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Collective emission of an atomic beam into an off-resonant cavity mode
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We study the collective emission of a beam of atomic dipoles into an optical cavity. Our focus lies on the effect
of a finite detuning between the atomic transition frequency and the cavity resonance frequency. By developing
a theoretical description of the coupled atom-cavity dynamics we analyze the stationary atomic configurations
including a superradiant phase where the atoms undergo continuous monochromatic collective emission. In
addition, we derive an analytical formula for the cavity pulling coefficient which characterizes the displacement
of the emission frequency towards the cavity frequency. We find that the pulling is small if the cavity linewidth
is much larger than the collective linewidth of the atomic beam. This regime is desired for building stable lasers
because the emission frequency is robust against cavity length fluctuations. Furthermore, we investigate the
stability of the atomic phases and compare our theoretical predictions with numerical results. Remarkably, we
also find polychromatic emission regimes, where the spectrum has several frequency components while the light
output is still superradiant.
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I. INTRODUCTION

Atomic ensembles in optical cavities provide a versatile
platform to study collective effects that arise from strong
light-matter interactions. These systems have been employed
to study spatial pattern formation including self-organization
[1–4], synchronization [5–10], and also spin ordering or tex-
turing [11–13]. They are intrinsically open quantum systems
because photons can enter and leave through the cavity mir-
rors while external driving usually balances cavity losses and
allows the stabilization of coherent out-of-equilibrium states.

The success of these systems also relies on the good con-
trollability of cavity-mediated interactions in atomic systems.
These can be tuned by adjusting the parameters of the driving
lasers but also by varying the detunings between the atomic
transitions and cavity mode frequencies. For instance, if an
ensemble of metastable dipoles couple to a resonant cavity
the dynamics will mostly be dominated by dissipation in form
of spontaneous as well as superradiant or subradiant emission
[14–17]. In contrast, for the case of large detuning, the dy-
namics remains coherent on long timescales, and these setups
can be used for quantum simulations of collective physics [18]
and even for spin squeezing [19–21].

However, fluctuations in the cavity detuning are also a
major source of noise. One of the main obstacles that limit the
precision of the state-of-the-art cavity-assisted atomic clocks
is the quantum noise caused by cavity detuning from mirror
fluctuations. Recently, it has been found that the noise caused
by such fluctuations can be minimized by having systems
working in a so-called bad cavity parameter regime [22–25].
In this regime, the phase information of the output field is
stored in the atomic ensemble rather than the cavity. Such
systems, including active atomic clocks [26] and superradi-
ant lasers [23,24,27–30], are becoming candidates for future
standards of quantum metrology.

Despite the fundamental interest in these kind of systems,
only a few works investigate the effect of continuously in-
troducing and removing atoms. This can be advantageous for
applications because the atoms can be state-prepared outside
of the cavity and only couple to the cavity mode during a finite
period. This could prevent heating, unwanted atom loss, and
other adverse effects. Here, the observation of superradiance
and subradiance [31] and the use of this setup as an active
optical clock [26] has been discussed. Recently, the use of a
thermal atomic beam to study steady-state superradiant lasing
in the presence of a Doppler-broadening has been predicted
[32,33]. In addition, the ability of these systems to exhibit
multi-component emission spectra [33,34] and their stability
with respect to additional broadening mechanisms has been
analyzed [32,33]. These atomic-beam cavity configurations
represent interesting situations where neither photons nor
individual atoms remain in the cavity on long timescales,
but nevertheless cooperative effects can beat single-atom
constraints.

In this paper, we will investigate the collective emission
of an atomic beam into an off-resonant cavity. The finite
detuning between the cavity and atomic transitions results in
a collective Lamb shift [15]. While the effect of this shift
has been studied in trapped atom-cavity setups to simulate
dynamical phases [18] or to produce entanglement [19], its
consequences have remained rather unexplored in atomic
beam configurations. Our focus lies on the special case where
the atoms enter in their electronic excited state and discuss
how the collectively emitted light depends on the detuning.
We study cavity pulling effects in this setup, which describes
the shift of the emission frequency in the direction of the
cavity resonance, and investigate the dynamical superradiant
phases that emerge.

This paper is structured as follows. In Sec. II we introduce
the theoretical framework to describe the coupled dynamics
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FIG. 1. (a) Atoms enter the cavity in the excited state |e〉 and can
emit photons into a single cavity mode. Photons leak out through the
cavity output mirror with rate κ . (b) Each atom is represented as an
optical dipole of transition frequency ωa coupled to the cavity mode
of frequency ωc. The coupling gη(x) depends on the position x of the
atom, where g is the vacuum Rabi frequency or Jaynes-Cummings
coupling coefficient and η(x) is the mode function. The cavity-atom
detuning frequency is given by � = ωc − ωa.

between the atomic beam and the cavity mode. We derive
stationary solutions of this description in Sec. III where we
also derive an analytical expression for the cavity pulling
coefficient. Section IV treats the stability of the stationary
atomic configuration and studies the onset of superradiance
and the destabilization of the superradiant phase. In Sec. V
we investigate a specific model and derive expressions for the
stationary phases, and we compare our results to numerical
simulations of this system. After that we conclude our results
in Sec. VI while the Appendix provides further details to some
calculations contained in Sec. IV.

II. THEORETICAL MODEL

In this section we introduce the theoretical description of
the dynamics of the atomic beam coupled to an off-resonant
cavity.

A. Master equation formalism

We consider a beam of two-level atomic dipoles in their
excited state |e〉 with transition frequency ωa and mass m
traversing an optical cavity. These atoms can emit photons
into a single cavity mode of frequency ωc during a finite
transit time τ (see Fig. 1). The density matrix ρ̂ describing
the atomic and cavity degrees of freedom is governed by a
Born-Markov master equation

dρ̂

dt
= 1

ih̄
[Ĥ, ρ̂] − κ

2
(â†âρ̂ + ρ̂â†â − 2âρ̂â†). (1)

Here, the Hamiltonian

Ĥ = h̄�â†â +
∑
j

[ p̂2
j

2m
+ h̄g

2
η(x̂ j )(â

†σ̂−
j + σ̂+

j â)

]
(2)

describes the coherent dynamics of the coupled atom-cavity
system in a frame rotating with ωa. The first term deter-
mines the energy of cavity photons where � = ωc − ωa is the

detuning between the cavity and the atomic frequency. Op-
erators â and â† are the photonic annihilation and creation
operators that fulfill the commutation relation [â, â†] = 1. The
second term in Eq. (2) is the kinetic energy of atom j where j
runs over all atoms in the atomic beam. The last term in Eq. (2)
describes the Jaynes-Cummings coupling between an atom
and the cavity, where g is the vacuum Rabi frequency at a field
maximum and η(x̂) is the cavity mode function evaluated at
position x̂. The atomic position operator x̂ j = (x̂ j, ŷ j, ẑ j )T is
conjugate to the momentum operator p̂ j = ( p̂x, j, p̂y, j, p̂z, j )T

with the usual canonical commutation relations [μ̂ j, p̂ν,k] =
ih̄δ jkδμν , μ, ν ∈ {x, y, z}. The operators σ̂+

j = |e〉 j〈g| j and
σ̂−
j = |g〉 j〈e| j are the atomic raising and lowering operators,

where |e〉 j , |g〉 j denote electronic excited and ground states.
In this paper we neglect the effects of free-space sponta-

neous emission (γ ) and dephasing (T2) of the atomic dipoles
in the limit where their characteristic time scales are much
longer than the transit time (T2, 1/γ � τ ). In this regime,
transit time broadening dominates over these homogeneous
broadening effects. For a more detailed discussion we refer to
Ref. [33].

Our approach still involves dissipation in the form of the
stochastic process associated with the entry and exit of atoms
as well as the leakage of cavity photons through the cavity
mirrors. The latter is described by the Lindblad term in the
master equation (1) with rate κ , typically referred to as the
cavity linewidth.

B. Heisenberg-Langevin equations

The master equation formalism introduced in Sec. II A
is equivalent to the Heisenberg-Langevin equations that are
given by

dâ

dt
= −

(
i� + κ

2

)
â − i

g

2
Ĵ− + F̂−, (3)

d σ̂−
j

dt
= ig

2
η(x̂ j )σ̂

z
j â, (4)

d σ̂ z
j

dt
= igη(x̂ j )(â

†σ̂−
j − σ̂+

j â), (5)

d x̂ j

dt
= p̂ j

m
, (6)

dp̂ j

dt
= −gh̄

2
(â†σ̂−

j + σ̂+
j â)∇xη(x)|x=x̂ j

. (7)

Here we have represented the gradient as ∇x ≡
(∂/∂x, ∂/∂y, ∂/∂z)T , and included the cavity shot noise F̂−
that fulfills expectation values 〈F̂−(t )〉 = 0, 〈F̂−(t ′)F̂−(t )〉 =
0 = 〈F̂+(t ′)F̂−(t )〉, and 〈F̂−(t ′)F̂+(t )〉 = κδ(t − t ′), with
F̂+ = (F̂−)†. The operators σ̂ z

j = σ̂+
j σ̂−

j − σ̂−
j σ̂+

j describe

the population inversion. The operator Ĵ− is the collective
dipole and is defined as

Ĵ− =
∑
j

η(x̂ j )σ̂
−
j . (8)

We are interested in the situation where dipoles in the
atomic beam transverse the cavity mode with a large velocity.
Assuming a mean velocity vx perpendicular to the cavity axis
[see Fig. 1(a)], we can estimate the transit time as τ = 2w/vx
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where w is the beam waist of the cavity mode. Throughout
this paper we will neglect optomechanical forces that are
described by Eq. (7) and consider only ballistic motion. This
is valid in the parameter regime where the atomic momentum

distribution has a width �pμ =
√

〈p̂2
μ〉 − 〈p̂μ〉2 that exceeds

the mean force Fa times the transit time τ in every spatial
direction μ ∈ {x, y, z}. In this regime we may assume that the
momentum of each atom is constant. For more details we refer
to Ref. [33].

C. Semiclassical description

We will now make a semiclassical approximation where
we substitute the operators by c-number variables and add
noise terms that give the correct second moments. Similar
approaches have been used in Refs. [32–35]. Specifically, we
replace the position operators x̂ j by the classical variables x j .
We derive the time evolution of the Hermitian cavity opera-
tors âx = â + â†, ây = i(â − â†) and atomic dipole operators
σ̂ x
j = σ̂−

j + σ̂+
j , σ̂

y
j = i(σ̂−

j − σ̂+
j ), σ̂ z

j , and then substitute
them by their classical counterparts; αx, αy for the cavity
and sxj , s

y
j , and szj for the dipoles. The c-number noise terms

are chosen such that the second moments of two classical
variables A, B relate in the form 〈AB〉 = 〈ÂB̂ + B̂Â〉/2 to the
second moment of their corresponding operators Â and B̂; i.e.,
we choose symmetric ordering of the operators. The resulting
c-number stochastic differential equations read

dαx

dt
= −κ

2
αx − �αy − g

2
Jy + F x, (9)

dαy

dt
= �αx − κ

2
αy + g

2
Jx + F y, (10)

dsxj
dt

= g

2
η(x j )s

z
jα

y, (11)

dsyj
dt

= −g

2
η(x j )s

z
jα

x, (12)

dszj
dt

= g

2
η(x j )

(
αxsyj − αysxj

)
. (13)

dx j

dt
= p j

m
. (14)

Here, F x and F y are independent noise terms defined
by 〈F x〉 = 〈F y〉 = 〈F x(t )F y(t ′)〉 = 0 and 〈F x(t )F x(t ′)〉 =
〈F y(t )F y(t ′)〉 = κδ(t − t ′). In Eqs. (9) and (10), Jx and Jy are
the classical x and y components of the collective dipole given
by Jx = ∑

j η(x j )sxj and Jy = ∑
j η(x j )s

y
j . Eq. (14) describes

the ballistic trajectory.
Noise is not only introduced by the cavity degrees of free-

dom, but also by the boundary conditions. We will investigate
the dynamics of atoms that enter the cavity in the excited
state |e〉. Therefore if an atom indexed by j enters the cavity,
we initialize szj = 1 and choose the x and y components of
the dipoles randomly and independently from sxj = ±1 and
syj = ±1. This accounts for the correct second moments of
all dipole components (see Refs. [32–34]). With these bound-
ary constraints, Eqs. (9)–(14) can be directly implemented
in numerical simulations. Due to the presence of the noise
introduced by F x, F y, and the incoming atoms this method
allows one to study beyond mean-field effects such as the

linewidth [32–34]. In the next section, we will introduce a
density method to analytically solve these equations.

D. Density description

We will now use Eqs. (11)–(14) to derive a collective de-
scription of the atomic beam. For this we define the densities

f (x, p, t ) =
∑
j

δ(x − x j )δ(p − p j ), (15)

sμ(x, p, t ) =
∑
j

sμj δ(x − x j )δ(p − p j ), (16)

where the sμj are spin components with μ ∈ {x, y, z}. Using
these definitions together with Eqs. (11)–(14) we obtain

∂ f

∂t
+ p

m
· ∇x f = 0, (17)

∂sx

∂t
+ p

m
· ∇xs

x = g

2
η(x)szαy, (18)

∂sy

∂t
+ p

m
· ∇xs

y = −g

2
η(x)szαx, (19)

∂sz

∂t
+ p

m
· ∇xs

z = g

2
η(x)(αxsy − αysx ). (20)

The collective dipole in Eqs. (9)–(10) can be also expressed
as an integral over dipole densities

Jμ =
∫

dx
∫

dp η(x)sμ(x, p, t ), (21)

with μ ∈ {x, y}.
Equations (17)–(20) are closed with the time evolution

of the field variables in Eq. (9)–(10). It remains to include
the atomic noise terms in this density formalism. To do this,
we formulate the initial conditions for the atoms entering
the cavity as boundary conditions for the partial differential
equations (17)–(20). Assuming that the atoms enter the cavity
in the plane x = −x0 [see Fig. 1(a)], we can ascribe as initial
conditions;

f (−x0, y, z, p, t ) = f0(y, z, p, t ), (22)

sx(−x0, y, z, p, t ) =Wx(y, z, p, t ), (23)

sy(−x0, y, z, p, t ) =Wy(y, z, p, t ), (24)

sz(−x0, y, z, p, t ) = f0(y, z, p, t ). (25)

The boundary condition for the density is given by

f0(y, z, p, t ) =
∑
j

δ(x0 − x j )δ(p − p j ), (26)

where x0 = (−x0, y, z)T is the position where the atoms enter.
We can therefore express the initial condition for the dipoles
as

W μ(y, z, p, t ) =
∑
j

sμj δ(x0 − x j )δ(p − p j ), (27)

with μ ∈ {x, y}, and for the second moment as

〈W μ(W ν )′〉 = m

px
δμνδ(t − t ′)δ(y − y′)δ(z − z′)

× δ(p − p′) f0(y, z, p, t ), (28)
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where we have used the notation W μ = W μ(y, z, p, t ) and
(W ν )′ = W ν (y′, z′, p′, t ′).

In our approach, at time t = 0, there are no atoms in the
cavity and the first atom is just entering. We assume that the
atomic beam is spatially homogeneous along the beam axis,
and therefore also, after a time t ≈ τ when the first atom
exits the cavity, that the atomic density inside of the cavity
is homogeneous. In addition, we assume that the density is
also homogeneous along the cavity axis. This is justified if the
width of the atomic beam exceeds the optical wavelength by at
least one order of magnitude. In this case, the atomic spatial
density along the cavity axis is approximately constant over
one optical wavelength. This results in the property

〈 f (x, p, t � τ )〉 = ρ(p), (29)

where ρ(p) is a continuous spatially homogeneous density of
the atoms that is time independent. This, however, does not
imply that the dipole densities sμ, μ ∈ {x, y, z}, are spatially
independent, as we will expand on in the next section.

III. STATIONARY STATES OF THE SYSTEM

We will now investigate the asymptotic stationary solution
reached after a sufficiently long time, t � τ , of the coupled
equations for the field, Eqs. (9)–(10), and dipole densities,
Eqs. (18)–(20). To obtain these results we will use the pre-
viously mentioned assumption of a spatially homogeneous
atomic density. In addition, we will discard all noise terms,
which implies a mean-field approximation.

A. The non-superradiant solution

We begin with the simplest solution that describes the
situation when the atoms cross the cavity without generating
a coherent light field. This is a trivial stationary state of the
system given by

αx
0 = 0,

α
y
0 = 0,

sx0 = 0,

sy0 = 0,

sz0 = ρ(p). (30)

In this case, the atoms simply remain in the excited state
|e〉 while traveling through the cavity region.

B. The superradiant solution

We now derive the more interesting superradiant so-
lution. In order to reduce the equations, we rotate to a
complex field α = (αx − iαy)/2 and complex dipole density
s = (sx − isy)/2. Using these definitions in Eqs. (9)–(10) and
Eqs. (18)–(19), we derive the following mean-field equations:

dα

dt
= −

(
i� + κ

2

)
α − i

g

2

∫
dx

∫
dp η(x)s, (31)

∂s

∂t
= − p

m
· ∇xs + ig

2
η(x)szα, (32)

∂sz

∂t
= − p

m
· ∇xs

z + igη(x)(α∗s − s∗α), (33)

FIG. 2. Sketch of the Bloch sphere where the dipole density can
be mapped on a point of the sphere (here visible as the blue arrow)
with radius ρ(p) depending solely on the momentum p. The angles
K and φ depend on position x, momentum p, and time t .

where we have used the collective dipole defined in Eq. (21).
Equations (32)–(33) imply a conserved length of the dipole

density (
∂

∂t
+ p

m
· ∇x

)
[4|s|2 + (sz )2] = 0, (34)

which can be seen by realizing 4|s|2 + (sz )2 = (sx )2 + (sy)2 +
(sz )2. Therefore it is useful to represent the stationary dipole
components in spherical coordinates

s0 = ρ(p)

2
e−iφ sin(K ), sz0 = ρ(p) cos(K ), (35)

where the dipole length is determined by the boundary condi-
tions of the atomic beam density ρ(p) as in Eq. (17), and φ,
K are spherical angles dependent on position, momentum, and
time. In that case, for every fixed value of x, p, t , we can assign
a Bloch vector to the density of the atomic dipoles (see Fig. 2).
The boundary condition for K is determined by the fact that
the atoms enter in the excited state and thus K (x0, p, t ) = 0.

To find the superradiant solution, we assume that the
atomic beam undergoes collective emission with a single fre-
quency ω. In that case we can express the phase φ as

φ(x, p, t ) = ωt + ψ (x, p), (36)

where the first term on the right-hand side describes the
monochromatic oscillation of the density with frequency ω,
and the second term ψ is a time-independent phase in phase
space. The angle K (x, p) is not explicitly time dependent in
this case.

This assumption allows us to solve the cavity field analyti-
cally from Eq. (31) and obtain

α0 ≈ −i
�c

g
cos(χ )e−iχJ0, (37)

where we have defined

�c = g2

κ
, (38)

tan(χ ) = � − ω

κ/2
, (39)
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and

J0 =
∫

dx
∫

dpη(x)s0. (40)

We mention that α0, s0, and J0 are all proportional to
exp(−iωt ), which constitutes their only time dependence. Our
result for the field goes beyond the typical adiabatic elimina-
tion of the cavity fields since it includes retardation effects that
are apparent in χ that explicitly depends on the frequency ω

and therefore on the evolution of the collective dipole. Using
Eqs. (35) and Eq. (37) in Eq. (32), we can derive the following
equations for the angles:

p
m

· ∇xψ = −ω − �(x)

2
cot(K )C(ψ ), (41)

p
m

· ∇xK = �(x)

2

∫
dx′S(ψ ), (42)

with

C(ψ ) =
∫

dx′
∫

dp′ η′ρ ′ sin (ψ − ψ ′ − χ ) sin(K ′),

S(ψ ) =
∫

dp′ η′ρ ′ cos (ψ − ψ ′ − χ ) sin(K ′),

and where we have used

�(x) = �cη(x) cos(χ ). (43)

As a simplification, we have employed the notation A′ =
A(x′, p′) where A can be η, ρ, ψ , and K . Equations (41)–(42)
have aU (1) symmetry since they are invariant under a rotation
ψ 
→ ψ + ϕ, where ϕ is an arbitrary phase that is independent
on position, momentum, and time. We will now explicitly
break this U (1) symmetry by choosing the phase offset such
that

J‖
0 =

∫
dx′

∫
dp′ η′ρ ′ cos (ψ ′) sin(K ′), (44)

0 =
∫

dx′
∫

dp′ η′ρ ′ sin (ψ ′) sin(K ′). (45)

Notice that J‖
0 is not time dependent; the value of J‖

0 is the
stationary length of the collective dipole and has the relation
J‖

0 = 2|J0|.
With this choice of J‖

0 , we can simplify Eq. (41) and
Eq. (42) to

p
m

· ∇xψ = −ω − �(x)J‖
0

2
cot(K ) sin (ψ − χ ), (46)

p
m

· ∇xK = �(x)J‖
0

2
cos (ψ − χ ). (47)

Since all atoms enter the cavity in the excited state we have
the boundary condition K (x0, p) = 0. If we now impose that
the gradient of the angle ∇xψ cannot diverge at x = x0, we
obtain the boundary condition for the angle ψ (x0, p) = χ .

Although we will give a simple example in Sec. V where
we can explicitly solve Eqs. (46)–(47), we are not aware of a
general solution. However, in the limit where χ 
 1, we can
apply perturbation theory as we will show now.

C. Perturbative solution for χ � 1: Cavity pulling

We consider now the case where χ 
 1 and also ψ 
 1.
The latter is a consequence of the boundary condition
ψ (x0, p) = χ together with the approximation sin(ψ − χ ) ≈
ψ − χ that implies that ψ according to Eq. (46) is only slowly
varying. In this parameter regime we can approximate χ by

χ ≈ � − ω

κ/2
(48)

from Eq. (39) and simplify Eq. (46) and Eq. (47) to get

p
m

· ∇xψ = −ω − �cJ
‖
0

2
η cot(K )(ψ − χ ), (49)

p
m

· ∇xK = �cJ
‖
0

2
η. (50)

The second equation is now completely decoupled and inde-
pendent of ω. Using the substitution

ψ = �

sin(K )
+ χ, (51)

we can derive
p
m

· ∇x� = −ω sin(K ) (52)

with the boundary condition �(x0, p) = 0. This can be inte-
grated to obtain

�(x, p) = −ω

∫ ∞

0
dt sin

[
K

(
x − p

m
t, p

)]
, (53)

where we have extended the upper limit of the integral to
infinity assuming that K (x, y, z, p) = 0 for x < −x0.

Using Eqs. (51) and (53) in Eqs. (44) and (45), we obtain

0 =
∫

dx′
∫

dp′ η′ρ ′� ′ + χJ‖
0 . (54)

Combining Eqs. (48), (53), and (54), we can now solve for the
frequency

ω = �
κC⊥

2 + 1
, (55)

where we have defined

C⊥ =
∫ ∞

0 dt
∫
dx

∫
dpη

(
x + p

mt
)
ρ sin(K )

J‖
0

(56)

as a time scale.
The result given in Eq. (55) can be rewritten to calculate

the cavity pulling coefficient

P = ω

�
= 1

κC⊥
2 + 1

(57)

that describes the emission frequency of the atomic beam
relative to the detuning between the cavity resonance and the
atomic resonance. While the exact form of C⊥ depends on the
actual model, there is still a very general physical observation
that we can make. If the time scale C⊥ is small enough such
that κC⊥ 
 1, we get a pulling coefficient P � 1. In this case,
light will essentially be emitted with the cavity frequency and
not with the atomic frequency for � 
 κ . On the other hand,
if κC⊥ � 1, we have a cavity pulling coefficient P 
 1 and
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therefore the emitted light is almost resonant with the atomic
transition frequency. This has been shown to be the case for
superradiant lasers [23,32] that work in the regime where
κ is much larger than any atomic linewidth, in particular
κ � N�c. For situations where a stable emission frequency
is desired that is independent of cavity length noise, we would
like P to be as small as possible. For the remainder of this
article we will now focus exactly on this regime and first
determine the stability of the atomic beam configuration.

IV. STABILITY IN THE BAD CAVITY REGIME

In the limit where κ determines the shortest time scale, we
can eliminate α from Eqs. (18)–(20) according to Eq. (37) and
also neglect the the explicit ω dependence of χ , i.e.,

tan(χ ) = �

κ/2
. (58)

We then obtain the following stochastic differential equations
for the dipole densities:

∂sx

∂t
+ p

m
· ∇xs

x = �(x)

2
[cos(χ )Jx − sin(χ )Jy]sz + Sx, (59)

∂sy

∂t
+ p

m
· ∇xs

y = �(x)

2
[sin(χ )Jx + cos(χ )Jy]sz + Sy, (60)

∂sz

∂t
+ p

m
· ∇xs

z = −�(x)

2
cos(χ )(sxJx + syJy)

−�(x)

2
sin(χ )(syJx − sxJy) + Sz, (61)

where we have used the definition given in Eq. (43).
Equations (59)–(61) also include stochastic noise terms

Sx = η(x)N xsz, Sy = η(x)N ysz, and Sz = −η(x)(N xsx +
N ysy), where the noise terms N x and N y can be assumed
to be δ correlated on the typical evolution timescale of the
atomic degrees of freedom. This implies 〈N x(t )N y(t ′)〉 = 0
and 〈N x(t )N x(t ′)〉 = 〈N y(t )N y(t ′)〉 = �c cos2(χ )δ(t − t ′).

These noise terms are important for the dynamics since
they introduce small fluctuations into the dipole components
that can destabilize the state. In order to predict this destabi-
lization, we investigate the stability of the stationary phases
that we have introduced in Sec. III.

A. Stability of the nonsuperradiant configuration

For the nonsuperradiant configuration, we study small fluc-
tuations δsx and δsy around the solution given in Eq. (III A).
For this kind of analysis we can drop the noise terms. We find
the linearized equations

∂δsx

∂t
+ p

m
· ∇xδs

x = �(x)

2
[cos(χ )δJx − sin(χ )δJy]ρ, (62)

∂δsy

∂t
+ p

m
· ∇xδs

y = �(x)

2
[sin(χ )δJx + cos(χ )δJy]ρ. (63)

Since we neglect terms that are second order in the
fluctuations, these equations become decoupled from fluctu-
ations δsz around sz = ρ. We have also introduced δJμ =∫
dx

∫
dpηδsμ with μ = x, y.

Equations (62) and (63) can be reduced to uncoupled
equations for δs = (δsx − iδsy)/2 and its complex conjugate.

Without loss of generality, we focus on the solution of δs and
derive

∂δs

∂t
+ p

m
· ∇xδs =�(x)

2
e−iχδJρ, (64)

where δJ = (δJx − iδJy)/2. Applying the Laplace
transformation

L[g](ν) =
∫ ∞

0
dt e−νt g(t ) (65)

to Eq. (64), we obtain

[ν − L0]L[δs] = δs(x, p, 0) + �(x)

2
e−iχρ(p)L[δJ], (66)

where we have defined the operator

L0g(x) = − p
m

· ∇xg(x). (67)

Multiplying Eq. (66) by the inverse of operator [ν − L0] and
η(x), and then integrating over space and momentum, we
obtain

L[δJ] =
∫
dx

∫
dpη(x)[ν − L0]−1δsx(x, p, 0)

D(ν)
, (68)

where the denominator is given by the dispersion relation

D(ν) =1 −
∫ ∞

0
dte−νt−iχ

∫
dx

∫
dpη

(
x + p

m
t

)
�(x)

2
ρ.

(69)

The asymptotic time evolution of δJ is determined by the
zeros of the dispersion relation D(ν). In fact the zero, ν0,
that has the largest real component is the principal one that
controls the dynamics. As long as we satisfy Re(ν0) < 0, the
nonsuperradiant configuration is stable. The imaginary part
Im(ν0) then determines the frequency of the light emission.

In the case where Re(ν0) > 0, a qualitatively distinct solu-
tion is anticipated in which we expect an exponential build-up
of fluctuations that results in superradiant emission, implying
the formation of a macroscopic collective dipole. In the re-
mainder of this section, we will determine the stability of this
stationary superradiant phase.

B. Stability of the superradiant configuration

We analyze the dynamics of small fluctuations around the
configuration that is determined by Eqs. (35), (49), and (50).
To do so it is convenient to move into a frame rotating with
frequency ω, and define

s̃ = eiωt s (70)

and s̃x = s̃ + s̃∗, s̃y = i(s̃ − s̃∗), as well as J̃μ =∫
dx

∫
dpη(x)s̃μ for μ ∈ {x, y}, accordingly. This frame

is chosen such that the steady state s̃0 = eiωt s0 is
time-independent, i.e.,

ds̃0

dt
=

[
iωs0 + ds0

dt

]
eiωt = 0. (71)
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We now consider small fluctuations δs̃ = (δs̃x, δs̃y, δs̃z )T

around the stationary solutions that we can parametrize by

s̃x0 = ρ cos(ψ ) sin(K ),

s̃y0 = ρ sin(ψ ) sin(K ),

s̃z0 = ρ cos(K ). (72)

In this rotating frame, we also keep the convention intro-
duced in Eqs. (44) and (45)

J‖
0 =

∫
dx

∫
dp ηs̃x0, (73)

0 =
∫

dx
∫

dp ηs̃y0, (74)

meaning that the collective dipole is chosen to be always
pointing in the x direction. By linearizing and solving the
equations for δs̃ we find linear equations for δJ̃ = (δJ̃x, δJ̃y)T .
We find then that the time evolution is described by

δJ̃ ∝ eν0t ,

where ν0 is the zero of the dispersion relation

DSR(ν) = det[D(ν)] (75)

with the largest real component. We present a detailed deriva-
tion and the actual form of the dispersion relation in the
Appendix. This dispersion relation can be used to determine
the nature of the instability of the superradiant configuration.
Specifically, for a particular example that we study later in
Sec. VI, we will show that the amplification of fluctuations
occurring for Re(ν0) > 0 can lead to a transition to a multi-
component superradiant emission regime.

After providing all the theory that is required to analyze
the beam-cavity system, we will analyze in the next section
a specific model where we apply all the results of Secs. III
and IV.

V. AN ATOMIC BEAM WITH A SINGLE VELOCITY
TRAVERSING AN OFF-RESONANT OPTICAL CAVITY

We will now investigate a system consisting of an atomic
beam composed of atoms with an identical velocity v =
(vx, 0, 0)T traveling across one antinode of the cavity mode
(see Fig. 1). We assume that the cavity mode can be modeled
by

η(x) = �(x + w) − �(x − w), (76)

which simplifies the cavity profile to a box with length 2w,
where w is the waist of the cavity mode. The transit time τ

is thus fixed to be τ = 2w/vx. For t > τ , the corresponding
homogeneous density of atoms is given by

ρ = N

2w
. (77)

A. Nonsuperradiant phase

We will first determine the stability of the non-superradiant
configuration given by Eq. (III A). Using Eqs. (76) and (77),
we can explicitly calculate the dispersion relation D(ν) given

FIG. 3. (a) The real component Re(ν0 ) and (b) the imaginary
component Im(ν0 ) of the zero ν0 with the largest real component
of D(ν ) in Eq. (78). They are plotted as a function of the detuning �

in units of κ/2 and the collective linewidth N�c in units of 1/τ . The
black solid line is determined by Re(ν0) = 0 above which we expect
superradiant emission.

in Eq. (69) that takes the form

D(ν) =1 − N�cτ

2
cos(χ )e−iχ 1

ντ

(
1 − 1 − e−ντ

ντ

)
. (78)

We then numerically find the solution ν0 of D(ν0) = 0 with
the largest real component. In Fig. 3, we show the real com-
ponent Re(ν0) in subplot (a) and the imaginary component
Re(ν0) in subplot (b) as a function of N�cτ and of �/(κ/2),
respectively. In Fig. 3(a), we observe Re(ν0) < 0 for suffi-
ciently small N�cτ or large enough �/(κ/2). The solid black
line marks the phase transition threshold below which the
nonsuperradiant configuration is stable, and above which we
expect superradiant emission. Specifically, for �/(κ/2) = 0
this threshold is given by N�cτ = 4. This result can be inter-
preted as follows: if the transit time is too short, τ < 4/(N�c),
there is essentially no emission into the cavity mode. How-
ever, if the transit time broadening becomes smaller than
the collective linewidth, 1/τ < N�c/4, the individual atomic
dipoles will start to synchronize and we observe superradiant
emission into the cavity. In Fig. 3(b), we plot the imaginary
component Im(ν0) which is the frequency of the atomic emis-
sion relative to the atomic resonance frequency ωa. Therefore
it is clear that Im(ν0) = 0 for � = 0, implying that the atomic
frequency, the cavity frequency, and the emission frequency
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FIG. 4. Bloch vectors parametrized according to Eq. (72) where we have combined Eqs. (84) and (85) to calculate ω and J‖
0 and then

Eqs. (79), (81), and (83) to calculate K (x) and ψ (x). The black solid lines are the traces of the Bloch vectors for −w � x � w. We have used
N�cτ = 10 and four different values of �/(κ/2) [(a) �/(κ/2) = 0, (b) �/(κ/2) = 0.5, (c) �/(κ/2) = 1, (d) �/(κ/2) = 1.5]. See Fig. 2 for
a description of the axes.

are all equal. When � �= 0, the emission frequency depends
not only on �/(κ/2) but also on N�cτ .

B. Superradiant phase

We will now study the superradiant configuration as shown
in Fig. 3 above the phase transition threshold. For this we need
to solve Eqs. (46) and (47) given Eqs. (76) and (77). Using the
substitution

sin(ψ − χ ) = �

sin(K )
, (79)

we derive the differential equation

−ω sin(K )vx
∂K

∂x
= �c cos(χ )J‖

0

2
ηvx

∂�

∂x
. (80)

This equation implies

� = [1 − cos(K )] f (81)

with

f = − 2ω

�c cos(χ )J‖
0

, (82)

where we have used the fact that η is unity for −w � x �
w by Eq. (76). Combining this result with Eq. (79) and then
solving Eq. (47) we obtain

sin

[
K (x)

2

]
= sin

[√
1+ f 2�c cos(χ )J‖

0 (x+w)
4vx

]
√

1 + f 2
. (83)

We have now found the solutions for K and ψ and will use
them to determine the frequency ω and the collective dipole
J‖

0 . Using the results for ψ and K in Eqs. (44) and (45), after
some algebra we find

ξ = N�cτ
sin2

(
ξ

2

)
ξ

, (84)

−ξ tan(χ ) = N�cτ

2

f√
1 + f 2

[
1 − sin(ξ )

ξ

]
, (85)

with

ξ =
√

1 + f 2�c cos(χ )J‖
0 τ

2
. (86)

Given a value of �/(κ/2) and N�cτ , we can now numerically
determine ξ and f and then calculate J‖

0 and ω. These values
can then be used to derive K (x) and ψ (x).

In Fig. 4 we show the result for four different values of
�/(κ/2) with a fixed N�cτ = 10 where we derive K (x) and
ψ (x) and then use Eq. (72) to illustrate the dynamics of the
dipoles on the Bloch sphere (see Fig. 2 with φ = ψ) for −w �
x � w. We have normalized the Bloch vector to length unity.
Since the atoms enter in the excited state |e〉, the Bloch vector
is pointing along the z direction initially for x = −w. For all
cases the collective dipole J‖

0 , which is here determined by the
integral of all the Bloch vectors along the trajectory for −w �
x � w, points in the x direction by choice [see Eqs. (45) and
(73)]. In Fig. 4(a) where � = 0, the Bloch vector remains in
a plane that is spanned by the z axis and the collective dipole.
This is different for nonvanishing � values [see Figs. 4(b)–
4(d)] where the Bloch vectors leave this plane. We observe
that the total curve becomes shorter for increasing � values
and the length of the collective dipole also decreases for these
parameters.

In order to study this effect, in Fig. 5(a) we show the
normalized collective dipole j‖0 = J‖

0 /N for different values of
N�cτ and �/(κ/2). We observe the same transition thresh-
old between the superradiant and nonsuperradiant phases as
shown by the black solid line in Fig. 3. This transition is
continuous but not differentiable. Above the threshold, we
find a nonvanishing value for the collective dipole. In Fig. 5(b)
we show the value of the frequency ω that has been calculated
for the same parameter regime as j‖0 in Fig. 5(a). We see that
ω vanishes for � = 0 which implies that the atomic frequency
ωa, the cavity frequency ωc, and ω are equal. For a given value
of N�cτ the frequency ω increases linearly with �/(κ/2).
This shows that the cavity pulling coefficient P = ω/� in the
superradiant regime is independent of � even for large values
of �/(κ/2).

We have also derived the stability of the superradiant con-
figuration using the dispersion relation in Eq. (75). We have
found zeros ν0 with positive real part for the parameter region
that is shown as a gray area in Fig. 5 bounded by a black
dashed line. This is the parameter space where we expect a
different dynamical phase because the stationary superradiant
and the non-superradiant solutions are unstable.

We will now compare our analytical finding with numerical
simulations.

053705-8



COLLECTIVE EMISSION OF AN ATOMIC BEAM INTO AN … PHYSICAL REVIEW A 104, 053705 (2021)

FIG. 5. The normalized collective dipole j‖0 = J‖
0 /N (a) and the

frequency ω in units of 1/τ (a) as a function of �/(κ/2) and the
collective linewidth N�c in units of 1/τ . The results are calculated
using Eq. (84) and Eq. (85). The black dashed line is the boundary
of the gray area where the superradiant configuration transitions to
a multicomponent superradiant regime. This has been determined
using the solution of j‖0 and ω to find zeros of the dispersion relation
in Eq. (75).

C. Numerical study

We numerically integrate Eqs. (59)–(61) using the mode
function in Eq. (76) and the homogeneous density in Eq. (77).

1. Superradiant to non-superradiant regime

We first investigate the crossover regime from the superra-
diant to the nonsuperradiant phase for a fixed N�cτ = 20 and
various values of �/(κ/2) and N . Figure 6(a) shows the cavity
output power in units of N/τ . This quantity can be interpreted
as the number of photons that are emitted per atom during the
transit time τ . It is calculated from

κ〈â†â〉
N/τ

=�c cos2(χ )τ
〈J∗J〉
N

, (87)

where we have used Eq. (37) and J = (Jx − iJy)/2 is taken
from the numerical integration. On the other hand we can
take our analytical results where we expect 〈J∗J〉 = N2 j‖0/4
to predict the cavity output power. In Fig. 6(a), we show the
numerical results of the output power as dotted lines with
different markers which indicate different atom numbers (see
inset). The analytical results calculated from j‖0 is shown as
the solid black line. We find very good agreement of the
numerical and analytical results for all parameters. In general
we observe that at the transition from the superradiant to the

FIG. 6. (a) The cavity output power κ〈â†â〉 in units of N/τ [see
Eq. (87)] and (b) the value of g2(0) − 1 [see Eq. (88)] as functions
of �/(κ/2) for various values of N [see inset of subplot (a)]. (c) The
spectrum |S(ν )| [see Eq. (89)] normalized for every value of �/(κ/2)
by the maximum Smax = maxν |S(ν )| as a function of ν in units of
1/τ and of �/(κ/2) obtained by numerically integrating Eqs. (59)–
(61) for N = 4000. For all simulations we have used N�cτ = 20.
The black solid line in subplot (a) is calculated from the solution
j‖0 obtained from Eq. (84) and Eq. (85). The vertical red dashed
lines mark the analytical threshold between the superradiant and
nonsuperradiant emission regimes. For (c) we have used t0 = 10τ

and tcut = 20τ . The red solid line in (c) in the superradiant regime is
the frequency ω calculated using Eqs. (84) and (85). The red solid
line in (c) in the nonsuperradiant regime is Im(ν0) where ν0 is the
zero of Eq. (69) with the largest real part. All simulations have been
performed for a total time T = 200τ and averaged over 100000/N
different initializations.

non-superradiant phase (dashed vertical red line), finite size
effects smooth out the nonanalyticity, which is expected from
the analytical results.

To study the coherence properties we also investigate the
second-order Glauber g2 function defined as

g2(0) = 〈J∗JJ∗J〉
〈J∗J〉2

, (88)

which is shown in Fig. 6(b). Well inside the superradiant phase
we observe g2(0) ≈ 1, which indicates second-order coherent
light. This result is as expected because in this regime and
for large intracavity atom number N , the collective dipole is
coherent and therefore noise only plays a minor role. As a con-
sequence we can use 〈J∗J〉≈ (N j‖0/2)2 and 〈J∗JJ∗J〉≈〈J∗J〉2.
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The value of g2(0) increases at the threshold and reaches
g2(0) ≈ 2 well inside the nonsuperradiant regime. This result
indicates thermal light.

In order to have access to the emission frequency of the
cavity field we have also calculated the spectrum

S(ν) =
∫ tcut

0
dte−iνt 〈J∗(t + t0)J (t0)〉, (89)

where t0 � τ is a time after which we expect the system
to reach a stationary state and tcut is a numerical integration
time. This spectrum is shown in Fig. 6(c) as a function of
the frequency ν in units of 1/τ and for different values of
�/(κ/2). We have normalized this spectrum for every value
of �/(κ/2) such that |S(ν)| � 1. In the superradiant phase
we observe a narrow peak of the spectrum. Specifically, the
peak is centered at ω = 0 for � = 0. For increasing values of
�/(κ/2) from zero, we find a linear increase of the emission
frequency described by this peak. The red solid line in the
superradiant regime indicates the analytical solution of ω that
has been presented in Fig. 5(b) and is in very good agreement
with the numerical results. The linear behavior of the emission
frequency is determined by the pulling coefficient, ω = P�,
where we find Pκτ ≈ 2.8.

In the nonsuperradiant regime we observe a much broader
spectrum and also a different behavior of the emission fre-
quency. The red solid line in the non-superradiant regime
describes the solution Im(ν0) shown in Fig. 3(b). We find good
agreement between this solution and the peak of the spectrum
in the non-superradiant phase.

2. Stationary to multicomponent superradiant regime

We will now investigate the transition from the station-
ary superradiant phase to a multicomponent superradiant
phase (grey region in Fig. 5), first along N�cτ = 50 for
different values of �/(κ/2). As we will show below, in
this multicomponent superradiant phase we observe poly-
chromatic superradiant emission where the spectrum shows
several frequency components. We first study the output
power κτ 〈â†â〉/N in Fig. 7(a), where different markers indi-
cate different values of N (see inset). The analytical results
derived from j‖0 in Eqs. (84) and (85) are shown as the black
solid line. The vertical dashed red lines indicate the transition
from the stationary to the multicomponent superradiant region
(� � 1) and from the multicomponent to the stationary region
(� � 2.5). Inside the stationary superradiant phase, we find
good agreement between the numerical and the analytical
results. In the multicomponent regime, however, we observe
that the output power spikes, indicating that every atom emits
more photons than expected from the analytical theory (black
solid line).

We also show the g2(0) for the same parameters in
Fig. 7(b). We find that g2(0) ≈ 1 in the stationary superradiant
regime. The slight increase for �/(κ/2) > 5 is due to the
fact that we approach the transition to the nonsuperradiant
regime. This can also be seen because the output power in that
parameter regime approaches zero in Fig. 7(a). In the mul-
ticomponent regime that is bordered by the two red vertical
dashed lines, the g2(0) function spikes. The fact that we find

FIG. 7. (a) The cavity output power κ〈â†â〉 in units of N/τ [see
Eq. (87)] and (b) the value of g2(0) − 1 [see Eq. (88)] as functions
of �/(κ/2) for various values of N [see inset of subplot (a)]. (c) The
spectrum |S(ν )| [see Eq. (89)] normalized for every value of �/(κ/2)
by the maximum Smax = maxν |S(ν )| as a function of ν in units of
1/τ and of �/(κ/2) obtained by numerically integrating Eqs. (59)–
(61) for N = 4000. For all simulations we have used N�cτ = 50.
The black solid line in subplot (a) is calculated from the solution
j‖0 obtained from Eqs. (84) and (85). The vertical red dashed lines
border the multicomponent regime. For subplot (c) we have taken
the values t0 = 10τ and tcut = 20τ . The red solid line in (c) in the
superradiant regime is the frequency ω calculated using Eqs. (84)
and (85). The red circles in (c) at the phase thresholds are the values
of ω ± Im(ν1), where ν1 is the zero of Eq. (75) with the largest real
part. All simulations have been performed for a total time T = 200τ

and averaged over 100000/N different initializations.

values g2(0) > 2 indicates photon bunching in this parameter
regime that cannot be explained by thermal light.

The features of the emitted light are best illustrated in
Fig. 7(c) where we plot the spectrum |S(ν)| as a function of ν

in units of 1/τ . In the stationary superradiant regime we find a
narrow single peak. The position of this peak agrees very well
with the frequency ω that has been calculated in Fig. 5(b). The
emission frequency follows the description ω = P� and we
find Pκτ ≈ 1.6.

For parameters within the region that is bordered by the
two vertical red dashed lines, however, we find several narrow
peaks which means that the light emission is polychromatic.
The origin of the sidebands can be explained by the zero ν1 of
the dispersion relation Eq. (75) with Re(ν1) > 0, signalizing
an unstable superradiant configuration. The imaginary com-
ponent Im(ν1) is expected to be the frequency of the sidebands
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FIG. 8. The same quantities as shown in Fig. 7 but for a fixed
value of �/(κ/2) = 1.5 and as a function of N�cτ . The vertical
red dashed line marks the transition from the stationary to the poly-
chromatic superradiant regime and the red circles in (c) at the phase
threshold are the values of ω ± Im(ν1). The remaining parameters
are the same as in Fig. 7.

relative to the central frequency ω. We show ω ± Im(ν1) at the
phase thresholds as red circles. They are in good agreement
with the emerging sidebands. We emphasize that our lin-
earized description used to calculate ν1 does not work beyond
the phase thresholds to the multicomponent regime, where we
need to include the full dynamical description of the atomic
dipoles.

The appearance of additional sidebands that indicate an
oscillatory light field with several frequencies is consistent
with an increase of g2(0) to values g2(0) > 1. However, we
are not aware of a quantitative explanation for the increase
of the intensity in the multicomponent regime when com-
pared with that in the steady-state superradiant regime. It
is remarkable that the self-organized light field that exhibits
multicomponent spectra can drive the off-resonant incoming
atoms more efficiently leading to an increase in the rate of
emitted photons.

We have also studied the same transition for a fixed value of
�/(κ/2) = 1.5 when we vary N�cτ > 20. For these parame-
ters, we expect the phase threshold to be around N�cτ ≈ 40,
shown as the vertical red dashed line in Fig. 8. In Fig. 8(a) we
show the output power for different values of N using different
markers (see inset). The black solid line is the analytical result
calculated from j‖0 . In the stationary superradiant regime the
analytical and the numerical results are in good agreement.

Beyond the threshold we observe an increasing value of the
numerically calculated output power while the analytical re-
sult keeps decreasing.

In Fig. 8(b) we find that the light field is second-order
coherent [i.e., g2(0) ≈ 1] inside the stationary superradiant
phase. When we enter the multicomponent regime we observe
an increasing value of g2(0). The maximum value of g2(0) for
the given parameters is close to g2(0) ≈ 3.

The spectrum |S(ν)| is visible in Fig. 8(c) as a function of
ν in units of 1/τ . We find one narrow peak of the spectrum in
the stationary superradiant regime. The corresponding emis-
sion frequency is in good agreement with the analytical value
(red solid line) of ω calculated in Fig. 5(b). At the transition
we find two emerging sidebands. These sidebands have been
compared with ω ± Im(ν1) (red circles), where ν1 is the zero
of Eq. (75) with the largest real component. They are in good
agreement with the numerical results. Beyond the transition
point we observe an increasing number of sidebands.

Several studies have explored similar dynamical behavior
in related systems that transition eventually to chaos [36–40].
While it has been shown that period doubling can occur in
such atomic beam setups [33] we have not observed a transi-
tion to chaos.

D. Cavity pulling

At the end of this section we derive the cavity pulling coef-
ficient P that describes the change of the emission frequency
ω when the atomic transition and the cavity mode are not
resonant. For this we use Eq. (57) and solve the integral in
Eq. (56) using the mode function in Eq. (76) and the atomic
density in Eq. (77). Since the cavity pulling coefficient is the
result for small detuning �/(κ/2) 
 1, we can use Eq. (85)
and find f ∝ �/(κ/2) and neglect the second order in f 2 ≈ 0.
Consequently, we find ξ = �cJ

‖
0 τ/2 and can use Eq. (84) to

calculate J‖
0 . The value of ξ can then be used to calculate the

timescale

C⊥ = N�cτ
2

2

1 − sin(ξ )
ξ

ξ 2
. (90)

The value of P is shown in Fig. 9(a) as a function of N�c

and κ both in units of 1/τ . The latter is given in a logarithmic
scale to show different orders of magnitude for κτ . For κτ 

1, the lifetime of photons is much longer than the transit time
of the atoms. In this case we expect many photons in the cavity
and the resulting pulling coefficient is P � 1, showing that
emission appears almost in resonance with the cavity degrees
of freedom. For κτ � 1, photons leave the cavity earlier than
the atoms traverse the cavity. In this regime the atoms store the
coherence and the frequency of the collectively emitted light
is almost in resonance with the atomic transition, P ≈ 0.

The results obtained in the regime κτ � 1 can be directly
compared with our simulations. In Figs. 6(c) and 7(c), we have
seen that the frequency ω is linear in � even if �/(κ/2) ≈ 1.
This is equivalent to the fact that P is independent on � in the
limit κτ � 1. In Fig. 9(b), we show P normalized by 1/(κτ ).
This pulling coefficient is slightly different from the one that
has been reported in Ref. [32]. The reason for this discrepancy
is the absence of Doppler-broadening and the cosine term in
the cavity mode function in the model studied here. In fact the
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FIG. 9. (a) The cavity pulling coefficient P defined in Eq. (57)
as a function of the cavity linewidth κ and the collective decay N�c,
both in units 1/τ . For the calculation of P we have solved Eq. (56)
using the solution of Eq. (84) for f = 0. (b) The cavity pulling
coefficient P normalized by 1/(κτ ) as a function of N�c in units 1/τ .
For the derivation we have calculated P = ω/� that is independent
of � in the limit κτ � 1 where the cavity field can be eliminated.

results in Ref. [32] seem to be displaced by approximately a
factor of 1/2 that is due to an average over cosine-squared,
and this results in a weaker effective coupling. In addition,
we remark that this pulling coefficient is only valid in the
stationary superradiant regime, and cannot be used for the
multicomponent regime where we observe several peaks in
the emission spectrum.

VI. CONCLUSION

In this paper we have introduced a theoretical description
for the dynamics of an atomic beam that traverses a sin-
gle mode optical cavity. The atoms are described by optical
dipoles with transition frequency that is detuned from the
cavity frequency. We have derived the stationary phases of the
atomic beam including the non-superradiant and superradiant
configurations. The latter was used to calculate the cavity
pulling coefficient in both the bad (large κ) and good (small
κ) cavity regimes. After deriving an analytical theory for the
stationary phases, we have determined the stability of the
atomic dipole densities. By applying our theory to a specific
model we have predicted three phases of the atomic beam. Our
findings are in good agreement with numerical results where
we highlight the phase transitions by examining the output

power, the g2 function, and also the emission spectrum. In the
end we discuss cavity pulling for this specific model.

We remark that the atomic beam configuration that is stud-
ied here is fundamentally different to the situation where a
finite number of in situ excited dipoles interact with a cav-
ity [17,27–29,41,42]. In that case, any initial excitation is
transient. The main distinction in an atomic beam setup is
that atoms continuously enter and leave the cavity. There-
fore, the system is repeatedly driven by the introduction of
new electronically excited atoms. This driving allows for
continuous-wave superradiant emission or multicomponent
superradiant emission even at steady state.

The model analyzed in Sec. V represents an idealized
model since it does not capture additional relevant effects
of an actual experiment such as the Doppler broaden-
ing, inhomogeneous coupling, and homogeneous broadening.
However, we have shown that even such a minimal model
has nontrivial solutions with monochromatic light emission
and even highly dynamical phases with polychromatic light
emission. Therefore we rather see this work as a stepping
stone towards understanding the physics of more specific
setups. Our idealized model highlights that multicomponent
superradiant emission can originate from collective homoge-
neous frequency shifts. This work extends previous scenarios
that have been studied where the dynamical phase emerges
because of optomechanical effects [39,40] and inhomoge-
neous frequency shifts [28,29,33]. Although extensions may
be necessary, the general theoretical methodology developed
here will provide a good foundation for understanding any
potential experimental systems.

In the future, it would be interesting to understand the inter-
play and relation to dynamical phases that have been studied
in similar atomic beam setups [33,34]. Moreover, while our
analysis has been focusing on the light that is produced by
the collective emission of the atomic beam, we have not
yet investigated the atomic state in great detail. This might
be especially interesting in the multicomponent superradiant
regime because the dynamical character of the light field must
result in a dynamical spin density. We expect that this is
interesting for the study of dynamical phases and dissipative
time crystals [43–46].
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APPENDIX A: DERIVATION OF THE DISPERSION
RELATION FOR THE SUPERRADIANT CONFIGURATION

In this section we will show how to calculate the dispersion
relation given in Eq. (75).

Using Eqs. (59)–(60) in the frame rotating with ω, the
dynamics of δs̃ is then governed by

∂δs̃
dt

= Lδs̃ + S0δJ̃, (A1)
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where

L = L013 + L1. (A2)

Here, we have defined

L1 =

⎛
⎜⎜⎝

0 ω �(x)
2 cos(χ )J‖

0

−ω 0 �(x)
2 sin(χ )J‖

0

−�(x)
2 cos(χ )J‖

0 −�(x)
2 sin(χ )J‖

0 0

⎞
⎟⎟⎠

(A3)

and

S0 = �(x)

2

⎛
⎜⎜⎝

cos(χ )s̃z0 − sin(χ )s̃z0

sin(χ )s̃z0 cos(χ )s̃z0

− cos(χ )s̃x0 − sin(χ )s̃y0 sin(χ )s̃x0 − cos(χ )s̃y0

⎞
⎟⎟⎠

(A4)

with δJ̃ = (δJ̃x, δJ̃y )T . The operator L0 has been given in
Eq. (67), and 13 is the 3×3 identity matrix.

The Laplace transformation of Eq. (A1) leads to

νL[δs̃] = δs̃(x, p, 0) + LL[δs̃] + S0L[δJ̃]. (A5)

Now, we first solve for L[δs̃]. Than we project on the first two
components by multiplying with the matrix 12,3 ∈ C2×3 with
ones on the diagonal and zeros elsewhere. This results in two
coupled equations for L[δs̃x] and L[δs̃y].

After multiplying with η(x) and integrating over the whole
phase space, we arrive at

L[δJ̃] =
∫

dx
∫

dpη(x)12,3(ν13 − L)−1δs̃(x, p, 0)

+
∫

dx
∫

dpη(x)12,3(ν13 − L)−1S0L[δJ̃], (A6)

which can be used to solve for L[δJ̃], resulting in

L[δJ̃] = D(ν)−1
∫

dx
∫

dpη12,3(ν13 − L)−1δs̃(x, p, 0),

(A7)

where we have defined

D(ν) = 12 −
∫

dx
∫

dpη(x)12,3(ν13 − L)−1S0

= 12 −
∫ ∞

0
e−νt

∫
dx

∫
dpη(x)12,3e

LtS0. (A8)

The dynamics of δJ̃ are now determined by the value of ν for
which D(ν) is not invertible.
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