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Electric field dependence of complex-dominated ultracold molecular collisions
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Recent experiments on ultracold nonreactive dipolar molecules have observed high two-body losses, even
though these molecules can undergo neither inelastic, nor reactive (as they are in their absolute ground state),
nor light-assisted collisions (if they are measured in the dark). In the presence of an electric field these losses
seem to be near universal (the probability of loss at short range is near unity) while in the absence of it the losses
seem nonuniversal. To explain these observations we propose a simple model based on the mixing effect of an
electric field on the states of the two diatomic molecules at long range and on the density of states of the tetramer
complex formed at short range, believed to be responsible for the losses. We apply our model to collisions of
ground-state molecules of endothermic systems, of current experimental interest.
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I. INTRODUCTION

Recent experiments on ultracold molecules of bosonic
NaRb [1–3], bosonic RbCs [4–6], bosonic NaK [7], and
fermionic NaK [8,9] at ultralow temperatures have observed
high losses due to two-body collisions even though the
molecules are in their absolute ground state and should there-
fore only be able to undergo nonlossy elastic collisions.
Several theoretical propositions have attempted to explain
the origin of the losses, such as collisions with a third
molecule [10], photoinduced losses [11], or long-lived long-
range roaming complexes [12]. While in some experiments
photoinduced losses due to the trapping light seem to ex-
plain the losses [13,14], other experiments have questioned
this possibility observing losses even where the intensity of
the trapping light is weak [9,15]. This can come from an
underestimation of the complexes’ lifetime from statistical
theories [9,15,16]. For that, the role of the fine and hyperfine
structure seems to be crucial in their estimations [17–19]. One
sure thing though is that during a collision between ultracold
diatomic molecules a long-lived tetramer complex is formed,
as directly observed in a recent experiment of reactive KRb
collisions [20]. The origin of such losses therefore remains
an intriguing open question, actively investigated from both a
theoretical and experimental point of view. The answer will
certainly shed light on the role of the molecular complex
during a collision between diatomic molecules.

Apart from the origin of these losses, another intrigu-
ing experimental feature has been observed for nonreactive
molecules. In the presence of an electric field, losses are near

universal (meaning that the probability of loss at short range
is near unity per collision) [3,9] whereas in the absence of
electric field losses are nonuniversal (with subunity probabil-
ities per collision) [2,6,9,21]. In other words, experiments on
nonreactive molecules have shown that the universal character
for a system can depend on the applied electric field. This is in
contrast with previous experiments on reactive molecules, es-
pecially KRb molecules [22,23], for which the system remains
universal both with and without an electric field [24–26]. This
universal behavior, no matter if an electric field is applied or
not, is certainly due to the high number of channels open for
reactive systems and consequently a lower lifetime, hence a
lower importance of the complex in this situation [10,27].

In this paper, we propose a simple model that shows that
even a small electric field is sufficient to mix scattering states
with different components of the total angular momentum
J , such that tetramer states with a high density of states as-
sociated with higher total angular momentum start to have
a significant effect. The model expands upon the recently
developed formalism [28] which compiles the concept of
average cross sections, random matrix theory, and quantum
defect theory into a unified framework to study ultracold
molecular collisional processes. The paper is organized as
follows. In Sec. II, we outline the concepts behind the model.
In Sec. III, we present the model in detail and outline how
the rotational structure of the molecules in the electric field,
the orbital motion, and the use of a coupled representation
can be combined to determinate the probability PJ to find a
J component in the total wave function for a given field. In
Sec. IV, we extend our previous formalism to estimate the
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coupling of the scattering state to the collision complex. In
Sec. V, we deduce the field evolution of the quantum defect
theory parameter describing the loss at short range, as well
as the corresponding short-range loss probability. In Sec. VI,
we apply this model to three systems of current experimen-
tal interest, namely, bosonic NaRb and RbCs and fermionic
NaK, for which experimental data are available. Finally, we
conclude in Sec. VII.

II. THE CONCEPT

Loss of the molecules, without regard to a specific loss
mechanism, can be represented by an absorption coefficient
za. After accounting for threshold effects [29], this coefficient
is an energy-independent quantity that describes a nonunitary
scattering matrix S̄aa for scattering in incident channel a, via

S̄abs
aa = 1 − za

1 + za
. (1)

The absorption probability at short range is then measured by
the deviation of this element from unity:

p̄abs = 1 − ∣∣S̄abs
aa

∣∣2 = 4za
(1 + za)2

. (2)

A microscopic theory of absorption coefficients, for colli-
sions in zero electric field, was developed in Ref. [28]. This
reference distinguished absorption due to chemical reactions,
inelastic collisions, or other exothermic processes that are
not observed in an experiment and accounted for an overall
loss. This is denoted by ya, the unobserved absorption co-
efficient, associated with the short-range probability p̄unobs.
This reference also distinguished absorption due to an indirect
process, the forming of a complex (often referred to as a
“sticky collision” due to the presence of a myriad of tetramer
resonances). This is denoted by xa, the indirect absorption co-
efficient, associated with the short-range probability p̄res. The
coefficients for these distinct processes are further combined
[28], and their phase shifts are added so that their scattering
matrices are multiplied. As a result, one obtains the overall
absorption coefficient za = (xa + ya)/(1 + xaya). For the sake
of simplicity, we will omit the channel index a for these
coefficients in the following.

We here adapt these ideas to nonzero electric fields E ,
as depicted schematically in Fig. 1. At large intermolecular
distance r, the zero-field channels (represented by horizontal
lines) are given by states with good quantum numbers of rota-
tion ni for each molecule, and partial wave l . In zero electric
field these are conveniently coupled to states of total angular
momentum J and projection M as |(n1n2)n12l; JM〉. The value
of M remains a good quantum number in an electric field but
all the others, in particular J , are good only in zero field.

When the field is turned on, we assume that the J mixing
at short range is solely due to the long-range physics, that is,
the electric field seen by the individual molecules and their
dipole-dipole interaction. We consider that the electric field is
small enough so that the short-range physics and the potential-
energy surface are not affected and remain unchanged through
the process. The lowest adiabatic channel becomes a super-
position of the zero-field channels, hence it consists of states
of different values of angular momentum J . This adiabatic

|Ωa(E)〉
0 + 0

0 + 1

1 + 1

n1, n2

|n12; JM〉

rcplx

y
x0(E)

x1(E)

x2(E)

x...(E)

ρ0

J = 0

ρ1

J = 1

ρ2

J = 2

..
.

r

V

FIG. 1. Schematic showing the concepts behind the model. At
long range the field mixes the scattering states with different n,
which allows for complex formation due to tetramer states at short
range corresponding to higher J than in the field-free case with
correspondingly higher DOS.

channel is denoted |�a(E )〉 in the figure. The coupling of this
initial scattering state to the different J states of the complex
is assumed to occur at the characteristic scale of the complex,
rcplx. Following our assumption and as we will see later using
a two-level model, the electric field at which multiple angular
momentum states become relevant is typically governed by
the field at which the dipole-dipole interaction is comparable
to the centrifugal energy at this radius, namely,

dind(E )2

4πε0r3
cplx

∼ h̄2

2μr2
cplx

. (3)

Here μ is the reduced mass of the scattering partners, and
the induced dipole moment dind is the expectation value of
the permanent dipole moment d at this electric field. For the
molecules relevant to experiments, as we will see, this field is
on the order of 100 V/cm.

Upon colliding the molecules can meet with various fates
which we regard as independent, in the same sense as in
Ref. [28]. In the figure this includes the possibility for un-
observed scattering processes with the coefficient y. It also
includes several processes where the molecules vanish due
to the formation of complexes with well-defined values of
J and density of states ρJ , coupled to the entrance channel
by the corresponding indirect absorption coefficients xJ (E ).
A critical assumption is that the resonant tetramer states with
different J values are not coupled by the electric field, due
to physical arguments given below. Therefore, in zero field
the molecules enter states of the complex with a well-defined
total angular momentum J , but in a field they can access ad-
ditional states, leading to increased opportunities for complex
formation via sticking.

Realizing the model therefore consists of three parts. First
we assess the influence of the electric field in mixing the
zero-field states into the adiabatic channel |�a(E )〉, next we
evaluate the indirect absorption coefficients xJ (E ) for this
state to the various angular momentum states of the complex,
and finally we combine these together to obtain the final
field-dependent absorption coefficient. As in this paper we
will consider the case of ultracold, endothermic ground-state
molecules, no chemical reactions or inelastic collisions will
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occur and there will be no coefficient y. Therefore, the z
coefficient reduces to the x coefficient and the short-range
absorption probability p̄abs responsible for the overall loss
identifies with p̄res.

III. CHANNEL MIXING DUE TO THE ELECTRIC FIELD

We consider identical diatomic molecules characterized by
their rotational states |n mn〉, with n = 0, 1, . . .. Electronic and
nuclear spins are considered as spectators, fixed to identical
values in each molecule and unchanged by the collision. At
ultralow temperatures, identical molecules in indistinguish-
able states collide in their lowest available partial wave: l = 0
for bosons and l = 1 for fermions. In the presence of an
electric field �E , states with different n are mixed, giving them
laboratory-frame, induced dipole moments. These moments
in turn couple different values of l . Scattering is therefore best
described using field dressed states, which we construct in
this section. The first part describes the rotational structure
of the individual molecules in an electric field; the second
part describes the orbital angular momentum coupling; the
third part uses the transformation from an uncoupled to a
coupled representation to determine the probability to find a J
component in the incident channel wave function for a given
electric field.

A. Field dressed states of the molecules

The transition from nonuniversal to universal loss occurs
at electric fields that are perturbative with respect to mixing
the rotational states of the molecules. As we are interested
in collisions of molecules in their ground states, we therefore
approximate the field dressed state as the n = 0 ground state,
perturbed by the first rotational excitation n = 1. These states
have the unperturbed energies 0 and 2B, respectively, where B
is the rotational constant. The electric-field Hamiltonian HS =
−�d · �E mixes these states. The expression of the Stark effect
in the rotational basis is given by [30]

〈n mn|HS|n′ m′
n〉 = − d E δmn,m′

n
(−1)mn

×
√

(2n + 1) (2n′ + 1)

(
n 1 n′
0 0 0

)

×
(

n 1 n′
−mn 0 m′

n

)
(4)

giving the Hamiltonian in matrix form, for mn = 0:[
0 −d E/

√
3

−d E/
√

3 2B

]
. (5)

The lowest eigenstate of this Hamiltonian is the molecular
ground state of interest, denoted by

|0̃〉 = α |0〉 + β |1〉 (6)

with

α = cos(θ/2), β = − sin(θ/2),

θ = arctan(d E/
√

3B). (7)

In the following, |0̃〉 is referred to as the dressed state (that is
dressed by the electric field), as opposed to the bare state |0〉
in zero electric field. The corresponding eigenenergy is

E0̃ = B −
√
B2 + (d E/

√
3)2. (8)

These expressions are valid as long as the next rotational
state n = 2 of rotational energy 6B remains only weakly cou-
pled to the n = 1 state of energy 2B. This is the case when
|〈1 0|HS|2 0〉| � 6B − 2B, that is, when d E/B � 2

√
15 	

7.75. As we will see, this limit is satisfied for the range for
fields over which the transition from nonuniversal to universal
behavior occurs.

B. Collisional channel in an electric field

Generally, the dipole-dipole interaction is usefully com-
puted in an uncoupled basis set

|n1 mn1〉 |n2 mn2〉 |l ml〉, (9)

where l is the orbital angular momentum and ml is its
laboratory-frame projection. This basis is denoted the com-
bined molecular state (CMS). It defines the bare channels, in
zero field, and its quantum numbers are good in zero field and
in the limit where the molecules are far apart. Because we
intend to connect the scattering states to states of the complex
that have particular values of total angular momentum J , it
will be useful at the last stage to recombine the CMS basis
into a total angular momentum representation

|(n1n2)n12l; JM〉 ≡ |λ; JM〉 (10)

by the usual rules of angular momentum coupling. Here λ

is introduced as a shorthand notation and a reminder of the
coupling scheme.

If the molecules are dipolar, matrix elements of the dipole-
dipole interaction in the uncoupled basis are given by the
general expression [30]

〈n1 mn1 , n2 mn2 , l ml |Vdd|n′
1 m

′
n1

, n′
2 m

′
n2

, l ′ m′
l〉 = −

√
30

d2

4πε0r3

1∑
mλ1 =−1

1∑
mλ2 =−1

2∑
mλ=−2

(−1)mn1 +mn2 +ml

(
1 1 2
0 0 0

)

×
√

(2n1 + 1) (2n′
1 + 1)

(
n1 1 n′

1
0 0 0

) (
n1 1 n′

1−mn1 mλ1 m′
n1

)

×
√

(2n2 + 1) (2n′
2 + 1)

(
n2 1 n′

2
0 0 0

)(
n2 1 n′

2−mn2 mλ2 m′
n2

)

×
√

(2l + 1) (2l ′ + 1)

(
l 2 l ′
0 0 0

) (
l 2 l ′

−ml −mλ m′
l

)
. (11)
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For collisions of molecules in the dressed ground state |0̃〉,
we require matrix elements of the dipole-dipole interaction in
the basis |0̃, 0̃, l〉. These are easily computed from the matrix
elements of this interaction in the lowest dressed state of the
molecule as described by Eq. (6). Note that, since the nuclear
spin is regarded as a spectator degree of freedom and identical
in both molecules, these states are already symmetric under
particle exchange for even l , and antisymmetric for odd l .

Finally, within the model we restrict attention to just the
two lowest relevant partial waves, and to components ml = 0
of these partial waves. This will afford an analytical rep-
resentation of the adiabatic channel and its relation to the
total angular momentum representation. This calculation is
carried out in Appendix A and summarized in the following
subsections.

1. Bosons

For identical bosons in indistinguishable states, the two
relevant channels are |0̃, 0̃, 0〉 and |0̃, 0̃, 2〉. In the absence of
the dipole-dipole interaction these have energies 2E0̃ −Cel

6 /r6

and 2E0̃ −Cel
6 /r6 + 6h̄2/2μr2, respectively, where Cel

6 is the
coefficient of the electronic contribution of the van der Waals
interaction [31] (Cel

6 is a positive number for molecules in their
ground state). Note that the rotational contribution of the van
der Waals coefficient is automatically included in our model,
as it arises from the perturbations due to the dipole-dipole
interaction. The coupling between these two channels in the
dressed basis is given by (see Appendix A)

〈0̃, 0̃, 0|Vdd|0̃, 0̃, 0〉 = 0, (12)

〈0̃, 0̃, 2|Vdd|0̃, 0̃, 2〉 = − d2

4πε0r3
4 α2β2 (4/21), (13)

and

〈0̃, 0̃, 2|Vdd|0̃, 0̃, 0〉 = 〈0̃, 0̃, 0|Vdd|0̃, 0̃, 2〉

= − d2

4πε0r3
4 α2β2 (2/ 3

√
5). (14)

The lowest eigenvalue of this 2×2 matrix defines the adiabatic
channel of interest, denoted

|�a(E )〉 ≡ |0̃, 0̃, 0̃〉. (15)

The third symbol 0̃ is a reminder that the partial wave l = 0
is no longer strictly good, but is dressed by the dipole inter-
action. This represents an adiabatic state the value of which
varies with r, as follows. Define E1 = 2E0̃ −Cel

6 /r6 and E2 =
2E0̃ −Cel

6 /r6 + 6h̄2/2μr2 − (d2/4πε0r3) 4 α2β2 (4/21). For
a given E , if E2 � E1, this channel is given by

|�a(E )〉 = cos(η/2) |0̃, 0̃, 0〉 − sin(η/2) |0̃, 0̃, 2〉 (16)

and if E2 < E1 it is given by

|�a(E )〉 = − sin(η/2) |0̃, 0̃, 0〉 + cos(η/2) |0̃, 0̃, 2〉, (17)

with mixing angle

η = arctan

{
sin2 θ (4/ 3

√
5)

|6 r̃ − sin2 θ (4/21)|
}
. (18)

We used the fact that 4 α2β2 = sin2 θ . The rescaled length

r̃ = r

add
(19)

has been introduced with

add = 2μ

h̄2

(
d2

4πε0

)
(20)

being the characteristic dipole-dipole length [32]. For the
case of nonreactive bi-alkali-metal dipolar molecules, add ∼
[105 − 106] a0 [33]. The couplings are estimated at r = rcplx.
A typical value for the length scale of the complex is rcplx ∼
5 Å ∼ 10 a0 [12,34–36]. Then, r̃ ∼ [10−5–10−4]. |�a(E )〉 in
Eq. (15) is the expression of the lowest dressed channel of the
system for bosonic molecules within the model.

2. Fermions

We proceed similarly for identical fermions. The two rel-
evant channels are now |0̃, 0̃, 1〉 and |0̃, 0̃, 3〉, the energies of
which, exclusive of the dipole-dipole interaction, are 2E0̃ −
Cel

6 /r6 + 2h̄2/2μr2 and 2E0̃ −Cel
6 /r6 + 12h̄2/2μr2. The cou-

pling matrix elements are (see Appendix A)

〈0̃, 0̃, 1|Vdd|0̃, 0̃, 1〉 = − d2

4πε0r3
4 α2β2 (4/15), (21)

〈0̃, 0̃, 3|Vdd|0̃, 0̃, 3〉 = − d2

4πε0r3
4 α2β2 (8/45), (22)

and

〈0̃, 0̃, 3|Vdd|0̃, 0̃, 1〉 = 〈0̃, 0̃, 1|Vdd|0̃, 0̃, 3〉

= − d2

4πε0r3
4 α2β2 (2

√
3 / 5

√
7). (23)

The new eigenstate of the lowest channel is then represented
by

|�a(E )〉 ≡ |0̃, 0̃, 1̃〉. (24)

Proceeding as before, define E1 = 2E0̃ −Cel
6 /r6 +

2h̄2/2μr2 − (d2/4πε0r3) 4 α2β2 (4/15) and E2 = 2E0̃ −
Cel

6 /r6 + 12h̄2/2μr2 − (d2/4πε0r3) 4 α2β2 (8/45). For a
given E , if E2 � E1, the channel is given by

|�a(E )〉 = cos(η/2) |0̃, 0̃, 1〉 − sin(η/2) |0̃, 0̃, 3〉 (25)

and if E2 < E1 it is given by

|�a(E )〉 = − sin(η/2) |0̃, 0̃, 1〉 + cos(η/2) |0̃, 0̃, 3〉, (26)

with mixing angle

η = arctan

{
sin2 θ (4

√
3 / 5

√
7)

|10 r̃ + sin2 θ (4/45)|
}
. (27)

Similarly, |�a(E )〉 in Eq. (24) is the expression of the lowest
dressed channel of the system for fermionic molecules within
the model.

C. Probability to find a J component

From these expressions for the lowest dressed channels in
the uncoupled representation, one can transform them into the
coupled, total angular momentum representation. It is then
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FIG. 2. Probabilities PB
J for bosons (top panel) and PF

J for
fermions (bottom panel) vs dE/B at a fixed value of r̃ = 10−5.
The contributions of J = 0, 1, 2, 3, 4, 5 are plotted, respectively, in
black, red, blue, green, pink, and orange. The model considers only
the projection M = 0. The insets provide a close-up of the figure
at low values of dE/B. Typically, one unit of dE/B corresponds
to an electric field of E ∼ 0.8 kV/cm, E ∼ 1.2 kV/cm, and E ∼
1.97 kV/cm for RbCs, NaRb, and NaK, respectively [33].

straightforward to extract the probability PJ to find a |J M〉 =
|J 0〉 component contained in the wave function |�a(E )〉 of
the dressed channel when an electric field is turned on. This
probability is evaluated at the specific value of r̃ = rcplx/add,
that is, at a position around the characteristic scale of the
tetramer complex. This probability is given by

PJ (E ) =
∑

(n1,n2 ) n12, l

|〈(n1, n2) n12 l ; J 0|�a(E )〉|2

=
∑

λ

|〈λ; J0|�a(E )〉|2 (28)

where the sum runs over all combinations of (n1, n2) n12, l
consistent with the given J under angular momenta couplings.
The expressions of the probabilities PB,F

J (E ) for each J for
bosons or fermions are provided in Appendix C. Note that
within the restrictions of the model n = 0, 1 and l = 0, 2
implies J � 4 for bosons, while l = 1, 3 implies J � 5 for
fermions.

We plot these probabilities in Fig. 2 for bosons (top panel)
and for fermions (bottom panel) for a fixed value of r̃ = 10−5,
which is a typical value for nonreactive bi-alkali-metal dipolar
molecules (see above). As can be seen in the inset of the
figures and from the equations in Appendix C, the J = 0
for bosons (J = 1 for fermions) is the main and only con-
tribution when E = 0, as expected for a l = 0 s-wave (l = 1
p-wave) collision in the absence of an electric field. But once
E is turned on, the J = 2 (J = 3) component increases and
becomes of similar magnitude with the J = 0 (J = 1) contri-
bution. Therefore, a small applied electric field is sufficient
to significantly couple the rotational n1 and n2 and orbital l
angular momenta of the system, creating other possible con-
tributions of J to the one dominating at zero electric field.
As the density of states of tetramer bound states at short
range depends on the value of the total angular momentum
J [37], this figure shows qualitatively why such a small field
is required for the nonuniversal to universal loss transition to
occur.

Note that there is a difference between the two types of
species. While for the bosonic case the probability curves
cross for J = 0 and 2, the corresponding crossing of J = 1 and
3 does not occur for fermions. This is due to the fact that for
bosons E2 − E1 = (d2/ 4πε0r3) [6 r/add − sin2 θ (4/21)] can
become negative for a particular electric field E = E∗ and/or
a position r∗ and then the lowest dressed eigenstate changes
its main character, from |0̃, 0̃, 0〉 to |0̃, 0̃, 2〉 in Eq. (15). If we
fix r 	 rcplx, PB

2 becomes greater than PB
0 at a given electric

field, as seen in Fig. 2. The corresponding value of d E∗/B
is the one that satisfies 6 r/add = 6 r̃ = sin2 θ (4/21), that
is, d E∗/B = √

3 tan(arcsin
√

63 r̃/2). Here, for r̃ = 10−5,
d E∗/B 	 0.03 which is in agreement with the crossing seen
in the inset. This is not the case for fermions as E2 − E1 =
(d2/ 4πε0r3) [10 r/add + sin2 θ (4/45)] is always positive and
the main character of the lowest dressed eigenstate remains
|0̃, 0̃, 1〉 all along, so that PF

1 remains greater than PF
3 .

IV. COUPLING TO THE COLLISION COMPLEX

The probability PJ (E ) for the incident molecules to find a
collision complex of angular momentum J plays a critical role
in the short-range probability p̄res, as we now explore. We
begin by reviewing the zero-field case of our recent unified
model [28]. In zero electric field, asymptotic states of the
scattering wave function consist of the terms∣∣
JM

λ

〉 = r−1 ψJM
λ (r) |λ; JM〉, (29)

where ψJM
λ is the solution to the radial Schrödinger equation

in channel |λ; JM〉, at the total energy E . Each bound state
of the complex is a highly multichannel wave function, de-
noted μ (not to be mistaken with the reduced mass here) but
expanded into a convenient channel basis |i〉, as

∣∣�JM
μ

〉 = r−1
∑
i

φJM
i (r) |i; JM〉. (30)

This state of course also preserves J in zero electric field.
Coupling between the continuum states and the states of the
complex is mediated by matrix elements of a potential energy
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V (r), as 〈

JM

λ

∣∣V (r)
∣∣�J ′M ′

μ

〉 ≡ WJM
λμ δJJ ′δMM ′ . (31)

Writing this more completely we have

WJM
λμ =

∫
dr ψJM∗

λ (r)
∑
i

φJM
i (r) 〈λ; JM|V (r)|i; JM〉. (32)

In the statistical theory of resonant states these matrix
elements are random variables sampled from the Gaussian
distribution characterized by a variance, which becomes a
parameter of the theory. For chaotic scattering of molecules
it is known that, separately, the radial coupling functions
〈λ; JM|V (r)|i; JM〉 are Gaussian distributed [38]. In addition
to this, the multiple radial integrals in Eq. (32) consist of
integrals over oscillating functions and can be considered
to merely contribute to the overall distribution. As such we
assume that there is no correlation between the various states
λ and μ. Within the statistical model we therefore follow
Ref. [39] and treat the matrix elements as Gaussian distributed
random variables, characterized by a mean coupling constant〈

WJM
λμ WJM

νλ′
〉 = δμνδλλ′ (νλ;JM )2

≡ δμνδλλ′ν2
J . (33)

The last line incorporates another approximation, that the
variance is independent of the bare open channel. The delta
functions mean that the couplings between states with differ-
ent quantum numbers are uncorrelated. These νJ ’s determine
the indirect absorption coefficient

xJ = π2ν2
J

dJ
, (34)

where dJ is the mean spacing between levels of the com-
plex with angular momentum J , corresponding to a density
of states ρJ = 1/dJ . Within the statistical theory, xJ is the
coefficient used to assess the short-range probability p̄res [28].

When the electric field is nonzero, we must assess the
influence of the field on both the states of the incident channel
and the complex. Here we make a key assumption, that the
states of the complex |�JM

μ 〉 remain states of good angular
momentum, and that, although their energy levels and matrix
elements can change, these changes do not affect the overall
mean spacing dJ or the strength of the coupling ν2

J . This
assumption is justified by detailed studies of the potential-
energy surface for the reactive KRb system [34,35] as well
as the nonreactive NaK [36] and NaRb [12] systems. The
trends seen there can be extended to all other combinations
of bi-alkali-metal molecules [40]. Specifically, the collisional
entrance channel between two molecules of type AB + AB
correlates to two geometries of D2h symmetries (D2h-I, D2h-II)
of the A2B2 tetratomic bound state. These symmetries are
quite special as they equally put two similar atoms from each
side of the x and y axis in the plane where the tetramer
stands, resulting in an equal but opposed electronic charge
distribution of those atoms, and an automatic cancellation of
the overall dipole moment of the tetramer in its body-fixed
frame. Note that for NaK [36] a C2h symmetry was found for
the second minimum instead of the D2h-II. But similar argu-
ments still hold. Therefore, given that the entrance channel is
AB + AB, we assume the tetramer bound states are not mixed

by the field because there is no permanent dipole moment for
this geometry. On the other hand, having crossed the transition
state, the tetramer can find itself in a state of Cs symmetry,
where this cancellation of dipoles does not hold. We therefore
assume that the act of complex formation represented by the
coefficients xJ implicitly represents the initial stages of com-
plex forming in the D2h region of the potential energy surface,
with the Cs region relevant to the further time evolution of
the complex. The limitations of these assumptions should of
course be tested in further elaborations of the present theory.

The entire meaningful influence of the electric field is
therefore assumed to be its influence on the incident channel
|
a(E )〉. This state is given by

|
a(E )〉 = r−1 ωa(E ; r) |�a(E )〉 (35)

where |�a(E )〉 is the adiabatic wave function defined in the
previous section, and ωa(r) is the radial function in the corre-
sponding adiabatic potential. The absorption probability from
the adiabatic channel to the states of the complex is again
governed by the coupling matrix elements

WJM
aμ (E ) = 〈
a(E )|V (r)

∣∣�JM
μ

〉
(36)

=
∫

dr ωa(E ; r)
∑
i

φJM
i (r) 〈�a(E )|V (r)|i; JM〉

where we have used the assumption that the states of the
complex are the same as in zero field. Because the adiabatic
function ωa is of the same magnitude as the diabatic radial
functions ψλ in Eq. (32), the influence of the radial functions
on the statistics of the matrix elements is the same for the
diabatic function as for the adiabatic functions.

The change in the statistics of the matrix elements W
resides therefore entirely in the channel coupling matrices
〈
a(E )|V (r)|�JM

μ 〉. Setting M = 0 for the model at hand, we
have

WJ0
aμ (E ) =

∑
λ,J ′,M ′

〈

a(E )

∣∣
J ′M ′
λ

〉 〈

J ′M ′

λ

∣∣V (r)
∣∣�JM

μ

〉

=
∑

λ

〈�a(E )|λ; J0〉WJ0
λμ . (37)

Using the statistical properties of the zero-field matrix ele-
ments WJM

λμ from Eq. (33), we find the variance of the matrix
elements at nonzero field

〈
WJ0

aμ (E )WJ0
νa (E )

〉
=

∑
λλ′

〈�a(E )|λ; J0〉 〈
WJ0

λμ WJ0
νλ′

〉 〈λ′; J0|�a(E )〉

=
∑

λ

|〈�a(E )|λ; J0〉|2 ν2
J δμν δλλ′

= PJ (E ) ν2
J δμν (38)

in terms of PJ (E ), the probability for the incident channel to
enter the bound-state manifold with total angular momentum
J , as defined in Eq. (28).
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V. FIELD EVOLUTION OF THE COEFFICIENTS xJ

Based on the preceding, we can now define the approxi-
mate electric-field-dependent indirect absorption coefficient

xJ (E ) = π2 ν2

dJ
PJ (E ) (39)

where as a final approximation we have assumed the variance
ν2
J = ν2 is independent of the total angular momentum, which

we justify by the usual statistical assumption of quantum
chaos [39] that all coupling terms have the same magni-
tude independent of the quantum numbers. As we consider
the ultracold quantum regime for ground rotational state
molecules n1 = n2 = 0, J can only take two values at zero
field: J = 0 (J = 1) for identical and indistinguishable bosons
(fermions), due to the s-wave l = 0 (p-wave l = 1) orbital
angular momenta. We note that this value J0 is the unique and
well-defined value of J when the electric field is zero. Then

xJ (E )

∣∣∣∣
E=0

= π2 ν2

dJ0

δJ,J0 ≡ xJ0 (0) (40)

as PJ (E ) −→
E→0

δJ,J0 , as can be seen in Eq. (C1), Eq. (C2) and

Fig. 2. Using Eq. (40) in Eq. (39), we get

xJ (E ) = xJ0 (0)
dJ0

dJ
PJ (E ) = xJ0 (0)

ρJ

ρJ0

PJ (E ). (41)

This is our main result. It provides insight into the way in
which complexes of different total angular momentum J are
populated, by extrapolating in a regular way from the result at
zero field. The coefficient xJ0 (0) is extracted from experiments
performed at zero electric fields. For example, the best-fit
values are 0.5 [2,21] for NaRb and 0.26 [6] for RbCs. We
now focus explicitly on the two possible cases of bosonic and
fermionic systems.

A. The x coefficient for bosons

In this case, J0 = 0. Noting that ρJ/ρJ0 = 2J + 1 for a
given M as detailed in Eq. (36) of Ref. [37] or as also found
by looking at the ratio of the density of states in Ref. [10], we
find finally

xJ (E ) = x0(0) (2J + 1)PJ (E ). (42)

A priori, we do not sum these coefficients as the J compo-
nents are not good quantum numbers. Instead, we have to
combine the different xJ using similar arguments given in
Eq. (55) of Ref. [28]. As we are interested in the change of
the x coefficient for small values of the electric field, we can
simplify the resulting combination. By looking at Fig. 2 for
the bosonic case it is clear that we can focus on the J = 0 and
2 components at small electric fields as they are the dominant
terms. The total x coefficient is thus given by

x(E ) = x0(E ) + x2(E )

1 + x0(E ) x2(E )
= x0(0) [P0(E ) + 5P2(E )]

1 + 5 [x0(0)]2 P0(E )P2(E )
.
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0.5
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J=2
J=3
J=4

bosons ; r ~=10
-5

 ; M=0

ε/Bd

) 
/ x

0(0
)

ε
x J 

(

J=0

J=2

J=1 J=3 J=4

FIG. 3. The quantity xJ (E )/x0(0) as a function of dE/B at a value
of r̃ = 10−5, for the different allowed values of J with M = 0, for the
bosonic system.

B. The x coefficient for fermions

In this case, J0 = 1. Noting that ρJ/ρ1 = (ρJ/ρ0)(ρ0/ρ1) =
(2J + 1)(1/3), we find finally

xJ (E ) = x1(0)

(
2J + 1

3

)
PJ (E ). (43)

Using a parallel argument to above, looking at Fig. 2 for the
fermionic case it is clear that we can focus on the J = 1 and
3 components at small electric fields as they are the dominant
terms. The total x coefficient from the combination procedure
is thus given by

x(E ) = x1(E ) + x3(E )

1 + x1(E ) x3(E )
= x1(0) [P1(E ) + 7/3P3(E )]

1 + 7/3 [x1(0)]2 P1(E )P3(E )
.

We plot the quantities xJ (E )/x0(0) from Eq. (42) [xJ (E )/x1(0)
from Eq. (43)], in Fig. 3 (Fig. 4), at a value of r̃ = 10−5, for
the different allowed values of J with M = 0. The curves for
J = 0, 2 (J = 1, 3) are dominant in this range of dE/B so that
one barely sees the other components in the figures. The trend
of the curves is similar to the trend of the PB,F

J (E ) ones, but
they include now the J-dependent density of states. Because
of this interplay, x2(E )/x0(0) becomes five times larger than
x0(E )/x0(0) for the bosons while x3(E )/x1(0) and x1(E )/x1(0)
are about similar magnitudes.

0.00 0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1.0

J=0
J=1
J=2
J=3
J=4
J=5
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-5

 ; M=0

ε/Bd

) 
/ x

1(0
)

ε
x J 

(

J=1 J=3

J=0 J=2 J=4 J=5

FIG. 4. Same as Fig. 3 but for the fermionic system.
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FIG. 5. Probability at short-range p̄res as a function of dE/B for
the bosonic system at a value of r̃ = 10−5, for different zero-field
values of x0(0).

C. The absorption probability at short range

Using Eqs. (43) and (44), as mentioned earlier, the cor-
responding short-range absorption probability due to the
resonances in the tetramer complex region for both the
bosonic and fermionic cases is given by

p̄res = 4 x(E )

[1 + x(E )]2
≡ p̄abs. (44)

When this probability is unity, the system is said to be univer-
sal as it does not depend at all on the second QDT parameter
s, responsible for the scattering phase shift at short range
[29]. We can extend a somewhat arbitrary range of univer-
sality for which the coefficient s provides only very small
changes to the scattering observables [41]. One can choose,
for example, the range of universality 0.95 � p̄res � 1 with
a corresponding range 0.64 � x � 1.57. Then, when the ex-
tracted field-dependent x(E ) coefficient lies within this range,
it is expected that the field-dependent s(E ) coefficient plays an
insignificant role in the dynamics.

In Fig. 5 (Fig. 6), we plot p̄res for different zero-field values
of x0(0) [x1(0)], for the bosonic (fermionic) systems. We em-
phasize that these are general and adimensional conclusions
applicable to any similar dipolar system. In Sec. VI we will
discuss their application to current systems of experimental
interest.

For the bosonic system, for the values of x0(0) = 0.1, 0.2,
one can see that the zero-field behavior is nonuniversal with
p̄res < 0.6. In-field, p̄res increases and reaches values p̄res 	
0.9 or smaller, still not considered as the universal regime. For

0.00 0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8

1.0

p re
s

x1(0)=0.1
x1(0)=0.2
x1(0)=0.3
x1(0)=0.4
x1(0)=0.5

fermions ; r ~=10
-5

 ; M=0

|

εd /B

0.1

0.2

0.30.4

0.5

0.00 0.05 0.10 0.15 0.20

0.94

0.96

0.98

1.00

p re
s

x1(0)=0.6
x1(0)=0.7
x1(0)=0.8
x1(0)=0.9
x1(0)=1.0

fermions ; r ~=10
-5

 ; M=0

|

d /Bε

0.6

0.70.8

0.9

1.0

FIG. 6. Same as Fig. 5 but for the fermionic system, for different
zero-field values of x1(0).

the values x0(0) = 0.3, 0.4, 0.5, 0.6 at zero field, the behavior
could be qualified as not yet universal with p̄res < 0.95. In-
field, however, p̄res reaches values near unity and the behavior
is universal. For the even larger values x0(0) � 0.7, p̄res �
0.95 for zero field and p̄res > 0.97 in-field, the behavior is
then universal in both cases. Note that when p̄res starts very
high, it may diminish slightly as the field is turned on. This is
due to the nonmonotonic dependence of p̄res on x in Eq. (44).
Nevertheless, the trend is clear: those collisions that are not
universal in zero field tend to become more universal when
the field is applied, while those that start universal in zero field
remain so.

A similar situation is seen for fermionic molecules. For
the values of x1(0) = 0.1, 0.2, 0.3, 0.4, one can see that both
the zero- and in-field behaviors are nonuniversal with p̄res �
0.9. For x1(0) = 0.5, 0.6, p̄res < 0.95 at zero field, not yet
considered as the universal regime. But in-field, p̄res > 0.95
and the universal regime is reached. Finally for x1(0) � 0.7,
p̄res � 0.95 for zero field and p̄res > 0.98 in-field. Then the
zero and in-field behaviors, as for bosons, become universal.

VI. APPLICATION TOMOLECULES
OF EXPERIMENTAL INTEREST

A. Bosonic molecules

We turn to two bosonic systems of current experimen-
tal interest: collisions of 23Na 87Rb + 23Na 87Rb [2] and of
87Rb 133Cs + 87Rb 133Cs [6], for which zero-field values of
x0(0) have been extracted from experimental observations.
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FIG. 7. Absorption coefficient at short-range x as a function of E
for the bosonic 23Na 87Rb + 23Na 87Rb system at a zero-field value
x0(0) = 0.5 extracted from experimental observations [2,21]. The
red, black, green, blue, and pink curves correspond to a characteristic
position r = rcplx = 1, 5, 10, 20, 50 Å where the tetramer complex
stands. Increasing values of rcplx correspond to curves going from the
upper one to the lower one. The range 0.64 � x � 1.57, where the
corresponding short-range probability 0.95 � p̄res � 1 is considered
universal, is indicated as dashed lines.

We plot in Figs. 7 and 8 the value of x as a function of the
electric field for initial values x0(0) = 0.5 [2,21] for NaRb and
x0(0) = 0.26 [6] for RbCs. This is done at different positions
r = rcplx = 1, 5, 10, 20, 50 Å. The typical characteristic size
of an alkali-metal tetramer complex in its ground state is
around rcplx 	 5–10 Å [12,34–36,40] so that the black and
green curves correspond to a realistic estimation (within the
scope of the model) of what could be the value of x. For
indication, the limits 0.64 � x � 1.57 where the universal
regime 0.95 � p̄res � 1 is reached are displayed as dashed
lines. From these curves, it is estimated that the NaRb and
RbCs systems go from nonuniversal behavior at zero field
to universal behavior in-field, within a small range of elec-
tric field, from 0 to around 50 V/cm for NaRb and from 0
to around 100 V/cm for RbCs (this is taken more or less
when the black or green curves cross the dashed line). This
is a rapid change from nonuniversal to universal behavior
and future experimental investigations could eventually probe
this small range of electric field, to observe this change of
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FIG. 8. Same as Fig. 7 but for the bosonic 87Rb 133Cs +
87Rb 133Cs system at a zero-field value x0(0) = 0.26 extracted from
experimental observations [6].
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FIG. 9. Same as Fig. 7 but for the fermionic 23Na 40K + 23Na 40K
system at a zero-field value x1(0) = 0.5, an upper-bound value of
the coefficient that can be extrapolated from available experimental
observations [9].

behavior by extracting the x coefficient for each electric field.
For NaRb, the estimate for the transition seems consistent
with the experimental observation [3]. For RbCs, as there is
not yet an experimental observation in an electric field, the
present model predicts that the system is universal for fields
higher than 100 V/cm, even though the zero-field behavior is
nonuniversal [6].

B. Fermionic molecules

We also apply our model to a fermionic system 23Na 40K +
23Na 40K of current experimental interest [9]. Although it is
not possible to extract a unique zero-field value x1(0) from the
experimental data, a QDT analysis [29] is still able to provide
a bound on the QDT parameters s and x. To fit the experimen-
tal molecular loss slope of βls/T ∼ 13. 10−11 cm3/μK/s from
Ref. [9], it is found that x1(0) � 0.5 for a range 1.6 � s � 2.7,
as illustrated in Appendix D.

We use the upper limit x1(0) = 0.5 as initial value and
we plot in Fig. 9 the value of x as a function of the electric
field. The limit of the universal range is reached for a field of
≈300 V/cm when we choose rcplx = 5 Å and this would agree
with the experimental results. But in contrast with the bosonic
systems studied above where the x coefficients are well within
the range of universality, the fermionic NaK system remains
at the limit of universality. Recall that we choose a lower
universal limit of p̄res = 0.95 and this is somewhat arbitrary.

Interestingly, the experimental data of fermionic NaK (see
Fig. 3 in Ref. [9]) show a universal character in the sense
that they do not present any oscillations as a function of the
electric field (a feature that would have shown that deviation
of universality is reached [41]). But meanwhile, the overall
background value of the loss rate coefficient seems to be
shifted compared to the theoretical universal prediction. Both
such conditions could be a feature that the system is within
the limit of universality, as clearly displayed in Fig. 9 here.

The fit to the experimental data just provides an upper limit
to x1(0) and we took this upper limit as an example just above.
If this value turns out to be less than this upper limit, that
is, x1(0) < 0.5, the x coefficient in the electric field will be
below the range of universal character, as can be seen in the
upper panel of Fig. 6. For example, for the four curves where
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x1(0) � 0.4, p̄res � 0.92, which is deviating from universality.
In that case, our model will not be able to explain why the
fermionic NaK system is near universal in an electric field in
the experiment.

Therefore, future experiments, where the small electric-
field range of these bosonic and fermionic systems is finely
probed and the value x(E ) is extracted with a high resolution,
will certainly shed light on the collision dynamics of such
systems, and should be able to validate the present model or
not.

C. Effect of the size of the complex

Finally, we report in Figs. 7–9 the effect of the tetramer
complex range, by plotting the x coefficient for additional
values of rcplx = 1, 20, 50 Å. While these values are a bit
less realistic and more extreme, this illustrates the effect of
a smaller or bigger size of the complex on the range of the
electric field in which the systems go from nonuniversal to
universal. Typically, for a smaller (bigger) complex size, this
range becomes narrower (wider). rcplx can eventually become
an adjusting parameter in future experiments to fit the place
where the sharp electric-field feature of the universal character
occurs.

VII. CONCLUSION

We have proposed a theoretical model based on simple
analytic formulas to estimate the probability of absorption
at short range for dipolar collisions in electric fields due to
complex formation. The model computes the amount of a J
component in the total wave function of a dimer-dimer system
when an electric field is turned on, assuming that only the
long-range physics is responsible for this J mixing, given the
small electric fields at which it occurs. This is combined with
the density of states of the tetramer complex with a particular
J to give the QDT x coefficient that determines the probability
of absorption due to complex formation at short range, and

thus determines the scattering observables, such as the cross
sections and rate coefficients. We treated both bosonic and
fermionic cases and applied the model to three systems of
experimental interest. This model shows that even though a
system is nonuniversal in the absence of an electric field, it
can be universal as soon as a small electric field is applied.
The range of electric fields over which this transition occurs
is qualitatively related, within this model, to the physical esti-
mate of the size of the tetramer complex. Future experiments
on nonreactive ultracold molecular collisions in electric fields
would then be important to validate this model and to explain
this change of universal character in collision of ultracold
nonreactive molecules.

Beyond the specific assumptions employed in the model
(notably that the molecules make a choice about which total-J
collision complex to enter upon reaching a somewhat arbi-
trary intermolecular distance) lies the clear qualitative notion
that the rates of complex formation should depend on tun-
able external parameters, the electric field in this case. We
are therefore proposing here a kind of spectroscopy of the
complex, where its properties and its coupling to the initial
molecular channels can be varied and studied under controlled
conditions. More detailed theoretical investigations will of
course need to be performed to understand the outcomes
of such spectroscopy. Still, this indirect probe may provide
valuable insights into the few-body physics involved, in cases
where the energy levels of the complex are too dense to
resolve explicitly by conventional means.
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APPENDIX A: PERTURBATIVE EVALUATION OF THE CHANNELS IN THE UNCOUPLED REPRESENTATION

1. For indistinguishable bosons

Taking mn1 = mn2 = ml = m′
n1

= m′
n2

= m′
l = 0, and taking l = 0, 2, Eq. (11) simplifies. We have

〈n1 0, n2 0, 0 0|Vdd|n′
1 0, n′

2 0, 0 0〉 = 0,

〈n1 0, n2 0, 2 0|Vdd|n′
1 0, n′

2 0, 2 0〉 = −
√

30
d2

4πε0r3

(
1 1 2
0 0 0

)

×
√

(2n1 + 1) (2n′
1 + 1)

(
n1 1 n′

1
0 0 0

)2 √
(2n2 + 1) (2n′

2 + 1)

(
n2 1 n′

2
0 0 0

)2 √
5
√

5

(
2 2 2
0 0 0

)2

,

and

〈n1 0, n2 0, 0 0|Vdd|n′
1 0, n′

2 0, 2 0〉 = 〈n1 0, n2 0, 2 0|Vdd|n′
1 0, n′

2 0, 0 0〉 = −
√

30
d2

4πε0r3

(
1 1 2
0 0 0

)

×
√

(2n1 + 1) (2n′
1 + 1)

(
n1 1 n′

1
0 0 0

)2 √
(2n2 + 1) (2n′

2 + 1)

(
n2 1 n′

2
0 0 0

)2 √
5

(
0 2 2
0 0 0

)2

.
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Using Eq. (6), we find after some developments the expressions of the dipole-dipole interaction between the intermediate
channels |0̃, 0̃, l〉 involved in the paper:

〈0̃, 0̃, 0|Vdd|0̃, 0̃, 0〉 = 0,

〈0̃, 0̃, 2|Vdd|0̃, 0̃, 2〉 = −
√

30
d2

4πε0r3

(
1 1 2
0 0 0

){
α2β2

√
3
√

3
√

5
√

5

(
0 1 1
0 0 0

)2 (
0 1 1
0 0 0

)2 (
2 2 2
0 0 0

)2

+ α2β2
√

3
√

3
√

5
√

5

(
1 1 0
0 0 0

)2 (
1 1 0
0 0 0

)2 (
2 2 2
0 0 0

)2

+ α2β2
√

3
√

3
√

5
√

5

(
0 1 1
0 0 0

)2 (
1 1 0
0 0 0

)2 (
2 2 2
0 0 0

)2

+ α2β2
√

3
√

3
√

5
√

5

(
1 1 0
0 0 0

)2 (
0 1 1
0 0 0

)2 (
2 2 2
0 0 0

)2}

= − d2

4πε0r3
4 α2β2 (4/21),

and

〈0̃, 0̃, 0|Vdd|0̃, 0̃, 2〉 = 〈0̃, 0̃, 2|Vdd|0̃, 0̃, 0〉 = −
√

30
d2

4πε0r3

(
1 1 2
0 0 0

)

×
{

α2β2
√

3
√

3
√

5

(
0 1 1
0 0 0

)2 (
0 1 1
0 0 0

)2 (
0 2 2
0 0 0

)2

+ α2β2
√

3
√

3
√

5

(
1 1 0
0 0 0

)2 (
1 1 0
0 0 0

)2 (
0 2 2
0 0 0

)2

+ α2β2
√

3
√

3
√

5

(
0 1 1
0 0 0

)2 (
1 1 0
0 0 0

)2 (
0 2 2
0 0 0

)2

+ α2β2
√

3
√

3
√

5

(
1 1 0
0 0 0

)2 (
0 1 1
0 0 0

)2 (
0 2 2
0 0 0

)2}

= − d2

4πε0r3
4 α2β2 (2/ 3

√
5).

We end up with a 2 × 2 matrix[
E1 W
W E2

]
=

[
2E0̃ − Cel

6
r6 − d2

4πε0r3 4 α2β2 (2/ 3
√

5)

− d2

4πε0r3 4 α2β2 (2/ 3
√

5) 2E0̃ − Cel
6
r6 + 6h̄2

2μr2 − d2

4πε0r3 4 α2β2 (4/21)

]

which can be easily diagonalized and leads to the corresponding lowest eigenstate, noted |�(E )〉 = |ñ1, ñ2, l̃〉 and expressed as
a function of |ñ1, ñ2, l〉. For a given E , if E2 � E1, it is given by

|�(E )〉 = |0̃, 0̃, 0̃〉 = cos(η/2) |0̃, 0̃, 0〉 − sin(η/2) |0̃, 0̃, 2〉,
and if E2 < E1 it is given by

|�(E )〉 = |0̃, 0̃, 0̃〉 = − sin(η/2) |0̃, 0̃, 0〉 + cos(η/2) |0̃, 0̃, 2〉
with η defined in Eq. (18). From the expression of |ñ1, ñ2, l〉 as a function of |n1, n2, l〉 using Eq. (6), we have

|0̃, 0̃, 0〉 = cos2(θ/2) |0, 0, 0〉 − 1
2 sin θ |0, 1, 0〉 − 1

2 sin θ |1, 0, 0〉 + sin2(θ/2) |1, 1, 0〉,
|0̃, 0̃, 2〉 = cos2(θ/2) |0, 0, 2〉 − 1

2 sin θ |0, 1, 2〉 − 1
2 sin θ |1, 0, 2〉 + sin2(θ/2) |1, 1, 2〉.

The kets |n1, n2, l〉 as a function of the kets |(n1, n2) n12 l ; J M〉 are given in Eq. (B3) below.

2. For indistinguishable fermions

We take mn1 = mn2 = ml = m′
n1

= m′
n2

= m′
l = 0, and l = 1, 3. We only consider the attractive, head-to-tail approach ml =

0 of the l = 1 p-wave collision. The side-by-side approach ml = ±1 will give a repulsive interaction as the electric field is

013310-11



QUÉMÉNER, CROFT, AND BOHN PHYSICAL REVIEW A 105, 013310 (2022)

increased and its contribution to the dynamics can be ignored as a good approximation [25]. Equation (11) simplifies and we
have

〈n1 0, n2 0, 1 0|Vdd|n′
1 0, n′

2 0, 1 0〉 = −
√

30
d2

4πε0r3

(
1 1 2
0 0 0

)√
(2n1 + 1) (2n′

1 + 1)

(
n1 1 n′

1
0 0 0

)2

×
√

(2n2 + 1) (2n′
2 + 1)

(
n2 1 n′

2
0 0 0

)2 √
3
√

3

(
1 2 1
0 0 0

)2

,

〈n1 0, n2 0, 3 0|Vdd|n′
1 0, n′

2 0, 3 0〉 = −
√

30
d2

4πε0r3

(
1 1 2
0 0 0

)√
(2n1 + 1) (2n′

1 + 1)

(
n1 1 n′

1
0 0 0

)2

×
√

(2n2 + 1) (2n′
2 + 1)

(
n2 1 n′

2
0 0 0

)2 √
7
√

7

(
3 2 3
0 0 0

)2

,

and

〈n1 0, n2 0, 1 0|Vdd|n′
1 0, n′

2 0, 3 0〉 = 〈n1 0, n2 0, 3 0|Vdd|n′
1 0, n′

2 0, 1 0〉

= −
√

30
d2

4πε0r3

(
1 1 2
0 0 0

)√
(2n1 + 1) (2n′

1 + 1)

(
n1 1 n′

1
0 0 0

)2

×
√

(2n2 + 1) (2n′
2 + 1)

(
n2 1 n′

2
0 0 0

)2 √
3
√

7

(
1 2 3
0 0 0

)2

.

Using Eq. (6), we find then for the intermediate channels |0̃, 0̃, l〉

〈0̃, 0̃, 1|Vdd|0̃, 0̃, 1〉 = −
√

30
d2

4πε0r3

(
1 1 2
0 0 0

){
α2β2

√
3
√

3
√

3
√

3

(
0 1 1
0 0 0

)2 (
0 1 1
0 0 0

)2 (
1 2 1
0 0 0

)2

+ α2β2
√

3
√

3
√

3
√

3

(
1 1 0
0 0 0

)2 (
1 1 0
0 0 0

)2 (
1 2 1
0 0 0

)2

+ α2β2
√

3
√

3
√

3
√

3

(
0 1 1
0 0 0

)2 (
1 1 0
0 0 0

)2 (
1 2 1
0 0 0

)2

+ α2β2
√

3
√

3
√

3
√

3

(
1 1 0
0 0 0

)2 (
0 1 1
0 0 0

)2 (
1 2 1
0 0 0

)2}

= − d2

4πε0r3
4 α2β2 (4/15),

〈0̃, 0̃, 3|Vdd|0̃, 0̃, 3〉 = −
√

30
d2

4πε0r3

(
1 1 2
0 0 0

){
α2β2

√
3
√

3
√

7
√

7

(
0 1 1
0 0 0

)2 (
0 1 1
0 0 0

)2 (
3 2 3
0 0 0

)2

+ α2β2
√

3
√

3
√

7
√

7

(
1 1 0
0 0 0

)2 (
1 1 0
0 0 0

)2 (
3 2 3
0 0 0

)2

+ α2β2
√

3
√

3
√

7
√

7

(
0 1 1
0 0 0

)2 (
1 1 0
0 0 0

)2 (
3 2 3
0 0 0

)2

+ α2β2
√

3
√

3
√

7
√

7

(
1 1 0
0 0 0

)2 (
0 1 1
0 0 0

)2 (
3 2 3
0 0 0

)2}

= − d2

4πε0r3
4 α2β2 (8/45),

and

〈0̃, 0̃, 1|Vdd|0̃, 0̃, 3〉 = 〈0̃, 0̃, 3|Vdd|0̃, 0̃, 1〉 = −
√

30
d2

4πε0r3

(
1 1 2
0 0 0

)

×
{

α2β2
√

3
√

3
√

3
√

7

(
0 1 1
0 0 0

)2 (
0 1 1
0 0 0

)2 (
1 2 3
0 0 0

)2

+ α2β2
√

3
√

3
√

3
√

7

(
1 1 0
0 0 0

)2 (
1 1 0
0 0 0

)2 (
1 2 3
0 0 0

)2
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+ α2β2
√

3
√

3
√

3
√

7

(
0 1 1
0 0 0

)2 (
1 1 0
0 0 0

)2 (
1 2 3
0 0 0

)2

+ α2β2
√

3
√

3
√

3
√

7

(
1 1 0
0 0 0

)2 (
0 1 1
0 0 0

)2 (
1 2 3
0 0 0

)2}

= − d2

4πε0r3
4 α2β2 (2

√
3 / 5

√
7).

We end up with a 2×2 matrix[
E1 W
W E2

]
=

[
2E0̃ − Cel

6
r6 + 2h̄2

2μr2 − d2

4πε0r3 4 α2β2 (4/15) − d2

4πε0r3 4 α2β2 (2
√

3 / 5
√

7)

− d2

4πε0r3 4 α2β2 (2
√

3 / 5
√

7) 2E0̃ − Cel
6
r6 + 12h̄2

2μr2 − d2

4πε0r3 4 α2β2 (8/45)

]

which can be easily diagonalized and leads to the corresponding lowest eigenstate noted |�(E )〉 = |ñ1, ñ2, l̃〉 and expressed as a
function of |ñ1, ñ2, l〉. For a given E , if E2 � E1, it is given by

|�(E )〉 = |0̃, 0̃, 1̃〉 = cos(η/2) |0̃, 0̃, 1〉 − sin(η/2) |0̃, 0̃, 3〉,
and if E2 < E1 it is given by

|�(E )〉 = |0̃, 0̃, 1̃〉 = − sin(η/2) |0̃, 0̃, 1〉 + cos(η/2) |0̃, 0̃, 3〉
with η defined in Eq. (27). From the expression of |ñ1, ñ2, l〉 as a function of |n1, n2, l〉 using Eq. (6), we have

|0̃, 0̃, 1〉 = cos2(θ/2) |0, 0, 1〉 − 1
2 sin θ |0, 1, 1〉 − 1

2 sin θ |1, 0, 1〉 + sin2(θ/2) |1, 1, 1〉,
|0̃, 0̃, 3〉 = cos2(θ/2) |0, 0, 3〉 − 1

2 sin θ |0, 1, 3〉 − 1
2 sin θ |1, 0, 3〉 + sin2(θ/2) |1, 1, 3〉.

The kets |n1, n2, l〉 as a function of the kets |(n1, n2) n12 l ; J M〉 are given in Eq. (B4) below.

APPENDIX B: LINK BETWEEN COUPLED AND UNCOUPLED REPRESENTATION

We express the relevant kets |n1, n2〉 as a function of the kets |(n1, n2) n12〉 using the usual transformation:

|n1 mn1 , n2 mn2〉 =
∑
n12

∑
mn12

|n1 n2 ; n12 mn12〉〈n1 n2 ; n12 mn12 |n1 mn1 , n2 mn2〉. (B1)

We omit the notation of the projection numbers as they are all zero in this paper. We find

|0, 0〉 = |(0, 0) 0〉, |1, 1〉 = −
√

1

3
|(1, 1) 0〉 +

√
2

3
|(1, 1) 2〉,

|0, 1〉 = |(0, 1) 1〉, |1, 0〉 = |(1, 0) 1〉.
We then express the kets |(n1, n2) n12, l〉 as a function of the kets |(n1, n2) n12 l ; J M〉 using∣∣(n1, n2) n12 mn12 , l ml

〉 =
∑
J

∑
MJ

∣∣(n1, n2) n12 l ; J M
〉〈(n1, n2) n12 l ; J M

∣∣(n1, n2) n12 mn12 , l ml
〉
. (B2)

We find

|(0, 0) 0, 0〉 = |(0, 0) 0 0 ; 0 0〉, |(1, 1) 0, 0〉 = |(1, 1) 0 0 ; 0 0〉,
|(0, 0) 0, 2〉 = |(0, 0) 0 2 ; 2 0〉, |(1, 1) 0, 2〉 = |(1, 1) 0 2 ; 2 0〉,
|(0, 0) 0, 1〉 = |(0, 0) 0 1 ; 1 0〉, |(1, 1) 0, 1〉 = |(1, 1) 0 1 ; 1 0〉,
|(0, 0) 0, 3〉 = |(0, 0) 0 3 ; 3 0〉, |(1, 1) 0, 3〉 = |(1, 1) 0 3 ; 3 0〉,

|(0, 1) 1, 0〉 = |(0, 1) 1 0 ; 1 0〉, |(1, 0) 1, 0〉 = |(1, 0) 1 0 ; 1 0〉,

|(0, 1) 1, 2〉 = −
√

2

5
|(0, 1) 1 2 ; 1 0〉 +

√
3

5
|(0, 1) 1 2 ; 3 0〉, |(1, 0) 1, 2〉 = −

√
2

5
|(1, 0) 1 2 ; 1 0〉 +

√
3

5
|(1, 0) 1 2 ; 3 0〉,

|(0, 1) 1, 1〉 = −
√

1

3
|(0, 1) 1 1 ; 0 0〉 +

√
2

3
|(0, 1) 1 1 ; 2 0〉, |(1, 0) 1, 1〉 = −

√
1

3
|(1, 0) 1 1 ; 0 0〉 +

√
2

3
|(1, 0) 1 1 ; 2 0〉,
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|(0, 1) 1, 3〉 = −
√

3

7
|(0, 1) 1 3 ; 2 0〉 +

√
4

7
|(0, 1) 1 3 ; 4 0〉, |(1, 0) 1, 3〉 = −

√
3

7
|(1, 0) 1 3 ; 2 0〉 +

√
4

7
|(1, 0) 1 3 ; 4 0〉,

|(1, 1) 2, 0〉 = |(1, 1) 2 0 ; 2 0〉,

|(1, 1) 2, 2〉 =
√

1

5
|(1, 1) 2 2 ; 0 0〉 −

√
2

7
|(1, 1) 2 2 ; 2 0〉 + 3

√
2

35
|(1, 1) 2 2 ; 4 0〉,

|(1, 1) 2, 1〉 = −
√

2

5
|(1, 1) 2 1 ; 1 0〉 +

√
3

5
|(1, 1) 2 1 ; 3 0〉,

|(1, 1) 2, 3〉 =
√

9

35
|(1, 1) 2 3 ; 1 0〉 −

√
4

15
|(1, 1) 2 3 ; 3 0〉 +

√
10

21
|(1, 1) 2 3 ; 5 0〉.

Using the above equations, we find the kets |n1, n2, l〉 as a function of the kets |(n1, n2) n12 l ; J M〉 for indistinguishable bosons:

|0, 0, 0〉 = |(0, 0) 0 0 ; 0 0〉,
|0, 1, 0〉 = |(0, 1) 1 0 ; 1 0〉,
|1, 0, 0〉 = |(1, 0) 1 0 ; 1 0〉,
|1, 1, 0〉 = −

√
1/3 |(1, 1) 0 0 ; 0 0〉+

√
2/3 |(1, 1) 2 0 ; 2 0〉,

|0, 0, 2〉 = |(0, 0) 0 2 ; 2 0〉,
|0, 1, 2〉 = −

√
2/5 |(0, 1) 1 2 ; 1 0〉 +

√
3/5 × |(0, 1) 1 2 ; 3 0〉,

|1, 0, 2〉 = −
√

2/5 |(1, 0) 1 2 ; 1 0〉 +
√

3/5 × |(1, 0) 1 2 ; 3 0〉,
|1, 1, 2〉 = −

√
1/3 |(1, 1) 0 2 ; 2 0〉+

√
2/15 |(1, 1) 2 2 ; 0 0〉−

√
4/21 |(1, 1) 2 2 ; 2 0〉+

√
12/35 |(1, 1) 2 2 ; 4 0〉. (B3)

Similarly, for indistinguishable fermions, we find

|0, 0, 1〉 = |(0, 0) 0 1 ; 1 0〉,
|0, 1, 1〉 = −

√
1/3 |(0, 1) 1 1 ; 0 0〉 +

√
2/3 |(0, 1) 1 1 ; 2 0〉,

|1, 0, 1〉 = −
√

1/3 |(1, 0) 1 1 ; 0 0〉 +
√

2/3 |(1, 0) 1 1 ; 2 0〉,
|1, 1, 1〉 = −

√
1/3 |(1, 1) 0 1 ; 1 0〉−

√
4/15 |(1, 1) 2 1 ; 1 0〉+

√
2/5 |(1, 1) 2 1 ; 3 0〉,

|0, 0, 3〉 = |(0, 0) 0 3 ; 3 0〉,
|0, 1, 3〉 = −

√
3/7 |(0, 1) 1 3 ; 2 0〉 +

√
4/7 × |(0, 1) 1 3 ; 4 0〉,

|1, 0, 3〉 = −
√

3/7 |(1, 0) 1 3 ; 2 0〉 +
√

4/7 × |(1, 0) 1 3 ; 4 0〉,
|1, 1, 3〉 = −

√
1/3 |(1, 1) 0 3 ; 3 0〉 +

√
6/35 |(1, 1) 2 3 ; 1 0〉−

√
8/45 |(1, 1) 2 3 ; 3 0〉+

√
20/63 |(1, 1) 2 3 ; 5 0〉. (B4)

APPENDIX C: EVALUATION OF THE PROBABILITIES

Projecting the kets |(n1, n2) n12 l ; J M〉 onto the dressed
eigenstates |ñ1, ñ2, l̃〉 and taking the modulus squared, we
get the corresponding probabilities to find the admixture of
a J component due to the dressing by the electric field seen
by the individual molecules. For each J , one can sum these
contributions to get the J-dependent probability PB

J (E ) for
bosons or PF

J (E ) for fermions. This is plotted in Fig. 2 for
different J components.

1. For indistinguishable bosons

For bosons, when E and r̃ are such that E2 � E1, the
probabilities are for J = 0,M = 0

|〈(0, 0) 0 0 ; 0 0|0̃, 0̃, 0̃〉|2 = cos2(η/2) cos4(θ/2), (C1)

|〈(1, 1) 0 0 ; 0 0|0̃, 0̃, 0̃〉|2 = cos2(η/2) sin4(θ/2) × (1/3),

|〈(1, 1) 2 2 ; 0 0|0̃, 0̃, 0̃〉|2 = sin2(η/2) sin4(θ/2) × (2/15),

for J = 1,M = 0

|〈(0, 1) 1 0 ; 1 0|0̃, 0̃, 0̃〉|2 = cos2(η/2) (sin2 θ )/4,

|〈(1, 0) 1 0 ; 1 0|0̃, 0̃, 0̃〉|2 = cos2(η/2) (sin2 θ )/4,

|〈(0, 1) 1 2 ; 1 0|0̃, 0̃, 0̃〉|2 = sin2(η/2) (sin2 θ )/4 × (2/5),

|〈(1, 0) 1 2 ; 1 0|0̃, 0̃, 0̃〉|2 = sin2(η/2) (sin2 θ )/4 × (2/5),

for J = 2,M = 0

|〈(1, 1) 2 0 ; 2 0|0̃, 0̃, 0̃〉|2 = cos2(η2) sin4(θ/2) × (2/3),

|〈(0, 0) 0 2 ; 2 0|0̃, 0̃, 0̃〉|2 = sin2(η/2) cos4(θ/2),

|〈(1, 1) 0 2 ; 2 0|0̃, 0̃, 0̃〉|2 = sin2(η/2) sin4(θ/2) × (1/3),

|〈(1, 1) 2 2 ; 2 0|0̃, 0̃, 0̃〉|2 = sin2(η/2) sin4(θ/2) × (4/21),
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for J = 3,M = 0

|〈(0, 1) 1 2 ; 3 0|0̃, 0̃, 0̃〉|2 = sin2(η/2) (sin2 θ )/4 × (3/5),

|〈(1, 0) 1 2 ; 3 0|0̃, 0̃, 0̃〉|2 = sin2(η/2) (sin2 θ )/4 × (3/5),

and for J = 4,M = 0

|〈(1, 1) 2 2 ; 4 0|0̃, 0̃, 0̃〉|2 = sin2(η/2) sin4(θ/2) × (12/35).

When E and r̃ are such that E2 < E1, one has to perform the
switching cos2(η/2) ↔ sin2(η/2) in the expressions above.
When E = 0, θ = η = 0 and only the term with both cosines
survives, namely, the one in Eq. (C1) for J = 0.

2. For indistinguishable fermions

For fermions, when E and r̃ are such that E2 � E1, the
probabilities are for J = 0,M = 0

|〈(0, 1) 1 1 ; 0 0|0̃, 0̃, 1̃〉|2 = cos2(η/2) (sin2 θ )/4 × (1/3),

|〈(1, 0) 1 1 ; 0 0|0̃, 0̃, 1̃〉|2 = cos2(η/2) (sin2 θ )/4 × (1/3),

for J = 1,M = 0

|〈(0, 0) 0 1 ; 1 0|0̃, 0̃, 1̃〉|2 = cos2(η/2) cos4(θ/2), (C2)

|〈(1, 1) 0 1 ; 1 0|0̃, 0̃, 1̃〉|2 = cos2(η/2) sin4(θ/2) × (1/3),

|〈(1, 1) 2 1 ; 1 0|0̃, 0̃, 1̃〉|2 = cos2(η/2) sin4(θ/2) × (4/15),

|〈(1, 1) 2 3 ; 1 0|0̃, 0̃, 1̃〉|2 = sin2(η/2) sin4(θ/2) × (6/35),

for J = 2,M = 0

|〈(0, 1) 1 1 ; 2 0|0̃, 0̃, 1̃〉|2 = cos2(η/2) (sin2 θ )/4 × (2/3),

|〈(1, 0) 1 1 ; 2 0|0̃, 0̃, 1̃〉|2 = cos2(η/2) (sin2 θ )/4 × (2/3),

|〈(0, 1) 1 3 ; 2 0|0̃, 0̃, 1̃〉|2 = sin2(η/2) (sin2 θ )/4 × (3/7),

|〈(1, 0) 1 3 ; 2 0|0̃, 0̃, 1̃〉|2 = sin2(η/2) (sin2 θ )/4 × (3/7),

for J = 3,M = 0

|〈(1, 1) 2 1 ; 3 0|0̃, 0̃, 1̃〉|2 = cos2(η/2) sin4(θ/2) × (2/5),

|〈(0, 0) 0 3 ; 3 0|0̃, 0̃, 1̃〉|2 = sin2(η/2) cos4(θ/2),

|〈(1, 1) 0 3 ; 3 0|0̃, 0̃, 1̃〉|2 = sin2(η/2) sin4(θ/2) × (1/3),

|〈(1, 1) 2 3 ; 3 0|0̃, 0̃, 1̃〉|2 = sin2(η/2) sin4(θ/2) × (8/45),

for J = 4,M = 0

|〈(0, 1) 1 3 ; 4 0|0̃, 0̃, 1̃〉|2 = sin2(η/2) (sin2 θ )/4 × (4/7),

|〈(1, 0) 1 3 ; 4 0|0̃, 0̃, 1̃〉|2 = sin2(η/2) (sin2 θ )/4 × (4/7),

FIG. 10. Value of the molecular loss slope βls/T in
10−11 cm3/μK/s as a function of the two QDT parameters
s and x present in the theoretical formalism developed in
Ref. [29]. The experimental value found in Ref. [9] corresponds
to βls/T ∼ 13. 10−11 cm3/μK/s, represented in light green in the
picture (see color code).

and for J = 5,M = 0

|〈(1, 1) 2 3 ; 5 0|0̃, 0̃, 1̃〉|2 = sin2(η/2) sin4(θ/2) × (20/63).

When E and r̃ are such that E2 < E1, one has to perform the
switching cos2(η/2) ↔ sin2(η/2) in the expressions above.
When E = 0, θ = η = 0 and only the term with both cosines
survives, namely, the one in Eq. (C2) for J = 1.

APPENDIX D: QDT PARAMETERS FOR COLLISIONS
OF FERMIONIC NAK

We used the QDT theoretical formalism of Ref. [29] to plot
the molecular loss slope βls/T as a function of the two QDT
parameters s and x. This is presented in Fig. 10. Note that the
present x parameter replaces the y parameter in Ref. [29] to be
consistent with the notation of the unified model in Ref. [28].
To fit the experimental molecular loss slope of βls/T ∼
13. 10−11 cm3/μK/s found in Ref. [9] at zero electric field,
we found that we need values of x � 0.5 with a range
1.6 � s � 2.7.
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