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1. Introduction

One classical tool in the study of 3-manifolds is the SL2(C) character variety Char(M). 
This is the (categorical) quotient of the representation variety Rep(M) by the natural 
GL2(C) action, where Rep(M) parameterizes the representations π1(M) → SL2(C) of 
the fundamental group of a 3-manifold M into SL2(C), and GL2(C) acts on Rep(M) by 
conjugation.

In particular, for a knot K in S3, there is a natural map α : Char(S3\K) → Char(T 2)
given by restricting representations of the knot complement to its boundary. The image 
of this map determines and is (essentially) determined by the A-polynomial of K (see 
[6]), and this polynomial contains a good deal of geometric and topological information 
about the knot complement. For example, one of the main results of [6] asserts that 
slopes of the boundary of the Newton polygon of the A-polynomial determine boundary 
slopes of incompressible surfaces of S3 \K. Additionally, in [8] Dunfield and Garoufalidis 
used work of Kronheimer and Mrowka [18] to show that the A-polynomial distinguishes 
the unknot.

In this paper, we study a 2-parameter family {αt1,t2 | (t1, t2) ∈ (C∗)2} of deformations 
of the restriction map α from the character variety Char(S3 \K) to certain affine cubic 
surfaces in C3:

αt1,t2 : Char(S3 \K) → Xt1,t2 (1.1)

The special fiber X1,1 of this family of surfaces is isomorphic to the character variety 
of the torus T 2, and the specialization α1,1 at t1 = t2 = 1 reproduces the classical 
restriction map α : Char(S3 \K) → Char(T 2).

The q = −1 specialization of the main conjecture of [3] states that there is a canonical
deformation of α to the map αt1,t2 . For general q, this conjecture involves a quantization 
of the character variety of the knot complement. It seems generally agreed (at the mo-
ment) that the quantization (or q-deformation) of character varieties of knots requires 
topological tools, such as the Kaufmann bracket skein module (KBSM) construction 
which was used in [3]. By contrast, the Hecke (or Dunkl) deformations that we study in 
the present paper (for q = −1) depend only on (representations of) the knot group and 
may be performed purely algebraically using the Brumfiel–Hilden (BH) algebra. This is, 
perhaps, the main observation of the present paper (see Fig. 1).

Below, we will briefly explain the origin of our conjecture, its relation to the character 
variety of the 4-punctured sphere, and an interpretation in terms of the Brumfiel–Hilden 
algebra. We then describe our results which confirm this conjecture for an infinite family 
of knots, including torus knots, 2-bridge knots, some pretzel knots, and all connect sums 
of these.

Recall that the Kauffman bracket skein module Skq(M) of a 3-manifold M is the 
C[q±1]-module spanned by framed, unoriented links in M modulo the Kauffman bracket 
skein relations (see Fig. 2). If M = F × I is a thickened surface, then Skq(F × I) is an 
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Fig. 1. Deformation versus quantization of character varieties of knots.

algebra, where the multiplication ab is given by stacking a on top of b. Similarly, the 
space Skq(M) is a module over the algebra Skq((∂M) × I) associated to the boundary 
of M .

The (spherical) double affine Hecke algebra (DAHA) SHq,t of type C∨C1 is a non-
commutative algebra depending on a parameter q ∈ C

∗ and four additional parameters 
t = (t1, t2, t3, t4) ∈ (C∗)4. When t = (1, 1, 1, 1), the algebra SHq,t is isomorphic to the 
Z2-invariant subalgebra AZ2

q of the quantum Weyl algebra Aq := C〈X±1, Y ±1〉/〈XY =
q2Y X〉, and thus by a theorem of [9], it is isomorphic to the skein algebra Skq(T 2) of 
the torus. This implies that the skein module Skq(S3 \K) of a knot complement is nat-
urally a module over SHq,1. Based on a detailed study of some examples, the following 
conjecture was proposed in [3].

Conjecture 1.1 ([3]). For any knot K ⊂ S3, the natural action of SHq,1 on Skq(S3 \K)
admits a canonical deformation to an action of SHq,t1,t2,1,1 for arbitrary values of the 
parameters t1, t2.

The connection between this conjecture and character varieties follows from a theorem 
of Bullock [4] (see also [26]), which states that the q = −1 specialization of the skein 
module Skq=−1(M) of a 3-manifold M is a commutative ring canonically isomorphic 
to O[Char(M)]. It turns out that the q = ±1 specialization of the DAHA SHq=±1,t is 
commutative; in fact, it follows from work of Oblomkov [25] and Goldman [12] that SH1,t
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is isomorphic to the ring of functions OChar(S2\{p1, p2, p3, p4}) on the character variety 
of the 4-punctured sphere. (The results of Bullock and Przytycki [2] and Terwilliger [29]
actually show that SHq2,t is isomorphic to the skein algebra Skq(S2 \ {p1, p2, p3, p4}) for 
all q.)

We now describe the construction of the family (1.1) of maps that deforms the restric-
tion map α. One of the key properties of the DAHA is the so-called ‘Dunkl embedding,’ 
which is a natural (injective) algebra homomorphism SHq,t ↪→ SHloc

q,1 into a localization 
of the DAHA at ti = 1. When q = −1, this becomes a rational map X1 ��� Xt. In this 
case, Conjecture 1.1 implies:

Conjecture 1.2. (Conjecture 1.1 at q = −1): The composition of the restriction map 
Char(S3 \ K) → X1 with the Dunkl embedding X1 ��� Xt1,t2,1,1 extends to a regular 
morphism of affine schemes.

We remark that the claim of Conjecture 1.2 is not automatic because the poles of 
the rational map X1 ��� Xt contain the trivial representation, and the poles therefore 
intersect the image of the map Char(S3 \K) → X1 for any knot K. In this paper, we 
confirm this conjecture at q = −1 for an infinite class of knots.

A useful tool for studying character varieties of a discrete group π is the Brumfiel–
Hilden algebra H[π] introduced in [1]. This algebra and its ‘trace’ subalgebra are defined 
by

H[π] := C[π]
〈h(g + g−1) = (g + g−1)h〉 , H+[π] := {a ∈ H[π] | a = σ(a)}

where σ : H[π] → H[π] is the canonical anti-involution defined on group elements 
by σ(a) = a−1. The key observation of [1] is that OChar(π) ∼= H+[π] for all finitely 
generated groups π.

We show that Conjecture 1.1 (at q = −1) has a natural interpretation in terms of 
H[π], where π is the fundamental group π1(S3 \K) of a knot complement. We will call 
condition (1.2) in the following conjecture the Brumfiel–Hilden condition.

Conjecture 1.3 ([1]). Let m and l be the standard meridian and longitude of the knot. 
Then

l ∈ H+[m±1] (1.2)

where H+[m±1] is the subalgebra of H[π] generated by H+[π] and m±1.

Our main results can be encapsulated into the following two theorems.

Theorem 1.4. If the Brumfiel–Hilden condition (1.2) holds and m −m−1 ∈ H+(m±1) is 
a regular element (non-zero divisor) in H+(m±1), then Conjecture 1.1 holds at q = −1.
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Theorem 1.5. The Brumfiel–Hilden condition (1.2) holds for all torus knots, 2-bridge 
knots, and certain (−2, 3, 2n + 1) pretzel knots. Furthermore, if it holds for knots K
and K ′, then it holds for their connect sum K#K ′.

As an application, we compute t-deformations of the classical A-polynomials in the 
case of the trefoil and the figure eight knot (see Examples 2.6 and 2.7).

The contents of the paper are as follows. In Section 2 we recall background informa-
tion about character varieties and double affine Hecke algebras. In Section 3 we introduce 
the Brumfiel–Hilden algebras and prove Theorem 1.4. In Section 4 we show that the 
Brumfiel–Hilden condition is preserved by connect sum of knots and by certain coverings 
of knots. The proof of Theorem 1.5 for torus knots is given in Section 5, for two-bridge 
knots in Section 6, and for certain pretzel knots in Section 7. Further remarks on the 
relation of the BH condition to properties of the A-polynomial are contained in Sec-
tion 8, and the Appendix gives an explicit presentation of the Brumfiel–Hilden algebra 
for 2-generator 1-relator groups, which is used in the proof of Theorem 1.5.
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2. Double affine Hecke algebras and character varieties of surfaces

In this section we describe the relationship between the C∨C1 (spherical) double affine 
Hecke algebra SHq,t and the Kauffman bracket skein algebra Skq(S2 \ {p1, p2, p3, p4}) of 
the 4-punctured sphere. This implies a relationship between the q = 1 specialization 
of the (spherical) DAHA and the relative SL2(C) character varieties of the 4-punctured 
sphere, which we describe explicitly. Finally, the polynomial representation of the DAHA 
gives an embedding of SHq,t into a localization of the skein algebra Skq(T 2), which we 
also describe explicitly. This gives explicit formulas for the rational map Char(T 2) ���
Char(S2 \ {pi}) which we provide in Corollary 2.16. We conclude with explicit formulas 
describing the family (1.1) for the trefoil and figure eight knots.
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2.1. Character varieties of topological surfaces and affine cubic surfaces

In this section we recall some results of Goldman in [12, Sec. 6]. Let π be the funda-
mental group of a 4-punctured sphere, with a presentation

π = 〈A,B,C,D | ABCD = Id〉

where each generator corresponds to a loop around a puncture. Consider the following 
seven functions on the SL2 character variety of π:

a = tr(A), b = tr(B), c = tr(C), d = tr(D)
xS = tr(AB), yS = tr(BC), zS = tr(CA)

ΩC := x2
S + y2

S + z2
S + xSySzS − (ab + cd)xS − (ad + bc)yS − (ac + bd)zS

These functions satisfy the defining equation

ΩC = −(a2 + b2 + c2 + d2 + abcd) + 4 (2.1)

Theorem 2.1 ([12]). The relation (2.1) describes an embedding

Char(S2 \ {p1, p2, p3, p4}) ↪→ C
7

Remark 2.2. There is a map C7 → C
4 given by the coordinates a, b, c, and d, and the 

relative character variety is a fiber of this map. These fibers can be viewed as cubic 
surfaces in C3, and they first appeared in the work of Vogt [30] and Fricke and Klein 
[10] on invariant theory in the late 19th century (see also [21]). In recent years they have 
found many interesting applications: for example, as monodromy surfaces of the classical 
Painleve VI equation (see, e.g. [17] and [15]).

2.2. The Kauffman bracket skein algebra

Here we give some very brief background about the Kauffman bracket skein module 
Skq(M) of a 3-manifold, and refer to other works for more details (e.g. [3] and references 
therein). Given an oriented 3-manifold M , the skein module Skq(M) is the vector space 
formally spanned by framed links in M modulo the Kauffman bracket skein relations in 
Fig. 2.

If M = F × [0, 1] is a thickened surface, then Skq(F × [0, 1]) is an algebra, where the 
multiplication is given by stacking in the [0, 1] direction. Also, for any 3-manifold M , if 
q = ±1, then Skq=±1(M) is a commutative algebra, where the product is given by disjoint 
union (this product is only defined at the specializations q = ±1). This commutative 
algebra is related to character varieties via the following theorem.

Theorem 2.3 ([26], [4]). The map γ �→ −Trγ extends to an isomorphism of commutative 
algebras
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Fig. 2. Kauffman bracket skein relations.

Fig. 3. Curves on the 4-punctured sphere.

Skq=−1(M) ∼−→ OChar(M)

where γ is a loop and Trγ(ρ) := Tr(ρ(γ)).

We also use a presentation of the skein algebra Skq(S2\{pi}) of the 4-punctured sphere 
given by Bullock and Przytycki. Let x1 and x2 be two distinct simple closed curves in 
S2 \{pi} which are non-boundary parallel and which intersect twice. (See Fig. 3.) Define 
the curve x3 via the equation

x1x2 = q2x3 + q−2z + boundary curves

where x3 and z are simple closed curves each of which intersect x1 and x2 in two points. 
Suppose x1 separates boundary curves a1 and a2 from a3 and a4, and define p1 =
a1a2 + a3a4. Define p2 and p3 similarly. Finally, define

ΩK := −q2x1x2x3 + q4x2
1 + q−4x2

2 + q4x2
3 + q2p1x1 + q−2p2x2 + q2p3x3

Theorem 2.4 ([2, Thm. 3]). With notation as in the previous paragraph, Skq(S2 \ {pi})
has a presentation where the generators are xi and ai and the relations are

[xi, xi+1]q2 = (q4 − q−4)xi+2 − (q2 − q−2)pi+2

ΩK = (q2 + q−2)2 − (a1a2a3a4 + a2
1 + a2

2 + a2
3 + a2

4)

(The indices in the first relation are interpreted modulo 3.)
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Remark 2.5. It is clear from the formulas above that Theorems 2.3 and 2.4 are com-
patible with Theorem 2.1, where (x, y, z) correspond to (−x1, −x2, −x3) and (a, b, c, d)
correspond to (−a1, −a2, −a3, −a4).

2.3. The C∨C1 double affine Hecke algebra

In this section we recall the 5-parameter family of algebras Hq,t which was intro-
duced by Sahi in [27] (see also [24]). This is the universal deformation of the algebra 
C[X±1, Y ±1] � Z2 (see [25]), and it depends on the parameters q ∈ C

∗ and t ∈ (C∗)4. 
The algebra Hq,t can be abstractly presented as follows: it is generated by the elements 
T1, T2, T3, and T4 subject to the relations

(Ti − ti)(Ti + t−1
i ) = 0, 1 ≤ i ≤ 4 (2.2)

T4T3T2T1 = q

Remark 2.6. Comparing our notation to [3], their (T0, T∨
0 , T1, T∨

1 ) are our (T2, T1, T3, T4), 
and their (t1, t2, t3, t4) are our (t2, t1, t3, t4).

The element e := (T3 + t−1
3 )/(t3 + t−1

3 ) is an idempotent in Hq,t, and the algebra 
SHq,t := eHq,te is called the spherical subalgebra. A presentation for the spherical sub-
algebra SHq,t has been given in [29], and this can be viewed as a q-deformation of the 
presentation given by Oblomkov in [25]. (A less symmetric presentation was given in 
[19]. See also [28] and [16].) We now recall this presentation in our notation. Define

x = (T4T3 + (T4T3)−1)e

y = (T3T2 + (T3T2)−1)e

z = (T3T1 + (T3T1)−1)e

ΩD = −qxyz + q2x2 + q−2y2 + q2z2 − qαx− q−1βy − qγz

where

α := t̄1t̄2 + (qt3)t̄4, β := t̄1t̄4 + (qt3)t̄2, γ := t̄2t̄4 + (qt3)t̄1

Here and later we use the notation

t̄i := ti − t−1
i , qt3 := qt3 − q−1t−1

3

The following theorem is a slight modification of a result of Terwilliger – for a proof of 
the modified statement, along with explanations regarding notational conventions, see 
[3, Thm. 2.20].
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Theorem 2.7 ([29, Prop 16.4]). The spherical subalgebra SHq,t is generated by x, y, z with 
relations

[x, y]q = (q2 − q−2)z − (q − q−1)γ

[y, z]q = (q2 − q−2)x− (q − q−1)α

[z, x]q = (q2 − q−2)y − (q − q−1)β

ΩD = (t̄1)2 + (t̄2)2 + (qt3)2 + (t̄4)2 − t̄1t̄2(qt3)t̄4 + (q + q−1)2

Remark 2.8. Here we have corrected a typo from [3] in the powers of q in the last term 
of the relation involving ΩD. We have also slightly rewritten ΩD using the commutation 
relations above.

Remark 2.9. If q = ±1 then the spherical subalgebras are commutative for any 
(t1, t2, t3, t4). The corresponding varieties are affine cubic surfaces studied in detail in 
[25] (and the presentation in [25] agrees exactly with the one above, where our x, y, z are 
his X1, X2, X3).

Using these explicit presentations, we now relate the skein module of the 4-punctured 
sphere with the spherical DAHA. We point out that we must replace q by q2 in the 
DAHA to define this map.

Corollary 2.10. Let i2 = −1. There is an algebra map Skq(S2 \ {p1, p2, p3, p4}) → SHq2,t

given by

x1 �→ x, x2 �→ y, x3 �→ z

a1 �→ it̄1, a2 �→ it̄2, a3 �→ i(qt3), a4 �→ it̄4

Remark 2.11. The appearance of 
√
−1 here has a heuristic explanation as follows. The 

standard relation for Hecke algebras (with braid generator T and parameter t) is given 
by (T − t)(T + t−1) = 0. This can be rewritten as T − T−1 = t − t−1. Given a matrix 
A ∈ SL2(C) with eigenvalues a and a−1, the following matrix equation is satisfied: 
A + A−1 = (a + a−1)Id. Then the matrix equation can be obtained from the Hecke 
relation by rescaling T and t by 

√
−1.

We now specialize this corollary to obtain a map OChar(S2 \ {pi}) → SHq=1,t. We 
remark that here we specialize q = 1 because the q in the DAHA is replaced by q2 when 
it is compared to the skein algebra of the 4-punctured sphere.

Corollary 2.12. There is a map of commutative algebras OChar(S2 \ {p1, p2, p3, p4}) →
SHq=1,t

xS �→ −x, yS �→ −y, zS �→ −z, ai �→
√
−1 t̄i
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2.4. The unpunctured torus

The following theorem was proved in [2] (for a different but conceptually appealing 
description of the same algebra, see [9]). Let xT , yT , and zT be the (1, 0), (0, 1), and 
(1, 1) curves on the torus T 2. Let ΩT = −qxT yT zT + q2x2

T + q−2y2
T + q2z2

T .

Theorem 2.13 ([2]). The algebra Skq(T 2) is generated by xT , yT , and zT subject to the 
following relations:

[xT , yT ]q = (q2 − q−2)zT

[zT , xT ]q = (q2 − q−2)yT

[yT , zT ]q = (q2 − q−2)xT

ΩT = 2(q2 + q−2)

We can combine this with the previous theorems to obtain the following.

Corollary 2.14. There is an algebra isomorphism1 SHq,1,1,1,1 → Skq(T 2) given by

x �→ xT , y �→ yT , z �→ zT , tj �→ 1

There is a surjective algebra map Skq(S2 \ {pi}) → Skq2(T 2) given by

x1 �→ xT , x2 �→ yT , x3 �→ zT , a1, a2, a4 �→ 0, a3 �→ (iq) + (iq)−1

where i2 = −1.

Using the polynomial representation in the next section, we will extend the first map 
in the previous corollary to the parameters SHq,t1,t2,1,1, at the expense of expanding the 
range by localizing at certain elements.

2.5. The polynomial representation

The DAHA Hq,t can be realized by operators on Laurent polynomials C[X±1] as 
follows. First, we define auxiliary operators on C[X±1]:

x̂ · f(X) = Xf(X), s · f(X) = f(X−1), ŷ · f(X) = f(q−2X)

We then define

1 To be precise, if the base ring for SHq,t is C[q±1, t±1], and if C is given a C[q±1, t±1]-module structure 
where the ti act by 1, then SHq,t ⊗C[q±1,t±1] C → Skq(T 2) is an isomorphism.
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T̂2 = t2sŷ − q2t̄2x̂
2 + qt̄1x̂

1 − q2x̂2 (1 − sŷ)

T̂3 = t3s + t̄3 + t̄4x̂

1 − x̂2 (1 − s)

The operator T̂2 acts on Laurent polynomials because (1 − sŷ) ·Xn = Xn − q−2nX−n

is divisible by 1 − q2X2 (and similarly for T̂3). The following Dunkl-type embedding is 
defined using these operators (see [24, Thm. 2.22]):

Proposition 2.15 ([27]). The assignments

T1 �→ qT̂−1
2 x̂, T2 �→ T̂2, T3 �→ T̂3, T4 �→ x̂−1T̂−1

3 (2.3)

extend to an injective algebra homomorphism Hq,t ↪→ EndC(C[X±1]).

The Dunkl-type embedding above can be viewed as a map from Hq,t to a localization 
of Aq � Z2. (Here Aq is the quantum torus, which is generated by x̂±1 and ŷ±1 subject 
to the relation x̂ŷ = q2ŷx̂, and Z2 acts on Aq by inverting x̂ and ŷ.) This embedding 
maps the spherical DAHA into (a localization of) the symmetric algebra AZ2

q . In the 
specialization q = ε = ±1 and t3 = t4 = 1, a short computation leads to the following 
description of this symmetric embedding:

xt �→ x̂ + x̂−1

yt �→ t2(ŷ + ŷ−1) +
[
t̄2(x̂ŷ−1 − x̂−1ŷ) + εt̄1(ŷ − ŷ−1)

]
δ−1

zt �→ εt2(x̂ŷ + x̂−1ŷ−1) +
[
t̄2(ŷ − ŷ−1) + εt̄1(x̂ŷ − x̂−1ŷ−1)

]
δ−1

where δ := x̂ − x̂−1. If we multiply numerators and denominators by δ we can rewrite 
them in terms of xT , yT , and zT , which are the images of the curves (1, 0), (0, 1), and 
(1, 1) on the torus inside the algebra AZ2

q . (Note that zT = q−1(x̂ŷ + x̂−1ŷ−1).) We then 
obtain the following:

Corollary 2.16. When q = ε = ±1 and t3 = t4 = 1, the map Φε,t1,t2,1,1: SHε,t1,t2,1,1 →
Skε(T 2)loc is given by

xt �→ xT

yt �→ t2yT + −t̄2(x2
T yT − εxT zT − 2yT ) + t̄1(2zT − εxT yT )

x2
T − 4

zt �→ t2zT + t̄2(2zT − εxT yT ) + t̄1(εxT zT − 2yT )
x2
T − 4
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2.6. Example: the trefoil

In this subsection we describe Conjecture 1.1 completely explicitly in the example 
of the trefoil. Several computations were done with the help of the computer (using
Macaulay2 [13] and Mathematica). In this section only we use the abbreviations Sn :=
Sn(xT ) and Tn := Tn(xT ) for Chebyshev polynomials, which are defined by

Sn(X + X−1) := Xn+1 −X−n−1

X −X−1 , Tn(X + X−1) = Xn + X−n

Let K be the trefoil in S3. We first recall formulas from [11] for the action of SHq,1

on the skein module Skq(S3 \K). (See [3] for the conversion into the present notation.) 
As a module over C[x] the skein module Skq(S3 \K) is freely generated by two elements 
u and v, and the action of yT and zT are given by the following:

yT · u = −(q2 + q−2)u

zT · u = −q−3S1u

yT · v = (q6S4 − q2)u + q6T6v

zT · v = q5S3u + q5T5v

The A-polynomial of the trefoil is (L − 1)(L + M−6). (Roughly, this describes the 
preimage in (C×)2 of the image in Char(T 2) of the character variety of the knot com-
plement, where (C×)2 maps to Char(T 2) by sending (α, β) to the representation where 
the generators of T 2 are sent to diagonal matrices with upper-left entries α and β, re-
spectively.) A symmetric version of the A-polynomial should be an element in the ideal 
AnnSkq=−1(T 2)(Skq=−1(S3 \K). This ideal is non-principal in general, but one can check 
that for the trefoil the annihilator contains the following element:

AT := (yT + 2)(yT − T6)

(remember the negative sign in the map of Theorem 2.3).
We now give explicit expressions for the action of yt and zt on u and v with the 

parameter values q = −1 and t3 = t4 = 1:

yt · u = −(t2 + t−1
2 )u

zt · u = [t2S1 − t̄1]u

yt · v = [t2(S4 − 1) − t̄2(S4 + S2) + t̄1(S3 + S1)]u + [t2T6 − t̄2S6 + t̄1S5]v

zt · v = [t−1
2 S3 + t̄2S1 − t̄1(S2 + S0)]u + [−t2T5 + t̄2S5 − t̄1S4]v
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It is now possible to compute that the following deformation of the symmetric 
A-polynomial AT annihilates the skein module:

At := (yt + t2 + t−1
2 )(yt − t−1

2 T6 − t̄1S5 + t̄2S4) (2.4)

Remark 2.17. Since t̄i = ti − t−1
i , it is clear that the t1 = t2 = 1 specialization of At is 

equal to AT . The choice of the element At in (2.4) is somewhat arbitrary since the annihi-
lator ideal containing At is non-principal. This particular choice was made via computer 
experiment, and it seems to be the simplest obvious deformation of AT which “has the 
same structure.” However, we remind the reader that the action of SHq=−1,t1,t2,1,1 is 
canonical, even though the particular choice of At is not.

2.7. Example: the figure eight

In this subsection we give a explicit description of Conjecture 1.1 in the case of the 
figure eight knot, again with q = −1 and t2 = t4 = 1, and with the help of a computer. 
We use the notation Sn and Tn for Chebyshev polynomials as in Section 2.6.

Let K be the figure eight knot and N := Skq=−1(S3 \ K) the skein module of its 
complement. We recall from [14] that as a module over C[x], the skein module N is 
freely generated by elements p, u, and v (again, see [3] for conversion into the present 
notation). Formulas for the action of yT and zT at q = −1 are given by

yT · p = −2p

yT · u = (S2 + 1)p + (−T4 + T2 + T0)u

yT · v = (−S2 − 1)p + (−T4 + T2 + T0)v

zT · p = S1p

zT · u = −S3p + (T5 − T3 − T1)u + (T3 − T1)v

zT · v = 2S1p + (−T3 + T1)u + (T3 − 2T1)v

The A-polynomial for the figure eight knot is (L −1)(L +L−1 +−M4 +M2 +2 +M−2−
M−4), and a symmetric version is given by

AT := (yT + 2)(yT + T4 − T2 − T0) (2.5)

(Again, the apparent change in signs is explained by the signs in Theorem 2.3, and 
we have chosen AT to be a factorizable element in the (non-principal) annihilator of 
the skein module of the knot complement.) One may now compute that the action of 
yt ∈ SHq=−1,t1,t2 is given by the formulas

yt · p = −(t2 + t−1
2 )p
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yt · u = [t2(S2 + 1) − t̄1S1]p + [t2(−T4 + T2 + T0) − t̄2S2 + t̄1T3]u

+ [−t̄2(S2 + 1) + 2t̄1S1]v

=: ap + bu + cv (2.6)

yt · v = [−t−1
2 (S2 + 1) − t̄1S1]p + [t̄2(S2 + 1) − 2t̄1S1]u

+ [t−1
2 (−T4 + T2 + T0) + t̄2S2 − t̄1T3]v

=: dp + eu + fv (2.7)

Similarly, the action of zt is given by the formulas

zt · p = [t2S1 − t̄1]p

zt · u = [−t2S3 + t̄1(S2 + 1) − t̄2S1]p + [t2(T5 − T3 − T1) + t̄2(T3) + t̄1(−T4 + 1)]u

+ [t2(T3 − T1) + 2t̄2S1 − t̄2(S2 + 1)]v

zt · v = [(t2 + t−1
2 )S1]p + [t2(−T3 + T1) − 2t̄2S1 + t̄1(S2 + 1)]u

+ [t−1
2 (T3 − 2T1) − 2t̄2S1 + t̄1S2]v

As a sanity check, one may check directly (or by computer) that the above formulas 
satisfy the cubic relation of Theorem 2.7 (specialized to q = −1 and t3 = t4 = 1). One 
can also check that the following element annihilates the skein module N :

Ã := (yt + t2 + t−1
2 )(y2

t − (b + f)yt + (bf − ce)) (2.8)

where the constants in the formula were defined in equations (2.6) and (2.7). In fact, it 
is obvious that Ã annihilates N : the element p generates a submodule of N annihilated 
by y + t2 + t−1

2 , and the second factor in the definition of Ã is just the characteristic 
polynomial of yt, viewed as an operator on the C[x]-module N/p.

Remark 2.18. Experimentally, the polynomial A defined in (2.5) does not seem to have 
a deformation which annihilates N . (In particular, the bf− ce term doesn’t factor unless 
t1 = t2 = 1.) However, one can check that if we specialize t1 = t2 = 1, then

Ãt1=t2=1 = (y + 2)(y + T4 − T2 − T0)2

In particular, in this specialization the scheme defined by Ã is the same as that defined 
by A, except that one component has been “fattened.”

3. Deformations of the peripheral map and the Brumfiel–Hilden algebra

Let K ⊂ S3 be a knot, M := S3 \K its complement, and π := π1(M) its fundamental 
group. The fundamental group of the torus boundary of M maps to π via the peripheral 
map:
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Z
αm−→ Z

2 α−→ π

where we have fixed generators of Z2 to be the standard longitude and meridian of K, 
and where the image of the generator under αm is the meridian. By Corollary 2.14 and 
Theorem 2.3 the peripheral map induces the following map of commutative algebras:

α∗ : SHq=−1,ti=1 → OChar(π1(M))

where OChar(π1(M)) := C[Rep(π1(M), SL2(C))]SL2(C) is the coordinate ring of the char-
acter scheme of the knot complement.

Lemma 3.1. For q = −1, the action of SHq,t on Skq(M) conjectured in [3, Conj. 1] arises 
from an algebra homomorphism

(αt)∗ : SH−1,t1,t2,1,1 → OChar(π1(M))

which we call a deformed peripheral map.

Proof. Consider the commutative diagram

OChar(∂M)
α∗� OChar(M)

SH−1,t ⊂
Φ−1,t� OChar(∂M)loc

loc
�

αloc
∗� OChar(M)loc

loc
�

(3.1)

which is obtained from the diagram of Skq(∂M)-modules by specializing q = −1:

Skq(∂M) � Skq(M)

SHq,t
⊂ � Skq(∂M)loc

loc
�

� Skq(M)loc

loc
�

(The top horizontal map is given by a �→ a · ∅, which is a map of left modules for 
general q and a map of commutative algebras when q = −1.) Conjecture 1 says that 
SHq,t[Skq(M)] ⊂ Skq(M) ⊂ Skq(M)loc, which implies

SHq,t ·∅ ⊂ Skq(M) (3.2)

The diagram (3.1) consists of algebra homomorphisms, and condition (3.2) specializes 
to
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Φ−1,t(SH−1,t) · 1 ⊂ OChar(M)

This shows that Φ−1,t : SH−1,t → OChar(M) is an algebra map. �
Geometrically, we thus have a morphism of schemes

αt : Char(M) → Spec(SH−1,t)

that is a deformation of the classical restriction map.

3.1. The Brumfiel–Hilden conjecture

We now recall the definition of the Brumfiel–Hilden algebras from [1]. If π is a finitely 
generated discrete group, these algebras are defined as follows:

H[π] := C[π]
〈g(h + h−1) − (h + h−1)g〉 , H+[π] := C〈g + g−1 | g ∈ π〉 ⊂ H[π] (3.3)

A conceptual explanation for these definitions is given by the following theorem.

Theorem 3.2 ([1]). If π is a finitely generated group, then

(1) The commutative algebra H+[π] is isomorphic to O(Char(π)), the coordinate ring 
of the SL2(C) character scheme of π.

(2) The algebra H[π] is isomorphic to the SL2-invariant subalgebra M2[O(Rep(π))]SL2

of the algebra of 2 × 2 matrices with coefficients in the coordinate ring of the repre-
sentation scheme of π, where SL2 acts diagonally.

Remark 3.3. The first map sends g+g−1 to the function ρ �→ Tr(ρ(g+g−1)). The second 
sends g to the matrix-valued function ρ �→ ρ(g), which is well-defined because if A ∈ SL2
then A + A−1 = Tr(A)Id is central in the ring of 2 × 2 matrices.

We also recall the Brumfiel–Hilden conjecture, see [1, pg. 122]:

Conjecture 3.4 ([1]). Let π = π1(S3 \K) be the fundamental group of the complement of 
a knot in S3, and let X, Y ∈ H[π] be the standard meridian and longitude of K. Then

Y ∈ H+[X±1] (3.4)

where the right hand side is the subalgebra of H[π] generated by H+[π] and the elements 
X±1 ∈ H[π].

Our goal is to relate this conjecture to the main conjecture of [3]. To shorten notation, 
we write H+ := H+[π] and H := H[π], and we write
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δ := X −X−1

We also define an operator s : H → H by the formula s · g := g−1. Finally, we define the 
following H+-module:

N := H+[X±1] + H+[X±1](Y + 1)δ−1 ⊂ H[δ−1] (3.5)

To clarify, formula (3.5) defines N to be a fractional ideal of the algebra H+[X±1], 
viewed as an H+[X±1]-submodule of the localized algebra H[δ−1]. Here H[δ−1] is 
the localization of the Brumfiel–Hilden algebra H at the multiplicatively closed set 
{δ2k}k≥0 ⊂ H+, which is central in H. The action of s on H clearly extends to H[δ−1]
via s · δ = −δ.

Proposition 3.5. The following conditions are equivalent:

(1) Y − Y −1 ∈ H+δ

(2) Y ∈ H+[X±1]
(3) eN = H+ and (s + Y ) · N ⊂ δN , where e := (1 + s)/2 and s acts on N as in the 

previous paragraph.

Proof. We first prove that (3.5) is equivalent to (3.5). If Y − Y −1 ∈ H+δ, then Y =
(Y − Y −1)/2 + (Y + Y −1)/2 ∈ H+δ + H+ = H+[X±1]. Conversely, if Y ∈ H+[X±1], 
then Y = A + Bδ for some A, B ∈ H+. Then applying the anti-involution g �→ g−1, we 
obtain Y −1 = A − δB = A −Bδ. This implies Y − Y −1 = Bδ.

Next we show that (3.5) implies (3.5). We have that H+[X±1] = H+ + H+δ, which 
implies

N = H+ + H+δ + H+(Y + 1)δ−1 + H+(Y + 1) = H+ + H+δ + H+(Y + 1)δ−1

where the last term of the second expression is contained in H+[X±1] ⊂ N by condition 
(3.5) (which is implied by condition (3.5)). Since sδ = −δ, we see that eδ = eδ−1 = 0. 
Therefore, after multiplying this expression by e we obtain

eN = H+ + H+(eY + e)δ−1

= H+ + H+(Y + Y −1s)δ−1

= H+ + H+(Y − Y −1)δ−1

= H+

where the last equality follows from assumption (3.5) that Y − Y −1 ∈ H+δ. Next, we 
compute

(s + Y ) ·H+ = (1 + Y ) ·H+ = δ
[
(1 + Y )H+δ−1] ⊂ δN
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(s + Y ) ·H+δ = (−1 + Y )H+δ ⊂ H+[X±1]δ ⊂ δN

(s + Y )H+(Y + 1)δ−1 = H+(Y 2 + Y − Y −1 − 1)δ−1

= H+(Y − Y −1)(Y + 1)δ−1 ⊂ H+δ(Y + 1)δ−1 ⊂ δN

Finally, we show that condition (3.5) implies condition (3.5). Acting on the assumed 
containment by 1 − s we obtain

(1 − s)(s + Y )N ⊂ (1 − s)δN = δ(1 + s)N = δH+

We then compute

(1 − s)(s + Y )eN = (s + Y − 1 − Y −1s)eN = (Y − Y −1)H+

This shows that (Y − Y −1)H+ ⊂ δH+, which completes the proof. �
Corollary 3.6. Suppose K is a knot that satisfies the (equivalent) conditions of Proposi-
tion 3.5. Furthermore, assume that the map δ : N → N given by multiplication by δ is 
injective. Then Conjecture 1.1 (at q = −1) holds for K.

Proof. The algebra Hq=−1,t1,t2,1,1 is generated by X±1, the operator T2, and the invo-
lution s. Under the Dunkl embedding (2.3), the poles of the image of the element T2
are of the form δ−1(s + Y ). Therefore, the third condition in Proposition 3.5 together 
with the injectivity assumption implies the operator T2 acts on the module N . Then the 
spherical subalgebra eH−1,t1,t2,1,1e acts on eN , which is equal to H+ (again by the third 
condition in Proposition 3.5). This confirms Conjecture 1.1 at q = −1. �
4. Relations between different knots

In this section, we describe relationships between the Brumfiel–Hilden condition (3.4)
for different knots. We first recall that the connect sum K#K ′ of two knots is defined 
by attaching two points, one on each knot, and then resolving the double point to obtain 
one knot. (See, e.g. [5].)

Lemma 4.1. If knots K and K ′ satisfy (3.4), then the connect sum K#K ′ does too.

Proof. Let π, π′ be the knot groups of K, K ′, respectively, with peripheral systems 
m, l, m′, l′, respectively. Then [5, Prop. 7.10] says that π1(K#K ′) = π ∗Z π′, where the 
generator of Z maps to m and m′ inside π and π′, respectively. In particular, the images 
of m and m′ inside of π1(K#K) are equal. Next, a peripheral system of K#K ′ is given 
by (m, ll′) (or by (m′, ll′)), where we have abused notation by writing l and l′ for their 
images inside π1(K#K ′). This is true because one can write the longitude of a knot K in 
terms of the Wirtinger generators by “tracing along the knot and recording crossings,” 
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and in the connect sum, one can first trace along K and then along K ′. By assumption, 
we have YK ∈ H+

n [K][X±1
K ] and YK′ ∈ H+

n [K ′][X±1
K′ ], and combining these statements 

with the presentation of π1[K#K ′] shows that YK , YK′ ∈ H+[K#K ′][X±1
K#K′ ]. Finally, 

since YK#K′ = YKYK′ , this shows that YK#K′ ∈ H+
n [K#K ′][X±1

K#K′ ], which is what we 
wanted. �

We will write K ′ ≥p K if there is a surjection f : π1(K ′) � π1(K) which preserves 
the peripheral systems: in other words, f(XK′) = XK and f(YK′) = Y d

K for some d ∈ Z. 
(Such surjections are not common, but they will be useful for our purposes for torus 
knots.)

Lemma 4.2. Suppose for a knot K ⊂ S3 there exist knots Ki ⊂ S3 satisfying (3.4) such 
that Ki ≥p K for each i, with Yi �→ Y di

K . Further suppose that the integers di ∈ Z

generate Z as a group. Then K satisfies (3.4).

Proof. The definitions of H and H+ in (3.3) are functorial. In particular a group ho-
momorphism f : π1(Ki) → π1(K) induces an algebra morphism f∗ : H[Ki] � H[K]
with f∗(H+[Ki]) ⊂ H+[K]. Since f preserves the peripheral systems and we have as-
sumed Yi ∈ H+[Ki][X±1

i ], this shows that Y di

K ∈ H+[K][X±1
K ]. By assumption, there 

exist ai ∈ Z such that 
∑

i aidi = 1. This implies that Y
∑

aidi

K = YK ∈ H+[X±1
K ], which 

completes the proof. �
Remark 4.3. The proof of Lemma 4.2 shows that the “covering” maps fi : π1(Ki) →
π1(K) need not be surjective to imply condition (3.4) for K.

5. Torus knots

In this section, we will prove Conjecture 3.4 for torus knots. To this end, we will use 
the presentation of the BH algebra for two-generator groups given in the Appendix. Let 
r and s be coprime integers such that 2 ≤ r < s. The knot group of the (r, s)-torus knot 
K = K(r, s) has the following presentation

π(K) = 〈u, v | ur = vs〉 ,

and the meridian and longitude are represented by the elements (cf. [5, Prop. 3.28]):

m = unv−k , l = vsm−rs (5.1)

where k and n are integers satisfying

−rk + sn = 1 . (5.2)

We remark that m is independent of the choice of solution (k, n) to the equation (5.2).
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Now, let H = H[π] be the Brumfiel–Hilden algebra of the knot group π(K). As in 
Section 3.1, let X and Y denote the images of the elements m and l in H under the 
canonical projection C[π] � H[π], and let H+[X±1] be the subalgebra of H generated 
by H+ and C[X±1]. Recall that Conjecture 3.4 is equivalent to the statement

Y ∈ H+[X±1] . (5.3)

The main result of this section is

Theorem 5.1. Condition (5.3) holds for all torus knots.

We will prove Theorem 5.1 in several steps. First, we verify (5.3) for (p, p + 1)-torus 
knots by direct calculation. Then, given a torus knot K(r, s) with rs even, we construct 
a group epimorphism π[K(p, p + 1)] � π[K(r, s)] and we use Lemma 4.2 to give a 
covering argument to show that (5.3) holds for K(r, s), provided it holds for K(p, p + 1)
for all p. Next, we show that (5.3) holds for (2, 2p + 1) torus knots and use a similar 
covering argument to show the same for K(r, s) with rs odd.

In the computations below we will use the classical Chebyshev polynomials of the first 
and second kind. We recall that these polynomials are defined respectively by

T0(y) = 1, T1(y) = y, Tn+1 = 2yTn − Tn−1

U0(y) = 1, U1(y) = 2y, Un+1 = 2yUn − Un−1 .

Alternative definitions are given by

Tn(cos(ϑ)) := cos(nϑ) , Un(cos(ϑ)) := sin((n + 1)ϑ)
sin(ϑ) , n = 0, 1, 2, . . . (5.4)

5.1. Torus knots of type (p, p + 1)

This section is devoted to the proof of the following proposition.

Proposition 5.2. Condition (5.3) holds for (p, p + 1) torus knots.

Fix an integer p ≥ 2 and consider the torus knot K(p, p + 1). If r = p and s = p + 1, 
we can take k = n = 1 in (5.2), so that the peripheral elements (5.1) are given by

m = uv−1 , l = vp+1m−p(p+1) (5.5)

To do calculations it is convenient to change generators of the knot group taking a :=
uv−1 and b = v. Then

π(K(p, p + 1)) = 〈u, v | up = vp+1〉 = 〈a, b | abab . . . aba = bp〉 , (5.6)
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where there are (p − 1) copies of b on the left-hand side. The peripheral pair becomes

m = a , l = bp+1a−p(p+1) .

Next, recall the presentation of the BH algebra of the free group F2 = 〈a, b〉 given in 
the Appendix:

H[F2] ∼= R⊕Rt , t2 = y2 − 1

where R = C[X±1, y, z], and where X = a, y = (b +b−1)/2, 2z = ab +b−1a−1+(a +a−1)y, 
and t = (b − b−1)/2. We will repeatedly use the following simple observation.

Lemma 5.3. For any word c ∈ F2, we have

cn+1 = Un(c+) c− Un−1(c+) , n = 1, 2, . . .

where c+ := (c + c−1)/2.

Proof. For n = 1, we have c2 = 2[(c + c−1)/2] c − 1 = 2c+c − 1 = U1(c+)c −U0(c+), and 
for all n ≥ 1, the claim follows easily by induction in n. �
Remark 5.4. Note that the identity of Lemma 5.3 holds actually in the group algebra 
C[F2] but we will use it as an identity in H[F2].

Using Lemma 5.3, we compute the images of the left and right hand sides of the 
relation (5.6) in H[F2]:

abab . . . a = (ab)pb−1

= Up−1(Q)ab− Up−2(Q)b−1

= Up−1(Q)a− Up−2(Q)b−1

= Up−1(Q)X − Up−2(Q)y + Up−2(Q)t

where Q = (ab + b−1a−1)/2 = (X(y + t) + (y− t)X−1)/2 = xy + z. Second, we compute

bp = Up−1(y)b− Up−2(y) (5.7)

= Up−1(y)y − Up−2(y) + Up−1(y)t

= Tp(y) + Up−1(y)t

Hence, abab . . . a − bp = A + Bt, where

A := Up−1(Q) − Up−2(Q)y − Tp(y)

B := Up−2(Q) − Up−1(y)
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We would like to show that the longitude l is in the subalgebra [R] ⊂ H[π] which 
is the image of R under the quotient H[F2] � H[π]. By Proposition 9.7, this is true if 
l = [r0 + rt] with r ∈ J , where J is the ideal

J1 = 〈A,Aσ, Aδ, Aσδ, B〉 (5.8)

Here we have written Aσ = σ(A), etc. where σ : R → R is the involution of R and 
δ : R → R is the σ-derivation of R defined by

σ(X±1) = X∓1, σ(y) = y, σ(z) = z

δ(X±1) = ±2z, δ(y) = δ(z) = 0

Note that since Up−1(y)y + Tp(y) = Up(y), we can rewrite A as

A = Up−1(Q)X −By − Up(y)

Hence,

Aσ = X−1Up−1(Q) −By − Up(y)

Aδ = 2Up−1(Q)z

Aσδ = −2Up−1(Q)z

It follows that J1 ⊂ R is defined by

J1 = 〈Up−1(Q)X − Up(y), Up−1(Q)X−1 − Up(y), Up−2(Q) − Up−1(y), zUp−1(Q)〉

Since Q = z + xy, we have

QUp−1(Q) = zUp−1(Q) + xyUp−1(Q)

= zUp−1(Q) + y(XUp−1(Q) + X−1Up−1(Q))/2

≡ yUp(y) (mod J1)

This shows that J1 is generated by the elements

Up−1(Q)X − Up(y), Up−1(Q)X−1 − Up(y), (5.9)

Up−2(Q) − Up−1(y), QUp−1(Q) − yUp(y)

Since Y = bp+1a−p(p+1) = bp+1x−p(p+1) ∈ H[π], to verify (5.3) it suffices to show that 
bp+1 ∈ H+[X±1]. For this, by the same computation as in (5.7), it suffices to show that

Up(y) ∈ J1 (5.10)
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We will need some elementary properties of Chebyshev polynomials, which we give in 
the following:

Lemma 5.5. For any p ≥ 2, we have

Up−1Up+1 = −1 + U2
p

gcd(Up − Up−1, Up−2 − Up−3) = 1

To simplify the notation, we set

E := Up−1(Q), F := Up−2(Q) − Up−1(y), N := Up(y)

We also write “≡” for congruences in R modulo J1. The relations (5.9) imply

F ≡ 0 (5.11)

E ≡ XN (5.12)

E ≡ X−1N (5.13)

QE ≡ yN (5.14)

We need to show that N ≡ 0. By (5.11) and Lemma 5.5, we have

Up−3(Q)E = Up−3(Q)Up−1(Q) (5.15)

= −1 + U2
p−2(Q)

≡ −1 + U2
p−1(y)

= Up−2(y)Up−1(y)

= Up−2(y)N

By (5.12) and (5.14),

QN ≡ (X−1y)N (5.16)

Now if we combine (5.13), (5.15), and (5.16), we get

Up−2(y)N ≡ Up−3(Q)E ≡ XUp−3(Q)N ≡ XUp−3(X−1y)N (5.17)

Now assume that p is even. Then Up−3 is an odd polynomial. Equations (5.12) and (5.13)
show that X2N ≡ N , which implies

XUp−3(X−1y)N ≡ Up−3(y)N (5.18)

It therefore follows from (5.17) that

[Up−3(y) − Up−2(y)]N ≡ 0 (5.19)
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Similarly, by (5.14), Up−1(Q)N ≡ X−1Up(y)N , which by (5.16) implies

XUp−1(X−1y)N ≡ Up(y)N (5.20)

Again, if p is even, then Up−1 is an odd polynomial, so that XUp−1(X−1y)N ≡
Up−1(y)N . Hence, (5.20) becomes

[Up−1(y) − Up(y)]N ≡ 0 (5.21)

By Lemma 5.5, the polynomials Up−3−Up−2 and Up−1−Up are relatively prime. Hence, 
if p is even, equations (5.19) and (5.21) combined together imply

N ≡ 0

Now, if p is odd, arguing in a similar fashion, we can also derive from (5.15) the relations

(Up−3(Q) − Up−2(Q))N ≡ 0

(Up(Q) − Up−1(Q))N ≡ 0

where the Chebyshev polynomials depend on Q rather than y. By Lemma 5.5, we again 
conclude that N ≡ 0. Thus, for all p ≥ 2 we have N ≡ 0, which completes the proof of 
Theorem 5.1 for (p, p + 1) torus knots.

5.2. Torus knots with rs even

We will now deduce Theorem 5.1 for the K(r, s) torus knot with rs even using Proposi-
tion 5.2 about (p, p +1) torus knots combined with a covering argument using Lemma 4.2. 
We first note that given relatively prime r, s ∈ Z there exist n, k ∈ Z such that

−rk + sn = 1

Let p = rk, and let K̃ be the (p, p + 1) torus knot with generators ũ and ṽ satisfying 
ũp = ṽp+1.

Lemma 5.6. Let K be the (r, s) torus knot with generators u, v ∈ π1(K) satisfying ur = vs

and with meridian and longitude m = unv−k and l = vsm−rs as in (5.1). Then there is 
a covering map π1(K̃) � π1(K) sending m̃ �→ m and l̃ �→ lkn.

Proof. We construct the claimed covering map directly via ũ �→ un and ṽ �→ vk. We 
then check

ũp �→ upn = (ur)kn = (vs)kn = (vk)sn = (im(ṽ))p+1
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which shows that this map is well-defined. It is surjective because ur = vs and because 
n, k are relatively prime. We then note that by equation (5.5), the meridian and longitude 
for K̃ satisfy m̃ = ũṽ−1 and l̃ = ṽp+1m̃−p(p+1). We then check

m̃ �→ unv−k = m

Similarly, we compute

l̃ = ṽp+1m̃−p(p+1) �→ vk(p+1)m−p(p+1) = vksnm−rksn = (vsm−rs)kn = lkn

(We remark that the second to last equality follows from the fact that l commutes with m, 
which implies that vs commutes with m also.) �

In the previous lemma we only used one solution (k, n) to the equation −rk+ sn = 1. 
However, an arbitrary solution to this equation is given by

−r(k + ts) + s(n + tr) = 1, t ∈ Z

Lemma 5.7. Let N(t) = (k + ts)(n + tr), and suppose that rs is even. Then the ideal in 
Z generated by the set {N(t)} is equal to Z.

Proof. Let M ⊂ Z be the Z-submodule generated by N(t), and let c = nk, b = sn + rk, 
and a = rs, so that N(t) = at2 + bt + c. It is clear that M is generated by N(0), N(1)
and N(2), or equivalently, by 2a, a + b and c.

Now we claim that a and b are relatively prime. Suppose not, so that there is a prime 
q dividing a = rs and b = sn + rk. Since r and s are relatively prime, q must divide 
either r or s. However, b = sn + rk = 2rk + 1, which means that q cannot divide both r
and b. Similarly, b = 2sn − 1, which means that q cannot divide both s and b, which is 
contradiction.

Since 2a, 2b ∈ M and a, b are relatively prime, this shows 2 ∈ M . Now we have 
assumed that a = rs is even, which implies a + b = a + 2rk + 1 is odd. Since 2 ∈ M and 
a + b ∈ M , this shows that 1 ∈ M , which completes the proof. �
Corollary 5.8. If rs ∈ Z is even, then the (r, s) torus knot satisfies condition (5.3).

Proof. This follows from Lemma 5.7 and Lemma 4.2. �
5.3. Torus knots with rs odd

In this section we use a covering argument similar to the one in the previous section 
to prove that condition (5.3) for (r, s) torus knots with rs odd follows from the same 
conjecture for (p, 2p + 1) torus knots. We then show this condition holds for (p, 2p + 1)
torus using some calculations along with results of the previous section.
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5.3.1. Covering
Assume that r, s ∈ Z are both odd and are relatively prime. Then there exist k̃, ñ ∈ Z

such that

−k̃r + ñs = 1

Since r and s are both odd, one of k̃ or ñ must be even. Assume without loss of generality 
that k̃ =: 2k is even, and let n := ñ. Then we have

−2kr + ns = 1 (5.22)

Define p := kr and q := ns = 2p + 1. Arguing similarly to Lemma 5.6, we have a group 
epimorphism

π1(p, 2p + 1) � π1(r, s), m̃ �→ m, l̃ �→ lnk

Given a fixed choice of (n, k) satisfying (5.22), any possible choice (n′, k′) satisfying the 
same equation is given by

k′ := k + st, n′ := n + 2rt, t ∈ Z

If we define N(t) := n′k′ = nk + (2rk + ns)t + 2rst2, then l̃ �→ lN(t). Consider the ideal 
in Z generated by the values of N(t):

Ir,s := 〈N(t) | t ∈ Z〉 ⊂ Z

Lemma 5.9. We have the equality Ir,s = Z.

Proof. Put a := 2rs, b = 2rk + ns = 4rk + 1 = 2ns − 1, and c = nk. Then

Ir,s = 〈c + bt + at2 | t ∈ Z〉

From the proof of Lemma 5.7, we see that 〈2a, 2b, a + b, c〉 ⊂ Ir,s. We then note that 
gcd(a, b) = 1. Indeed, suppose some prime q divides a = 2rs. Then q divides either 2, r
or s, but in each case q cannot divide b because b = 4rk + 1 = 2ns − 1.

Since gcd(a, b) = 1, we have 2 = gcd(2a, 2b) ∈ Ir,s. However, a = 2rs is even and 
b = 2ns − 1 is odd, which implies a + b is odd. Therefore, Ir,s = Z. �
Corollary 5.10. Condition (5.3) for the (r, s) torus knot with rs odd follows from Condi-
tion (5.3) for the (p, 2p + 1) torus knots.

5.3.2. (p, 2p + 1) torus knots
In this section we prove condition (5.3) for (p, 2p + 1) torus knots. If p is even, then 

we proved this in Section 5.2, so we will assume that p is odd.
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Proposition 5.11. If p is odd, then the (p, 2p + 1) torus knot satisfies condition (5.3).

The proof will occupy the rest of this section.

Lemma 5.12. The ideal J1 for the Brumfiel–Hilden algebra H = H[π(p, 2p + 1)] is gen-
erated by the following relations:

Up−1(Q)X − U2p−1(y) + Up−2(Q) (5.23)

Up−1(Q)X−1 − U2p−1(y) + Up−2(Q) (5.24)

2Up−2(Q)y − U2p−2(y) (5.25)

zUp−1(Q) (5.26)

where Q := T2(y)x + 2yz = (2y2 − 1)x + 2yz.

Proof. Direct calculation similar to the one for (p, p + 1) torus knots. �
To prove condition (5.3), an argument similar to (5.7) shows that it is sufficient to 

prove

U2p(y) ∈ J1 (5.27)

By the covering argument of the previous section, we know that l2 ∈ H+[X±1]. This 
means that

(T2p+1(y) + U2p(y)t)2 ∈ H+[X±1]

or, equivalently, that

T2p+1(y)U2p(y) ∈ J1 (5.28)

We again will write ≡ for congruence modulo the ideal J1. We begin by rewriting 
(5.23)–(5.26) and (5.28) in a more concise form. Denote

E := Up−1(Q), N := U2p−1(y) − Up−2(Q)

Lemma 5.13. We have

EX ≡ N (5.29)

EX−1 ≡ N (5.30)

2yN ≡ U2p(y) (5.31)

QE ≡ (2y2 − 1)N ⇐⇒ QN ≡ X−1(2y2 − 1)N (5.32)
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Proof. First, (5.31) follows from (5.25). In particular, we have

(5.25) ⇐⇒ 2Up−2(Q)y ≡ U2p−2(y)

2y(U2p−1(y) −N) ≡ U2p−2(y)

2yN ≡ 2yU2p−1(y) − U2p−2(y) = U2p(y)

Second, we show that (5.32) follows from (5.26):

(5.26) ⇒ 2yzUp−1(Q) ≡ 0

(Q− (2y2 − 1)x)Up−1(Q) ≡ 0

QUp−1(Q) ≡ (2y2 − 1)xUp−1(Q)

QE ≡ (2y2 − 1)(X + X−1)E/2 = (2y2 − 1)N �
Thus, knowing (5.28)–(5.32), we need to conclude (5.27), i.e. that U2p(y) ≡ 0. Recall 

that we assume p to be odd. From (5.31) we see that

2yN ≡ U2p(y) ⇒ 2yXE ≡ U2p(y) ⇒ 2yXUp−1(Q)N ≡ U2p(y)N

Since p is odd, Up−1 is an even polynomial, hence, by (5.29) and (5.30) we see 
Up−1(X−1(2y2 − 1))N ≡ Up−1(2y2 − 1)N . If we formally set y = cos(α), we see that 
2y2 − 1 = T2(y) = cos(2α). From this, it follows that

Up−1(2y2 − 1) = Up−1(T2(y)) = Up−1(cos(2α)) = sin(2pα)
sin(2α)

From this, we see that

2yUp−1(2y2 − 1) = 2 cosα sin 2pα
sin 2α = sin 2pα

sinα
= U2p−1(y)

Thus, we obtain

XU2p−1(y)N ≡ U2p(y)N (5.33)

To proceed further, we need the following identity.

Lemma 5.14. For all n ≥ 0, we have

(1 − y2)U2
n(y) + T 2

n+1(y) = 1

Proof. Let y = cosα. Then

(1 − cos2 α) sin2(n + 1)α
sinα

+ cos2(n + 1)α = sin2(n + 1)α + cos2(n + 1)α = 1 �
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Corollary 5.15. For all p ≥ 1, we have

gcd(U2p(y), yT2p+1(y)) = 1

gcd(T2p(y), yT2p+1(y)) = 1

Proof. To prove the first statement, let n = 2p and define

a(y) := (1 − y2)U2p(y), b(y) = T2p+1(y)/y

Note that b(y) ∈ C[y] because T2p+1(y) is an odd polynomial. Then, by Lemma 5.14 we 
have

a(y)U2p(y) + b(y)(yT2p+1(y)) = 1

The proof of the second statement is similar. �
Now, combining (5.33) with (5.30) and (5.31), we get

U2p(y)N ≡ XU2p+1(y)N

yT2p+1(y)N ≡ 0

Hence, by Corollary 5.15 we see

N ≡ a(y)U2p−1(y)NX

Again using (5.30) and (5.31), X2N ≡ N , which implies

XN ≡ a(y)U2p−1(y)N ⇒ N ≡ (a(y)U2p−1(y))2N

where a(y) = (1 − y2)U2p(y) as in the proof of Lemma 5.14. We conclude

[(
a(y)U2p−1(y)

)2 − 1
]
N ≡ 0 (5.34)

We then compute

(a(y)U2p−1(y))2 − 1 = (1 − y2)2U2
2p(y)U2

2p−1(y) − 1

=
[
(1 − y2)U2

2p(y)
] [

(1 − y2)U2
2p−1(y)

]
− 1

= (1 − T 2
2p+1(y))(1 − T 2

2p(y)) − 1

= T 2
2p(y)T 2

2p+1(y) − T 2
2p(y) − T 2

2p+1(y)

Therefore, (5.34) in combination with (5.28) gives
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T 2
2p(y)N ≡ 0 (5.35)

By Corollary 5.15, gcd(T2p(y), yT2p+1(y)) = 1. This shows that the polynomials 
yT2p+1(y) has no common roots with T2p(y), which means it also has no roots in common 
with T 2

2p(y). We therefore have

gcd(T 2
2p(y), yT2p+1(y)) = 1

Combining this with (5.28) and (5.35) shows that

N ≡ 0

By (5.31), we now conclude that

U2p(y) ≡ 0

This completes the proof of Proposition 5.11.

6. Two-bridge knots

In [3] we confirmed Conjecture 1.1 for 2-bridge knots using explicit computations from 
[1] and a C[X±1, Y ±1] � Z2-submodule of H[δ−1] defined as

M := H+[X±1] + H+[X±1]Qδ−1

(See [3, Eq. (3.11)].) In this section we show that the module M is equal to the module 
N from (3.5). In particular, this shows that M has a definition that does not depend on 
the polynomial Q, which was a specific polynomial used in the computations of [1]. We 
then show the second assumption of Corollary 3.6 holds for two-bridge knots; namely, 
that δ = m −m−1 is not a zero divisor in H+[m±1]. We will adapt the notation of [3].

Proposition 6.1. If K is a two-bridge knot, then N = H+[X±1] + H+[X±1]Qδ−1. In 
particular, the Brumfiel–Hilden condition (1.2) holds for K.

Proof. First, by Lemma 3.5 in [3], it is clear that H+[X±1, Y ±1] = H+[X±1] in H[π]. 
By [3, Proof of Thm. 3.7], we know that

Y = fQ + gδ − 1 (6.1)

where we have written

f = 2X−s(L + NJ) ∈ H+[X±1]

g = X−s
(
2N2Jδ + 2LM + A(X)

)
∈ H+[X±1]
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s = 4
d∑

n=1
en

A(X) =
{

X + X3 + · · · + Xs−1 if s �= 0
0, if s = 0

It follows from (6.1) that (y + 1)δ−1 = g + fQδ−1, which implies N ⊂ M .
To prove the inclusion M ⊂ N , we note that [1, pg. 119] shows that

L = 1 + 2F 2J − 2G2IJ

N = 2DG + 2EF

This shows that fQ = 2X−s(L + NJ)Q, which implies

fQ = 2X−s(1 + 2F 2J − 2G2IJ + 2DGJ + 2EFJ)Q

= 2X−s[1 + 2(F 2 + DG + EF )J ]Q

= 2X−s[1 + 2(F 2 + DG + EF )δ2]Q

because IQ = 0 and JQ = δ2Q in H. Hence

(Y + 1)δ−1 = (fQ + gδ)δ−1 = fQδ−1 + g ∈ N

This implies

fQδ−1 = (Y + q)δ−1 − g ∈ N

which then implies

2X−s[1 + 2(F 2 + DG + EF )δ2]Qδ−1 = 2X−s[Qδ + 2(F 2 + DG + EF )δQ] ∈ N

This implies 2X−sQδ−1 ∈ N , which implies Qδ−1 ∈ N , which finally implies M ⊂ N .
Finally, the last statement follows [3, Thm. 3.9], which proves the conditions in Propo-

sition 3.5 for the module M . �
We now show that δ = X−X−1 is not a zero divisor in H+[X±1], verifying the second 

condition in Theorem 1.4. We first recall the classical Gauss Lemma. Let R be a UFD 
and R[t] the polynomial ring over R. Recall the content of P (t) ∈ R[t] is defined by

c

(∑
i

ait
i

)
:= gcd({ai}) ∈ R

Note that the content is well-defined up to multiplication by units in R.
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Lemma 6.2 (Gauss). For any nonzero P, Q ∈ R[t], we have

c (P ·Q) = c(P )c(Q)

Proposition 6.3. The element δ = X −X−1 is regular in H+[X±1].

Proof. By [3, Thm. 3.3], the commutative algebra H+[X±1] has the following presenta-
tion:

H+[X±1] = C[X±1, I, J ]
〈IQ, I + J − 4(x2 − 1)〉

where X = M and x = (X + X−1)/2, and Q(I, J) ∈ Z[I, J ] is the Brumfiel–Hilden 
polynomial. Let R = C[X±1]. Since J = 4(x2 − 1) − I in H+[X±1] and 4(x2 − 1) = δ2, 
we can rewrite this presentation as

H+[X±1] = R[I] / 〈IQ〉

Assume that δ · ā = 0 in H+[X±1] for some ā = a(mod IQ) with a ∈ R[I]. Then we 
have

δa = IQ · b (6.2)

for some b ∈ R[I]. Since δ ∈ R, this shows that δ divides the content c(Q · b).
We now claim that c(Q) = 1. Indeed, by [1, Prop. A.4*.10], we know that Q(I, J) − 1

is divisible by J in Z[I, J ], so Q has the form

Q = 1 + JP = 1 + (δ2 − I)P

for some P ∈ C[δ2, I]. Write

P =
N∑

n=0
pn(δ2)In

Then

Q = 1 + (δ2 − I)
N∑

n=0
pn(δ2)In

= (1 + δ2p0) + (δ2p1 − p0)I + · · · + (δ2pN − pN−1)IN − pnI
N+1

Therefore

c(Q) = gcd{1 + δ2p0, δ
2p1 − p0, · · · δ2pN − pN−1, pN}
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Now if d divides c(Q) in R, then we have

pN = dqn

δ2pN − pN−1 = dqN−1

...

δ2p1 − p0 = dq0

1 + δ2p0 = dq−1

for some qi ∈ R = C[X±1]. It follows from above that

pN = dqn

pN−1 = δ2pN − dqN−1 = d(δ2qN − qN−1)

pN−2 = δ2pN−1 − dqN−2 = d(δ2qN − δ2qN−1 − qN−2)

...

p0 = δ2p1 − dq0 = d[δ2(N−1)qN − · · · − q0]

1 = q−1 − δ2p0 = d[q−1 − δ2NqN + · · · + δ2q0]

This shows that d is a unit in R, which shows c(Q) = 1.
Since we know that δ divides c(QIb), this shows that δ divides c(b). In other words, we 

have b = δb̃ for some b̃ ∈ R[I]. By (6.2), δa = IQδb̃, and since R is an integral domain, 
this implies a = IQb̃. Hence ā ≡ 0 ∈ H+[X±1], which completes the proof. �
7. Pretzel knots

In this section, we will verify Conjecture 3.4 for some (−2, 3, 2n + 1) pretzel knots.

7.1. Presentation and peripheral system

It is shown in [23, Prop. 2.1] (see also [20, Sect. 4.1]) that the knot group of a pretzel 
knot of type (−2, 3, 2n + 1) has the following presentation:

π1(K) = 〈a, b | bnE = Fbn〉

where E and F are the following words in F2 = 〈a, b〉:

E := aba−1b−1a−1, F := a−1b−1abab−1 (7.1)
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The peripheral system with this presentation is given by

m = a, l = a−2n+2babnabnaba−2n−9 (7.2)

Remark 7.1. The above expression for the meridian and longitude have been found in 
[23]. Our notation differs from theirs: our generators a±1 and b±1 correspond to their c, 
c̄ and l, l̄.

7.2. The Brumfiel–Hilden algebra

Recall (see the Appendix) that the Brumfiel–Hilden algebra has the following presen-
tation:

H[π] = (R⊕Rt) /〈A + Bt〉

where R = C[X±1, y, z], and

A + Bt := bnE − Fbn ∈ H[F2]

To compute A and B, we first observe that F = Eσb−1, where σ : F2 → F2 is the 
involution of the free group defined by σ(a) = a−1, σ(b) = b−1, and σ(ab) = σ(a)σ(b). 
This involution acts on H[F2] = R ⊕ Rt by X �→ X−1, y �→ y, z �→ z, and t �→ −t. We 
have

E = aba−1b−1a−1 = ab(aba)−1 = (Xy + xt)(X−2y + 2X−1z − t)

Write E = E0 + E1t; then a direct calculation shows

E0 = αX + β, E1 = γX + δ (7.3)

where we have used the elements

α = 1 − 4xyz − 2y2 − 4z2 (7.4)

β = 2xy2 + 2yz

γ = 4x2y + 4xz − 2y

δ = −2xy − 2z

Note that Eσ = Eσ
0 − Eσ

1 t, where Eσ
0 = αX−1 + β and Eσ

1 = γX−1 + δ. Hence,

A + Bt = bnE − Fbn

= bnE −Eσbn−1

= (Tn(y) − Un−1(y)t)(E0 + E1t) − (Eσ
0 − Eσ

1 t)(Tn−1(y) + Un−2(y)t)
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By straightforward calculation, we then have

A = Tn(y)E0 − Tn−1(y)Eσ
0 + Un−1(y)δ(E0) + (Un−1(y) + Un−2(y))Eσ

1 (y2 − 1) (7.5)

B = Tn(y)E1 + Tn−1(y)Eσ
1 + Un−1(y)δ(E1) + (Un−1(y) − Un−2(y))Eσ

0 (7.6)

where δ(E0) = 2αz and δ(E1) = 2γz. It follows that

Aσ = Tn(y)Eσ
0 − Tn−1(y)E0 + Un−1(y)δ(E0) + (Un−1(y) + Un−2(y))Eσ

1 (y2 − 1)
(7.7)

δ(A) = δ(E0)(Tn(y) + Tn−1(y)) − δ(E1)(Un−1(y) + Un−2(y))(y2 − 1) (7.8)

Bσ = Tn(y)Eσ
1 + Tn−1(y)E1 + Un−1(y)δ(E1) + (Un(y) − Un−2(y))E0 (7.9)

δ(B) = δ(E1)(Tn(y) − Tn−1(y)) − δ(E0)(Un−1(y) − Un−2(y)) (7.10)

These computations combined with the computations in Appendix 9 show the following.

Lemma 7.2. The ideal J is generated by

J = 〈A,B,Aσ + δ(B), δ(A) + Bσ(y2 − 1)〉 (7.11)

where the elements A, B, etc. are given in equations (7.5) through (7.10).

Proof. This follows from Proposition 9.7. �
Remark 7.3. The symmetry condition (9.9), which was true in the case of torus knots, 
does not hold for pretzel knots (cf. (7.6)). However, computer experiments suggest that 
(for small n),

J = 〈A,B,Aσ, Bσ, δ(A), δ(B)〉

This seems hard to prove in general.

7.3. Computing the longitude

By (7.2), it suffices to prove that

l̄ := babnabnab ∈ H0[π]

To compute this element we use the (anti-)involution γ : F2 → F2 given by a �→ a and 
b �→ b (so that ab �→ ba). It acts on H[π] by

X �→ X, y �→ y, z �→ z, t �→ t



Y. Berest, P. Samuelson / Journal of Algebra 500 (2018) 644–690 679
Thus

l̄ = babnabnab = (babn)aγ(babn) = (C + Dt)X(C + Dt) (7.12)

where babn = C + Dt with

C := (Xy + 2z)Tn(y) + X−1(y2 − 1)Un−1(y) (7.13)

D := (Xy + 2z)Un−1(y) + X−1Tn(y) (7.14)

It follows that l̄ = l̄0 + l̄1t, where

l̄1 = CDσX + DCσX−1 + 2DDσz (7.15)

with

Cσ = (X−1y + 2z)Tn(y) + X(y2 − 1)Un−1(y) (7.16)

Dσ = (X−1y + 2z)Un−1(y) + XTn(y) (7.17)

A computer calculation with Maple shows that for all n ≤ 20 the element l̄1 defined 
above belongs to the ideal J defined in (7.11). This implies

Theorem 7.4. The (−2, 3, 2n +1) pretzel knots satisfy Conjecture 3.4, at least for n ≤ 20.

Remark 7.5. With enough effort it should be possible to verify the inclusion l̄1 ∈ J for 
all n.

8. Closing remarks

In this section we provide some further remarks about the Brumfiel–Hilden condition 
(3.4). First, we propose a generalization from SL2(C) to SLn(C) (although we will leave 
the problem of relating this to higher rank DAHAs to later work). Second, it is natural 
to ask whether there is a condition on the A-polynomial of a knot K that implies the 
Brumfiel–Hilden condition for K. We show that there is such a condition on A, but 
that it does not hold for the figure eight knot or for some torus knots. This makes it 
seem less likely that the Brumfiel–Hilden condition can be proved using properties of the 
A-polynomial.

8.1. Higher rank generalization

Given a group π, let Repn(π) := Hom(π, SLn) be the variety of representations of π
into SLn(C) (which are not considered up to isomorphism). We also define

Hn[π] := Γ(Repn(π),Mn(C))GLn , H+
n [π] := Γ(Repn(π),C)GLn (8.1)
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Here if X is a space and V a vector space, we have written Γ(X, V ) for V -valued functions 
on X. If G acts on X and V , then Γ(X, V )G is the space of G-equivariant V -valued 
functions. The action of GLn on the space Mc(C) of n × n matrices is by conjugation, 
and the action of GLn on C is trivial.

By definition, H+
n [π] is the ring of functions on the SLn character variety of π. We 

remark that one easy source of equivariant sections in Hn[π] are evaluations at elements 
of π: given g ∈ π, define

evg : Rep(π) → Mn(C), ρ �→ ρ(g)

Similarly, an element g ∈ π produces a function ρ �→ Tr(ρ(g)) in H+
n [π].

We now give a statement which implies Conjecture 1.1 when n = 2 and q = −1. 
However, we remark that we have no evidence for this statement other than n = 2. We 
will write

X := evm ∈ H[π], Y := evl ∈ H[π]

where m and l are the meridian and longitude of the knot, and we will use the fact 
that Hn[π] is an algebra (where the multiplication is “pointwise” and comes from matrix 
multiplication).

Conjecture 8.1. We (optimistically) believe the following inclusion holds:

H+
n [π][X±1, Y ±1] ⊂ H+

n [π][X±1] (8.2)

The left hand side of this (conjectural at best) inclusion is the subalgebra of Hn[π]
generated by H+[π] and the elements X±1 and Y ±1, and similarly for the right hand 
side. (The reverse inclusion is obvious.)

Remark 8.2. For n = 2, (8.2) is equivalent to the BH condition (3.4).

8.2. The A-polynomial and the Brumfiel–Hilden condition

Recall that for a knot K ⊂ S3 with π = π1(S3 \K) we define the algebra map

α : C[m±1, l±1] → H[π]

We now define two ideals in C[m±1, l±1]:

J := Ker(α) ⊂ C[m±1, l±1], 〈J,m−m−1〉 ⊂ C[m±1, l±1]

Consider the following condition:

l − l−1 ∈ 〈J,m−m−1〉 ⊂ C[m±1, l±1] (8.3)
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Lemma 8.3. Condition (8.3) implies the conditions in Proposition 3.5.

Proof. If l − l−1 ∈ 〈J, m −m−1〉, then we can apply α to obtain

Y − Y −1 ∈ α(C[m±1, l±1])(X −X−1) ⊂ Hδ �
Remark 8.4. Condition (8.3) is equivalent to

l − l−1 ≡ f(m, l)(m−m−1) (mod J)

for some f(m, l).

By [1, Prop 10.5], the ideal J has primary decomposition

J = p1 ∩ p2 ∩ · · · ∩ pn

where pi are the primary components belonging to the prime ideals of dimension 1. These 
primary ideals are generated by powers of irreducible polynomials in C[m±1, l±1], i.e.

pi = 〈pmi
i 〉

and the product of the pi’s is the A-polynomial:

AK(m, l) =
k∏

i=1
pi

It follows that

J ⊂ 〈AK(m, l)〉 (8.4)

The BH conjecture is that the containment 8.4 is actually an equality.
We will need a weaker version:

Conjecture 8.5 (Weak BH conjecture). 〈J, m −m−1〉 = 〈AK(m, l), m −m−1〉

We next introduce the following condition:

l − l−1 ∈ 〈AK(m, l),m−m−1〉 (8.5)

Lemma 8.6. Condition (8.5) is equivalent to

AK(±1, l) divides l2 − 1 ∈ C[l±1] (8.6)
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Proof. (We refer to Cooper–Long’s 1998 paper [7] for results on the A-polynomial.) By 
[7, Thm. 3.5], AK(m, l) can be normalized so that A(m, l) = P (m2, l) ∈ C[m2, l]. Write

P (m2, l) =
n∑

i=0
Pi(l)(m2 − 1)i (8.7)

so that P0(l) = P (1, l) = AK(±1, l). Then

〈A(m, l),m−m−1〉 = 〈P (m2, l),m2 − 1〉
= 〈P (1, l),m2 − 1〉
= 〈A(±1, l),m2 − 1〉

Thus (8.5) holds iff (l2 − 1) ∈ 〈A(±1, l), m2 − 1〉, which is equivalent to l2 − 1 =
a(l, m)A(±1, l) + b(l, m)(m2 − 1). Finally, this equality can only hold when b(l, m) = 0, 
which implies equation (8.6).

Conversely, the expansion (8.7) shows that (8.6) implies (8.5). �
Corollary 8.7. Condition (8.6) combined with the weak BH Conjecture 8.5 implies [3, 
Conjecture 1] at q = −1. We also have the following implication:

l − l−1 ∈ 〈J, m−m−1〉 ⇒ AK(±1, l) | (l2 − 1)

8.2.1. Examples
We now give some examples to show that condition (8.6) does not hold in general.

Example 8.8 ((2, 2p + 1) torus knots).

AK(m, l) = (l − 1)(1 + lm2(2p+1)), AK(±1, l) = l2 − 1

Therefore, condition (8.6) holds. One can compute

(Y − 1)(Y + X−2(2p+1)) = 0 ∈ H[π]

A computation then implies

(Y − Y −1)δ−1 = X(1 + X2 + · · · + X4p)(1 − Y )

= (1/2)
[
Tr(X2p+1 − Tr(Y X2p+1)) +

p∑
k=1

(Tr(X2k−1 − Tr(Y X2k−1)
]

Example 8.9 (The (p, q) torus knots with p, q > 2:). In this case,

AK(m, l) = (l − 1)(−1 + l2m2pq)

Ak(±1, l) = (l − 1)(l2 − 1)

Since AK(±1, l) does not divide l2 − 1, we see that l − l−1 /∈ 〈J, m −m−1〉.



Y. Berest, P. Samuelson / Journal of Algebra 500 (2018) 644–690 683
Proposition 8.10. Assume that the (equivalent) conditions of Proposition 3.5 hold for a 
knot K but condition 8.6 fails. Then

(1) the map α is not surjective,
(2) Im(α) is not preserved by U = δ−1(1 + sY ).

Proof. Assume that α is surjective. Then the first condition of Proposition 3.5 implies 
Y − Y −1 = F (X±1, Y ±1)δ for some F . This implies

α
(
l − l−1 − F (m±1, l±1)(m−m−1)

)
= 0, ⇒

l − l−1 − F (m±1, l±1)(m−m−1) ∈ J, ⇒

l − l−1 ∈ 〈J,m−m−1〉 ⊂ 〈AK(m, l,m−m−1)〉

However, by Lemma 8.6, this is equivalent to AK(±1, l) | (l2−1), which is a contradiction.
To prove the second claim, we argue by contradiction and assume that U [Im(α)] ⊂

Im(α). Since we have already assumed that UM ⊂ M and Im(α) ⊂ M , we see that 
Im(α) is a submodule of M . Since 1 ∈ Im(α), we have that

(Y U − UY −1)1 ∈ Im(α)

But Y U −UY −1 = δ−1(Y + s − Y −1 − s) = δ−1(Y − Y −1), and this combined with our 
assumptions shows that (Y −Y −1)δ−1 ∈ Im(α), which leads to a contradiction as in the 
first claim. �
Example 8.11 (The figure eight). One may compute

(Y − Y −1)δ−1 = −(I + IJ)Tr(X) ∈ H[π]

Then the proof of Proposition 8.10 implies that I + IJ /∈ Im(α) since condition (8.6)
fails to hold in this case.

Remark 8.12. By [7, Theorem 3.6], A(±1, l) always divides (l2 − 1)N for some N under 
a certain (probably unnecessary) technical condition. We therefore have property (8.5)
in a weaker form:

(l − l−1)N ∈ 〈AK(m, l),m−m±1〉

for some N ≥ 1. If the weak BH conjecture is true, this implies

(Y − Y −1)N ∈ Hδ
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9. Appendix: the Brumfiel–Hilden algebra

In this Appendix, we give an explicit presentation of the Brumfiel–Hilden algebra 
H[π] for an arbitrary group π with 2 generators and 1 relation.

9.1. The BH algebra of a free group on two generators

Let F := 〈a, b〉 be the free group on two generators a and b. We begin by recalling the 
presentation of the BH algebra H[F ] of F given in [1]. We will use the following notation 
(cf. [1]): for any g ∈ F , we write g+ := (g+ g−1)/2 and g− := (g− g−1)/2 in H[F ]; also, 
we set

|a| := a− = (a− a−1)/2

|b| := b− = (b− b−1)/2

|ab| := (a−b−)− = ab− b+a− a+b− (ab)+ + 2a+b+

x := a+

y := b+

z := (a−b−)+ = (ab)+ − a+b+

Theorem 9.1 ([1, Prop 3.9]). For F = 〈a, b〉, we have H[F ] = H+[F ] ⊕H−[F ], where

(1) H+[F ] = k[x, y, z] is a free polynomial ring
(2) H−[F ] = H+|a| ⊕H+|b| ⊕H+|ab| is a free H+[F ]-module

The multiplication table in H is given by

|a| |b| |ab|
|a| x2 − 1 z + |ab| −z|a| + (x2 − 1)|b|
|b| z − |ab| y2 − 1 −(y2 − 1)|a| + z|b|
|ab| z|a| − (x2 − 1)|b| (y2 − 1)|a| − z|b| z2 − (x2 − 1)(y2 − 1)

We will construct a different presentation of H[F ] in terms of Ore extensions. First, 
we recall basic definitions.

9.2. Ore extensions

Let k be a field. Given an associative k-algebra R and an endomorphism σ : R → R, 
a (left) σ-derivation δ : R → R is a linear map satisfying the rule

δ(ab) = σ(a)δ(b) + δ(a)b
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Note that this rule implies δ(a) = 0 for a ∈ k. A typical example of a σ-derivation is 
given by a twisted inner derivation adσ(a) : R → R defined by adσ(a)[x] := ax − σ(x)a, 
where a ∈ R.

Definition 9.2. Given a commutative k-algebra R, an endomorphism σ : R → R, and a 
σ-derivation δ, we define

R[t;σ, δ] := R〈t〉
〈ta = σ(a)t + δ(a)〉 .

The algebra R[t; σ, δ] is called the Ore extension of R with respect to (σ, δ).

The following facts are standard and easy to prove (see, e.g., [22, 1.2.4]).

Lemma 9.3.

(1) If R is an integral domain and σ is injective, then R[t; σ, δ] is a (noncommutative) 
domain, which is free as a left and right module over R.

(2) If R is left (right) Noetherian, then R[t; σ, δ] is also left (right) Noetherian.

9.3. The BH algebra as an Ore extension

Let R := k[X±1, y, z], and let σ ∈ Aut(R) be an automorphism of R defined on 
generators by

X �→ X−1, X−1 �→ X, y �→ y, z �→ z (9.1)

To define δ, we set

δ(X) = 2z, δ(X−1) = −2z, δ(y) = δ(z) = 0 .

Lemma 9.4. δ extends to a (unique) σ-derivation of R given by

δ(Xk) = 2z Uk−1(x) , ∀ k ∈ Z , (9.2)

where Uk−1(x) is the (k−1)-th Chebyshev polynomial of x = (X +X−1)/2. This deriva-
tion satisfies the relations

σ δ = −δ σ = δ , δ2 = 0 . (9.3)

Proof. First, check that δ(X ·X−1) = δ(1) = 0. Indeed,

δ(X ·X−1) = σ(X)δ(X−1) + δ(X)X−1 = X−1(−2z) + 2zX−1 = 0
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Now, formula (9.2) follows easily by induction in k, while the relations (9.3) follow 
(9.2). �

Using the above σ and δ on R, we define

R[t;σ, δ] = k[X±1, y, z]〈t〉
〈ty = yt, tz = zt, tX = X−1t + 2z, tX−1 = Xt− 2z〉 (9.4)

Note that, by Theorem 9.1, the σ-invariant subalgebra Rσ = k[x, y, z] of R is isomorphic 
to H+[F ]. The next proposition shows that this isomorphism can be extended to the 
entire algebra H[F ].

Proposition 9.5. The assignment X±1 �→ a±1, y �→ y, z �→ z, t �→ |b| extends to a 
surjective algebra homomorphism Ψ : R[t; σ, δ] � H[F ], with kernel generated by t2 −
y2 + 1. Thus, we have an isomorphism of algebras

H[F ] ∼= R[t;σ, δ]/〈t2 − y2 + 1〉

that restricts to H+[F ] ∼= Rσ = k[x, y, z].

Proof. The map Ψ is well defined because

Ψ(tX −X−1t− 2z) = |b|(x + |a|) − (x− |a|)|b| − 2z = |b||a| + |a||b| − 2z

= z − |ab| + z + |ab| − 2z = 0 .

Similarly, Ψ(tX−1 −Xt + 2z) = 0, and

Ψ(1) = Ψ(XX−1) = (x + |a|)(x− |a|) = x2 − |a|2 = 1

The surjectivity of Ψ follows from the calculation

Ψ([X, t]) = Ψ(Xt) − Ψ(tX) = (x + |a|)|b| − |b|(x + |a|)

= |a||b| − |b||a| = z + |ab| − (z − |ab|) = 2|ab| .

Finally, we check that

Ψ(t2 − y2 + 1) = |b|2 − y2 + 1 = y2 − 1 − y2 + 1 = 0

and it is easy to see that t2 − y2 + 1 generates the kernel of Ψ. �
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Thus, we have the following commutative diagram

R[t;σ, δ]
〈t2 − y2 + 1〉

∼=� H[F ]

R
∪
�

∼=� H+[a±1]
∪

�

Rσ
∪

�

∼= � H+
∪

�

where the horizontal arrows are algebra isomorphisms and the vertical ones are inclusions.

Corollary 9.6. The algebra H[F ] is a free quadratic extension of R = H+[a±1] with basis 
{1, t}:

H[F ] = R⊕Rt

The multiplication in H[F ] is determined by the relation t2 = y2 − 1.

Proof. This follows from the isomorphism of Proposition 9.5 and Lemma 9.3(1). �
We list several natural involutions on H[F ] which are induced from involutions on the 

free group F :

(1) Inverse anti-involution: ∗ : H[F ] → H[F ], defined by a �→ a−1 and b �→ b−1.
(2) Canonical anti-involution: γ : H[F ] → H[F ], defined by a �→ a, b �→ b, and γ(ab) =

ba.
(3) Involution “switching a and b:” ξ : H[F ] → H[F ], a �→ b, b �→ a.
(4) Involution inverting a and b: σ : H[F ] → H[F ], a �→ a−1, b �→ b−1.

These involutions can be expressed in terms of their action on the generators X±1, y, z
and t. For example, the involution σ extends the eponymous involution on R: it acts on 
X±1, y and z by (9.1), while σ(t) = −t.

9.4. One-relator groups

We now use the results of the previous section to give a presentation of the 
Brumfiel–Hilden algebra for a two generator groups with one relator. Thus, we con-
sider π = F 〈a, b〉/〈w1w

−1
2 〉, where w1 and w2 are two words in F 〈a, b〉. By Corollary 9.6, 

H[F ] = R⊕Rt, with multiplication defined by t2 = y2 − 1. Hence,

w1 − w2 = A + Bt ∈ H[F ]
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for some polynomials A, B ∈ R = k[X±1, y, z]. We will write 〈w1 − w2〉 = 〈A + Bt〉 for 
the two-sided ideal in H[F ] generated by w1 − w2.

By [1, Prop. 1.4] and Proposition 9.5 above, we can now identify

H[π] ∼= R[t;σ, δ]/〈A + Bt, t2 − y2 + 1〉 ∼= [R⊕Rt]/〈A + Bt〉 , (9.5)

and think of elements of H[π] as elements of R ⊕ Rt modulo the ideal 〈A + Bt〉. Our 
goal is to give a criterion when an element [r0 + r1t] ∈ H[π] belongs to the commuta-
tive subalgebra H0[π] generated by H+[π] and a±1 ∈ H[π]. First, observe that, with 
identification (9.5), we have

H0[π] ∼= R/〈R ∩ (A + Bt)〉 . (9.6)

To characterize the elements of H0[π] we define

J := 〈r ∈ R : r0 + rt ∈ (A + Bt) for some r0 ∈ R〉 .

Note that r ∈ J ⇔ rt ≡ R modulo 〈A + Bt〉. Hence J is an ideal of R such that 
R ∩ 〈A +Bt〉 ⊆ J . (The last inclusion follows from the fact that for any r ∈ R ∩ 〈A +Bt〉, 
rt ∈ 〈A +Bt〉, because 〈A +Bt〉 is an ideal of H[F ], so rt ≡ 0 modulo 〈A +Bt〉.) Moreover, 
it is immediate from (9.5) that

[r0 + r1t] ∈ H0[π] ⇔ r ∈ J . (9.7)

To make (9.7) an effective criterion we need to give generators of J as an ideal in R. 
First, by definition, B ∈ J . On the other hand, we have

(A + Bt)t = B(y2 − 1) + At

t(A + Bt) = tA + tBt = Aσt + δ(A) + Bσ(y2 − 1) + δ(B)t

= δ(A) + Bσ(y2 − 1) + (Aσ + δ(B))t

t(A + Bt)t = (Aσ + δ(B))(y2 − 1) + (δ(A) + Bσ(y2 − 1)t

where Aσ := σ(A), etc. Hence J also contains the elements A, Aσ+δ(B), δ(A) +Bσ(y2−
1), Aσ − δ(Bσ) and δ(Aσ) − Bσ(y2 − 1). Now, by (9.3), the last two elements coincide 
with the previous and hence are redundant as generators; on the other hand, it is easy 
to see that the rest do actually generate J : i.e.,

J = 〈A, B, Aσ + δ(B), δ(A) + Bσ(y2 − 1)〉 (9.8)

Let us assume that π admits a palindromic presentation, i.e. the defining relation 
w1 = w2 of π is such that the elements w1 and w2 are both palindromic as words in a
and b. Then γ(w1) = w1 and γ(w2) = w2 and hence γ(w1 − w2) = w1 − w2, where γ is 
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the canonical anti-involution fixing a and b. The last condition implies that tB = Bt in 
H[F ] or equivalently,

Bσ = B . (9.9)

In this case, the ideal J simplifies as follows

J = 〈A, B, Aσ, δ(A)〉 . (9.10)

We summarize the above observations in the following Proposition which is the main 
tool used in Sections 5 and 7.

Proposition 9.7. Let π = 〈a, b : w1w
−1
2 〉 be a group with two generators and one relator. 

Let w1 − w2 = A + Bt ∈ H[F ]. Then

(1) H[π] ∼= R[t; σ, δ]/〈A + Bt, t2 − y2 + 1〉 and H0[π] ∼= R/〈R ∩ (A + Bt)〉.
(2) An element [r0 + rt] ∈ H[π] belongs to H0[π] if and only if

r ∈ J = 〈A, B, Aσ + δ(B), δ(A) + Bσ(y2 − 1)〉 .

(3) If the presentation of π has a palindromic presentation, then J in (2) is given by

J = 〈A, B, Aσ, δ(A)〉 .
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