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Reinforcement-learning-based matter-wave interferometer in a shaken optical lattice
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We demonstrate the design of a matter-wave interferometer to measure acceleration in one dimension with
high precision. The system we base this on consists of ultracold atoms in an optical lattice potential created by
interfering laser beams. Our approach uses reinforcement learning, a branch of machine learning that generates
the protocols needed to realize lattice-based analogs of optical components including a beam splitter, a mirror,
and a recombiner. The performance of these components is evaluated by comparison with their optical analogs.
The interferometer’s sensitivity to acceleration is quantitatively evaluated using a Bayesian statistical approach.
We find the sensitivity to surpass that of standard Bragg interferometry, demonstrating the future potential for
this design methodology.
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I. INTRODUCTION

Quantum metrology is an important field of quantum
physics with the goal to make accurate and precise mea-
surements of important physical quantities, ideally at a level
that surpasses that achievable by any classical approach. In
particular, extensive efforts have been made to develop metro-
logical devices based on interference and detection of either
electromagnetic waves or matter waves. By exploiting the
quantum aspects of superposition and entanglement, one can
potentially achieve high sensitivity to phase shifts, and this
has inspired a wide variety of applications, including detecting
gravitational waves [1], measuring the fine-structure constant
[2], testing the universality of free fall [3], and inertial sensing
for GPS navigation [4,5].

The usual direct-design approaches to engineering com-
plex quantum systems that consist of many degrees of
freedom or many particles are typically founded on experience
with simpler analogs or intuition for underlying mechanisms.
This naturally leads to a paradigm that is most accessible in
terms of understanding, but incorporates human bias that may
potentially generate nonoptimal solutions. With this perspec-
tive in mind, we point out there are a few purely systematic
methods that are often used as a way to develop unbiased
strategies, including optimal control [6] and optimization
algorithms such as the Nelder-Mead simplex [7] or simu-
lated annealing [8]. Utilizing these methods can allow one
to explore solutions with more complicated forms with the
potential to reach closer-to-optimum control protocols.

Recently, it has been shown that quantum design may ben-
efit tremendously from a branch of machine learning based on
trial and error, known as reinforcement learning, that aims to
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employ machines to find the optimal strategy for accomplish-
ing a specific task. One of the reasons for its success is that the
learning framework is decoupled from human intuition and
therefore may explore novel solutions that have been previ-
ously undiscovered. Moreover, in situations where problems
are so complex or extensive that naïve brute-force algorithms
are considered unfeasible, such as playing games like go and
chess [9–11], sophisticated reinforcement-learning algorithms
have been developed to enable the machines to perform at a
level that exceeds human capability. There are many systems
in quantum physics that fit naturally within this scope due
to their underlying complexity. For example, reinforcement
learning has been applied to control and study phase transi-
tions of many-body quantum systems [12], to find strategies
for quantum error correction [13,14], to design quantum cir-
cuits [15], to prepare novel quantum states [16–18], to find
protocols for quantum communication [19], and to improve
quantum sensors [20]. In this paper, we will investigate the
potential for reinforcement learning to improve on existing
matter-wave interferometery. In Sec. II, we describe the phys-
ical model for the interferometric system. We outline our re-
inforcement learning approach in Sec. III and explain the key
concepts crucial to understanding its application. In Sec. IV,
we demonstrate how the reinforcement-learning framework
may be used to design a beam splitter and a mirror and present
the protocols that are learned. Following this we show how the
components can be cascaded together to form a complete in-
terferometer. In Sec. V, we evaluate the resulting performance
of the interferometer through a Bayesian statistical analysis.

II. PHYSICAL MODEL

Although the topology of interferometers can vary some-
what, the archetypal design can be thought of as the
Mach-Zehnder interferometer [21,22]. This device is sensitive
to the differential phase accumulated between two alternate
paths [see Fig. 1(a)]. Mach-Zehnder interferometers are com-
posed from three essential components: A beam splitter that
separates the wave coherently into two directions, mirrors
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FIG. 1. Interferometers are composed of (i) a beam splitter, (ii) mirrors, and (iii) a recombiner. Examples shown are (a) an optical Mach-
Zehnder interferometer (using half-silvered or conventional mirrors), (b) a Bragg interferometer (using three short light pulses of varying pulse
area, π/2 or π ), and (c) a shaken lattice interferometer. In (c), the shaken lattice mimics the interferometer components by splitting, reflecting,
and recombining the atoms through design of a specific shaking function for each case.

that reflect both parts, and a recombiner where the waves
are brought back together and constructively or destructively
interfere. While in the optical case components that split or
reflect light beams are readily available (e.g., half-silvered or
conventional mirrors), for matter-wave optics, the components
have to be generated through the careful control of laser-atom
interactions. The traditional way to do this is through Bragg
diffraction [see Fig. 1(b)] [23,24], in which a sequence of
three short light pulses are used to separate, reflect, and re-
combine the matter wave.

An alternative approach is possible for atoms moving in
an optical lattice potential where the intensity pattern can
be shifted backward and forward in time [25–27]. The ele-
mentary components, i.e., a beam splitter, reflectors, and a
recombiner, in that case may be implemented by “shaking”
the lattice in a tailored pattern. If we denote the canonical
position and momentum operators of an atom by x̂ and p̂,
respectively, with m the atom mass, the optical lattice system
can be described by the Hamiltonian

Ĥ (t ) = p̂2

2m
− V0

2
cos[2kLx̂ + φ(t )], (1)

where kL is the laser wave number, and φ(t ) is the time-
dependent phase difference between two counterpropagating
lasers. The lattice, with constant amplitude V0, is shaken
through the variation of φ(t ), since that parameter determines
the position of the nodes and the anti-nodes of the standing
wave intensity.

Unlike a typical Mach-Zehnder interferometer, which is
formally a two-port device and transforms quantum states
according to simple SU(2) group rotations, the relevant eigen-
states of the shaken lattice potential consist of many Bloch
states that can be coupled by the time dependence of the laser
phase, φ(t ). In some sense this situation represents a highly
multipath form of interferometry since the Bloch basis pro-
vides many accessible paths for the quantum wave function to
explore. While this establishes a rich evolution and could pro-
vide metrological benefit, it makes it more difficult to design
an intuitive control protocol. It is for this goal of obtaining a
high performance solution among a complex landscape that
we are led to consider reinforcement learning as a design
approach.

III. MODEL-FREE REINFORCEMENT LEARNING FOR
DESIGN

In order to understand our design philosophy, we first need
to address the important considerations to make when using
machines to find solutions to design tasks. In this section we
will present the principal ideas and concepts that will form the
underlying foundations of our learning-based methodology.
Since there are a variety of methods available, we begin with
a discussion of the main structure that we will employ.

Reinforcement learning consists of a closed loop in which
an agent invokes actions based on the observed state of an
environment, and an environment provides rewards to the
agent based on the observed outcome of its actions. The agent
is tasked with the goal to discover the sequence of actions
for which it receives the highest possible terminal reward [28]
(see Fig. 2). It does this by trial and error, iteratively improv-
ing its actions in such a way as to corral the environment
toward a target configuration.

We are primarily interested in a specific kind of reinforce-
ment learning, known as model-free learning [28], where the

FIG. 2. Framework of reinforcement learning. The agent chooses
an action, the environment responds to the action and gives the next
state and a reward as feedback. In our design task, the action is the
translation of the optical lattice, the environment evolves accord-
ing to the Schrödinger equation, the observation is the momentum
population distribution, and the reward is a function of the quan-
tum fidelity. Illustrated on the left is an example neural network
as the decision-making agent. The neural network takes the state
represented on its input layer, passes it through a hidden layer, and
generates a vector of Q-values at its output layer.
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agent has no detailed insight as to the structure of the en-
vironment and cannot know a priori what effect an action
will have on the environment state. Here the agent learns and
makes decisions even when the environmental model may
not be fully known. This general setting can even be applied
to the situation in which the environment is represented by
an experimental apparatus that cannot be fully understood,
and the reward is derived from experimental observation and
feedback. Using this approach significantly expands the po-
tential scope of our work, since it is precisely this aspect that
distinguishes model-free reinforcement learning from classi-
cal optimal control methods. In classical optimal control, the
optimization depends heavily on the mathematical form of the
model and, for complex systems, can be difficult to implement
in practice.

Typically, reinforcement learning problems are Markov de-
cision processes, where the probability of transition to the next
state is only dependent on the current state and the current
action and not on prior history. Evolution in this framework is
referred to as a trajectory, where the state is initially prepared
and then a sequence of actions and corresponding state up-
dates are performed. The trajectory steps continue until the
chain comes to an end when a predetermined condition is
reached, which might be a certain number of steps, or a termi-
nating state of the environment. An important concept is the
idea of an optimum trajectory starting from any state, which
is a trajectory such that the terminal reward is the maximum
possible. We use what is known as Q-learning to make the
action decisions, as we now describe. Although this approach
is not the only possible choice, it is appropriate when the effect
of an action on the environment state is deterministic, which
will be the case here.

Since there is potentially an enormous dimensionality of
the state space and the action space, a brute-force search is
not possible, and we employ a neural network to learn and
to approximately optimize the crucial decision-making task.
That is, we define the input nodes of a neural network to
be a representation of an arbitrary vector in the state space.
We ascribe to the output of the neural network a vector of
quality factors, simplified to Q-values, Q(s, a) ∈ R, where
each element represents the desirability for a possible action,
a, given an input state, s. Ideally the neural network should
take any arbitrary state as input and output a distribution in
which the maximum Q-value corresponds to the best next
action to perform.

We train the neural network in the following manner. The
agent will utilize a policy in order to decide on the next action
for a given state, for example, by taking the action associated
with the maximum Q-value from the neural network output
vector. The environment, in some initial state s, receives the
action a from the agent and then updates the state, symboli-
cally denoted as

s
a−→ s′.

The environment then reports back to the agent the reward,
r(s′). As a step in a sequence, this leads to the important
concept of the discounted cumulative reward, known simply
as the return. The return, Y (s′), is defined as the combination
of a current reward, r(s′), and every future reward that would

be generated in an optimum trajectory seeded by s′. Since
any current action will have decreasing influence on future
decision making as the steps become more distant, it is useful
to deweight each consecutive reward by a discount factor,
γ ∈ [0, 1], i.e.,

Y (s′) ≡ r(s′) + γ r(s′′) + γ 2r(s′′′) + . . . , (2)

where

s′ a′−→ s′′ a′′−→ s′′′ a′′′−→ . . .

are steps along an optimum trajectory.
The learning process is now framed as the minimization of

the squared difference between the return, Y (s′), and the net-
work output, Q(s, a), where the minimization is accomplished
by varying the internal weights and biases that constitute the
neural network. Should the learning be perfected, the squared
difference would be zero, implying that the Q-value and corre-
sponding return would be identical. We emphasize that, while
mathematically complete, this learning definition is a formal
construction that is intractable as written, since if we knew the
optimum trajectory there would be no need to carry out the
learning at all. In fact, the only information that is accessible
about the future component of Y (s′) is the inference one can
make from the neural network output itself, introducing a
self-consistency element to the optimization problem. In other
words, the series in Eq. (2) is approximated as

r(s′′) + γ r(s′′′) + . . . ≈ max
a′

[Q(s′, a′)], (3)

so that

Y (s′) = r(s′) + γ max
a′

[Q(s′, a′)]. (4)

The final result given in Eq. (4) encapsulates all the principal
concepts that establish a closed learning formulation that can
be computationally implemented.

We employ several technical but important improvements
that increase the convergence, such as to replace the neural
network used for the calculation of the future return, as ap-
proximated in Eq. (3), with a second identical neural network,
the target network. The target network is updated at each
step from the Q-network by a weighted average leading to
increased stability [29,30]. Another useful trick is to employ
an ε-greedy policy in the training stage [28], which simply
means that the action associated with the highest Q-network
output value is not always chosen, but with ε likelihood, a
random action is selected. This allows the neural network to
explore a more extensive state space and to avoid becoming
trapped in a locally optimal solution. Finally, as is common to
many forms of machine learning, a variety of batch sampling
methods, in this case a replay buffer of previously experienced
transitions, (s, a, s′), can be used to assist in the efficiency and
stability of the learning minimization stage [31]. For further
details of the algorithmic structure, we refer the reader to
Appendix A.

IV. COMPONENT DESIGN

We now use the Q-learning framework to design the es-
sential elements for building an interferometer, i.e., a splitter,
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reflectors, and a recombiner. One aspect that is worth em-
phasizing is that the standard Mach-Zehnder interferometer
topology may not always be the optimal layout for determin-
ing an accumulated quantum phase. For example, it has been
demonstrated in Ref. [32] that novel optical experimental se-
tups that could potentially provide sensitivity surpassing that
of the Mach-Zehnder configuration can be designed with rein-
forcement learning. However, with the aim of simplicity, and
even though it constrains our solution space, we will limit the
discussion here to the design of only the specified individual
interferometer components. This will allow us to evaluate the
efficacy of the learned protocols by direct comparison with the
device characteristics of the analogous Bragg interferometer.
In the future, it may prove beneficial to allow for more free-
dom in the design topology and to thereby ascertain whether
this leads to further performance gains.

We have developed the learning terminology around words
such as “state” and “environment” where they have been given
a specific meaning. We are now going to apply the method-
ology to the design task of controlling a complex quantum
system. Unfortunately we will encounter the issue that terms
such as state and environment have conflicting and completely
different meanings in the theory of open quantum systems. In
particular, to enable an efficient machine learning algorithm
with an addressable number of input nodes, the state space
that we use is typically a compact representation of a quantum
state or operator. The environment, which denotes the system
that we wish to control and that is evolving under our imposed
actions, is a completely different use of the term to that com-
mon in open quantum system literature. In the next design
descriptions, we will provide the dictionary for mapping the
learning terminology to the quantum variables.

A. Beam splitter

The beam splitter is a target-state design problem that can
be specified as follows. We initialize a quantum state in the
ground state of an optical lattice potential, where the lattice
depth V0 is set to 10 Er (Er = h̄2k2

L/2m is the recoil energy).
The task is to shake the lattice in such a way as to split
the atoms from the ground state into an approximate equal
superposition of |±p0〉 momentum states. We will focus on
p0 = 4h̄kL here, which we find to balance well the trade-
off between large momentum splitting and high-frequency
components necessary for the shaking function. If the target
quantum state is a lattice eigenstate it is a stationary state
under free evolution, avoiding the need for a free evolution
protocol. As a consequence, we assign the target quantum
state to be the third-excited Bloch state with zero quasimo-
mentum. This eigenstate has the attractive property that it
closely approximates the desired superposition of momenta,
although not perfectly, and can be strongly coupled to the
ground state by a reasonably simple shaking solution.

The state space for learning, i.e., the vector space contain-
ing s, is a compact representation of the Hilbert space. For this
learning task, we define s to be a vector of populations (i.e.,
probability distribution) for momenta chosen from a comb
of discrete values, {2nh̄k} for n ∈ Z, |n| < nmax. This choice
is motivated by the fact that the stimulated absorption and
emission of photons only couple momenta separated by this

quantized spacing. The possible actions, a, are also reduced to
a discrete set of possibilities, each action corresponding to a
specific constant phase to be applied during the corresponding
step (see Appendix C). This means that with these associa-
tions, the deep Q-network is specified as mapping momentum
populations at its input layer to Q-values at its output layer
associated with a finite set of possible lattice phases to be
applied during the next update.

In order to apply the action generated by a choice of lat-
tice phase and to thereby determine the updated momentum
distribution that results, we need to specify the environmental
model. In principle, this could be experimental or theoretical,
and even if theoretical, could include stochastic effects that
arise from dissipation and noise. However, for simplicity, we
will take the most basic formulation. This means that our en-
vironmental model will update a pure quantum state through
the Schrödinger equation evolution for an isolated system.
The reward will be based on the fidelity between the evolved
quantum state and the target quantum state, i.e., the third-
excited Bloch state, as calculated from the modulus-square
inner product.

Actually, this environmental model allows us to accom-
plish two design tasks at the same time. Once we find a
protocol for splitting, the recombining task can be achieved
by simply implementing the time-reversed protocol, a con-
sequence of the time-reversal symmetry underpinning the
Schrödinger evolution and the time-reversal symmetry of both
the initial and the target states.

A reinforcement learning outcome for the beam splitter
is shown in Fig. 3, which illustrates the learned shaking
function, φ(t ), and the corresponding evolution for the mo-
mentum probability distribution that results. Even though this
sequence of phases does not appear to have a predictable
structure, it is apparent that at the terminal time the momen-
tum distribution has the anticipated form of two well-defined
peaks at ±4h̄kL. The calculated fidelity of the state is ap-
proximately 95%. It would be possible to optimize further by
expanding the set of possible phase elements, by increasing
the total evolution time, or by optimizing the learning cycles.
However, any real experiment may possess imperfections and
other aspects that are not well described by our isolated sys-
tem’s Schrödinger evolution, and the level of performance of
our design is sufficient for the task at hand.

B. Mirror

The second task is to reflect the momentum from |±p0〉
to |∓p0〉, that is, corresponding to a matter-wave mirror. We
should point out at the start that this task is essentially dif-
ferent in character from the beam splitter, because it is not a
target-state but a target-operator design problem. The mirror
is defined by the desired map,

α|p0〉 + β|−p0〉 → α|−p0〉 + β|p0〉,
for any arbitrary α and β. This implies that the target unitary
is any operator Ûtarget that satisfies

P̂ÛtargetP̂ = |p0〉〈−p0| + |−p0〉〈p0|, (5)

where P̂ = |p0〉〈p0| + |−p0〉〈−p0| is the projector onto the 2-
dimensional subspace. The design goal is, therefore, to shake
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FIG. 3. Shaking function for splitting. The learned lattice phase,
φ(t ), (top) is allowed to take on one of a discrete set of five possible
values that span the range shown. The momentum probability distri-
bution (bottom) is initialized to the ground state of the lattice and at
the terminal time well approximates the desired superposition for a
beam splitter.

the lattice as a function of time, such that the corresponding
unitary evolution, Û (t ), approximates any Ûtarget that satisfies
Eq. (5) at the terminal time. The vector space containing s
is defined as a compact representation, in this case, of the
set of quantum unitary operators. Given the mirror behavior,
a suitable choice for s for this learning task is a vector of
norms of selected matrix elements of the unitary represented
in momentum space, i.e., |〈±p0|Û (t )|p = 2nh̄k〉|2 for n ∈ Z,
|n| < nmax. For the set of possible actions, a, we use a different
parametrization of the phase than for the beam splitter design.
We found that the quality of the mirror is very sensitive
to the frequency of the shaking function. The characteristic
frequency, 12ωr , where ωr = h̄k2

L/2m is known as the recoil
frequency of the lattice, corresponds to the kinetic energy
difference between |4h̄kL〉 and |2h̄kL〉 and works especially
well. Consequently, we enforce a sinusoidal φ(t ) at frequency
12ωr , and at each half cycle, the agent chooses the action a
as the amplitude of the sinusoidal shaking function selected
from a small set of possible values (see Appendix D). This
means here that the deep Q-network is specified as mapping a
compact representation formed from the norm of a subset of
elements of the unitary matrix to Q-values associated with the
amplitude of the sinusoidal shaking function for its next half
cycle.

We also need to define what is meant by the environment
in this case. The environmental model establishes the unitary
operator update during a shaking function half cycle. If, as
before, we take the environmental model to be a closed quan-
tum system, the evolution is given by solving the Schrödinger

FIG. 4. Shaking function for reflection. The learned lattice phase,
φ(t ), (top) is sinusoidal and the amplitude is allowed to take on any
one of a discrete set of five values at each half cycle. The momentum
distribution (bottom) is prepared in −4h̄kL and well approximates
4h̄kL at the terminal time.

equation of motion for the time evolution operator,

ih̄
dÛ (t )

dt
= Ĥ (t )Û (t ). (6)

The reward is associated with the channel fidelity in the ds =
2-dimensional subspace spanned by |±p0〉 (see [33])

F = 1

ds(ds + 1)
[Tr(MM†) + |Tr(M )|2], (7)

where the density operator is M = PU †
targetU (T )P.

An example outcome from reinforcement learning for the
mirror is shown in Fig. 4. This illustrates the learned shaking
function and corresponding momentum probability density
that this generates starting from −4h̄kL. From matrix elements
of the resulting unitary operator, we also verify that the phase
relation between the coefficients of the ±4h̄kL states is pre-
served. As for the beam splitter case, it would be difficult to
anticipate the form of φ(t ), and yet the resulting quantum state
evolution closely approximates that expected for a mirror. The
channel fidelity reaches 93% at the terminal time, which as
discussed earlier could still be improved on, but nevertheless
is sufficient for our purpose.

C. Matter-wave interferometer

We can now cascade together the learned components to
make a shaken lattice interferometer. In between the com-
ponents, we allow the system to propagate freely with the
lattice present but with φ(t ) = 0. This gives a time evolution
of the wave function in real space as shown in Fig. 5, where
the state has been initialized to be in the ground state of the
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FIG. 5. Time evolution of the matter-wave density throughout
the entire interferometry sequence. The white dotted lines separate
the plot into five regions. In region I, we apply the splitting protocol.
In region II, we allow the matter wave to propagate freely in the
lattice. The appearance of two wave packets traveling in opposite
directions shows that the beam splitter operates as expected. In region
III, we apply the mirror shaking function. The matter wave undergoes
free propagation in region IV again, and the two wave packets switch
directions, demonstrating the functionality of the mirror. Last, we
apply the recombining protocol in region V. Apart from the main
closed diamond-shaped paths, we observe that there are auxiliary
paths that are fainter but still clearly evident. They arise due to the
imperfection of the components and also due to the side peaks arising
from the third-excited Bloch state.

lattice multiplied in real space by a Gaussian envelope with a
width of a few lattice sites. The free-propagation time is set to
10 ω−1

r . During free propagation, we can see the wave packets
propagating at the anticipated ±4h̄kL/m group velocity. The
anticipated features are evident in the observed splitting, re-
flection, and recombination of the matter wave.

V. STATISTICAL ANALYSIS

We compute the final momentum distribution on a grid
of acceleration values in order to see how useful our de-
vice is for inertial sensing. To interpret the outcome of the
interferometer, we use Bayes theorem to derive information
about the acceleration from the momentum distribution. This
approach is always more effective than curve-fitting when
there is knowledge of the probability distribution generator,
and the difference is particularly notable in situations like
this when the distributions are multimodal. The probability
distribution of the acceleration after measurement of a particle
in a particular momentum state, P(a|p), is given by,

P(a|p) ∝ P(p|a)P(a), (8)

where P(a) is the prior distribution of the acceleration, and
the proportionality is resolved by normalizing the total prob-
ability to unity. The probability for measuring a particular
momentum p conditioned on the acceleration a, P(p|a) is
directly calculated by propagating the wave function in time.
We combine multiple measurements by iterating Eq. (8) to
formulate the conditional probability distribution based on the
entire measurement record [34]. For a measurement record
{p1, p2, . . . , pN }, where N is the number of measurements,

SLI
Bragg
CR bound

FIG. 6. (a) Posterior probability density of the acceleration for
the first 100 atoms. The true acceleration that we aim to reveal by the
measurements is −3 × 10−3 ωrvr (red line), and the measurements
are sampled from the momentum distribution at the end of the inter-
ferometry sequence, as shown in the inset. (b) Standard deviation of
the acceleration estimated using Bayes theorem for up to 104 atoms.
We show the results from both the shaken lattice interferometer
(SLI) and the Bragg interferometer and conclude that the SLI has
a higher sensitivity. The standard deviations σa are roughly inversely
proportional to the square root of the number of measurements N ,
for N > 102. The black dashed lines are the Cramér-Rao (CR) lower
bounds and scale exactly as 1/

√
N .

the probability distribution becomes

P(a|p1, . . . , pN ) ∝ P(pN |a) . . . P(p1|a)P(a), (9)

normalized to unity. Since we assume that each atom is in-
dependent of each other, N is the total number of atoms we
observe. We combine the distributions for each atom using
Eq. (9) to accumulate the distribution for a conditioned on the
measurement record and estimate the acceleration by taking
the expectation value.

In Fig. 6(a), we show an example of the parameter estima-
tion process, where the actual acceleration is −3 × 10−4 ωrvr

(vr = h̄kL/m is the recoil velocity). The corresponding mo-
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mentum probability distribution for each atom is shown in
the inset. What is important about this distribution is that it is
almost unique for each acceleration value and therefore acts as
a fingerprint. In Figure 6(b), we show the standard deviation of
the acceleration as a function of the number of measurements.
A typical number of atoms for an ultracold gas experiment
may be of order ∼104, and with 104 measurements, the es-
timated acceleration agrees extremely well with the actual
value. We observe that the standard deviation approaches the
standard quantum limit, which scales as ∼1/

√
N . This result

is consistent with the fact that we are not considering atom
interactions in the system, so each atom may be thought of as
making an independent measurement.

We demonstrate that reinforcement learning provides addi-
tional capability over traditional experimental techniques by
comparing the sensitivity of the shaken lattice interferome-
ter with the conventional Bragg interferometer. The Bragg
interferometry sequence is shown in Fig. 1(b). We use the
Bayesian parameter estimation result with the Bragg inter-
ferometer as a baseline for benchmarking the shaken lattice
interferometer. To make a fair comparison, we consider the
case where the Bragg interferometry sequence takes the same
time as the shaken lattice interferometer. The protocol found
by our reinforcement learning algorithm generates a momen-
tum splitting of 8h̄kL (between −4h̄kL and +4h̄kL) at the beam
splitter, four times larger than the 2h̄kL (between −1h̄kL and
+1h̄kL) splitting from Bragg diffraction, and therefore this
results in higher sensitivity. One may argue that it is possible
to generate larger momentum splitting with Bragg diffraction,
and while this is true, higher-order transitions typically require
much more time than than the short pulses applied here. For
these reasons, we have observed from our simulations that the
standard deviation of the shaken lattice interferometer can be
approximately four times lower than that of the corresponding
Bragg interferometer given the time constraint, implying that
we have realized an approximate factor of four in sensitivity
gain. The results are shown in Fig. 6(b).

We verify that the standard deviations σa for both the
shaken lattice interferometer and the Bragg interferometer are
close to the limits set by the Cramér-Rao bound, which can be
calculated from the classical Fisher information as,

σa � 1/
√

NI1(a),

I1(a) =
∑

p

1

P(p|a)

[
∂P(p|a)

∂a

]2

, (10)

where I1(a) is the Fisher information for one independent
measurement. The Cramér-Rao bound for the shaken lattice
interferometer is determined by numerically calculating the
classical Fisher information using the precalculated prob-
ability P(p|a), and the Cramér-Rao bound for the Bragg
interferometer is determined by the analytical form σa �
(2kLT 2)−1N−1/2, where T is the free-propagation time.

Note that the sensitivity presented here is not the ulti-
mate achievable sensitivity since we are constraining system
parameters. It would be possible to improve the sensitivity
of our interferometer, for example, by increasing the free-
propagation time, or by further accelerating the matter-wave

components in opposite directions after applying our splitting
protocol, as discussed in Refs. [36,37].

VI. CONCLUSION

In summary, we have demonstrated a machine learning
methodology to control a complex quantum system for the
purpose of performing a quantum metrology task. Specifi-
cally, we demonstrated how to utilize reinforcement learning
for the design of a lattice-based matter-wave interferometer.
We showed that by shaking the lattice with protocols derived
from deep Q-learning, matter-wave analogs of optical compo-
nents are realized. We showed that these can be concatenated
together to build a high-precision interferometric device. The
multipath interferometer that was constructed in this way
is capable of the measurement of acceleration with higher
sensitivity than that achieved by a conventional matter-wave
interferometer.

While we have assumed that atom interactions are negligi-
ble, they could potentially bring more quantum advantage if
harnessed appropriately. For example, if we could discover
a protocol for shaking the lattice to generate momentum-
squeezed states, the sensitivity could potentially be higher
than the standard quantum limit that is generated by the sta-
tistical averaging of independent atoms. In fact, the quantum
entanglement in such squeezed states could allow the resulting
interferometer to approach the ultimate limit to sensitivity set
by the Heisenberg uncertainty relation between number and
phase. We have focused on demonstrating a specific solution
to the problem of designing a Mach-Zehnder interferometer,
but our main outcome is actually to illustrate an effective
design methodology. In the future, this approach could poten-
tially lead to the design of alternate protocols that construct
completely new types of metrological devices with a perfor-
mance level surpassing conventional experimental methods.
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APPENDIX A: TRAINING THE DEEP Q-NETWORK

The objective of deep Q-learning is to train the deep Q-
network so that it represents the return defined in Eq. (2) well
and therefore satisfies the Bellman optimality equation,

Q(s, a) = r(s′) + γ max
a′

Q(s′, a′). (A1)

We train the deep Q-network using the double deep Q-
learning algorithm [30]. In this algorithm, an extra network
called the target network is included to estimate the future
return [Eq. (3)]. The reason to do it this way is that Eq. (A1)
involves a self-consistency element. If during the training
stage the Q-values on both sides of the equation are deter-
mined by the same Q-network, then updating the Q-network
will simultaneously change both the Q-value Q(s, a) and the
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Algorithm 1:

return Y (s′) that the Q-value is supposed to converge to. This
creates a feedback cycle that can make the learning pro-
cess extremely unstable, and in fact the Q-values may never
converge. In order to mitigate this problem, we employ a Q-
network, Qθ , just as described, from which the optimal action
is chosen by the agent through their policy. However, we then
update the return used to optimize the Q-network with a Q-
value corresponding to this action but obtained from a second
neural network, the target network, Qθ′ . The target network is
only updated more slowly through a weighted average. This
avoids the unstable feedback since the Q-network and target
network are weakly correlated at early stages of the learning
process [29]. Furthermore, this method also resolves issues
with overoptimism in the standard deep Q-learning algorithm
[30]. A sketch of the algorithm is presented in Algorithm 1.

The algorithm is described as follows. First, we initialize
the weights and biases in the Q-network randomly and initial-
ize the target network such that its network parameters are
the same as those of the Q-network. Then, we iterate over
a large number of episodes. In each episode, a trajectory of
consecutive states and actions is generated. A trajectory starts
with an initial state s0 and ends when we reach a terminal state
or a threshold number of steps.

In each step, we choose the action that maximizes the
Q-value for the current state most of the time, but with proba-
bility ε we choose a random action. In practice, ε decays from
1 to 0.01 over time, since exploitation becomes more impor-
tant than exploration as the learning process proceeds. The
action is then fed into the environment, and the environment
outputs the subsequent state s′, a reward r, and a Boolean d
that indicates whether the trajectory terminates at this step.
A tuple (s, a, s′, r, d ), which represents the experience we get
from taking this step, is pushed into the replay buffer.

To minimize the error of Qθ (s, a) for representing the
return, we calculate a loss function defined as the squared
difference between Qθ (s, a) and Y (s′). The future return in
Y (s′) [Eq. (3)] is evaluated by the output value of the target
network for the next optimal action. The next optimal action is

FIG. 7. An example topology of the network that we used in the
deep Q-algorithm.

determined by the action that maximizes the output values of
the Q-network, given the next state s′ as input. Since we need
the Q-values to do well for all possible pairs of (s, a), we draw
B (batch size) samples from the replay buffer, where each
sample is labeled by an index i, and calculate their average
loss.

The parameters in the Q-network are updated through gra-
dient descent in the direction of decreasing average loss. The
parameters in the target network are updated by taking the
weighted average of the previous parameters from the target
network and the updated parameters from the Q-network.

APPENDIX B: NETWORK TOPOLOGY

The Q-network we use includes an input layer, one hidden
layer, and an output layer. Each layer is connected to the
next one by a linear function followed by a ReLU (Rectified
Linear Unit) activation function, which represents the func-
tion max(x, 0) with the argument x being a real number. The
relations between layers are explicitly written out as follows:

h = ReLU(W1x + b1) (B1)

y = ReLU(W2h + b2), (B2)

where h denotes the hidden nodes, x denotes the input nodes,
y denotes the output nodes, W1, W2 are the matrices of
weights, and b1, b2 are vectors of biases. An example topol-
ogy of the Q-network is shown in Fig. 7.

APPENDIX C: REINFORCEMENT LEARNING FOR
SPLITTING

Here we present how we formulate the control for splitting
as a reinforcement learning problem. First of all, we define the
input state to be a vector of the populations in the momentum
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TABLE I. Choice of hyperparameters for the splitting task. The
exploration probability ε decays linearly for each episode at the
rate represented by ε decay. The optimizer we use, “Adam” (which
stands for adaptive momentum estimation), is a method for efficient
stochastic gradient descent [35].

Hyperparameters Values

γ 0.999
τ 0.999
α 0.001
episodes 20,000
ε decay 0.0001
Hidden size 98
Batch size 64
Optimizer Adam

eigenstates,

{|2nh̄kL〉 | n = −3,−2,−1, 0, 1, 2, 3}. (C1)

The momentum states that are neglected here are barely pop-
ulated the whole time. The actions are chosen from a set of
discrete phase values,

{nπ/4 | n = −4,−2,−1, 0, 2}. (C2)

The reward is a function of fidelity, defined as

r =
{

0 if d = 0
F

1−F if d = 1
, (C3)

F = |〈ψtarget|ψ (t )〉|2, (C4)

where d = 1 when the maximum terminal time is reached
or when the fidelity is higher than the threshold 0.95, and
d = 0 otherwise. The Q-network we use for this task has
an input dimension of 7 and an output dimension of 6, as a
result of (C1) and (C2). The neural network is implemented in
PyTorch. The values for the hyperparameters used for training
this Q-network are listed in Table I.

APPENDIX D: REINFORCEMENT LEARNING
FOR THE MIRROR

The reflection operation is defined by a target unitary oper-
ator that satisfies Eq. (5). Our goal is to control the phase as a
function of time, such that the unitary operator,

Û (t ) = T
{

exp

[∫ t

0
−iĤ (φ(t ′))dt ′/h̄

]}
, (D1)

reaches the target operator at the terminal time. Here T rep-
resents the time-ordering operator and Ĥ (φ) is defined in
Eq. (1). To formulate the control problem as a reinforcement
learning problem, we assign the state to be the matrix elements

TABLE II. Choice of hyperparameters for the reflection task.

Hyperparameters Values

γ 0.99
τ 0.99
α 0.001
ε decay 0.0005
episodes 8,000
Hidden size 128
Batch size 32
Optimizer Adam

of the unitary operator. Since before the wave function enters
the reflection stage, most of its population is in the |±4h̄kL〉
subspace, we only keep track of the operation in this subspace.
Because of this, we reduce the input state to the modulus
square of the matrix elements for only

{|2nh̄kL〉〈±4h̄kL||n = −3,−2,−1, 0, 1, 2, 3}. (D2)

The state is chosen so that it forms an experimental observ-
able. This state can be obtained by initializing the quantum
state to one of the |±4h̄kL〉 states, applying the control,
and measuring the populations for all the momentum states
through time-of-flight imaging.

As discussed in the main text, we found that the frequency
of the shaking function is important for the performance of the
mirror. Simply by modulating at the characteristic frequency,
12ωr , which corresponds to the energy difference between
|4h̄kL〉 and |2h̄kL〉, with a fixed amplitude for a duration of
∼3ω−1

r , the channel fidelity can reach as high as 0.8. We take
advantage of this knowledge, and try to improve the fidelity
on the fixed-amplitude modulation. We choose our actions to
be the amplitude of the sinusoidal modulation to the phase,
so the resulting phase is φ(t ) = Amp(t ) × sin(12ωrt ). The
amplitudes are chosen from a discrete set of values,

Amp = {0.4, 0.6, 0.8, 1.0, 1.2}. (D3)

The time interval between each decision point is π/12 ≈
0.26 ω−1

r , and in each interval the amplitude is held constant.
The reward function is the same as Eq. (C3), except that

the fidelity F is now defined with the channel fidelity in the
relevant subspace [see Eq. (7)].

With the states, actions, rewards specifically designed for
reflection, we use the double deep Q-learning algorithm to
learn the strategy for controlling the amplitude of the sinu-
soidal modulation to the phase. The deep Q-network used for
learning the mirror has an input size of 14 and an output size
of 5, as a result of (D2) and (D3). The hyperparameters are
listed in Table II.
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