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We show that the onset of steady-state superradiance in a bad cavity laser is preceded by a dissipative
phase transition between two distinct phases of steady-state subradiance. The transition is marked by a
nonanalytic behavior of the cavity output power and the mean atomic inversion, as well as a discontinuity in
the variance of the collective atomic inversion. In particular, for repump rates below a critical value, the
cavity output power is strongly suppressed and does not increase with the atom number, while it scales
linearly with atom number above this value. Remarkably, we find that the atoms are in a macroscopically
entangled steady state near the critical region with a vanishing fraction of unentangled atoms in the large
atom number limit.
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Introduction.—Progress in laser physics has revolution-
ized our day-to-day lives and the scope of experiments
across the entire spectrum of scientific disciplines. At its
core, the laser is a highly out-of-equilibrium system whose
steady state is maintained via a balance of driving and
dissipation. A typical laser model involves a collection of
continuously pumped two-level atoms interacting with an
electromagnetic field confined in a cavity with lossy
mirrors. In particular, bad cavity lasers operate in a regime
where the lifetime of the photon is short compared to the
effective lifetime of the upper atomic level [1–3]. Over the
past decade, they have garnered significant attention
because in these systems the sensitivity of the laser
linewidth to cavity frequency fluctuations is strongly sup-
pressed [1,4]. Furthermore, this narrow linewidth coexists
in a regime where the emission amplitudes of the atoms
can constructively interfere and give rise to superradiant
emission. Apart from its promising technological
potential, the superradiant regime has also been shown
to host a variety of many-body phenomena such as
synchronization [5–15], collective cooling [16–21], and
self-organization [16,22–26].

In contrast, the regime preceding the onset of super-
radiance has received far less attention, partly because
within the framework of mean-field theory the atoms
appear to be in a trivial unpolarized product state. Prior
beyond-mean-field studies have only considered this
regime in passing [2,27] or for a small number of emitters
[28,29], but have nevertheless demonstrated that the atoms
populate collective dark states giving rise to steady-state
subradiance. However, the physics in this regime and the
stability of the highly correlated quantum states remain
poorly understood especially given the fact that this regime

is complementary to the well studied and much anticipated
steady-state superradiant regime.
In this Letter, we show that the subradiant regime of a

bad cavity laser is in itself a playground for a rich variety
of physical phenomena. In particular, we show that the
onset of superradiance is preceded by a dissipative phase
transition between two distinct types of subradiance.
The transition is shown to arise as a consequence of the
bounded state space of the collective atomic system. The
two subradiant steady states correspond to the population
of different regions of this state space (see Fig. 1). The
phase transition is heralded by a nonanalytic change in the
cavity output power and a discontinuous change in a
squeezing parameter. An experimentally attractive feature
is the scaling of the output power, which is strongly
suppressed and does not increase with atom number N
below the critical point but instead scales linearly with N
above this point. Near the critical point, we find that the
atoms are in a macroscopically entangled state and that the
fraction of unentangled atoms is vanishingly small as
the number of atoms increases. From the viewpoint of
dissipative spin models, this phase transition and the
accompanying entanglement are striking because they arise
in a model whose governing master equation contains no
Hamiltonian terms but only Lindblad dissipators.
Model.—Our system consists of N atoms each with

upper and lower levels j↑i and j↓i, respectively, and a
single lossy cavity mode as shown in Fig. 1(a). The atoms
can be modeled using the language of Pauli matrices where
σ̂−j ¼ j↓ijh↑jjðσ̂þj ¼ j↑ijh↓jjÞ is the lowering (raising)
operator for atom j and σ̂zj ¼ j↑ijh↑jj − j↓ijh↓jj is the
population difference between the spin states. The finite
lifetime of j↑i causes atoms to emit photons both into free
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space modes and the cavity mode as they decay to j↓i.
Emission into free space is characterized by a jump
operator

ffiffiffi
γ

p
σ̂−j for each atom. Assuming that the atoms

are identically coupled to the cavity mode, the emission of a
cavity photon is characterized by the jump operator

ffiffiffiffiffi
Γc

p
Ĵ−

where Ĵ− ¼ P
N
j¼1 σ̂

−
j is the collective angular momentum

lowering operator. Here, Γc ¼ Cγ is the single atom
emission rate into the cavity, which is modified by the
dimensionless cooperativity parameter C. The decay chan-
nels are balanced by an effective incoherent pumping of the
individual atoms from j↓i → j↑i which is represented by a
jump operator

ffiffiffiffi
w

p
σ̂þj for each atom. The master equation

governing the spin dynamics is therefore given by

∂tρ̂ ¼
XN
j¼1

D̂ ½ ffiffiffiffi
w

p
σ̂þj �ρ̂þ

XN
j¼1

D̂ ½ ffiffiffi
γ

p
σ̂−j �ρ̂þ D̂½

ffiffiffiffiffi
Γc

p
Ĵ−�ρ̂;

ð1Þ

where D̂½Ô�ρ̂ ¼ Ô ρ̂ Ô† − Ô†Ô ρ̂ =2 − ρ̂Ô†Ô=2 is the
Lindblad dissipator associated with a jump operator Ô.
This master equation is invariant under permutations of

the atomic indices and this symmetry results in a drastic

reduction of the Liouville space for the steady-state
solution from 4N to OðN3Þ basis states [30,31].
Furthermore, the master equation also possesses a Uð1Þ
symmetry which can be seen by making the transformation
σ̂�j → e�iϕσ̂�j in Eq. (1). This additional symmetry reduces
the required basis states to OðN2Þ.
A convenient representation of these basis states uses

the permutation invariant eigenstates of the Ĵ2 and Ĵz

operators with respective quantum numbers J, M [32].
Here, we have introduced the collective angular momentum
components Ĵi ¼ P

N
j¼1 σ̂

i
j=2, i ¼ x, y, z, wherein σ̂xj ¼

σ̂þj þ σ̂−j and σ̂yj ¼ −iðσ̂þj − σ̂−j Þ. The two quantum num-
bers J ¼ 0; 1; 2;…; N=2 (for an even N [35]) and M ¼
−J;…; J form a discrete, triangular state space for
the collective atomic state in Liouville space as shown
in Fig. 1(b). While the two vertices at J ¼ N=2, M ¼
�N=2 correspond to trivial product states with all spins in
j↑i or j↓i, the third vertex at J ¼ 0, M ¼ 0 is a highly
entangled, subradiant state wherein the atoms are grouped
into N=2 singlet pairs [36].
In this state space, collective emission leads to a

transition with ΔM ¼ −1 within a ladder of constant J.
While the free space emission and repump of any single
atom breaks permutation invariance, the cumulative effect
of either of these processes occurring for all atoms
preserves this symmetry. Hence, they can be viewed as
transitions between different states in this state space with
ΔM ¼ −1, þ1 respectively. Crucially, these processes
couple adjacent J ladders and take the system away
from J ¼ N=2 which is the initial value when the atomic
pseudospins are initialized in a coherent spin state. Closed
form expressions for the transition probabilities [37] enable
us to numerically determine the steady-state by exact
diagonalization (ED) of a rate matrix [32].
Signatures of the phase transition.—For repump rates

such that γ þ Γc < w < NΓc, the system is in the super-
radiant regime that is characterized by positive inversion
and spin-spin correlations hσ̂z1i, hσ̂þ1 σ̂−2 i > 0 [1]. We now
vary w in the weak repump regime 0 < w < γ þ Γc while
keeping the values of γ, Γc fixed. We choose γ=Γc ¼ 0.1,
corresponding to C ¼ 10. We first consider the cavity
output power per atom, which is proportional to hĴþĴ−i=N,
where Ĵþ ¼ ðĴ−Þ†. Figure 2(a) plots this quantity for
different atom numbers as w is scanned across γ. With
increasing system size, we observe signatures of a non-
analytic change at w ¼ γ that indicates a phase transition.
We use second-order cumulant theory to obtain analytical
insight into this behavior. Using an expansion in the small
parameter 1=N, we find that theOðN0Þ behavior of hĴþĴ−i
is given by [32]

hĴþĴ−i ¼
(
0 0 < w < γ

N w−γ
2Γc

γ < w < γ þ Γc:
ð2Þ

(a) (c)

(d)(b)

FIG. 1. (a),(b) Bad cavity laser model illustrated with
N ¼ 4 atoms. The atoms undergo collective decay (green) in
the presence of noncollective pumping (red) and additional
noncollective decay (blue). When w < γ þ Γc, the phases of
the spins are anticorrelated, leading to steady-state subradiant
emission. The steady-state density matrix lives in a triangular
state space characterized by quantum numbers J, M. Collective
decay only leads to transitions in the same J manifold, whereas
noncollective pumping and decay cause jumps to states in the
same as well as adjacent J manifolds. (c),(d) Population dis-
tribution in J, M state space for N ¼ 100 atoms, for two states
that are approximately equally subradiant [cf. Eq. (3)] but on
either side of the phase transition.
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For w < γ, a zero solution at leading order reveals the
strong suppression of the cavity output power, which does
not grow with N in this regime. On the other hand, the
output power grows linearly with N for w > γ.
Importantly, the critical point w ¼ γ is distinct from and

precedes the onset of superradiance at w ¼ γ þ Γc. As a
result, the collective atomic state is subradiant (with respect
to emission into the cavity) in both the phases demarcated
by this point. A quantitative measure of the degree of
subradiance is the per-atom reduction in the collective
emission rate in units of Γc. This subradiance factor Sf is
given by

Sf ¼ 1

N

�
hĴþĴ−i −

�
N
2
þ hĴzi

��
¼ ðN − 1Þhσ̂þ1 σ̂−2 i; ð3Þ

where hĴþĴ−i describes collective emission and includes
the effects of atom-atom correlations, while the second
term describes the emission from N uncorrelated atoms.
The J ¼ 0,M ¼ 0 singlet state gives the minimum possible
value of Sf ¼ −0.5 and hence it can be considered the most
subradiant state. Remarkably, as shown in Fig. 2(b), we
find that near the critical point Sf → −0.5 with increasing
system size, indicating that the system is highly subradiant
on either side of this point and occupies states with J close
to zero.
To understand how these two subradiant phases

differ, we plot the population in the J, M states for
N ¼ 100 atoms at two points with similar values of
Sfð≈ − 0.37Þ on either side of the critical point [Figs. 1(c)
and 1(d)]. For w < γ, the population is localized around a
mean J ∼OðNÞ and therefore even single collective exci-
tations rapidly decay at a collectively enhanced decay rate
∼JΓc, largely confining the population to dark states with
M ¼ −J [38]. In contrast, for w > γ, the collective decay is
unable to confine the population to the lower boundary.
In this regime, the system occupies states with vanishing
values of J=N whereas all allowed M values are signifi-
cantly populated, hence allowing the atoms to emit light
through the cavity. To summarize, as w increases, the

subradiant system “walks” up the lower boundary of the
triangular state space, encounters the vertex at J ¼ 0, and
undergoes a phase transition into a qualitatively different
family of subradiant states. Therefore, the phase transition
arises as a result of the closed bottleneck at J ¼ 0 that
reflects the incoming population back into the J ≥ 0 space
(see animation [32]).
A nonanalytic change is also observed in the mean

atomic inversion hσ̂z1i ¼ 2hĴzi=N, plotted in Fig. 2(c). We
find that hσ̂z1i monotonically increases with w for w < γ
while it is essentially zero (at leading order) for w > γ [32].
Further, a dramatic evidence for the phase transition is
observed in the normalized variance of the collective
inversion, given by ðΔĴzÞ2=N. Figure 2(d) plots this
quantity for N ¼ 103, 104, 105 spins. Since J ≪ N=2 in
the critical region, we are able to extend the ED compu-
tation toN ∼ 105 by working in a truncated state space with
Jmax ≤ 1250. With increasing atom number, we find strong
evidence for a discontinuous jump in this quantity at the
critical point. In cumulant theory, we find that this jump in
the variance is only reproduced by accounting for third-
order cumulants [32]. In particular, we cannot factorize
three-atom correlations as hσ̂þ1 σ̂−2 σ̂z3i ≈ hσ̂þ1 σ̂−2 ihσ̂z1i. The
nonanalytic behavior of the inversion and the disconti-
nuity in the variance at the critical point are reminiscent
of the behavior of order parameters and susceptibilities
in equilibrium phase transitions, but in this system
these features manifest in a strongly out-of-equilibrium
setting.
Entanglement.—The failure of simple mean-field theory

to reveal subradiance motivates us to investigate the
entanglement properties of the steady state in this regime
and in particular near the critical point w ¼ γ. Since the
system occupies states with J ≪ N=2 near this point, an
appropriate entanglement witness is the generalized spin
squeezing parameter [40,41] given by

ξ2 ¼ ðΔĴxÞ2 þ ðΔĴyÞ2 þ ðΔĴzÞ2
N=2

; ð4Þ

(a) (b) (c) (d)

FIG. 2. Signatures of the phase transition. (a) Cavity power output per atom, characterized by hĴþĴ−i=N, (b) Subradiance factor Sf
and (c) Mean atomic inversion, as w is scanned across γð¼ 0.1ΓcÞ. Markers show the results from exact diagonalization for various atom
numbers. The solid line is the result for N ¼ 105 atoms obtained using second-order cumulant theory. (d) Normalized variance of the
total inversion. The solid lines in (d) are computed using third-order cumulant theory for the displayed atom numbers.
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where ðΔĴiÞ2 ¼ hðĴiÞ2i − hĴii2 is the variance in the spin
component i ¼ x, y, z. A value of ξ2 < 1 is sufficient to
establish entanglement. Physically, this parameter captures
the simultaneous compression of uncertainties in the three
angular momentum components and takes the minimum
value of ξ2 ¼ 0 for the macroscopic singlet state with J ¼ 0,
M ¼ 0. Furthermore, ξ2 also serves as an upper bound for
the fraction of unentangled spins in the system [42].
Figure 3(a) plots ξ2 as w is varied across γ. The

discontinuity in ðΔĴzÞ2 also manifests here as a sudden
drop in ξ2 near the critical point that becomes more
pronounced with increasing system size. For a finite N,
the minimum attainable ξ2 decreases with N. As shown in
Fig. 3(b), we find a power law scaling ξ2 ∝ N−0.34 for the
minimum value obtained using ED, which is approximately
reproduced by the numerical solution of third-order cumu-
lant theory where ξ2 ∝ N−0.31. This scaling indicates that
the fraction of unentangled spins, for which ξ2 is an upper
bound, vanishes as N → ∞. Indeed, in the large N limit,
we analytically find that ξ2 → 0 (ξ2 → 1=2) as w → γþ
(w → γ−) [32]. The subradiant-to-subradiant phase transi-
tion is thus characterized by macroscopic entanglement in
the atomic ensemble whereOðNÞ atoms are entangled with
other atoms.
Practical considerations.—Bad cavity lasers based

on Raman transitions [3] as well as narrow-line optical
transitions [43] can be potentially adapted to observe this
transition. Experiments could also be based on cooperative
emission from artificial atoms such as nitrogen-vacancy
centers or quantum dots [44,45]. Whereas for steady-state
superradiance the bad cavity requirement is κ ≫ NΓc, with

κ the cavity linewidth and NΓc the order of the collectively
enhanced single-atom emission rate, future studies can
explore if this requirement can be relaxed in the subradiant
regime where there is no such enhancement. However,
similar to the superradiant regime, steady-state subradiance
requires the atom-cavity system to satisfy NC ≫ 1 but
operate in the less explored weak pumping limit given by
w ∼ γ ≪ NΓc. Although we have considered the stricter
(but achievable [46]) condition C > 1 in this work, the
nonanalytic behavior of the inversion and output power is
independent of C, and the critical scaling of the minimum
squeezing with N will also be observable for C≲ 1, albeit
with an exponent of smaller magnitude [32]. However, for
C ≪ 1, the interval γ < w < γ þ Γc is very small and hence
the subradiant-to-subradiant transition is immediately suc-
ceeded by the onset of superradiance. We have verified
that the mean inversion, output power, and the minimum
squeezing are robust to T2 dephasing even when 1=T2 ≳ γ
[32]. The steady state is also robust to small fluctuations in
the atom-cavity detuning since the resulting spin exchange
Hamiltonian (∝ ĴþĴ−) is permutation and Uð1Þ symmetric
and hence commutes with the steady-state density matrix.
While hĴþĴ−i can be inferred from the cavity output power,
the mean inversion and the variance ðΔĴzÞ2 could be
measured, for instance, by preparing the steady state and
subsequently measuring the population statistics in one of
the pseudospin states by detecting the fluorescence from a
cycling transition. Alternatively, quantum nondemolition
(QND) schemes could also be used to measure the latter
two observables [47,48]. The quantities Sf and ξ2 can be
estimated by combining these three quantities. The cavity
output can also be used to measure photon bunching via the
second-order correlation function gð2Þð0Þ, which we find
exhibits an abrupt spike at the critical point [32].
So far, we have considered the case when atoms are

identically coupled to the cavity mode, which can be
achieved, e.g., by using a commensurate trapping wave-
length [47] or by spectroscopic selection of atoms with
near-maximal coupling [49]. We now briefly comment
on the case of inhomogeneous atom-cavity coupling.
Remarkably, we find that the cavity output power and
the mean inversion in both phases remain unchanged at
leading order even when the atoms are assumed to be
arbitrarily distributed over a cavity mode wavelength [32].
The two phases still remain subradiant, although the
expression for Sf must now account for the inhomogeneity.
It may nevertheless be estimated using the output power
and the mean atomic inversion [32]. Verifying entangle-
ment may be possible by using a modified squeezing
parameter that accounts for the spatial modulation entering
the accessible observables as a result of the inhomogeneous
coupling. We construct a modified squeezing parameter in
the Supplemental Material [32], using which one could
explore the possibility to detect entanglement in an inho-
mogeneously coupled system in future work.

(a)

(b)

FIG. 3. (a) Steady-state squeezing parameter ξ2 as w is scanned
across γð¼ 0.1ΓcÞ. Markers depict ED results while the lines are
obtained from third-order cumulant theory. (b) Minimum ξ2 value
extracted from ED and third-order cumulant theory. A fit to the
ED data reveals a scaling of N−0.34.
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Conclusion and outlook.—We have demonstrated that a
bad cavity laser undergoes a dissipative phase transition
from one subradiant phase to another before the onset of
superradiance. Rather than destroying atomic correlations,
single atom pumping and decay instead play a central role in
generating and maintaining the entangled subradiant states
we observe, which, in addition, are also robust to T2

dephasing. Buoyed by recent experiments [50], subradiance
is an exciting frontier with a variety of proposed applications
such as ultrafast readouts [51], engineering of optical
metamaterials [52], photon storage [53,54], quantum state
transfer [55], and improved quantum metrology [56], to
name but a few. In light of its robust nature, it will be
interesting to explore potential applications of steady-state
subradiance in quantum information processing, especially
considering the features near the critical point such as a
vanishing fraction of unentangled spins and an extreme
sensitivity of observables to system parameters. From a
fundamental perspective, it will be interesting to explore
connections with quantum simulations of magnetism [57],
topological properties of classical Markov chains [58,59],
and higher-spin models, where a higher-dimensional state
space potentially allows for even richer physics.
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