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Abstract

General methods have been developed for esti-
mating causal effects from observational data un-
der causal assumptions encoded in the form of
a causal graph. Most of this literature assumes
that the underlying causal graph is completely
specified. However, only observational data is
available in most practical settings, which means
that one can learn at most a Markov equivalence
class (MEC) of the underlying causal graph. In
this paper, we study the problem of causal es-
timation from a MEC represented by a partial
ancestral graph (PAG), which is learnable from
observational data. We develop a general estima-
tor for any identifiable causal effects in a PAG.
The result fills a gap for an end-to-end solution to
causal inference from observational data to effects
estimation. Specifically, we develop a complete
identification algorithm that derives an influence
function for any identifiable causal effects from
PAGs. We then construct a double/debiased ma-
chine learning (DML) estimator that is robust to
model misspecification and biases in nuisance
function estimation, permitting the use of modern
machine learning techniques. Simulation results
corroborate with the theory.

1. Introduction

Inferring causal effects from observational data is a fun-
damental task in machine learning and various empirical
sciences. There exists a growing literature studying the con-
ditions under which causal conclusions can be drawn from
non-experimental data (Pearl, 2000; Bareinboim & Pearl,
2016; Pearl & Mackenzie, 2018). In particular, the literature
of causal effect identification (Pearl, 2000, Def. 3.2.4) inves-
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tigates whether, given a causal graph G encoding qualitative
knowledge about the domain, an interventional distribution
P(Y = y|do(X = x)) (for short, P,(y)), representing the
causal effect of the treatment X on the outcome Y, can be
uniquely inferred from the observational distribution P (V')
(Pearl, 1995; Tian & Pearl, 2003; Huang & Valtorta, 2006;
Shpitser & Pearl, 2006; Lee & Bareinboim, 2020). There
is also a large literature on estimating causal effects from
finite samples drawn from P(V') when the corresponding
causal estimand is in the form of covariate adjustment (or
its sequential variants) (Rosenbaum & Rubin, 1983; Pearl
& Robins, 1995; Robins et al., 2000; Bang & Robins, 2005;
Van Der Laan & Rubin, 2006; Hill, 2011), including dou-
bly robust estimators for addressing model misspecification
(Robins et al., 1994; Bang & Robins, 2005; Van Der Laan
& Rubin, 2006; Rotnitzky & Smucler, 2020; Smucler et al.,
2020; Fulcher et al., 2020). Recently, machine learning
(ML) based methods have been developed for estimating
any causal effects from finite samples whenever they are
identifiable given a causal graph (Jung et al., 2020a;b; 2021).

Despite the power of these results, their applicability is con-
tingent upon one having a causal graph, which may be hard
to manually specify. In practical settings, one may attempt
to learn the causal graph using structural learning algorithms
from the available observational data (Pearl, 2000; Spirtes
et al., 2000; Peters et al., 2017). Still, in principle, only a
Markov equivalence class (MEC) of the underlying causal
graph can be inferred from non-experimental data (Spirtes
et al., 2000; Zhang, 2008b) without assumptions about the
underlying causal mechanisms (Peters et al., 2017). There is
a growing interest in causal identification in MECs (Zhang,
2008a; Perkovic et al., 2017; Jaber et al., 2018a;b). In par-
ticular, an algorithm called IDP has recently been developed
for identifying causal effects in a MEC represented by a
partial ancestral graph (PAG) (Jaber et al., 2019), which
is both sufficient and necessary (i.e., complete). PAGs are
learnable from observational data using causal structural
learning algorithms (e.g. FCI (Zhang, 2008b)).

Even though these are quite general results, it re-
mains an open challenge to estimate the resulting
causal expressions from finite samples. For con-
creteness, consider the PAG in Fig. 1 as an exam-
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ple. The IDP algorithm identifies P, (y1,Yy2,ys,ys) =
P(y4|y3a Y2,Y1,, T)P(yl) Zr P(yZa y3|$7 7A)P(r) The
only viable general-purpose method currently available
for estimating arbitrary causal estimands like this is the
“plug-in” estimators (Casella & Berger, 2002), which es-
timate each conditional probability in the estimand (e.g.,
P(y4lys, y2, 1,2, 7)), called nuisance functions or nui-
sances in short, often by assuming a parametric model, and
plug them into the equation. However, plug-in estimators
are vulnerable to model misspecification in that all nuisance
models need to be correctly specified for the estimator to
be consistent. They also often suffer from biases in estimat-
ing the nuisances. In recent years, it is common to learn
nuisance functions using highly flexible ML models, partic-
ularly in high-dimensional settings, including methods such
as random forests (Breiman, 2001), boosted regression trees
(Freund et al., 1996), and deep neural networks (Bengio,
2009). In practice, these ML methods inherently trade off
regularization bias with overfitting often causing acute bias
in the plug-in estimators of the target estimand such that
these estimators will not achieve desirable v/ N-consistency
(Chernozhukov et al., 2018), where N is the sample size.

We will exploit in this paper the double/debiased machine
learning (DML) framework proposed in (Chernozhukov
et al.,, 2018). This framework provides estimators that
achieve v/ N-consistency with respect to the target estimand
while admitting the use of highly flexible ML methods for
estimating the nuisances at a slower N ~1/4 rate conver-
gence (‘debiasedness’). DML has been applied in causal
inference including in the context of the backdoor/ignorabil-
ity and instrumental variables (Robins et al., 1994; Bang &
Robins, 2005; Van Der Laan & Rubin, 2006; Diaz & van der
Laan, 2013; Benkeser et al., 2017; Kennedy et al., 2017;
Rotnitzky & Smucler, 2020; Smucler et al., 2020; Colangelo
& Lee, 2020) and in some specific settings (Toth & van der
Laan, 2016; Rudolph & van der Laan, 2017; Fulcher et al.,
2020; Kennedy, 2020a; Bhattacharya et al., 2020). Recently,
DML has been used for estimating causal effects when the
causal graph is fully specified (Jung et al., 2021).

Our goal will be to develop a general estimator for any iden-
tifiable causal effects in PAGs (when the causal graph is
unknown). In particular, we will develop a DML estimator
for identifiable causal effects in PAGs, named DML-IDP,
by deriving their influence functions (IF) based on the semi-
parametric theory (Van der Vaart, 2000). Our results fill in a
gap for a purely data-driven, end-to-end solution to causal
effects estimation, i.e., from observational data D — PAG
G by structure learning algorithm — identifiability of tar-
get effect P,(y) by IDP — estimating P, (y) from D by
DML-IDP. Specifically, our contributions are as follows:

1. We develop a complete systematic procedure that de-
rives an IF for any identifiable causal effects in a PAG over

Figure 1: An example PAG. Nodes representing the treat-
ment (X) and outcome (Y) are marked in blue and red
respectively. Causal effect P,(y) is identifiable. ‘v’ on
edges stands for ‘visible’ edges.

discrete endogenous variables.

2. We develop a DML estimator (DML-IDP) for any
identifiable causal effects in a PAG with discrete variables,
which enjoy debiasedness and doubly robustness against
model misspecification and biases in nuisances estimation.
Experimental studies corroborate with the theory.

The proofs are provided in Appendix B in suppl. material.

2. Preliminaries

Each variable is represented with a capital letter (V) and
its realized value with the small letter (v). We use bold
letters (V) to denote sets of variables. We use I/ (V) to
represent the indicator function such that I,,. (V) = 1 if and
only if V = v/; I, (V) = 0 otherwise. For function f(v)
and a distribution P(v), Ep [f(V)] = >, f(v)P(v), and

1F(V)]l2 = VER[(F(V))2]. [ is said to converge to f at

rate v if ||f(V) — f(V)HQ = Op(l/?“N).

Structural Causal Models. We use the language of struc-
tural causal models (SCMs) as our basic semantical frame-
work (Pearl, 2000). Each SCM M over a set of variables
V induces a distribution P(v) and a causal graph G that
is a directed acyclic graph (DAG) with bidirected arrows
(edges). Solid-directed arrows encode functional relation-
ships between observed variables, and bidirected arrows
encode unobserved latent confounders. Within the structural
semantics, performing an intervention and setting X = x
is represented through the do-operator, do(X = x), which
encodes the operation of replacing the original equations
of X by the constant x and induces a submodel My and an
interventional distribution P(v|do(X = x)) = Px(v).

Partial Ancestral Graphs (PAGs). Given non-
experimental data, only a Markov equivalence class (MEC)
of the underlying causal graph can be inferred which in-
cludes a set of graphs with the same conditional indepen-
dences (Zhang, 2007). A PAG provides a graphical repre-
sentation of a MEC. PAGs may contain directed (—) or
bidirected (+») edges, representing ancestral relations, and
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edges with circles (e.g., {o—, 0—o}) indicating structural
uncertainty (see Figs. 1 and 2 for example PAGs).

Given a PAG, a path between X and Y is potentially di-
rected from X to Y if there is no arrowhead {<, >} on the
path pointing towards X. Y is called a possible descendant
of X and X a possible ancestor of Y and denoted X €
An(Y) if there is a potentially directed path from X to Y.
Y is called a possible child of X and denoted Y € Ch(X),
and X a possible parent of Y and denoted X € Pa(Y),
if they are adjacent and the edge is not into X. By stipu-
lation, X € An(X), X € Pa(X),and X € Ch(X). For
a set of nodes X, we have Pa(X) = [Jxcx Pa(X) and
Ch(X) = Uxex Ch(X). If the edge marks on a path
between X and Y are all circles, we call the path a circle
path. We refer to the closure of nodes connected with circle
paths as a bucket. Nodes V in a PAG G are partitioned
into a unique set of buckets V- = J_; B;. There exists
a topological order over buckets B; < --- < B,, that de-
fines a partial order over V, which is valid in all the causal
graphs in the MEC. This is named a partial topological
order (PTO) and could be assigned by (Jaber et al., 2018a,
Algo. 2). Given a PTO < and a set C C V, we denote
prec(B;) = (U, ., Bj) N C and use pre(B;) = prey (B;).
An inducing path is a path on which every node V; (except
for the endpoints) is a collider on the path and every collider
is an ancestor of an endpoint. A directed edge X — Y ina
PAG is visible and denoted X — Y if there exists no causal
graph in the corresponding MEC where there is an inducing
path between X and Y that is into X. Given a PAG G and a
set C C V, G(C) denotes the subgraph composed of nodes
C and edges therein.

Causal Effect Identification. Given a DAG G over V, an
effect P(y) where X, Y C V is identifiable if Px(y) is
computable from the distribution P(v) in any SCM that
induces G (Pearl, 2000, p. 77). One key notion is called
confounded components (for short, C-component) : clo-
sures of nodes connected with a path composed solely of
bi-directed edges V; <+ V; (Tian & Pearl, 2002).

Given a PAG G over V, a query Px(y) is identifiable if and
only if P(y) is identifiable with the same expression in
every DAG in the MEC represented by the PAG G. A com-
plete identification algorithm in PAGs called IDP has been
developed (Jaber et al., 2019) (also presented in Appendix A
for convenience) based on possible C-component (PC-
component) and definite C-component (DC-component):

Definition 1 (PC & DC-component (Jaber et al., 2018a)).
In a PAG (or its subgraph), two nodes are in the same PC-
component if there is a path between them s.t. (1) all non-
endpoint nodes along the path are colliders, and (2) none
of the edges is visible. Two nodes are in the same DC-
component if they are connected with a bi-directed path.

For a set of variables X, we will use C(X) to denote the
union of the PC-components that contain variables in X.
For any C C 'V, the quantity Q [C] = P,\c(c), called a
C-factor, is defined as the distribution of C under an inter-
vention on V\C. IDP algorithm is based on the following
results for identification and decomposition of C-factors.

Proposition 1 (Jaber et al., 2018b). Let G be a PAG over V,
T = U2, B, be the union of a set of buckets, and X C T
be a bucket. Given P,y (i.e., Q[T]) and a PTO By <
-+« < By, with respect to G(T), Q [T\X] is identifiable if
and only if C(X) N Ch(X) C X in G(T). If identifiable,

Pv\t
QSX g QSxa

where Qs = Hi‘Bing P\t (bi|prex(b;)) and Sx =
Uxex Sx with Sx being the DC-component of X in
G(T).

Definition 2 (Region Rg (Jaber et al., 2019)). Given a
PAG G over V and A C C C 'V, the region of A w.r.t.
C, denoted RS, is the union of the buckets in G(C) that
contain nodes in the PC-component C(A) of A in G(C).

Proposition 2 (Jaber et al., 2019). Given a PAG G over V
and a set C C 'V, Q[C] can be decomposed as Q) [C] =

QIRAIQ[Re\r,] G
Q[RANRG\= 4 | forany A C C, where R(.y =R ).

Q[T\X] =

Semiparametric Theory. We aim to estimate a target
estimand ¢» = W(P) that is a functional of P(V) (e.g.,
U (P) = >, P(y|lz,z)P(z)) from finite samples D =
{Vi}L, drawn from P. Let a parametric submodel
P, = P(v)(1 +tg(v)) for any t € R and bounded mean-
zero function ¢(-) over random variables V. If a func-
tional ¥ (P;) is pathwise (formally, Giteaux) differentiable
at t = 0, then there exists a function ¢(V;,n) (shortly
@), called an influence function (IF) for 1, where n = n(P)
stands for the set of nuisance functions comprising ¢, sat-
isfying Ep [¢] = 0, Ep [¢?] < oo, and ZU(P,)|s—0 =
Ep [¢p(V;¢,n)S:(V;t =0)] where Si(v;t = 0) =
% log P;(v)|¢=0 is the score function (Van der Vaart, 2000,
Chap. 25). Given an IF ¢, a Regular and Asymptotic
Linear (RAL) estimator 7T can be constructed satisfying
Ty — ¢ = £ 5N 6(Viyt,n) + op(N~1/2). When
the IF can be decomposed as ¢(V;v,n) = V(V;n) — ¢
for some function V(V;n), called the uncentered influ-
ence function (UIF), the corresponding RAL estimator is
Ty = % Zfil V(V (), 1) where 7) denotes nuisances es-
timated from sample D (Kennedy, 2020a). We will fo-
cus on deriving UIFs in this paper. Once we have a UIF
the corresponding IF could be expressed as ¢p(V;,n) =
V(V;n) —Ep[V(V;n)].

We make the following assumptions throughout the paper,
which ascertain that the estimands will be pathwise differ-
entiable.
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Assumption 1 (Discreteness of variables). The set of vari-
ables 'V in the PAG are discrete.

Assumption 2 (Positivity of conditional probabilities).
There exists a fixed ¢ € (0,0.5) s.t. P(alb) > ¢ for any
A BCV.

The results can be extended to continuous cases with ad-
ditional conditions such that the corresponding influence
functions are well-defined (Robins, 2000; Neugebauer &
van der Laan, 2007; Diaz & van der Laan, 2013; Kennedy
et al., 2017; Chernozhukov et al., 2019).

Double/Debiased Machine Learning (DML). DML meth-
ods (Chernozhukov et al., 2018) are based on two ideas: (1)
use a Neyman orthogonal score' to estimate the target 1),
and (2) use cross-fitting® to construct the estimator. DML
estimators guarantee v/ N-consistency even when the esti-
mates 7] of (possibly high-dimensional) nuisance functions
converge at a much slower N —1/4 rate (‘debiasedness’), al-
lowing the use of a broad array of modern ML methods that
do not meet certain smoothness/complexity restrictions (i.e.,
Donsker class). Neyman-orthogonal scores may coincide
with IFs - a fact we exploit in this paper.

3. IFs for Canonical Expressions

Before deriving IFs for any identifiable causal effects in
PAGs, in this section, we derive IFs for two typical func-
tionals that often appear in the expressions of causal effects,
called here canonical expressions.

3.1. Canonical expression 1

Definition 3 (Canonical expression 1 (CE-1)). Let T =
{B; < -+ < B,} be a set of ordered sets’. Let C C T
be a subset composed of B; € T and A be a subset of
variables contained in C. A quantity Q is said to be (in
the form of) a canonical expression 1 (CE-1) if it is in the
following form:

Q=>"[[ Pbilpreg(b)). (D

a B;eC

For concreteness, we show the causal effect Px(y) (for
X = {X;, X2}) in the PAG in Fig. 2a can be expressed as
a CE-1 as follows:

GivenaPTOV={C <B<A<X; <Z<Xy;<Y},

'A Neyman orthogonal score is a function ¢ satisfying
Ep[¢(Vid,n")] = 0 and ZEp[¢(V;,m)]ly=ys = 0, where
7" denotes the true nuisance.

>The cross-fitting technique uses distinct sets of samples in
model training and estimator’s evaluation.

We use W = {B; < --- < By} to denote a set of
ordered sets W = {Bi,--- ,By} or a union of ordered sets
W = U?_; B; depending on the context.

we have Q[V \ X5] is identifiable from Q[V] = P(V) by
Prop. 1 as X3 is a bucket satisfying C(X3) N Ch(X3) =
{X5} and Sx, = {X»}, and we obtain Q[V \ X,] =
P, (v \ z2) as follow:

QIV\ Xa] = 5 ) pyfpre(y)) Plpre(z2)).

(w2[pre(z2))
For T = V\{X,}, Q[T \ X1] is identifiable from Q[T] by
Prop. 1 as X, is a bucket satisfying C(X1) N Ch(X;) =
{X:1} and Sx, = {X1}, and we obtain Q[T \ X;] =
Py, 2, (t\{z1}) as follow:

P
QA X = B pren (1))

= P(ylpre(y)) P(z|pre(z)) P(a, b, c)

by the equality P,,(x1|preq(z1)) = P(x1|prep(z1)). Fi-
nally, the causal effect Py (y) is given as a CE-1 as:

P(y)= > Q[T\ Xu]. )

z,a,b,c

We derive an IF for functionals in the form of CE-1 as
follows:

Lemma 1 (UIF for CE-1). Let the target estimand ¥ = Q
be a CE-1 given by Eq. (1) in Def. 3. Let Y = C\A,
and X = T\ C = {B;, < < Bj, } where
B;, € T. Let C be partitioned with respect to X as
C = ZL:OC;C, where C, = {B, € C : jp < r <
g1t = {Brpw < -+ < Bt with jo = 0 and
Jm+1 = n+ 1. Let P, be a distribution over T given by
Pr = Ix(X)[Ig,ec P(Bilprex(B;)). Then, V(T;n =
(w, 0)) in the following is a UIF for 1):

V(Tin=(w,0) =01+ Y wi(br1—0k2), 3)
s

where w = {wi| Cp # 0, k € {1,--- ,m}} and 6 =
{9071} U {(0]9-71,9]672)‘ Ck 75 @, k € {1, ,m}} are

nuisances given by
k
Wi = H ijr (BJT)
- P(Bj,lprex(B;,))”

Ok = Ep, [Iy(Y)|Brypor Prer (Br,., )]
Or2 = Ep, [Iy(Y)|preq (Br,,,)] »

where 90,1 = Ep7r [Iy(Y)] lfCo = V)

For concreteness, we apply Lemma 1 to derive a UIF for
¥ = Py, 2, (y) inFig. 2a which is identified as a CE-1 given
in Eq. (2).
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Ilustration 1 (UIF for P,, ,,(y) in Fig. 2a). Ler T =
{C<B<A<X1 <Z<Xo=<Y},C={Cx=<
B<A<Z<Y} andX = {X;1 < Xao}. We have
Co={C <B=< A}, Cy ={Z}, and Cy = {Y'}. Then
Lemma 1 gives a UIF for i as

Ve, (y) = o1 +wi (01,1 —012) + w2 (021 —022), (4

where

wi = Iy, (X1)/P(X1|pre(X1))
wy = Ip) (X1, X2)/P(X1|pre(X1))P(X2|pre(Xz)),

and for
P, =1, .,(X1,X2)P(A,B,C)P

b0 =Ep, [Iy(Y)lpre(X1)], 611 = Ep, [1,(Y)|pre(Xs)],
012 =Ep, [1,(Y)|pre(Z2)]; and 621 = Ep, [I,(Y)|T] =
LY )and@zz—EP[ y (V) |pre(Y)].

3.2. Canonical expression 2

Definition 4 (Canonical expression 2 (CE-2)). Let Q;
and Qs be two CE-ls, then the quantity Q =
>, (Q1 x Qo) for some Z C V is said to be (in the form
of) a canonical expression 2 (CE-2).

A broad class of causal effects are identified as a CE-2,
including all joint interventional distributions (P, (v)) when
X is singleton (Jaber et al., 2018b, Thm. 1), as well as in
the following scenario which follows from Prop. 1:

Corollary 1. Let a PTO in PAG G over V be By < --- <
B,,. Let X, Y C V with X being a bucket. If C(X) N
Ch(X) C X, then Py(y) is identifiable and given by

Py(y) = Z Ovisx X 9Qsx\X>

v\(xUy)

®)

where Qv\sy = [lIp,cvisy P(Pilpre(bi)), Qs\x =

> HBing P(bi|pre(b;)), and Sx = Jxcx Sx with
Sx being the DC-component of X.

Eq. (5) is a CE-2 where Qv/\ s, and Qg \x are CE-1s. As
a concrete example, consider the PAG in Fig. 2b with a PTO
V={C<X=<Y <Y, <Y; <Y, < Y5} Since
X is a bucket and satisfies C(X) N Ch(X) = {X} with
C(X) = {X,C,Y1,Y,,Y3} and Ch(X) = {X,Y5}, the
causal effect P, (y) where Y = {Y7,--- , Y5} is identifiable
by Coro. 1 and given by

P.(y) = Z Ov\sx 9sx\X> (6)
{X7Y17Y3aY4}? V\SX = {07}/23Y5}7

P(ys|pre(ys)) P(yz|pre(y2)) P(c), and
x'|e).

where Sy =
Qvisxy =
Qs \x = 2o P(ys, yaly1, y2, 2", ) P(y1,

‘We derive an IF for CE-2 as follows:

(Zlpre(Z))P(Y |pre(Y)),

AHXI\?] 3/‘D
S,

<Y Ys v Y3

(@) (b)

Figure 2: Example PAGs. Causal effects Py(y) are identifi-
able and given by (a) CE-1, (b) CE-2.

Lemma 2 (UIF for CE-2). Let the target estimand ) = Q
be a CE-2 given in Def. 4. Let V; be a UIF for the CE-1 Q;
given in Lemma 1 and p; = Ep|V;] for i € {1,2}. Then,
V(V;n) below is a UIF for :

V(Vin) =Y Vg + (Va2 — pa)p)- (7

z

Lemma 2 provides a UIF for any causal effects that are
identifiable by Coro. 1. For a concrete example, we will
use Lemma 2 to derive a UIF for ¢ = P,(y) in Fig. 2b
identified by Coro. 1 as given in Eq. (6).

Iustration 2 (UIF for P, (y) in Fig. 2b). A UIF for P,(y)

in Eq. (6) is given by Lemma 2 as

Vi) = Y (Wsshsax + Vsxx — s\ x)Hvisx)
®)

where W\n\sy is a UIF for Qvs, and, by Lemma 1, is
givenwithV={C <X <Y, <Y, <Y3 <Y, <Y;s}as

Vvisx =051 +wi (071 —072) +ws5(05, —03,),

where
wi = Iy, (X, Y1)/ P(X[C)P(V1]X, C)
w8 = X Ly, (Y, V) (P(Yalpre(Y3)) P(Yalpre(Y2))
and for
Pra =1, Y1,Y3, y4(Xa Y17Y37Y4)P(C)
x P(Ya|pre(Y2))P(Ys|pre(Ys)),

and I° = I..,, ,.(C,Ya,Y), 03, = Ep_,[19C), 63, =
Ep,.[I°Y2,pre(Y2)], 05 5 = Ep . [I*|pre(Y2)], 05, = I,
and 03 o = Ep_, [1%|pre(Ys)].

Also, Vs, \x is a UIF for Qg,\x given by Lemma I as

Vsx\x = 98,1 + Wlf(elh - 9?,2) + WS(OSJ - 03,2)7
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where

wi = 1.(C)/P(C)
wy = wi X I, (Ya)/ P(Ya|pre(Y2)),

and for
Pn-b = Ic,yQ(Cﬂ/z)P(YBaY4‘P”3(Y§))P(X, Y1|C)7

and 1" = Iy, 4, (Y1, Y3, Ya), 05, = Ep [I°], 6}, =
Ep ,[I°|Y1,pre(Y1)], 0% 5 = Ep ,[I|pre(X)], 05, = I,
and 012”2 =Ep, [1%|pre(Y3)).

Finally pnn\sx = Ep[Vwv\sy), and ps,\x = Ep[Vs,\x]-
Refer Appendix A for derivation details.

4. IFs for Causal Estimands

In this section, we derive IFs for any identifiable causal ef-
fects in PAGs, armed with IFs for the canonical expressions
discussed in the previous section. We develop a complete
algorithm for deriving IFs by recursively deriving IFs of
C-factors Q]| inspired by IDP algorithm (Jaber et al., 2019)
which recursively identifies C-factors by repeated applica-
tion of Prop. 1 or 2. We will first develop basic results for
deriving IFs of C'-factors corresponding to Prop. 1 and 2.

Prop. 1 computes @ [T\X] in terms of given Q [T]. We first
rewrite Prop. 1 in a form more amenable for the purpose of
deriving IFs:

Lemma 3. Let G be a PAG over V, T = U B, be the
union of a set of buckets, and X C T be a bucket. Given
Q[T] and a PTO B, < --- < By, with respect to G(T),
Q [T\X] is identifiable if and only if C(X) N Ch(X) C X

in G(T). When Q[T\X] is identifiable, letting Sx =
Uxex Sx with Sx being the DC-component of X in
G(T), then Sx consists of a union of buckets. Denot-
ing Sx = {Bj,,---,B;, } and T\Sx = {By,,--- , By, },
Q [T\X] is given by

Q[T\X] = OQr\sx X Qsx\X> )

where Qr\sy = HBi,,,eT\Sx Py\¢ (b, |prex(b;, ), and
QSx\X = Zx HBjSESX PV\t (b]s |preT(bjs>)‘

For any W C V, we will use qSQ[W] to denote an IF for
the C-factor Q[W], Vgw, the corresponding UIF, and
pow] = Ep[Vowi]. We derive an IF for Q [T\ X] that is
identified by Lemma 3 in terms of Vgt as follows:

Lemma 4 (IF of C-factors). Suppose ¢y = Q [T\X] is
identifiable via Lemma 3 and given by Eq. (9). Then, given
Vorr), V = Vor\x) below is a UIF for 1:

- N’VT\SX ):U’SX\X7 (10)

V =Vsu\xtvrs, +(Vr\sx

Algorithm 1 IFP(x,y, G(V), P)

1: Input: Two disjoint sets X, Y C V; A PAG G over V;
A distribution P(v).
Output: Expression for UIF Vp,_
LetD = An(Y)G(V\X)-
Vpu(y) = 2Za\y DERIVEUIF (D, V, P(V), Vv = Iv(V))
function DERIVEUIF (C, T,Q = Q[T],V = Vg)
if C = (), then return 1.
if C = T, then return ).
{B denotes a bucket in G(T); C(B) the PC-
component of B in G(T), and Ry = R((?).}
8 if 3B C T\Cs.t. C(B) N Ch(B) C B, then

(¥) or FAIL.

RSN O

9: Compute @ [T\B] from @ via Lemma 3.
10 if Q [T\B] is expressible as CE-1,
then, Compute Vg T\p] via Lemma 1.
11: else if () [T\B] is expressible as CE-2,
then, Compute Vg \p) via Lemma 2.
12: else, Compute Vg T\p) via Lemma 4.
13: return DERIVEUIF (C, T\B, Q [T\B], Vg 1\g])-
14:  elseif 3B C Cs.t. R # C, then
15: return (a) + (b) — (c), where
{ Let UIF(W) = DERIVEUIF(W, T, Q,V); IF(W) =
UIF(W) — Ep[UIF(W)]; ID(W) = Ep[UIF(W)]}
(a) = U[F(RB)'ID(RC\‘RB); (b) = IF(RC\RB) ID(RB)

ID(RBNRc\Rrpg)
(c) = ID(RE) ID(Rc\ R g )
ID(RBNRc\rp)
16:  else return FAIL.

17: end function

~ IDRBNRc\ry) ’
F(RENRG\Rp)
ID(RBNRc\rg) "

where (Vs,\x, Vr\sy ) are UIFs for (Qs,\x, QT\sx ) Te-
spectively, given by

st\x = Z Ji H K + Z¢Jk H Uje

k=2 =104k
VT\Sx =V H Hi, + Z¢77 H Higs
r=2 0=1,0%#r

m} Y, = Zt\{ba,me(bc)}VQ[T] _
t\pre (be) HQIT]

Z:t\[ e (be) ¢Q
LS , e = Ep|V.], and
Et\[)l(’T<b(‘) HQIT MC P[ C]r

where, forc € {1,2,---

226\ (b prep (be)} HQIT)
Zt\mT(bc) HQIT]
Pe = Ve — He-

The following lemma derives an IF for the C-factor Q[C]
from the IFs of C-factors over some subsets of C', corre-
sponding to the C-factor decomposition in Prop. 2.

Lemma 5 (Decomposition of IFs). For A C C CV,
(a) + (b) = (o), (1D

HQIR AT PQIRG\R 4 ]

MQ[RAch\R ]

Voic) =

VQIrAl'HQIR ]
where (a) = —————\RA_ () =
MQ[RAmRC\R ]
() = ZoRalFoMorry) SARATRORAl i _ RO
#Q[RAmRC\RA] NQ[RAmRC\R ] ¢) )
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Finally, we develop a systematic procedure named IFP (In-
fluence Function for PAGs), given in Algo. 1, that derives
a UIF for any identifiable causal effect in PAGs. IFP recur-
sively applies Lemmas 4 and 5 until all needed C-factors are
in CE-1 or CE-2 form, whose UIFs are given by Lemma 1
and 2, respectively, initially equipped with a UIF for P(v),
Vo) = Iv(V).

Theorem 1 (Completeness of IFP). Procedure IFP
(Algo. 1) derives a UIF for any identifiable Py(y) in a
PAG G over V in O(|V[*) time, where |V| is the number
of variables. IFP returns FAIL if Px(y) is not identifiable.

For concreteness, we demonstrate the application of
IFP by deriving a UIF for ¢ = P,(y), where Y =
{Y1,Y3,Y3,Y,}, in the PAG in Fig. 1.

Ilustration 3 (UIF for P,(y) in Fig. 1 by IFP).
We start with D = Y (Line 3) and Vp_ () =
DERIVEUIF(D,V, P(V), Vo) = IL(V)) (Line 4).
DERIVEUIF() reaches line 14, where Bg = {Y>} satisfies
the condition with Re, = {Y2,Y3}, Rp\rs, = {¥1,Ya},
and Rg, N RD\RBO = (. Then, line 15 gives (using
ID(Q) = 1 and IF(()) = 0)

Vee(y) = UIF(RsB, ) - ID(Rp\Rg ) + IF(RD\R5, ) - ID(RB,)-

Next we show a sketch derivation of UIF(Rp,) and
UIF(RD\RBO ). Refer Appendix A for details. First,

UIF(Rg,) = DERIVEUIF(Rp,, V, P(V), I, (V)).

UIF(Rp,) is derived by repeating Lines 8, 9, 10,
and 13 as follows: Starting with B = Y, at
Line 8 let T = V \ B = {¥,R X,Y,Vs},
compute Q[T] (Line 9) and Vgt (Line 10), call
DERIVEUIF(Rg,, T, Q[T], V) (Line 13). Then repeat
the above by calling DERIVEUIF(Rg,, T, Q[T], Vo))
three more times with B = Y; at line 8§ T =
(RX,Y2,Y3}; B = X at line 8, T = {R,Ys,Ys};
and B = R at line 8 T = {Ys,Y3}. Finally we ob-
tain Q[R,] = Q[Y2,Y3] = >, P(y2,ys|x,r)P(r), and
UIF(RB,) = Vq[rs,] is given by Lemma 1 as

UIF(RB,) = 051 +wi (071 —051)

1.(X)

where  w{ Poxhy,  and  for  Pre =
L(X)P(Ys, Y3|X,R)P(R), 05, = Ep.[I?R]
1 = 1% and 07, = Ep.[I°|X,R] where
I* = Iy27y3 (Y27Y3)'

Next, with a similar matter,

UIF(Rp\rg,) = DERIVEUIF(Rp\ry, , V. P(V), [, (V))
= 98,1 + Wlf(elf,l - 93,1)7

where W} = I"'ﬁ,’éﬁf}?fg );3?;2?3), and for P., =

I (R, X, Ya, Y3) P(Yalpre(Ys)) P(Y1),

b
»T,Y2,Y3 90,1 -

Ep ,[I'M1], 0F, = 1% and 6%, = Ep ,[I’|pre(Y3)]
where I' = 1, ,,, (Y1, Y2).

For reference, P, (y) is identified as
Py(y) = QY] = Q[Y>, Y3]Q[Y1, Ya],

where Q[Y2,Ys] = > P(ys,yslz,r)P(r)
Q[Y1,Ya] = P(yalpre(ya)) P(y1).

12)

and

5. DML Estimators

In this section, we construct DML estimators for causal
effects Px(y) from finite samples D = {V ;} L, based on
the UIF Vp,_ () (V;7) derived by IFP algorithm. The result-
ing DML estimators have nice properties of debiasedness,
as well as doubly robustness in the sense that an estimator
T composed of the nuisances 1 = (19,71 is said to be
doubly robust if Ty is consistent whenever either 1y or 7;
are consistent.

First we show that IFs derived by IFP are a Neyman orthog-
onal score, which is needed for the DML method.

Proposition 3. Ler Py (y) be identified as Px(y) = v =
U(P). Then, the IF ¢p_y) = Vp,(y) — Ep[Vp,(y)], where
Ve, (y) is derived by Algo. 1 IFP, is a Neyman orthogonal
score for 1.

A DML estimator for Px(y), named DML-IDP (DML esti-
mator for IDentifiable causal effects in PAGs), is constructed
according to (Chernozhukov et al., 2018) as follows:

Definition 5 (Double/Debiased Machine Learning esti-
mator for identifiable causal effects (DML-IDP)). Let
Vp, (y)(V;n) be the UIF given by Algo. 1 IFP for the target
functional ¢ = Px(y). Let D = {V ;) }/_; denote samples
drawn from P(v). Then, the DML-IDP estimator 7 for
1) = Px(y) is constructed as follows:

(1) Split D randomly into two halves: Dy and Dy

(2) For p € {0, 1}, use D, to construct models for 7, the
nuisance functions estimated from samples D,,; and

BTN =Y peqo1) ¥ 2vien, Vo) (Vi Mi-p).

To witness the robustness properties of DML-IDP, we first
note that the nuisances in Vp_(y)(V;7) returned by IFP
consist of the nuisances of UIFs for CE-1:

Lemma 6 (Nuisances of UIFs). The UIF Vpx(y)(V; 7) re-
turned by Algo. 1 IFP is an arithmetic combination (ra-
tio, multiplication, and marginalization) of UIFs for func-
tionals in the form of CE-1, denoted as Vp_(y)(Vin =
{w;,0;}521) = A({V)(w;,0;)}i=,) where Vj(w;,0;)
denotes a UIF given by Lemma I with w; = {w; .}, and
0; = {001} U{0;k1,0;k2},2, being nuisances for V;,
and A(-) an arithmetic function.

For example, the UIF for P, (y) in Fig. 2b given by Eq. (8)
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is a function of UIFs Vy\ s, and Vs, \x both of which are
given by Lemma 1 as shown in Illustration 2.

‘We show that DML-IDP estimators attain debiasedness and
doubly robustness, the main result of this section:

Theorem 2 (Properties of DML-IDP). Let Ty be the
DML-IDP estimator of Py(y) defined in Def. 5 constructed
based on the UIF Vp_y)(V;n = {wj,ej}gzl) where
wj = {wj i}y and 05 = {001 10{0;1.1,05,2} 2, are
nuisances as specified in Lemma 6. Suppose T is bounded
from above by some constant C' € R; i.e., Ty < C < 0.
Then,

1. Debiasedness: T is \/ N-consistent and asymptoti-
cally normal if estimates for all nuisances converge to the
true nuisances at least at rate op(N~1/*).

2. Doubly robustness: Ty is consistent if, for every
j=1-- Land k = 1,--- ,m;, either estimates W,
or (é\j,k_Ll, 9}7k,2) converge to the true nuisances at rate
Op(l).

By Thm. 2, DML-IDP estimators attain root-N consistency
even when nuisances converge much slower at fourth-root-
N rate or when some nuisances are misspecified. These
properties allow one to employ flexible ML models (e.g.,
neural nets) that do not meet certain complexity restrictions
(e.g., Donsker condition) for estimating nuisances in es-
timating causal effects (Klaassen, 1987; Robins & Ritov,
1997; Robins et al., 2008; Zheng & van der Laan, 2011;
Chernozhukov et al., 2018). In contrast, plug-in estima-
tors may fail to achieve /N-consistency if estimates for
nuisances converges at op(N~'/4) and are vulnerable to
model misspecification.

For concreteness, we compare DML-IDP with plug-in esti-
mators in the following examples (Refer to Appendix A for
detailed derivations).

Ilustration 4 (DML-IDP vs. Plug-in (PI) estimators for
P (y) in Fig. (2a,2b,1)). By Thm. 2, DML-IDP estimator
for Py, 4, (y) in Fig. (2a) is consistent if estimates for either
the following converges:

{P(vilpre(vi)) tie(xi,x03 VAP (vilpre(vi)) }vie(x, vy
VA{P(vilpre(vi)) }vie(z,yy
while PI using Eq. (2) is consistent if estimates for
{P(ylpre(y)), P(z|pre(z)), P(alb, c), P(blc), P(c)} con-
verge, where the variables are ordered as V. = {C <
B<A<X1<Z<Xy<Y}

DML-IDP estimator for P.(y1, Y2, Y3, Ya,ys) in Fig. (2b)

is consistent if estimates

{P(vilpre(vi) }vie(x,vi,va,vay VAP (vilpre(vi) bviegx,vi,vs)
VAP (vilpre(vi) }vieva.va}

and

{P(vilpre(vi)) Yvieqc,vay VAP (vilpre(vi)) }vieqo,vs, v
VA{P(vilpre(vi) }v,e(x,v1,v5,v4)

converge, while PI using Eq. (6) is consistent if estimates
for {P(v;|pre(v;)) }v,ev converge, where the order over V
isC <X <Y1 <Yy <Y3<Y, <Y

DML-IDP for P,(y1, Y2, y3, y4) in Fig. (1) is consistent if
estimates for

{P(x|7“)}\/{P(yg\x,r),P(y3|y2,x,r)},

and

{P(vilpre(vi))}vie(r.x,vs,v5} V AP (valpre(ya))}

converge, while PI using Eq. (12) is consistent if estimates

for
{P(ya|z,7), P(yslya, z, 1), P(r), P(yalpre(ya)), P(y1)}

converge, where the order over VisY1 < R< X <Yy <
Y3 < Y.

6. Experiments
6.1. Experiments Setup

We evaluate DML-IDP for estimating Px(y) in
Fig. (2a,2b,1). We specify an SCM M for each PAG and
generate datasets D from M. Details of the models and
the data generating process are described in Appendix C.
Throughout the experiments, the target causal effect is
u(x) = Px(Y = 1), with ground-truth pre-computed. We
compare DML-IDP with plug-in estimator (PI), the only
available general-purpose estimator working for arbitrary
causal functionals. Nuisance functions are estimated using
standard techniques available in the literature (refer to
Appendix C for details), e.g., conditional probabilities are
estimated using a gradient boosting model XGBoost (Chen
& Guestrin, 2016), which is known to be flexible.

Accuracy Measure Given a data set D with N sam-
ples, let fipmy(x) and fipi(x) be the estimated Py (Y =
1) using DML-IDP and PI estimators. For each ji €
{fipmL (%), fipr(x) }, we compute the average absolute er-
ror (AAE) as |u(x) — fi(x)| averaged over x. We generate
100 datasets for each sample size N. We call the mean of
the 100 AAEs the mean average absolute error, or MAAE,
and its plot vs. the sample size N, the MAAE plot.

Simulation Strategy To show debiasedness (‘DB’) prop-
erty, we add a ‘converging noise’ €, decaying at a N ¢
rate (i.e., € ~ Normal(N~% N~2%)) for a = 1/4, to the
estimated nuisance values to control the convergence rate
of the estimators for nuisances, following the technique in



Estimating Identifiable Causal Effects on Markov Equivalence Class through DML

03 03
® == DML-IDP 1
02 B x==Plug-In 02 \\\N\?_____j 02 L
w Ean s 3 X x % = x
S . B * s
Fig. 2a = ~ L
a 5 01 01
00 00 0o M
== B 5 2500 5000 7500 70600 & 500 =566 555 5556
N
0| x 0a 03
i \ W .
: e e
Fig. 2b TN e 3 -
o § T s "‘<‘»~—‘a.<.»'>._.‘.<.4.4.‘.4.‘.4.47a
00 o 00
o 500 o0 005 G 500 5000 7500 75600 3 7500 500 7500 70600
0.5 0.2 0.2
0.20 L 0.20 0.2
Fig. 1 3 = > = =
0.05 0.05- M 0.05 M
o o 0.00

3 2500 5000 7500 70600 3

2500

5000 7500 70000 ] 2500 5000 7500 10000

Figure 3: MAAE Plots for (Top) Fig. 2a, (Middle) Fig. 2b, and (Bottom) Fig. 1, under scenarios ‘Debiasedness’ (‘DB’) and
‘Doubly Robustness’ (‘DR-1" and ‘DR-2"). The solid lines represent MAAEs and shades represent one standard deviation.

(Kennedy, 2020b). We simulate a misspecified model for
nuisance functions of the form P(v;|-) by replacing sam-
ples for V; with randomly generated samples V/, training
the model P(v]|-), and using this misspecified nuisance
in computing the target functional, following (Kang et al.,
2007).

6.2. Experimental Results

Debiasedness (DB) The MAAE plots for the debiasedness
experiments for Fig. (2a,2b,1) are shown in the first col-
umn of Fig. 3. DML-IDP shows the debiasedness property
against the converging noise decaying at N ~'/4 rates, while
PI converges much slower for all three examples.

Doubly robustness (DR) The MAAE plots for the dou-
bly robustness experiments are shown in the 2nd and 3rd
columns of Fig. 3. Two misspecification scenarios are simu-
lated for each example based on the results in [llustration 4.
For Fig. 2a, nuisances { P(v;|pre(v;))} for V; € {Y, Z} in
‘DR-1" and for V; € {Z, X5} in ‘DR-2’ are misspecified.
For Fig. 2b, nuisances {P(v;|pre(v;))} for V; € {Ya, Y5}
in ‘DR-1" and for V; € {X,Y7,Y3,Y,} in ‘DR-2’ are mis-
specified. For Fig. 1, nuisances P(y4|pre(ys)) in ‘DR-1’
and {P(ya|z,7), P(ys|y2, #,7)} in ‘DR-2’ are misspeci-
fied. The results in all the scenarios support the doubly
robustness of DML-IDP, whereas PI may fail to converge
when misspecification is present.

7. Conclusions

We derived influence functions (Algo. 1, Thm. 1) and de-
veloped DML estimators named DML-IDP (Def. 5) for any
causal effects identifiable given a Markov equivalence class
of causal graphs represented as a PAG. DML-IDP estima-
tors are guaranteed to have the property of debiasedness
and doubly robustness (Thm. 2). Our experimental results
demonstrate that these estimators are significantly more ro-
bust against model misspecification and slow convergence
rate in learning nuisances compared to the only alternative
estimator available in the literature, a plug-in estimator. We
hope the new machinery developed here will allow more
reliable and robust causal effect estimates by integrating
modern ML methods that are capable of handling complex,
high-dimensional data with causal learning and identifica-
tion theory, paving the way towards a robust, data-driven,
and end-to-end solution to causal effect estimation.
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