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Severe crop defoliation caused by insects and pests is linked to low agricultural productivity. If the root cause is
not addressed, severe defoliation spreads, damaging whole crop fields. Understanding which areas are afflicted
by severe defoliation can help farmers manage crops. Unmanned Aerial Vehicles (UAV) can fly over whole crop
fields capturing detailed images. However, it is hard to characterize crop defoliation from aerial images that
include multiple, overlapping plants with confounding effects from shadows and lighting. This paper assesses the
efficacy of machine learning techniques to characterize defoliation. Given an UAV image as input, these tech-
niques detect if severe defoliation is present. We created a labeled data set on soybean defoliation that comprises
over 97,000 UAV images. We compared machine learning techniques ranging from Naive Bayes to neural net-
works and assessed their efficacy for (1) correctly characterizing images that contain defoliated crops and (2)
avoiding wrong characterizations of healthy crops as defoliated. None of the techniques studied achieved high
efficacy on both questions. However, we created DefoNet, a convolutional neural network designed for detecting
crop defoliation that produces models that can be efficacious for either question. If adopted in practice, DefoNet

models can guide decision making for mitigating crop yield losses due to defoliating insects.

1. Introduction

In the United States, over 500,000 farmers manage soybean crops
covering 88 million acres and producing 4.5 billion bushels annually
(USDA, 2019). However, a variety of leaf-chewing insects, such as Bean
Leaf Beetle, Green Cloverworm, and Japanese Beetle, routinely feed on
soybean crops. These insects cause severe crop defoliation, i.e., the some
discussions about the benefits of network design for DefoNet widespread
loss of leaf area, which has been linked to loss in agricultural produc-
tivity (Haile et al., 1998; Thomas et al., 1974; Higley, 1992; Li et al.,
2006).

There exist well-researched treatment threshold guidelines for soy-
bean, which inform the farmer when there is enough insect defoliation
damage to warrant an insecticide application. However, current best
practice for the assessment of soybean defoliation involves manual
collection of upper,middle, and lower-canopy leaf samples from 50
plants per acre (Hunt, 2007). While widely used in practice, this

approach is laborious, tedious and slow. Also, it is very difficult to
accurately judge defoliation levels by eyes. Thus, it is very common for
farmers and crop consultants to over-estimate both the extent of soybean
defoliation and its potential impact on yield, which results in over-
treatment and unnecessary expense which decreases farm profit (Man-
andhar et al., 2020). Furthermore, the over use of insecticides raises
serious problems, from long-term environmental damage to the health
of agriculture workers to evolutionary resistance. A second problem is
that there are multiple sources of variability within a crop field, such as
topography, moisture and soil type, that can affect crop defoliation. So,
the collection of a few samples from a few sections of the field can
produce unreliable estimates of soybean defoliation. Severity of defoli-
ation in areas where leaves were not collected may be worse than ex-
pected. A third problem is that with so many acres to scout, detecting
problem levels of defoliation on the ground via manual approaches can
be difficult and time consuming. As such, active infestations can spread
rapidly while farmers contract, deploy and wait for manual crop
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scouting to finish. Consequently, there is a need for effective, efficient,
and nondestructive approaches for detecting and mapping defoliation,
and characterizing patterns of disturbance to guide better management
decisions about the use of insecticide.

Remote sensing technologies such as UAV provide cost-effective
approaches to acquire timely crop health information over a large
geographic area that can be used for identifying and mapping soybean
defoliation. UAV can fly to preset locations in a field, hover meters above
ground, and capture detailed images. Unlike manned airplanes, UAV are
piloted via remote control, making them more cost effective for scouting
crop fields (Boubin et al., 2019). By covering the whole field, UADeep
learning DLConvolutional neural networks CNNMachine learning
MLUnmanned aerial vehicles UAV AbbreAV images can provide holistic
views that manual scouting can’t. While physiological and phenological
crop traits,such as biomass, height, and greenness, can be characterized
directly from UAV images (Bendig et al., 2014; Yeom et al., 2019; Lar-
rinaga and Brotons, 2019; Anthony et al., 2014), crop defoliation pre-
sents challenges. First, aerial images capture multiple plants that overlap
in dense canopies, making it hard to mimic manual approaches that
analyze individual leaves from specific, isolated crops. Second, aerial
images confound defoliation with shadows. To distinguish the effects of
lighting from actual crop damage, experts use contextual data based on
the field, phenological crop traits, and defoliation patterns in the local
region.

Recent research has extensively used machine learning to address
complex agricultural problems. For example, Mueller et al. predicted
soil erosion using logistic regression (Mueller et al., 2005). The paper
concluded that logistic regression has potential for developing erosion
indices with soil survey. Lu et al. predicted agricultural water usage
using support vector machine (Lu et al., 2009). Grbi et al. deployed
multiple Gaussian process regression models to predict stream water
temperature with RMSE around 0.87 C and MAE below 0.7 C (Grbi¢
et al., 2013). Fletcher et al. used random forest models fed with leaf
multispectral data to classify pigweed and soybean crops (Fletcher and
Reddy, 2016). They achieved an overall accuracy of 96.7%. Venkatesh
et al. counted corn stalks using CNN models with UAV collected images
(Venkatesh et al., 2019). Similarly, studies used deep learning method,
such as CNN, for identification of plant disease (Pourreza et al., 2015;
Fuentes et al., 2018; Ferentinos, 2018; Barbedo, 2018), as well as for the
automated recognition of plants based on morphological patterns of
crop leaves (Lee et al., 2015; Grinblat et al., 2016). Although machine
learning has been applied to many agricultural related problems, their
applications to soybean defoliation assessment have been very limited.

Prior studies such as ONeal et al. proposed a method based on the
analysis of digital images (ONeal et al., 2002). They collected physical
leaf samples and used a desktop scanner to measure leaf area and
defoliation. Liang et al. used color-image analysis to estimate soybean
leaf area, edge, and defoliation (Liang et al., 2018). The R2 and root
mean square error (RMSE) of estimated and observed defoliation of
trifoliate leaves were 0.90 and 6.16%, respectively. Da Silva et al.
trained CNN models to predict soybean leaf defoliation (da Silva et al.,
2019). The data set used to train CNN models was built with single leaf
images, and leaf defoliation was manually created by placing irregular
shapes on leaves to simulate different degrees of defoliation. The best
result achieved a root mean square error of 4.57%. However, the CNN
model was trained with only synthetic images of leaves in isolation.
While these results are promising, approaches that assess defoliation for
individual leaves can not be applied directly to aerial images that
include multiple occlusions and overlapping leaves.

The overall objective of this paper is to produce a process that finds
which machine learning techniques work well on aerial images collected
by UAV for assessment of soybean defoliation. Since there exist several
machine learning techniques, the paper compares the efficacy of mul-
tiple machine learning algorithms to characterize defoliation. Often-
times the agricultural data set including soybean defoliation images are
imbalanced and thus, it is very challenging to achieve high accuracy in
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model performance. Also, the model performance is biased towards
classes that are in majority. Although this is a very common issue while
applying machine learning techniques in agricultural data set, tech-
niques to address class imbalance to counter bias has received little
attention. This paper also assesses techniques to enhance the accuracy of
machine learning technique when training and testing sets are
imbalanced.

2. Material and methods

Fig. 1 outlines the process for evaluating the efficacy of machine
learning for soybean defoliation. In the next section, each stage has been
described, focusing on properties that affected the design of our study.

2.1. Data collection

In August and September 2020, we conducted six UAV missions over
five soybean fields in Wooster, Ohio, U.S., spanning the critical growth
stages when soybean defoliation is usually observed. The fields were
planted in April and eventually harvested in early November.

For each field, we defined 10-20 waypoints, i.e., GPS locations for
the UAV to fly and capture aerial visible images. A DJI Matrice 200 UAV,
mounted with DJI Zenmuse Z5S visible camera, was used to collect 4
megapixel images at an altitude of 10 meters above ground. At each
waypoint, a minimum of five images were collected to ensure collection
of high quality images. Throughout this paper, we will refer to the image
as RGB, reflecting the structure of red, green and blue pixels for each
image.

2.2. Expert labeling

We wrote a script file in Python to automatically crop UAV images.
Each UAV image was cropped into small images, with each image of size
108 x 108 pixels. Fig. 2 provides example images from our data set. In
total, we randomly selected 94 UAV images that represented areas in a
soybean field where at least 5% defoliation were observed. These images
were divided into small images. In total, we had 97,395 cropped images
from six UAV missions, which were used for expert labelling.

We used our expertise to label the crops shown in each image as (1)
healthy or (2) defoliated (Fig. 2). To be sure, manually labeling images is
tedious work. Although we could have employed unskilled laborers
(Ipeirotis et al., 2010; Hara et al., 2019), to ensure correct labeling, we
recruited two experts, 1) a field entomologist with a minimum of 5 years
of experience in soybean defoliation and monitoring, and 2) a third year
PhD student with multiple publications in precision agriculture forums
and experience in collecting and processing agricultural remote sensing
data. The experts also serve as co-authors of this manuscript.

To label as many images as accurately as possible, the field ento-
mologist randomly checked the labels assigned by the least experienced
labeller. Images where more than 10% of the visible leaf area was
defoliated were identified and labelled as defoliated and all other images
were labelled as non defoliated or healthy.

Imbalanced Multiclass Defoliation Dataset: As shown in Table 1,
67,479 images were labelled healthy and 29,916 showed greater than
10% defoliation, a ratio greater than 2-to-1. Similar to other agricultural
data set focused on diseases, it is common to expect imbalance between
healthy and defoliated soybean crops as they are one of the important
cash crops to farmers and thus highly managed to avoid potential
defoliation. However, imbalanced data challenges machine learning.
First, naive algorithms biased toward healthy labels will predict the
common case well, even though the models do not capture the traits of
defoliation. The most widely used metric to assess efficacy, i.e., accu-
racy, is biased if test sets are not skewed toward defoliated crops.
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Fig. 2. Example images collected for the study. (a), (b), and (c) were labeled healthy, whereas (d), (e), (f) were labeled as defoliated.
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Healthy and defoliated labels by UAV mission.

Flight No. Expert Labels
Healthy Defoliated
1 10,353 4,758
2 10,900 4,404
3 9,956 3,654
4 10,575 7,896
5 11,969 6,819
6 10,200 5,911
Total 67,479 29,916

2.3. Data extension

Given a training set, machine learning techniques find patterns to
predict the outcome feature (i.e., defoliation in this study). However,
machine learning may require very large training sets to learn concepts

tensions, reducing the size of the training set required for machine
learning. For example, in computer systems, data extensions based on
queuing theory make online learning and cloud management feasible
(Morris et al., 2018).

Vegetation indexes have been used widely as a proxy for crop con-
ditions (Kogan, 1995; Zhang et al., 2020; Yang et al., 2020; Khanal et al.,
2018; Kamble et al., 2013; Holzman et al., 2014). The concept behind
vegetation indexes uses arithmetic equations involving spectral signa-
tures (RGB image in this study) at a pixel level. Some vegetation indexes
are computed from image data acquired via multispectral or hyper-
spectral sensors covering visible (VIS) and infrared (IR) regions, which
are comparatively expensive than visible sensor. For example, normal-
ized difference vegetation index (NDVI) requires near-IR and red bands.
For this work, in addition to RGB images, we selected three vegetation
indices, excess green index (ExGI), leaf area to leaf edge index (LAE),
and leaf area index (LAI), that can be computed using RGB images,
mainly because (1) soybean leaf defoliation can be detected visually,
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and (2) these reflect on leaf area which indicates defoliation.

Use of vegetation indexes in our workflow (Fig. 1) reduces the
required training set size when vegetation indexes are correlated with
defoliation, as well as help better quantify the defoliation.

e ExGI focuses on contrasting green vegetation from soil by giving
more weight to green spectral band than red and blue. It can
outperform some complex indices that require NIR band (Larrinaga
and Brotons, 2019). ExGI equation is as follows:

ExGI=(2xg)—b—r (@)

whereg =G/(R+G +B),b =B/(R+G +B),r =R/(R +G +B).R,
G, B are spectral bands of RGB images.
LAE is a ratio of leaf area to leaf edge, and is found to be helpful in
characterizing leaf defoliation. For a single leaf, defoliation tends to
decrease a leaf area and increase a leaf edge. Thus, the more defo-
liation, the less LAE is. LAE is calculated by:

LA

LAE =" 2

where LA represents the total leaf area and LE represents the total
leaf edge. To calculate LAE, we use ExGI to extract green vegetation
and count each pixel for the leaf area. For the leaf edge, we adopt the
canny edge detection algorithm to extract the leaf edge and count the
number of pixels (Canny, 1986).

LAI calculates the leaf area from the plant canopy. It is designed to
measure the leaf area per unit ground area. Thus, its equation is as
follows:

LA
LAl = — 3
GA 3
where LA is the leaf area while GA is the ground area. The mea-
surement of LA is the same as that in LAE. The ground area is ob-
tained by counting the total pixels of the image.

2.4. Machine learning techniques

We first extracted useful features from aerial images, such as ExGI,
LAE, LA, and trained some classic machine learning models. We selected
several machine learning classification algorithms that have been
widely used in agricultural applications as a start. Furthermore, we also
used our data sets to train deep learning approaches, such as VGG16 and
ResNet50 deep CNN models, and compared their performance.

Naive Bayes Classifier (NB) (Bhargavi and Jyothi, 2009; Miriti,
2016) consists of a series of simple probabilistic classifiers that use
the Bayes theorem under the assumption of strong independence
between features.

K Nearest Neighbors (KNN) (Hossain et al., 2019; Suresha et al.,
2017) is a supervised machine learning algorithm whose main idea is
to classify the k number of nearest data points to a given point as the
same class. The classification result varies given k size.

e Random Forest (RF) (Lebourgeois et al., 2017; Grimm et al., 2008;
Tatsumi et al., 2015) is an ensemble classification model consisting
of several decision trees. Its output depends on the majority results
given by all decision trees in it.

Support Vector Machine (SVM) (Pujari et al., 2016) can be inter-
preted as a linear classifier with the largest interval in the feature
space. The strategy of SVM is to maximize the interval.

Gaussian Process (GP) (You et al.,, 2017) is a generalization of
Gaussian probability distribution that can be used as a classification
algorithm.

Convolutional Neural Networks employ deep learning by adding
multiple convolutional layers. Other than DefoNet that we custom
designed (discussed in Section 2.5), we also trained VGG16 and
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ResNet50 models using same data sets for comparisons. VGG16 is a
very deep CNN model that achieved 92.7% top-5 test accuracy in
ImageNet, which is a dataset of over 14 million images belonging to
1000 classes (Simonyan and Zisserman, 2014). It consists of 13
convolutional layers and 3 fully connected layers, which in total has
over 138 million parameters. ResNet50, short for residual networks,
has an architecture that allows us to train extremely deep CNN
models with 50 layers (He et al., 2016). The structure of ResNet50
consists of 5 stages each with a convolution and an identity block.
For each convolution block, it has 3 convolutional layers and for each
identity block, it also has 3 convolutional layers. In total, ResNet50
has over 23 million trainable parameters.

2.5. DefoNet design

To further explore the potential of deep learning approaches in
solving agricultural problems. We designed and fine tuned a CNN model,
DefoNet, from scratch to test its performance on characterizing soybean
leaf defoliation. DefoNet is modified from the classical CNN architecture
of LeNet (LeCun et al., 1989). The structure of LeNet is very simple,
which mainly consists of two convolutional layers. Each convolutional
layer is followed by a pooling layer. Based on the structure of LeNet
(convolutional layer to pooling layer), we designed a much deeper and
more complex CNN model. The idea behind designing a CNN model
specific for soybean defoliation is simple. We first started with a simple
CNN structure. Based on each result, we added or deleted layers and
neurons in each layer accordingly. After the performance of our model
stabilized, we tuned model parameters, such as learning rate, number of
epochs, regulations, dropout rate, etc. As shown in Fig. 3, the architec-
ture of DefoNet has the following features:

e Input layer. The size of input images is chosen as 108 * 108 pixels as
it is small enough to contain several leaves at a higher resolution and
yet not too small to contain a whole leaf.

e Convolutional layers. Unlike LeNet that used only two convolu-
tional layers, DefoNet is built with a deeper structure that consists of
8 convolutional layers divided into 3 parts. Each convolutional layer
uses 3 x 3 filters, 1 stride, and zero padding. The first part has two
convolutional layers with 32 filters for each layer, the second part
has three layers with 64 filters for each layer, and the last part has
three layers with 128 filters for each layer.

o Activation layers. For each convolutional layer, ReLU was adopted

as the activation function (Krizhevsky et al., 2012). And we use

sigmoid activation function for the last layer of DefoNet.

Normalization layers. Each ReLU activation layer is followed by a

batch normalization layer to accelerate model training speed (loffe

and Szegedy, 2015).

Pooling layers. Each convolutional part is followed by a max-

pooling layer to down-sample feature maps generated by convolu-

tional layers. The max-pooling has 2 x 2 pooling size and 1 stride.

Dropout layer. We add a dropout layer with a 0.35 dropout rate

before the fully connected layer to avoid model overfitting (Srivas-

tava et al., 2014).

2.6. Techniques to counter imbalance data

In this study, images representing the non defoliated class greatly
outnumbered images in the defoliated class (2.25:1 ratio). Thus, a CNN
model when trained on a highly imbalanced data naturally tends to
perform poorly on the minority class compared to a majority class
because there is not enough features in the minority class to learn about.
Although the CNN model can yield a decent overall accuracy, it is
important to maximize the performance of CNN model for the minority
(defoliated) class.

To get a better classification results for the minority class in an
imbalanced data set, we adopted two approaches. The first approach is
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Fig. 3. The architecture of DefoNet.

to increase the class weight of the minority class to balance the total
weights between the majority and the minority class so that during the
model training process, the classifier will largely weigh the few available
minority features. The second approach is to decrease the number of
images in the majority class in the training data set by random under-
sampling. Random undersampling randomly picks a subset of images
from the majority class so that two classes will be equal during the model
training process. In this way, the classifier can pay the same attention to
features in both classes. Random undersampling only happens to the
training set of the data set while the test set remains the same. Overall,
the original data set, along with two (weight balanced and randomly
undersampled) processed data sets were used to train DefoNet as well as
VGG16 and ResNet50.

2.7. Evaluation method

Models that characterize crop defoliation provide insights for man-
aging crops to avoid defoliation driven yield losses. Efficacy, in this
context, means helping farmers learn about soybean defoliation in their
field or reduce costs by replacing whole-field insecticide applications
with a fewer applications targeting defoliated areas. Thus, models with
high accuracy, i.e., over 90% of test images are characterized correctly,
are not necessarily efficacious. As areas with severe defoliation are rare,
such imbalanced data can allow models to achieve high accuracy by
characterizing most images as healthy images. Farmers looking for areas
with defoliation may find that such models wrongly characterize healthy
images as defoliated, making it hard to understand the true health of the
field. Such models thus have limited value for crop management.

Fig. 4 presents a confusion matrix that highlights metrics for efficacy:
precision and recall. These metrics thwart imbalance by excluding the
dominant label (true healthy). Eqs. 4 and 5 define precision (P) and
recall (R).

Precision — TrueDefoliated @
" TrueDefoliated 4 FalseHealthy
TrueDefoliated
Recall — rueDefoliate ®)

TrueDefoliated + FalseDefoliated

Predicted Field Conditions

Healthy Defoliated
Actual | Healthy | True Healthy False Healthy
Field E
Conditions | Defoliated EFalse Defoliated} True Defoliated

e > Recall Jm == — Precision

Fig. 4. A confusion matrix for leaf defoliation. Positive means defoliated while
negative means non defoliated.

Models that achieve high precision help guide farmers to areas with
severe defoliation than guiding to areas that are incorrectly classified as
defoliated. Models that achieve high recall help find most of the areas
with severe defoliation.

We evaluated precision and recall when comparing the performance
of the machine learning techniques described in Section 2.4. We used
stock implementations from Python Scikit (Pedregosa et al., 2011) to
build the models. We split the images from our data set into training and
testing subsets. We randomly selected 70% of the images for training
and used the remaining images for testing. Experiments were conducted
on a server running Windows 10 with Intel(R) Xeon(R) Gold 6258R CPU,
64 GB RAM, and NVIDIA GeForce RTX 2080 Ti GPU.

3. Results
3.1. Machine learning techniques

Fig. 5 reports precision and recall for each of the studied machine
learning techniques. Resnet50, VGG16, and DefoNet achieve the highest
precision and recall. As discussed in Section 2.4, CNNs are well struc-
tured for image processing, using deep learning and spatial locality to
infer concepts that improve accuracy.

Traditional machine learning techniques achieved lower precision
and recall. Naive Bayes achieved 88.4% recall, but only 39.5% precision.
Over 65% of healthy images are wrongly characterized as defoliated. In
contrast, Random forest achieved 67% precision, but low recall.

Using 2 DefoNet models, i.e., one for precision and one for recall, was
the most efficacious, achieving 91% precision and 90.9% recall. DefoNet
reduced false healthy characterizations (precision error) by 1.6X, 1.4X
and 3.8X compared to VGG16, ResNet50 and the best traditional ma-
chine learning technique respectively. DefoNet reduced false defoliated
characterizations (recall error) by 1.9X (VGG16), 2.3X (ResNet50) and
1.2X (Naive Bayes) respectively.

Fig. 7 provides a detailed leaf-level comparison of the efficacy of
different machine learning models. We selected 12 images that capture

100% @ Presicion O Recall
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50%
25%
0%

(7] zZ c © -— -—
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Fig. 5. Precision and recall (efficacy) of competing machine

learning techniques.
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various challenges with defoliation assessment from UAV. Model pre-
dictions on these images were indicative of the limitations of various
approaches, especially relative to DefoNet. The first two images capture
whole, healthy leaves. These images are correctly classified by all but
four classifiers. We observed that lighting issues may have upset
Gaussian Process and Naive Bayes models on the second image, because
these approaches learn distinct non-contiguous classes for images that
contain neon green leaves versus images that contain matte green
leaves. The third image contains a dark shadow due to depth and
lighting. Using only pixels and vegetation indices to split features, the
decision tree is unable to extract context that discounts the shadow and
over fits. Conversely, random forests use an ensemble of decision trees to
remove this bias and correctly predict the third (and fourth) image. The
sixth, seventh and eighth images were the hardest for experts to classify.
Every machine learning approach struggled to label these images
correctly, because they contain overlapping leafs, shadows, actual
defoliation, and depth. DefoNet (in recall mode) distinguishes these
effects, but in precision mode, it reverses its decision on the sixth image,
conservatively labeling it as unhealthy. These borderline images sepa-
rate the efficacy of DefoNet. The remaining images capture clear cases of
defoliation, but have varying lighting and resolution issues. Deep
learning approaches, in general, excel at object detection and, in this
case, they identify defoliated leaves well, even under dark lighting that
causes simple machine learning approaches to fail (e.g., the eleventh
image).

3.2. Impact of imbalanced data

There were changes in recall and precision values among the CNN
models trained on the original (imbalanced),class weighted and random
undersampling data. Fig. 6 shows results when class weighting and
subsampling are used to counter imbalanced data.

Models trained on the original, imbalanced data set, showed higher
precision because fewer images were characterized as defoliated. In
contrast, models trained using subsamples from training data had the
lowest precision. Class weighted models provided good precision and
recall. For DefoNet, class weighting outperforms training data sub-
sampling in recall while nearly matching the original, imbalanced model
on precision.

3.3. Training time

As shown in Table 2, traditional machine learning techniques trained
models quickly. Naive Bayes classifier trained a model in 0.03 seconds.
Gaussian Process took 1 h and 54 min to train. As shown in Table 3, CNN
models trained much more slowly. CNN models trained on the original
data set and on the weight balanced data set have similar training time
since the two data sets have the same data size. CNN models trained on
the randomly subsampled data set have the shortest training time
compared to the CNN models trained on the other two data sets because
of a smaller data size. From Table 3 we can see that with a smaller CNN
architecture, the DefoNet models were trained for about 6 times faster

100% I Presicion [ Recall

75%

50%

25%

0%
°© 5 3 2 85 3 2% 3
O] @ ke o s & 9 @ o
S ¢ 2 & ¢ 8 9 & 2
Imbalanced Weighted Subsampled

Fig. 6. Comparing VGG16, ResNet50, and DefoNet with imbalanced, weighted
and subsampled training data.
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compared to the ResNet50 models that trained on the same data set, and
about 8 times faster compared to the VGG16 models.

3.4. Training data size

We explored the impact of shrinking the training data on (1) training
time and (2) efficacy. We repeatedly decreased the training set size by a
factor of 2, going from 1/2 to 1/256 (Fig. 8). We randomly selected
images for removal. For this experiment, we did not change the size of
the testing data set.

We trained DefoNet models on each training set with original,
imbalanced data. As shown in Fig. 8, precision gets lower as training set
gets lower. However recall does not change significantly. With less
training data, attempts to find the concepts correlated with defoliated
are more error prone, resulting in more False Healthy characterizations
and degrading precision. After shrinking the training set below 1/256,
recall drops sharply to 46%.

3.5. Image resolution

In addition to changing the data size, we explored the impact of
lower resolution imbalanced images on the performance of DefoNet
models. There are two practical considerations for this experiment. First,
in practice, UAV and traditional aircraft often fly at higher altitudes than
the altitude used in our study. Second, less expensive UAV may use
cameras with a lower resolution.

We used blurring kernels to lower resolution, where larger kernels
reflect lower resolution. As shown in Fig. 9, we used kernel sizes of 3 x 3,
5 x 5,and 7 x 7 to artificially create images of lower resolution, which
were then used to train the DefoNet models. We observed that precision
has a better tolerance than recall over resolution loss. As we increased
the kernel size from 3 x 3 to 7 x 7, recall decreased from 80.6% to
73.8%.

3.6. Multi-class data set

We also explored the potential of the DefoNet models on classifying
multiple degrees of defoliation severity. For this test, we extended the
testing data by labeling images with 20% or greater defoliation. This
version of testing data included 3 classes: Class O (healthy), Class 1
(10-20% defoliation), Class 2 (greater than 20% defoliation). Again, we
observed imbalance innate to the data. 3,818 images were Class 0, 754
images were Class 1, and 57 images were Class 2.

We trained DefoNet models on the binary training data to charac-
terize the multi-class testing set. We adapted DefoNet by exploiting a
feature of CNNs outputs - a probability for each class. We characterized
an image as Class 2 if the model outputs a high probability of defoliated
and low probability for healthy. We characterized an image Class 1 if the
prediction shows that the image was most probable defoliated but
healthy probability exceeded a threshold.

Multi-Class Efficacy: Efficacy differs when there are multiple clas-
ses compared to only two classes. Here, we will focus on managing very
severe defoliation, i.e., Class 2. Areas with very severe crop defoliation
call out for manual inspection. Thus, false characterizations as Class 2
can be very costly, causing crop managers to visit healthier areas in the
field unnecessarily.

Fig. 10 presents confusion matrices of three DefoNet models’ results.
False characterizations of Class 2 (precision) are rampant for all DefoNet
models. CNN models with the original and imbalanced training set yield
the lowest rate of false Class 2 characterization, which is nearly 7 false
labels to 1 one true Class 2. Clearly, DefoNet does not achieve efficacy
here. However, CNN models trained on weighted and undersampling
training sets perform well with regard to true classification of Class 2.
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Fig. 7. Prediction result of 12 sample images from machine learning models. First 6 images are healthy while the latter 6 images are defoliated. Green means correct

prediction, red means incorrect prediction.

Table 2
The training time of traditional machine learning techniques.
Baseline Naive KNN Random SVM Gaussian
Model Bayes Forest Process
Time (sec) 0.03 0.42 11.73 263.21 6852.63

4. Discussion

Fig. 11 maps defoliated areas within a soybean field. Each area re-
flects 108 square pixels, i.e., roughly 7 square inches. If an area in the
image depicts severe defoliation according to DefoNet (imbalanced),
then it has a red bounding box. Characterizations like this can guide
decision making for managing crop fields, as evidenced by prior
research (Zhang et al., 2020; Khosla et al., 2002). We used the following
questions to assess the efficacy of characterizations for decision making.

1. Is decision making affected by False Healthy, False Defoliated, or both?

2. Does the task demand low error rates (<15%) or does it allow some error
(<30%)?

3. Are there time or computational constraints?

4.1. Machine learning techniques

None of the studied machine learning techniques were efficacious for
tasks demanding low error rate for both precision and recall. However,
for many tasks that require either high precision or high recall, CNNs can
be efficacious. For example, insurance payouts after unexpected in-
festations would be based on total damage. Here, characterizations must
capture most actual-defoliated areas, so high recall alone suffices. In
contrast, insecticide applications today are often applied to whole fields.
There are opportunities to reduce costs by applying insecticide to only
defoliated areas, requiring high precision to avoid False Healthy
characterizations.

The design and development of DefoNet proved to be an useful way to
target the soybean leaf defoliation problem. CNNs can use class
weighting to learn efficacious models from imbalanced data. Besides,
tuning CNNs for the unique task of detecting defoliated crops can
significantly improve accuracy. DefoNet was the only technique studied
to achieve over 90% accuracy in terms of precision and recall.

100% 4 Presicion Recall

80% |

60% 1
40%

1 2 4 8 16 32 64 128 256
Largest . i Smallest
Training Training Set Reduction Factor Training

Set (Size = 1/x) Set

Fig. 8. The performance of DefoNet trained on different sizes of training set of
the original data set.

100% O Presicion O Recall
75%
50%
25%
0% -1 T T T 1
Resolution Hi Med-Hi Med Lo
Kernel 1x1 3x3 5x5 =7

Fig. 9. Performance comparison of models trained on lower resolution data set.
Different resolutions are simulated by deploying different sizes of blur-
ring kernels.

Predicted
Co Ci C2 |G GC1 G2 Co Ci OC2

Co| 3145664 | 9 2452|1321| 45 || [23171362 139

C1| |256|480| 18 110|568 | 76 80 | 556|118

Actual

Cz| (13 40| 4 5 (43| 9 3 |46 | 8

Original Weighted Sampled

Fig. 10. Confusion Matrices of 3 DefoNet models: DefoNet (original), DefoNet
(weighted), DefoNet (sampled). Cy,C1,C, indicate non defoliated, defoliated
level 1, and defoliated level 2 separately.

Table 3
The training time of CNN models.
CNN Models DefoNet VGG16 ResNet50
Training Data imbalanced weighted sampled imbalanced weighted sampled imbalanced weighted sampled
Time (min) 505 504 339 4150 4183 2708 3089 3097 2060
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Fig. 11. Aerial image of a soybean field. We used DefoNet to map defoliated
areas with red bounding boxes. We enlarged a 3 x 3 block of areas to visualize
DefoNet characterizations. B1 and C2 were Healthy while the other enlarged
areas were Defoliated.

Furthermore, the process of designing a CNN model, DefoNet, for solving
a specific agricultural problem can also be used in the future to provide
guidance when encountering similar agricultural challenges.

Traditional machine learning techniques produced models quickly.
However, in general, these approaches were not efficacious for tasks
requiring low recall or precision. These approaches can be useful if
models need to be trained quickly for tasks that allow some error. For
example, before contracting a professional crop scouting company, a
farmer may quickly fly over their field to estimate which services are
needed. Here, the farmer can tolerate error as long as the process doesn’t
take much time. Naive Bayes techniques integrated within the smart-
phone app used to set waypoints (e.g., Litchi (Litchi, 2021)) could be
efficacious in this example.

4.2. Additional considerations

Training data and Image Resolution:To further explore the
robustness of DefoNet given different data sizes and image resolutions,
we decreased the data size and lowered the image resolution gradually
and reported the performance of DefoNet models. As shown in Fig. 9,
recall dropped slowly while precision didn’t lose much performance.
This provides options for farmers to balance between cost and outcome
when deploying UAV to scout the field. The DefoNet model trained on
the low resolution data set can lose performance on recognising defo-
liated images, which lowers recall by classifying more defoliated images
as non defoliated. In the meantime, due to the performance loss on
classifying the defoliated class, the number of defoliated images that
were correctly classified as defoliated and the number of non defoliated
images that were misclassified as defoliated both decreased. However,
the nominator of the precision equation decreased more compared to
that of the denominator. As a result, precision stayed in a relatively
stable stage.

Fig. 8 showed the performance comparison of DefoNet models
trained on different size of data set. In order to make the results com-
parable, we only decreased the size of the training set. The size of the test
set remained unchanged. Decreasing from 100% of the original size to
only 8%, recall still performed steadily, wandering around 70%. Despite
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the decrease in training size, the performance of DefoNet models didn’t
change much in classifying defoliated images. In the meantime, the
ability of DefoNet models to learn the features of non defoliated images
was compromised; more and more non defoliated images were mis-
classified, which led to the drop in precision. After decreasing the
training size to 1/256, only 182 non defoliated images and 80 defoliated
images were left in the training set. At this point, the DefoNet model
failed to learn enough features of the defoliated class and tended to
make predictions towards the non defoliated class, which resulted in the
huge performance drop of the DefoNet model, especially recall. A recall
of merely 46.28% indicate that the DefoNet model can only classify
around 46% of defoliated images correctly. The increase in precision,
however, didn’t indicate a performance boost. Instead, the reason for the
increase in precision is that both nominator (true positive) and de-
nominator (true positive + false negative) of precision dropped, de-
nominator dropped harder.

Multiclass Defoliation Problem: We explored the potential of
deploying DefoNet models trained on binary class data set to classify a
multiclass defoliation problem. For this, we built a small data set con-
taining three classes: non defoliated, defoliated level 1, and defoliated
level 2. Since it’s hard to find level 2 defoliated images, the data set is
even higher imbalanced, with images 3818, 754 and 57 in non defo-
liated, defoliated level 1, and defoliated level 2 classes, respectively.
Results in Fig. 10 showed a same pattern as the results in Fig. 6 that the
DefoNet model trained on the original data set obtained the highest
precision while the other two DefoNet models obtained better recalls.
However, due to the introduction of a new class and its insufficient data
set, all DefoNet models performed poorly on the multiclass data set,
especially on classifying defoliated level 2.

5. Limitations

Here, we describe limitations to our study that may be addressed by
future work.

Data Collection and Data Expansion: Although all UAV images
used to train machine learning models were collected from several dates
covering critical growth stages of soybean when defoliation is likely to
take place, the fields had very limited areas where defoliation greater
than 20% were observed. Future work could extend the data set to
include images representing severe soybean defoliations from other
fields/regions. Further, UAV images collected using multispectral or
thermal cameras could provide better machine learning outcomes. Also,
in addition to vegetation indexes, topographical and moisture data can
provide important context for assessing defoliation. In particular, we
hypothesize that larger data would allow random forests to achieve
greater efficacy.

Data Labeling: Our selection of data labellers could yield bias into
our process which could lead to results that can not be repeated and do
not reflect the true efficacy of machine learning for defoliation. Experts
from other regions may use context and crop traits in ways that change
image labels. This would affect the marginal efficacy of models. Future
work may explore approaches to involve independent experts from other
regions or train non-experts in labeling crop defoliation, allowing tools
like Amazon Mechanical Turk to produce larger data sets.

Machine Learning Techniques: We assessed and compared several
machine learning techniques to characterize soybean leaf defoliation
and sought the potential of designing a CNN model as the solution. Other
machine learning methods for image recognition, such as semantic
segmentation (Girshick et al., 2014; Long et al., 2015), deep random
forests, and R-CNN models (He et al., 2015; Girshick, 2015; Ren et al.,
2015; He et al., 2017), should also be studied.

Applying Models in Practice As precision agriculture reaches
maturity, it is essential to gain experiential studies using model-driven
crop management in the field. We are particularly interested in the
distribution of practical usage scenarios benefited by precision, recall or
accuracy. For example, if most usage scenarios need precision, custom
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agricultural UAV and crop scouting models can be developed to maxi-
mize throughput and lower cost.

6. Conclusion

In this paper, we seek a solution from machine learning techniques to
characterize the severity of soybean leaf defoliation using UAV-collected
images. In order to help find the answer to the two key questions pro-
posed in this paper: (1) Are images containing severe defoliation
incorrectly characterized as healthy? (2) Do images characterized as
healthy contain severe defoliation? The idea is to assess the efficacy of
machine learning models from basic machine learning algorithms to
state-of-the-art deep CNN models to problem-targeted self-designed
CNN model. We design and evaluate the performance of a new CNN
model, DefoNet, and compare it with many popular machine learning
algorithms as well as other CNN models such as VGG16 and ResNet50.
Compared to other machine learning models, DefoNet can yield a high
precision model with 91% accuracy and a high recall model with
90.93% accuracy, which can be adopted for answering either question.
The soybean leaf defoliation map generated from UAV images showed
that if adopted in practice, DefoNet models could aid farmers on getting
soybean leaf defoliation condition of their fields in a timely and efficient
manner compared to conventional approaches. Furthermore, the pro-
cess of designing a CNN model, DefoNet, for solving a specific agricul-
tural problem can also be used in the future to provide guidance when
encountering similar agricultural challenges.
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