic MBA rules.

Guinet et al. [11] create a tool, Arybo, which reduces MBA expressions to
bit-level symbolic representation with only ⊕ and ∧ operations. One of the draw-
backs is the performance penalty caused by the bloated size of bit-level expres-
sions. Biondi [2] presents an algebraic approach to simplify MBA expression,
reducing the complexity of MBA obfuscation, but the proposed method strongly
depends on the specific MBA rules.

Blazytko et al. [4] apply program synthesis [12] guided by Monte Carlo Tree
Search (MCTS) to do code deobfuscation. It produces input-output samples
from the obfuscated code and then learns the semantics based on those input-
output pairs. Then it automatically generates another simpler but equivalent
expression. Due to the non-determinism and sampling mechanism of program
synthesis, their method cannot guarantee the correctness of the simplification
result.

Feng et al. [10] introduce a novel solution, named NeuReduce, to simplify
MBA expression. They train NeuReduce using MBA rules based on the sequence
to sequence neural network models. The input of NeuReduce is a character string
format of complex MBA expression, and the related output is the simplification
expression.

Liu et al. [18] investigate the mathematical mechanism of MBA expression
and prove a hidden two-way transformation feature in the MBA obfuscation.
They transform all bitwise expressions to specific MBA forms and then perform
arithmetic reduction to simplify MBA expression.
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3 Non-Linear MBA Expression Generation

In this section, we focus on how to generate unlimited non-linear MBA expres-
sions. First, we present how to create polynomial MBA expressions from the
linear MBA rules. Next, multiple methods are applied to produce non-linear
MBA rules.

3.1 Polynomial MBA Expression

Using Proposition 1, a polynomial MBA expression can be generated based on
the existing linear MBA expression.

Proposition 1. Let E be an expression, n be positive integer,

– E ≡ Ē, Ē is a linear MBA expression,
– Ek is a linear MBA expression, Ek = 1, k = 1, 2, . . . , n,
– E′ = Ē ∗ E1 ∗ E2 ∗ . . . ∗ En,

Then
E′ ≡ E, and E′ is a polynomial MBA expression.

By Proposition 1, any simple expression can be transformed into a complex
polynomial MBA expression, as shown in Example 2.

Example 2. For a simple expression x + y, we have
x + y = (x ∨ y) + (x ∧ y), 1 = (x ∧ y) − y − (x ∨ ¬y),
then

x + y = ((x ∨ y) + (x ∧ y)) ∗ ((x ∧ y) − y − (x ∨ ¬y))
= (x ∨ y) ∗ (x ∧ y) + (x ∧ y) ∗ (x ∧ y) − (x ∨ y) ∗ y

− (x ∧ y) ∗ y − (x ∨ y) ∗ (x ∨ ¬y) − (x ∧ y) ∗ (x ∨ ¬y).

However, Proposition 1 exposes a potential drawback: one polynomial MBA
expression generated by Proposition 1 has a fixed pattern, which can be used
to simplify the polynomial MBA expression through basic algebra laws (i.e.,
commutation, association, and distribution laws). Firstly, a reverse engineer can
carefully recover the original linear MBA expression by factoring. Then, the
linear MBA expressions can be simplified with existing linear MBA simplifica-
tion tools. For instance, the polynomial MBA expression in Example 2 can be
simplified as follows:

((x ∨ y) + (x ∧ y)) ∗ ((x ∧ y) − y − (x ∨ ¬y)) = (x + y) ∗ 1 = x + y.

This flaw shows that the strength of polynomial MBA expression is the same
as linear MBA expression. In order to address this issue, we firstly introduce the
concept of 0-equality, whose formal definition is given in Definition 3. Example 3
presents how to generate a 0-equality.
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Definition 3. Let E1 be an expression, E2 and Ē2 be linear MBA expressions,

– the coefficients in E1 are randomly reversed or not, to construct a new expres-
sion Ē1,

– a sub-expression of E2 forms part of Ē2, and Ē2 ≡ 0,

Then E1 ∗ E2’s 0-equality is ZE1E2 = Ē1 ∗ Ē2 ≡ 0.

Example 3. For expressions
E1 = (x ∨ y) + (x ∧ y), E2 = (x ∧ y) − y − (x ∨ ¬y),we have
Ē1 = (x ∨ y) − (x ∧ y), Ē2 = (x ∧ y) − y + (¬x ∧ y) = 0,
⇒ ZĒE1

= Ē1 ∗ Ē2 = ((x ∨ y) − (x ∧ y)) ∗ ((x ∧ y) − y + (¬x ∧ y)) = 0.

Through the 0-equality, Proposition 2 transforms a polynomial expression
generated by Proposition 1 into another format, which has broken the fixed pat-
tern introduced by Proposition 1. One detailed instance is shown in Example 4.

Proposition 2. Let E be an expression,

– E = Ē, Ē is a linear MBA expression,
– Ek is a linear MBA expression, Ek = 1, k = 1, 2, . . . , n,
– E′ = (. . . ((Ē ∗ E1 + ZĒE1

) ∗ E2 + ZĒE1E2
) ∗ . . .) ∗ En + ZĒE1E2...En

,

Then
E′ ≡ E, and E′ is a polynomial MBA expression.

Example 4. For an expression E = x + y and Example 3, we have

x + y = Ē ∗ E1 + ZĒE1

= ((x ∨ y) + (x ∧ y)) ∗ ((x ∧ y) − y − (x ∨ ¬y))
+ ((x ∨ y) − (x ∧ y)) ∗ ((x ∧ y) − y + (¬x ∧ y))

= 2 ∗ (x ∨ y) ∗ ((x ∧ y) − y) − (x ∨ ¬y) ∗ ((x ∨ y) + (x ∧ y))
+ (¬x ∧ y) ∗ ((x ∨ y) − (x ∧ y)).

3.2 MBA-related Rules

So far, a simple expression can be transformed into a complex polynomial MBA
expression. Next, we demonstrate how to generate a new non-linear MBA expres-
sion based on existing MBA rules.
Recursively Apply MBA Rules. This method firstly transform the simple
expression into a linear MBA expression, then recursively apply MBA rules
to convert the related linear MBA expression into a complex non-linear MBA
format, as seen in Example 5.

Example 5.

x + y =y − ¬x − 1 ⇐ x + y = (x ∨ y) + (x ∧ y)
=((y − ¬x) ∨ −1) + ((y − ¬x) ∧ −1) ⇐ x + y = y + (x ∧ ¬y) + (x ∧ y)
=(((−¬x) + (y ∧ ¬(−¬x)) + (y ∧ (−¬x))) ∨ −1)
+ (((−¬x) + (y ∧ ¬(−¬x)) + (y ∧ (−¬x))) ∧ −1).
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Replace Sub-expression With MBA Expression. This method replaces
part of the original expression with an equivalent non-linear MBA rule, as shown
in Example 6.

Example 6.

2 =(−3 ∗ (x ∨ y) − 1 − 3 ∗ (¬x ∧ ¬y)) ∗ (−x − ¬x)
+ (3 ∗ (x ∨ y) + 1) ∗ (−x + (x ∨ y) + (x ∧ ¬y))

=3 ∗ (¬x ∧ ¬y) ∗ (x + ¬x) + (3 ∗ (x ∧ y) + 1) ∗ (¬x + 1 + 3 ∗ (x ∨ y))
⇒ x + y = −(x ⊕ y) − 2 ∗ ¬(x ∨ y) − 2

= −(x ⊕ y) − 2 ∗ ¬(x ∨ y) − 3 ∗ (¬x ∧ ¬y) ∗ (x + ¬x)
− (3 ∗ (x ∧ y) + 1) ∗ (¬x + 1 + 3 ∗ (x ∨ y)).

Linear Combination of MBA Expression. A new MBA expression can be
generated from the linear combination of existing MBA obfuscation rules. More
specifically, we add a non-linear MBA expression which is equal to 0 to the
original expression, as seen in Example 7.

Example 7.

x = (x ∧ y) + (x ∨ y) − y,

0 = x ∗ y − (x ∧ y) ∗ (x ∨ y) − (x ∧ ¬y) ∗ (¬x ∧ y),
⇒ x = (x ∧ y) + (x ∨ y) − y + x ∗ y − (x ∧ y) ∗ (x ∨ y) − (x ∧ ¬y) ∗ (¬x ∧ y).

Algorithm 1. MBA Expression Generation
1: Input : Simple expression E, Flag F .
2: function MBA-Obfuscator(E, F )
3: Generate a new linear MBA expression Ē that equals to input E.
4: if F .polynomial then
5: Generate a new polynomial MBA expression E′ based on Proposition 2.
6: else if F .recursively then
7: Generate multiple MBA rules that equal to x+ y.
8: Apply the rules to transform Ē into E′.
9: else if F .replace then

10: Generate multiple MBA rules that equal to the sub-expression of Ē.
11: Apply the rules to transform Ē into E′.
12: else if F .combination then
13: Generate a polynomial MBA expression Z that equals to 0.
14: E′ = Ē + Z.
15: end if
16: return E′.
17: end function
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We integrate all methods described above into Algorithm 1. The algorithm
takes a simple expression E and flag F as input and returns its related complex
non-linear MBA expression based on the flag F . One random seed is contained
in the algorithm, as the one in Definition 3, to generate a randomized obfuscated
expression. Note that Algorithm 1 can transform a constant into a complex non-
linear MBA expression, as shown in Example 6.

4 Case Study

In this section, we present how to apply the MBA obfuscation technique on the
Tiny Encryption Algorithm(TEA) to protect the key and algorithm, since MBA
obfuscation technique can hide constant or complicate operations.

In cryptography, the Tiny Encryption Algorithm (TEA) is a block cipher
designed by David Wheeler and Roger Needham [28]. The encryption routine
code in C of TEA is shown in Fig. 2. Given the feature of the symmetric encryp-
tion algorithm, the respective decryption routine is similar to the encryption
routine. Since its simple structure and low cost, TEA has been widely applied
to many scenarios [14,24,27,30].

The whole obfuscation process is shown in Fig. 3. Firstly, the key is trans-
formed into a function that outputs a constant value, as shown in Fig. 3a. Next,
the operation in the TEA is replaced with related complex MBA expression,
which is shown in Fig. 3b. For every one operation, MBA-Obfuscator generates
the related complex and equivalent MBA expression. After that, the original
algorithm is replaced with the obfuscation routine, and the entire obfuscation
code is seen in Fig. 3c. Considering the randomness in Algorithm 1, every expres-
sion generated by MBA-Obfuscator is different from each other.

Fig. 2. The TEA encryption procedure implemented in C programming language.
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Fig. 3. The steps of running MBA-Obfuscator on TEA encryption.
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5 Implementation and Evaluation

We implement Algorithm 1 in a prototype tool called MBA-Obfuscator . MBA-
Obfuscator accepts a simple expression input and generates a random related
non-linear MBA expression. The whole prototype is written in 1,900 lines of
Python code. We leverage the NumPy library for generating a linear MBA expres-
sion, and the SymPy library for arithmetic operation. MBA-Obfuscator also
includes utilities for measuring the quantitative metrics for MBA expressions,
such as counting MBA alternation and the number of terms.

We conduct a set of experiments to seek for checking the capability of MBA-
Obfuscator . In particular, we design experiments to answer the following research
questions.

1. RQ1: Is MBA-Obfuscator able to resist related methods simplifying MBA
expression? (resilience)

2. RQ2: How complex is a non-linear MBA expression? (potency)
3. RQ3: How much overhead does MBA-Obfuscator introduce? (cost)

As the answer to RQ1, we apply existing deobfuscation tools to simplify non-
linear MBA expressions. To address RQ2, we calculate the complexity metrics
such as the number of MBA alternation. In response to RQ3, we study MBA-
Obfuscator ’s performance data such as running time and memory usage.

5.1 Experimental Setup

Dataset. Note that the use of non-linear MBA expression is by simply substi-
tuting where the linear MBA rule is used. Therefore we check the capacity of
linear MBA expression and the related non-linear MBA expression generated by
MBA-Obfuscator . We collect 1,000 linear MBA expressions and related ground
truth (correctly simplified form) from existing works [4,5,8,18,31,32]. Next, we
use MBA-Obfuscator to generate a non-linear MBA expression that is equiva-
lent to the ground truth. Therefore, we get the Dataset including 1,000 MBA
expressions. Every sample in the dataset is a 3-tuple: (G,L,NL). G is a simple
expression, named ground truth. L is the related complex linear MBA expres-
sion. NL is the related complex non-linear MBA expression. One example is
shown in Fig. 4.

Fig. 4. The linear and non-linear MBA expressions for the ground truth expression
x + y.
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MBA Complexity Metrics. We use the following metrics to measure MBA
complexity. For these complexity metrics, a larger value indicates a more complex
MBA expression.

1. MBA Alternation. MBA alternation is to count the number of operations
that connect arithmetic operation and bitwise operation. For example, in
(x∧ y)+ 2 ∗ (x∨ y), the + represents an MBA alternation operation, because
its left operator is a bitwise operator, and its right operator is an arithmetic
operator.

2. Number of Terms. How many terms are included in an MBA expression.
3. MBA Length. The string length of an MBA expression is measured as the

MBA length.

MBA Deobfuscation Tools. We collect and check existing, state-of-the-
art MBA deobfuscation tools, as described in Sect. 2.2. Arybo2, MBA-Blast3,
NeuReduce4, SSPAM5, and Syntia6 focus on simplifying MBA expression by bit-
blasting, mathematical transformation, machine learning-based, pattern match-
ing, and program synthesis. Arybo is a tool for transforming MBA expression to a
symbolic representation at the bit-level written in Python. MBA-Blast is a novel
technique to simplify MBA expressions to a normal simple form by arithmetical
reduction. SSPAM (Symbolic Simplification with Pattern Matching) is a Python
tool for simplifying MBA expression. Syntia is a program synthesis framework
for synthesizing the semantic of obfuscated code. It produces input-output pairs
from the obfuscated rules and then generates a new simple expression based on
these pairs. NeuReduce is a string to string method based on neural networks
to learn and reduce complex MBA expressions automatically. We download and
apply those tools to simplify MBA expressions for checking the strength of the
related obfuscation technique.
Machine Configuration. Our experiments were performed on an Intel Xeon
W-2123 4-Core 3.60GHz CPU, with 64GB of RAM, running Ubuntu 18.04.

5.2 Deobfuscation on Non-Linear MBA Expression

In this evaluation, we check the resilience of MBA-Obfuscator , which refers to
the robustness of an obfuscation tool for an automatic deobfuscator. Eyrolles’s
PhD thesis [8] states that reverse engineer focuses on recovering the initial form
of the expression, meaning simplifying the MBA expression. Her experiments
show that existing symbolic software cannot simplify MBA expression because
math reduction rules only work on pure Boolean expressions(e.g., normalization
and constraint solving), or on pure arithmetic expressions(e.g., the algebra laws).
So far, no publicly known methods, including both static and dynamic meth-
ods, can effectively simplify MBA expressions. This fact attracts researchers to
2 https://github.com/quarkslab/arybo.
3 https://github.com/softsec-unh/MBA-Blast.
4 https://github.com/nhpcc502/NeuReduce.
5 https://github.com/quarkslab/sspam.
6 https://github.com/RUB-SysSec/syntia.

https://github.com/quarkslab/arybo
https://github.com/softsec-unh/MBA-Blast
https://github.com/nhpcc502/NeuReduce
https://github.com/quarkslab/sspam
https://github.com/RUB-SysSec/syntia


288 B. Liu et al.

develop multiple tools to simplify MBA expression, such as Arybo, MBA-Blast,
NeuReduce, SSPAM, and Syntia. Therefore, we test those deobfuscation tools
on linear and related non-linear MBA expression. After simplification, we use
the Z3 solver [22] library7 to check whether every simplified result is equivalent
to the original expression.

Table 1. Deobfuscation results. ✓ means equivalent(Z3 returns a UNSAT solution),
✗ means not equivalent(Z3 returns an SAT solution), – means time out(deobfuscation
tools cannot return a result in 1 h), “Ratio” indicates the ratio of outputs passing
equivalence checking, “Time” reports the average processing time (seconds) that each
tool takes to process an MBA sample in the ✓ column.

Method Linear MBA Non-Linear MBA
✓ ✗ −− Ratio(%) Time ✓ ✗ −− Ratio(%) Time

Arybo 569 0 431 56.9 1936.5 84 0 916 8.4 2304.9

MBA-Blast 1, 000 0 0 100.0 0.06 147 853 0 14.7 0.09

NeuReduce 756 244 0 75.6 0.06 1 999 0 0.0 0.06

SSPAM 386 356 258 38.6 1465.7 103 192 705 10.3 2132.1

Syntia 97 903 0 9.7 29.7 98 902 0 9.8 29.8

Table 2. The complexity distribution of the MBA expressions in the Dataset.

Metrics Linear MBA Non-Linear MBA
Min Max Average Min Max Average

MBA Alternation 2 99 30.6 5 92 30.3
Number of Terms 3 99 31.4 6 79 27.4
MBA Length 17 1498 438.0 47 1140 391.0

Table 1 shows the deobfuscation result on the Dataset. All existing deobfusca-
tion tools can simplify part or all of the linear MBA expressions. However, up to
14.7% of non-linear MBA expressions can be simplified by these tools in 1 h.
Arybo only simplifies 84 out of 1,000 samples, because it suffers from severe per-
formance penalties when it normalizes all operators to algebraic normal form. We
observe that MBA-Blast performs well on 2-variable polynomial MBA expres-
sions. However, it has a limited simplification effect on other non-linear MBA
expressions. Thus, MBA-Blast can simplify 147 non-linear MBA expressions.
Since NeuReduce is trained on the dataset of linear MBA expressions, it can-
not simplify non-linear MBA expressions. SSPAM can simplify 103 out of 1,000
non-linear MBA expression. Limited by the nature of program synthesis, Syntia
only returns 98 correct results for non-linear MBA expressions.
7 https://github.com/Z3Prover/z3.

https://github.com/Z3Prover/z3
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5.3 Complexity of Non-Linear MBA Expression

In the second evaluation, we seek to check the capability of potency after obfus-
cation by MBA expressions. Potency represents how complex or unreadable the
obfuscated rules are to a reverse engineer. Table 2 shows the complexity results
on the Dataset. From Definition 2, the complexity of a linear MBA expression
mainly depends on the number of terms in the expression. However, a non-linear
MBA expression’s complexity depends on multiple factors, such as the number of
terms and MBA alternation. Overall, the non-linear MBA expression is slightly
simpler than the linear MBA expression from the “Average” column.

Table 3. MBA-Obfuscator ’s performance for generating a non-linear MBA expression
with different complexity. “Time” reports the time (seconds) that MBA-Obfuscator
generates a non-linear MBA expression 10,000 times.

# Of Terms Time(Second) Memory(MB)

10 103.5 0.01
50 259.4 0.01

100 381.1 0.01
200 534.2 0.02

Table 4. Run-time overhead on non-linear MBA expressions with different complexity.
The timing result is the time to run the MBA expression 10,000 times repeatedly.

# of Terms Time (Second)
Linear MBA Non-Linear MBA Ratio(%)

10 0.5 1.5 300.0
50 3.6 8.2 227.8

100 8.1 22.4 276.5
200 18.3 57.9 316.4

5.4 Cost of Non-Linear MBA Expression

As the last experiment, we study the cost of MBA-Obfuscator : performance
overhead representing the cost for generating an MBA expression, and run-time
overhead that refers to the cost when the obfuscated code is running. Table 3
presents the time and memory cost when MBA-Obfuscator generates a non-
linear MBA expression with different complexity measured by the number of
terms. MBA-Obfuscator is effective because it relies on the existing linear MBA
rules.
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For run-time overhead, we integrate MBA expressions into a C program, and
then use gcc to compile it with the -O2 option. Table 4 shows that run-time
overhead introduced by non-linear MBA rules is about 3X as long as the related
linear MBA rules. However, the average run-time overhead for a non-linear MBA
rule is low, which is less than 0.01 s (0.0058 s).

6 Conclusion

Mixed Boolean-Arithmetic (MBA) expression, which mixes both bitwise and
arithmetic operations, can be applied to complicate a simple expression. Our
work is the first research to propose a non-linear MBA obfuscation challenge. We
investigate the class of MBA expression, and demonstrate how to generate infi-
nite non-linear MBA expressions based on existing linear MBA expressions. Fur-
thermore, we present a practical application of the non-linear MBA obfuscation
technique on obfuscating the Tiny Encryption Algorithm(TEA). We develop a
prototype tool MBA-Obfuscator , a novel non-linear MBA obfuscation technique.
Our large-scale experiment demonstrates that MBA-Obfuscator is effective and
efficient—existing deobfuscation tools may be available to simplify polynomial
MBA expressions but hardly for other non-linear MBA expressions, and the cost
of applying non-linear MBA obfuscation is low. Developing MBA-Obfuscator not
only advances the application of the MBA obfuscation technique, but also devel-
ops a dataset for future research on MBA deobfuscation direction.
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