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1. Introduction

One classical tool in the study of 3-manifolds is the SLa(C) character variety Char(M).
This is the (categorical) quotient of the representation variety Rep(M) by the natural
GL4y(C) action, where Rep(M) parameterizes the representations m (M) — SL2(C) of
the fundamental group of a 3-manifold M into SLy(C), and GL2(C) acts on Rep(M) by
conjugation.

In particular, for a knot K in S, there is a natural map « : Char(S3\ K) — Char(T?)
given by restricting representations of the knot complement to its boundary. The image
of this map determines and is (essentially) determined by the A-polynomial of K (see
[6]), and this polynomial contains a good deal of geometric and topological information
about the knot complement. For example, one of the main results of [6] asserts that
slopes of the boundary of the Newton polygon of the A-polynomial determine boundary
slopes of incompressible surfaces of $%\ K. Additionally, in [8] Dunfield and Garoufalidis
used work of Kronheimer and Mrowka [18] to show that the A-polynomial distinguishes
the unknot.

In this paper, we study a 2-parameter family {c, 4, | (t1,%2) € (C*)?} of deformations
of the restriction map « from the character variety Char(S®\ K) to certain affine cubic
surfaces in C3:

Qi ty - Char(53 \ K) — th,tQ (11)

The special fiber X; ; of this family of surfaces is isomorphic to the character variety

of the torus T2, and the specialization o171 at t1 = t3 = 1 reproduces the classical
restriction map « : Char(S® \ K) — Char(7?).
The ¢ = —1 specialization of the main conjecture of [3] states that there is a canonical

deformation of a to the map ay, +,. For general ¢, this conjecture involves a quantization
of the character variety of the knot complement. It seems generally agreed (at the mo-
ment) that the quantization (or g-deformation) of character varieties of knots requires
topological tools, such as the Kaufmann bracket skein module (KBSM) construction
which was used in [3]. By contrast, the Hecke (or Dunkl) deformations that we study in
the present paper (for ¢ = —1) depend only on (representations of) the knot group and
may be performed purely algebraically using the Brumfiel-Hilden (BH) algebra. This is,
perhaps, the main observation of the present paper (see Fig. 1).

Below, we will briefly explain the origin of our conjecture, its relation to the character
variety of the 4-punctured sphere, and an interpretation in terms of the Brumfiel-Hilden
algebra. We then describe our results which confirm this conjecture for an infinite family
of knots, including torus knots, 2-bridge knots, some pretzel knots, and all connect sums
of these.

Recall that the Kauffman bracket skein module Skq(M) of a 3-manifold M is the
C[g*!]-module spanned by framed, unoriented links in M modulo the Kauffman bracket
skein relations (see Fig. 2). If M = F x I is a thickened surface, then Sk, (F x I) is an
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Fig. 1. Deformation versus quantization of character varieties of knots.

algebra, where the multiplication ab is given by stacking a on top of b. Similarly, the
space Skq (M) is a module over the algebra Skq((0M) x I) associated to the boundary
of M.

The (spherical) double affine Hecke algebra (DAHA) SH,; of type CVCy is a non-
commutative algebra depending on a parameter ¢ € C* and four additional parameters
t = (t1,ta,t3,t4) € (C*)*. When t = (1,1,1,1), the algebra SH,; is isomorphic to the
Zy-invariant subalgebra AZ2 of the quantum Weyl algebra A, := C(X*!, Y*!) /(XY =
¢*’Y X), and thus by a theorem of [9], it is isomorphic to the skein algebra Sk,(7?) of
the torus. This implies that the skein module Sk,(5® \ K) of a knot complement is nat-
urally a module over SH, ;. Based on a detailed study of some examples, the following
conjecture was proposed in [3].

Conjecture 1.1 (/3]). For any knot K C S®, the natural action of SHy1 on Sk,(S*\ K)
admits a canonical deformation to an action of SHyy, 1,11 for arbitrary values of the
parameters ty, to.

The connection between this conjecture and character varieties follows from a theorem
of Bullock [4] (see also [26]), which states that the ¢ = —1 specialization of the skein
module Skg—_1(M) of a 3-manifold M is a commutative ring canonically isomorphic
to O[Char(M)]. It turns out that the ¢ = %1 specialization of the DAHA SHg—11, is
commutative; in fact, it follows from work of Oblomkov [25] and Goldman [12] that SH; 4
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is isomorphic to the ring of functions OChar(S?\ {p1, p2, p3, p4}) on the character variety
of the 4-punctured sphere. (The results of Bullock and Przytycki [2] and Terwilliger [29]
actually show that SH,z ; is isomorphic to the skein algebra Sk, (52 \ {p1,p2, p3,pa}) for
all ¢.)

We now describe the construction of the family (1.1) of maps that deforms the restric-
tion map «. One of the key properties of the DAHA is the so-called ‘Dunkl embedding,’
which is a natural (injective) algebra homomorphism SH,; — SH};E into a localization
of the DAHA at t; = 1. When ¢ = —1, this becomes a rational map X; --» X;. In this
case, Conjecture 1.1 implies:

Conjecture 1.2. (Conjecture 1.1 at ¢ = —1): The composition of the restriction map
Char(S3 \ K) — X; with the Dunkl embedding X1 --+ Xy, t,1,1 extends to a regular
morphism of affine schemes.

We remark that the claim of Conjecture 1.2 is not automatic because the poles of
the rational map X; --+ X; contain the trivial representation, and the poles therefore
intersect the image of the map Char(S3\ K) — X; for any knot K. In this paper, we
confirm this conjecture at ¢ = —1 for an infinite class of knots.

A useful tool for studying character varieties of a discrete group w is the Brumfiel-
Hilden algebra H|[r] introduced in [1]. This algebra and its ‘trace’ subalgebra are defined
by

Clr]

Hir]:= ot =T n HY[r]:={a € H[r] | a=oc(a)}

where o : H[n] — HJn] is the canonical anti-involution defined on group elements
by o(a) = a~!. The key observation of [1] is that OChar(n) = H*[r] for all finitely
generated groups 7.

We show that Conjecture 1.1 (at ¢ = —1) has a natural interpretation in terms of
H|[r], where 7 is the fundamental group m1(S® \ K) of a knot complement. We will call
condition (1.2) in the following conjecture the Brumfiel-Hilden condition.

Conjecture 1.3 (/1/). Let m and | be the standard meridian and longitude of the knot.
Then

1€ HY [m*] (1.2)
where HT [m™*] is the subalgebra of H|[r] generated by HT[x] and m™!.

Our main results can be encapsulated into the following two theorems.

Theorem 1.4. If the Brumfiel-Hilden condition (1.2) holds and m —m™" € Ht(m*!) is
a regular element (non-zero divisor) in Ht(m*'), then Conjecture 1.1 holds at ¢ = —1.
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Theorem 1.5. The Brumfiel-Hilden condition (1.2) holds for all torus knots, 2-bridge
knots, and certain (—2,3,2n + 1) pretzel knots. Furthermore, if it holds for knots K
and K', then it holds for their connect sum K#K'.

As an application, we compute t-deformations of the classical A-polynomials in the
case of the trefoil and the figure eight knot (see Examples 2.6 and 2.7).

The contents of the paper are as follows. In Section 2 we recall background informa-
tion about character varieties and double affine Hecke algebras. In Section 3 we introduce
the Brumfiel-Hilden algebras and prove Theorem 1.4. In Section 4 we show that the
Brumfiel-Hilden condition is preserved by connect sum of knots and by certain coverings
of knots. The proof of Theorem 1.5 for torus knots is given in Section 5, for two-bridge
knots in Section 6, and for certain pretzel knots in Section 7. Further remarks on the
relation of the BH condition to properties of the A-polynomial are contained in Sec-
tion 8, and the Appendix gives an explicit presentation of the Brumfiel-Hilden algebra
for 2-generator 1-relator groups, which is used in the proof of Theorem 1.5.

1.1. Acknowledgments

We thank P. Boalch, F. Bonahon, O. Chalykh, C. Dunkl, D. Muthiah, V. Roubtsov,
S. Sahi, and P. Terwilliger for helpful discussions regarding their work and/or the present
paper. The first author (Y. B.) would like to thank the scientific committee of the
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plenary talk. He is very grateful to the local organizers of the conference, especially
V. Futorny and I. Kashuba, for their warm hospitality and support in Brazil. The work
of Yu. Berest was partially supported by the Simons Foundation Grant 066274-00002
and the NSF Grant DMS 1702372. The work of P. Samuelson was funded in part by
European Research Council grant no. 637618.

2. Double affine Hecke algebras and character varieties of surfaces

In this section we describe the relationship between the CVCy (spherical) double affine
Hecke algebra SH, ; and the Kauffman bracket skein algebra Sk, (52 \ {p1, p2, p3,pa}) of
the 4-punctured sphere. This implies a relationship between the ¢ = 1 specialization
of the (spherical) DAHA and the relative SLo(C) character varieties of the 4-punctured
sphere, which we describe explicitly. Finally, the polynomial representation of the DAHA
gives an embedding of SH,; into a localization of the skein algebra Sk,(7?), which we
also describe explicitly. This gives explicit formulas for the rational map Char(T?) --»
Char(S? \ {p;}) which we provide in Corollary 2.16. We conclude with explicit formulas
describing the family (1.1) for the trefoil and figure eight knots.
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2.1. Character varieties of topological surfaces and affine cubic surfaces

In this section we recall some results of Goldman in [12, Sec. 6]. Let m be the funda-
mental group of a 4-punctured sphere, with a presentation

7 =(A,B,C,D| ABCD = 1d)

where each generator corresponds to a loop around a puncture. Consider the following
seven functions on the SLy character variety of :

a=tr(4), b=tr(B), c=tr(C), d=+tr(D)
xg =tr(AB), ys=tr(BC), zg=rtr(CA)
Qo = a2% +y% + 22 + xsyszs — (ab+ cd)zs — (ad + be)ys — (ac + bd)zg

These functions satisfy the defining equation
Qo = —(a® +b* +c* + d* + abed) + 4 (2.1)
Theorem 2.1 ([12]). The relation (2.1) describes an embedding

Char(S” \ {p1,p2,p3. pa}) < C*

Remark 2.2. There is a map C” — C* given by the coordinates a, b, ¢, and d, and the
relative character variety is a fiber of this map. These fibers can be viewed as cubic
surfaces in C3, and they first appeared in the work of Vogt [30] and Fricke and Klein
[10] on invariant theory in the late 19th century (see also [21]). In recent years they have
found many interesting applications: for example, as monodromy surfaces of the classical
Painleve VI equation (see, e.g. [17] and [15]).

2.2. The Kauffman bracket skein algebra

Here we give some very brief background about the Kauffman bracket skein module
Sk, (M) of a 3-manifold, and refer to other works for more details (e.g. [3] and references
therein). Given an oriented 3-manifold M, the skein module Sk, (M) is the vector space
formally spanned by framed links in M modulo the Kauffman bracket skein relations in
Fig. 2.

If M = F x [0,1] is a thickened surface, then Sk, (F x [0, 1]) is an algebra, where the
multiplication is given by stacking in the [0, 1] direction. Also, for any 3-manifold M, if
g = %1, then Sk,—11 (M) is a commutative algebra, where the product is given by disjoint
union (this product is only defined at the specializations ¢ = +1). This commutative
algebra is related to character varieties via the following theorem.

Theorem 2.3 (/26/, [}]). The map v — —Tr., extends to an isomorphism of commutative
algebras
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Fig. 2. Kauffman bracket skein relations.

Fig. 3. Curves on the 4-punctured sphere.

Sky——1(M) = OChar(M)
where v is a loop and Tr~(p) := Tr(p(7)).

We also use a presentation of the skein algebra Sk, (S?\{p;}) of the 4-punctured sphere
given by Bullock and Przytycki. Let 1 and x5 be two distinct simple closed curves in
S2\ {p;} which are non-boundary parallel and which intersect twice. (See Fig. 3.) Define
the curve x3 via the equation

—2

x11y = q*x3 + ¢~ 2z + boundary curves

where z3 and z are simple closed curves each of which intersect x; and xo in two points.
Suppose z1 separates boundary curves a; and as from as and a4, and define p; =
aias + agay. Define po and ps similarly. Finally, define

Qi == —*m12223 + ¢'2] + ¢ 23 + q4x§ + @*p121 + ¢ *paxa + ¢°pss

Theorem 2.4 (/2, Thm. 3]). With notation as in the previous paragraph, Sk,(S*\ {p:})
has a presentation where the generators are x; and a; and the relations are

[Ti, Tig1]q> = (¢* — ¢ Hzive — (6% — ¢ 2)pite
Qx = (> + ¢°)* — (a1a2a30a4 + af + a3 + a3 + a})

(The indices in the first relation are interpreted modulo 3.)
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Remark 2.5. It is clear from the formulas above that Theorems 2.3 and 2.4 are com-
patible with Theorem 2.1, where (x,y, z) correspond to (—z1, —x2, —x3) and (a,b, ¢, d)
correspond to (—ay, —ag, —as, —ay4).

2.8. The CVC1 double affine Hecke algebra

In this section we recall the 5-parameter family of algebras H,; which was intro-
duced by Sahi in [27] (see also [24]). This is the universal deformation of the algebra
CIX*,Y*! x Zy (see [25]), and it depends on the parameters ¢ € C* and t € (C*)%.
The algebra H,; can be abstractly presented as follows: it is generated by the elements
Ty, T, T3, and Ty subject to the relations

(T; — t;)(T; +t;1) =0, 1<i<4 (2.2)
TyI5TT = q

Remark 2.6. Comparing our notation to [3], their (Ty, Ty, 71,1y ) are our (Tz, T1, T3, Ty),
and their (¢1,tq,t3,t4) are our (ta,t1,t3,t4).

The element e := (T3 + t3')/(t3 + t3') is an idempotent in H,,, and the algebra
SH, ; := eH, ;e is called the spherical subalgebra. A presentation for the spherical sub-
algebra SH, ; has been given in [29], and this can be viewed as a g¢-deformation of the
presentation given by Oblomkov in [25]. (A less symmetric presentation was given in
[19]. See also [28] and [16].) We now recall this presentation in our notation. Define

xr = (T4T3 + (T4T3)71)e
Yy = (T3T2 + (TgTQ)il)e
z= (T3T1 + (T3T1)_1)e

Qp = —qzyz + ¢*2° + ¢ *y* + ¢*2° —qax — ¢ "By — gz
where
a:=tits + (qls)ts, B :=tits+ (qts)ta, 7 :=tats + (qt3)ts

Here and later we use the notation

ti=ti—t7',  qlsi=qts—q 'ty
The following theorem is a slight modification of a result of Terwilliger — for a proof of

the modified statement, along with explanations regarding notational conventions, see
[3, Thm. 2.20].
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Theorem 2.7 (/29, Prop 16./]). The spherical subalgebra SHy ; is generated by x,y, z with
relations

[2,9)g = (® = a7z —(g—q ")y
[y 2l = (¢ —q7 )z — (¢ — ¢ o
(2,2 = (* —q )y —(¢g—q ")B
Qp = (01) + (F2)* + (qf3)* + (fa)” — ata(qts)ta + (¢ + ¢ 1)

Remark 2.8. Here we have corrected a typo from [3] in the powers of ¢ in the last term
of the relation involving 2. We have also slightly rewritten 2p using the commutation
relations above.

Remark 2.9.If ¢ = +1 then the spherical subalgebras are commutative for any
(t1,t2,t3,t4). The corresponding varieties are affine cubic surfaces studied in detail in
[25] (and the presentation in [25] agrees exactly with the one above, where our z,y, z are
his X7, X5, X3).

Using these explicit presentations, we now relate the skein module of the 4-punctured
sphere with the spherical DAHA. We point out that we must replace g by ¢? in the
DAHA to define this map.

Corollary 2.10. Let i*> = —1. There is an algebra map Skq(S? \ {p1,p2.p3,pa}) = SHy2 4
given by

ry—x, T2—Y, T3—2
ai > 7;2?1, as > 2'7?2, as — ’L(%), ayq +— Z'iT4

Remark 2.11. The appearance of v/—1 here has a heuristic explanation as follows. The
standard relation for Hecke algebras (with braid generator T' and parameter t) is given
by (T —t)(T +t~!) = 0. This can be rewritten as T — T~ =t — t~!. Given a matrix
A € SLy(C) with eigenvalues a and a~!, the following matrix equation is satisfied:
A+ A7! = (a + a"1)Id. Then the matrix equation can be obtained from the Hecke
relation by rescaling T and t by v/—1.

We now specialize this corollary to obtain a map OChar(S? \ {p;}) — SHy=1:. We
remark that here we specialize ¢ = 1 because the ¢ in the DAHA is replaced by ¢ when

it is compared to the skein algebra of the 4-punctured sphere.

Corollary 2.12. There is a map of commutative algebras OChar(S? \ {p1, p2,p3,p1}) —
SHq:LL

TS —T, Ysrr—yY, 25+ —z, a;— V-1t
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2.4. The unpunctured torus

The following theorem was proved in [2] (for a different but conceptually appealing
description of the same algebra, see [9]). Let a7, yr, and zr be the (1 0) (0,1), and

(1,1) curves on the torus T2. Let Qr = —qzryrer + ¢* 2% + ¢ 2y% + ¢>2%.

Theorem 2.13 (/2]). The algebra Sk,(T?) is generated by xr, yr, and zr subject to the
following relations:

[z7,yr]q = ( )ZT
[z, 27]q = ( )yT
lyr, zrlq = (¢® — a7 2)ar

Qr =2(¢° +¢7%)

We can combine this with the previous theorems to obtain the following.
Corollary 2.14. There is an algebra isomorphism' SHy11,11 — Skq(T2) given by
Tz, Y—=yr, z2rrzp, ti—1

There is a surjective algebra map Sky(S? \ {p;}) = Skg2(T?) given by

. s N—1
Ty T, To Y, Ty 2p,  a1,a2,a4 — 0, asz — (ig) + (iq)

where i2 = —1.

Using the polynomial representation in the next section, we will extend the first map
in the previous corollary to the parameters SH; 4, +,1,1, at the expense of expanding the
range by localizing at certain elements.

2.5. The polynomial representation

The DAHA H,; can be realized by operators on Laurent polynomials C[X +1 as
follows. First, we define auxiliary operators on C[X*!]:

(X)) =Xf(X), s-f(X)=fX"Y, 9 f(X)=Flg?X)
We then define

! To be precise, if the base ring for SH, ; is (C[qil,iil], and if C is given a C[qil,iil]—modulc structure

where the t; act by 1, then SHy s ®cg1,:+1) C — Sk, (T?) is an isomorphism.
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q21?2$fl‘2 + qfli
1— q2j2

(1—s9)

Ty = tosg —

- t3 + 42

T3 =t3s + w(l - 8)

The operator T, acts on Laurent polynomials because (1 — s§) - X" = X" — g~ 2" X"
is divisible by 1 — ¢>X? (and similarly for Tg) The following Dunkl-type embedding is
defined using these operators (see [24, Thm. 2.22]):

Proposition 2.15 (/27]). The assignments
Ty qly ‘e, Toe Ty, Ty Ty, Ty 27750 (2.3)
extend to an injective algebra homomorphism H,; — Endc(C[X*1]).

The Dunkl-type embedding above can be viewed as a map from H, ; to a localization
of A, X Zs. (Here A, is the quantum torus, which is generated by #*1 and §*! subject
to the relation 2 = ¢?9#, and Zs acts on A, by inverting # and §.) This embedding
maps the spherical DAHA into (a localization of) the symmetric algebra A?Q. In the
specialization ¢ = ¢ = 1 and t3 = t4 = 1, a short computation leads to the following
description of this symmetric embedding:

Z'i'—)i'+i'71

Y= b+ 97 + @ -7 ) et (g — 9] 0
( (&g

i
e eb@g+27 g+ [ -9 ) +eti(@g -2 g )] 6!

where § := & — 27!, If we multiply numerators and denominators by § we can rewrite
them in terms of xr, yr, and zr, which are the images of the curves (1,0), (0,1), and
(1,1) on the torus inside the algebra AZ>. (Note that zp = ¢~ (2§ +2'§~").) We then

obtain the following:

Corollary 2.16. When q = € = 1 and t3 = ts = 1, the map Py, 1,,1,1:5He 1y ,4,,1,1 —
Sk (T?)"°¢ is given by

.’,ELF—)IT
—to (22 T — €XTIZT — 2YT +£ 227 — €xTYT
b s tayr + 2(z7Y 2y) 1 yr)
rp —4
to(22p — t -2
2 tor + 2(227 — exryr) +ti(exrzr — 2yr)

2
T —4
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2.6. Example: the trefoil

In this subsection we describe Conjecture 1.1 completely explicitly in the example
of the trefoil. Several computations were done with the help of the computer (using
Macaulay?2 [13] and Mathematica). In this section only we use the abbreviations S,, :=
Sp(zr) and T, := T, (z7) for Chebyshev polynomials, which are defined by

1 Xn+1 . anfl 1 B
Let K be the trefoil in S®. We first recall formulas from [11] for the action of SHy 1
on the skein module Sk, (S \ K). (See [3] for the conversion into the present notation.)
As a module over C|z] the skein module Sk, (S?\ K) is freely generated by two elements
u and v, and the action of yr and zp are given by the following:

yr-u=—("+q *)u
2r-u=—q >Su
yr v = (¢°Ss — ¢*)u+ ¢°Tev

2p v = ¢°Ssu+ ¢*Tsv

The A-polynomial of the trefoil is (L — 1)(L + M~°). (Roughly, this describes the
preimage in (C*)? of the image in Char(T?) of the character variety of the knot com-
plement, where (C*)? maps to Char(7?) by sending (c, 8) to the representation where
the generators of T2 are sent to diagonal matrices with upper-left entries a and 3, re-
spectively.) A symmetric version of the A-polynomial should be an element in the ideal

Anngy,_, (r2)(Skg=—1(5?\ K). This ideal is non-principal in general, but one can check

q=

that for the trefoil the annihilator contains the following element:

A7 = (yr +2)(yr — Ts)

(remember the negative sign in the map of Theorem 2.3).
We now give explicit expressions for the action of y; and z; on v and v with the
parameter values g = —1 and t3 =t4, = 1:
yeou=—(t2 +t3"u
ZL U = [tle — fl]u
yi V= [t2(54 — ].) — 1?2(54 + Sz) + {1(53 + Sl)]u + [tQTG — ZQSG + {155]1)

2tV = [t2_153 + {251 - 1?1(52 + So)]u + [—t2T5 + 7?255 — 7?154]’[)
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It is now possible to compute that the following deformation of the symmetric
A-polynomial A7 annihilates the skein module:

Api= (g +ta +t3 ") (e — t5 ' To — t1.55 + 1254) (2.4)

Remark 2.17. Since t; = t; — ti_l, it is clear that the ¢; = to = 1 specialization of A, is
equal to Ar. The choice of the element A; in (2.4) is somewhat arbitrary since the annihi-
lator ideal containing A; is non-principal. This particular choice was made via computer
experiment, and it seems to be the simplest obvious deformation of A7 which “has the
same structure.” However, we remind the reader that the action of SHy—_1 ¢, 1,11 is
canonical, even though the particular choice of A; is not.

2.7. Example: the figure eight

In this subsection we give a explicit description of Conjecture 1.1 in the case of the
figure eight knot, again with ¢ = —1 and t, = t4 = 1, and with the help of a computer.
We use the notation S,, and T,, for Chebyshev polynomials as in Section 2.6.

Let K be the figure eight knot and N := Sk,—_1(S% \ K) the skein module of its
complement. We recall from [14] that as a module over C[z], the skein module N is
freely generated by elements p, u, and v (again, see [3] for conversion into the present
notation). Formulas for the action of yr and zr at ¢ = —1 are given by

yr-p=—2p

yr-u=(Se+ 1)p+ (=14 + T2 + To)u
yr-v= (=52 — )p+ (=Ts + To + To)v
zr-p=51p

zp-u=—S8sp+ (Ts — Tz — Th)u+ (T35 — T1)v
zr-v=2S81p+ (-Ts+ T )u+ (T3 — 211 )v

The A-polynomial for the figure eight knot is (L —1)(L+ L~ +—-M*+ M2 +24+ M2~
M%), and a symmetric version is given by

A = (yr +2)(yr + Ty — To — Tp) (2.5)

(Again, the apparent change in signs is explained by the signs in Theorem 2.3, and
we have chosen Ap to be a factorizable element in the (non-principal) annihilator of
the skein module of the knot complement.) One may now compute that the action of
Yt € SHy=_14,,+, is given by the formulas

yr-p=—(ta+t3")p



Y. Berest, P. Samuelson / Journal of Algebra 500 (2018) 644—690 657

yp-u=[t2(Se + 1) — t181]p + [to(=Ty + T2 + Tp) — t252 + t1T3]u
+ [—t2(S2 + 1) + 2t1.51]v
=:ap+bu+cv (2.6)
Yoo v = [ty (S + 1) — 11S1]p + [t2(S2 + 1) — 26,81 u

+ [t;l(—T4 + T2 + TO) + 1?252 — Eng]U
=:dp + eu + fuv (2.7)

Similarly, the action of z; is given by the formulas

2 p=[t2S1 — t1]p
zp-u=[—t2S3 +t1(S2 + 1) — t2S1]p + [t2(Ts — T35 — T1) + t2(T3) + t1(—Ty + 1)]u
+ [ta(T5 — Ty) + 2251 — t2(Se + 1)Jv
2o v = [(ta + 15 )S1]p + [ta(—T3 + T1) — 26251 + 11(S2 + 1)]u
+ [ty {(T5 — 2T1) — 28251 + £1S2]v
As a sanity check, one may check directly (or by computer) that the above formulas

satisfy the cubic relation of Theorem 2.7 (specialized to ¢ = —1 and t3 = t4 = 1). One
can also check that the following element annihilates the skein module N:

A= (ye+ 2+ 857) (7 — (b+ flye + (bf — ce)) (2.8)

where the constants in the formula were defined in equations (2.6) and (2.7). In fact, it
is obvious that A annihilates N: the element p generates a submodule of N annihilated
by y +t2 + 5 ! and the second factor in the definition of A is just the characteristic
polynomial of y;, viewed as an operator on the C[z]-module N/p.

Remark 2.18. Experimentally, the polynomial A defined in (2.5) does not seem to have
a deformation which annihilates N. (In particular, the bf — ce term doesn’t factor unless
t; = to = 1.) However, one can check that if we specialize t; = to = 1, then

Apymtymr = W+ 2)(y + Ty — To — Tp)?

In particular, in this specialization the scheme defined by A is the same as that defined
by A, except that one component has been “fattened.”

3. Deformations of the peripheral map and the Brumfiel-Hilden algebra

Let K C S3 be a knot, M := $3\ K its complement, and 7 := 71 (M) its fundamental
group. The fundamental group of the torus boundary of M maps to 7w via the peripheral
map:
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A,

757
where we have fixed generators of Z2 to be the standard longitude and meridian of K,
and where the image of the generator under «,, is the meridian. By Corollary 2.14 and
Theorem 2.3 the peripheral map induces the following map of commutative algebras:

Qly - Squfl,ti:1 — OChar(m (M))

where OChar(mr; (M)) := C[Rep(m1 (M), SL2(C))]%"2(®) is the coordinate ring of the char-
acter scheme of the knot complement.

Lemma 3.1. For ¢ = —1, the action of SHy; on Skq(M) conjectured in [3, Conj. 1] arises
from an algebra homomorphism

(o) : SH_14, t5,1,1 = OChar(m (M))
which we call a deformed peripheral map.

Proof. Consider the commutative diagram
OChar(OM) —2* + OChar(M)

loc loc (3.1)

loc

P_
SH_,, " OChar(dM)°° *+ OChar(M )
which is obtained from the diagram of Sk, (0M )-modules by specializing ¢ = —1:
Skq(OM) —— Skq(M)

loc loc

SH, ; — Sk,(OM)'"°¢ — Sk, (M)"°

(The top horizontal map is given by a +— a - &, which is a map of left modules for
general ¢ and a map of commutative algebras when ¢ = —1.) Conjecture 1 says that
SH, +[Sk,(M)] C Sk, (M) C Sk, (M) ¢, which implies

SH,, - @ C Sky(M) (3.2)

The diagram (3.1) consists of algebra homomorphisms, and condition (3.2) specializes
to
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®_;4+(SH_14) -1 C OChar(M)
This shows that ®_; ; : SH_; ; — OChar(M) is an algebra map. O
Geometrically, we thus have a morphism of schemes
oy : Char(M) — Spec(SH_1,)
that is a deformation of the classical restriction map.

3.1. The Brumfiel-Hilden conjecture

We now recall the definition of the Brumfiel-Hilden algebras from [1]. If 7 is a finitely
generated discrete group, these algebras are defined as follows:
Clr]

Hln] = (glh+h 1) = (h+h1)g)’ H+[7T] = C<g+g_1 lgem C Hlx] (3.3)

A conceptual explanation for these definitions is given by the following theorem.

Theorem 3.2 (/1]). If w is a finitely generated group, then

(1) The commutative algebra H[r] is isomorphic to O(Char(r)), the coordinate ring
of the SLa(C) character scheme of .

(2) The algebra H|r] is isomorphic to the SLg-invariant subalgebra My[O(Rep(n))]St2
of the algebra of 2 x 2 matrices with coefficients in the coordinate ring of the repre-
sentation scheme of m, where SLy acts diagonally.

Remark 3.3. The first map sends g+g~! to the function p — Tr(p(g+g~1)). The second
sends g to the matrix-valued function p — p(g), which is well-defined because if A € SLy
then A+ A~! = Tr(A)Id is central in the ring of 2 x 2 matrices.

We also recall the Brumfiel-Hilden conjecture, see [1, pg. 122]:

Conjecture 3.4 (/1]). Let 7 = 71(S3\ K) be the fundamental group of the complement of
a knot in S, and let X,Y € H|rx] be the standard meridian and longitude of K. Then

Y € HY [ X (3.4)

where the right hand side is the subalgebra of H x| generated by H™[r] and the elements
X+ ¢ Hir].

Our goal is to relate this conjecture to the main conjecture of [3]. To shorten notation,
we write H' := H*[r] and H := H|[r|, and we write
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§i=X-—X"1

We also define an operator s : H — H by the formula s- g := g—!. Finally, we define the
following H*-module:

N:=H X+ HYXE)(Y +1)67! c H[6 7] (3.5)

To clarify, formula (3.5) defines N to be a fractional ideal of the algebra HT[X*!],
viewed as an H7T[X*!]-submodule of the localized algebra H[6!]. Here H[§7'] is
the localization of the Brumfiel-Hilden algebra H at the multiplicatively closed set
{6%*};>0 C H*, which is central in H. The action of s on H clearly extends to H[§!]
via -0 = —4.

Proposition 3.5. The following conditions are equivalent:

(1) Y-YteH'S

(2) Y € HY[X*1]

(3) eN=H" and (s+Y) N C 6N, where e := (1+s)/2 and s acts on N as in the
previous paragraph.

Proof. We first prove that (3.5) is equivalent to (3.5). f Y — Y ~! € HT§, then Y =
Y-V H/ 2+ (Y +YH/2€ H6+ Ht = HT[X*!]. Conversely, if Y € HT[X*1],
then Y = A 4 B§ for some A, B € H*. Then applying the anti-involution g + g~ we
obtain Y™!' = A — 6B = A — Bé. This implies Y — Y ! = B¢.

Next we show that (3.5) implies (3.5). We have that HY[X*!] = HT + H*§, which
implies

N=H'+HS+H Y+ )5 ' +H (Y +1)=H"+H"S+H" (Y +1)6!
where the last term of the second expression is contained in H*[X*!] C N by condition
(3.5) (which is implied by condition (3.5)). Since s6 = —d, we see that eJ = e~ = 0.
Therefore, after multiplying this expression by e we obtain

eN=H"+Ht(eY +e)i*
=H " +HY (Y +Y ls)0!
=H"+H" (Y -y 15!
=H"

where the last equality follows from assumption (3.5) that Y — Y1 € HT4. Next, we
compute

(s+Y)-Ht=(1+Y)-H =6 [(1+Y)HT6 '] C6N
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(s+Y)-H" 6= (-14+Y)H s c HT[X*])6 C 6N
+VHYN Y +1)0  =HT(Y*+Y -y ' -1)5!
=H (Y -Y Y)Y +1)5 ' CcHSY +1)07 CoN

Finally, we show that condition (3.5) implies condition (3.5). Acting on the assumed
containment by 1 — s we obtain

(1-5)(s+Y)NC(1-8)0N=6(1+s)N=0H"
We then compute
(1—s)(s+Y)eN=(s+Y -1-Y 's)eN=(Y -Y HHT
This shows that (Y — Y 1)HT C §H*, which completes the proof. O

Corollary 3.6. Suppose K is a knot that satisfies the (equivalent) conditions of Proposi-
tion 3.5. Furthermore, assume that the map 6 : N — N given by multiplication by § is
injective. Then Conjecture 1.1 (at ¢ = —1) holds for K.

Proof. The algebra Hy—_; 4, +,1,1 is generated by X+ the operator Ts, and the invo-
lution s. Under the Dunkl embedding (2.3), the poles of the image of the element T5
are of the form §71(s +Y'). Therefore, the third condition in Proposition 3.5 together
with the injectivity assumption implies the operator T acts on the module N. Then the
spherical subalgebra eH_1 ¢, ¢+, 1.1€ acts on eN, which is equal to HT (again by the third
condition in Proposition 3.5). This confirms Conjecture 1.1 at ¢ = —1. O

4. Relations between different knots

In this section, we describe relationships between the Brumfiel-Hilden condition (3.4)
for different knots. We first recall that the connect sum K#K' of two knots is defined
by attaching two points, one on each knot, and then resolving the double point to obtain
one knot. (See, e.g. [5].)

Lemma 4.1. If knots K and K' satisfy (3.4), then the connect sum K#K' does too.

Proof. Let m, 7’ be the knot groups of K, K’, respectively, with peripheral systems
m,l,m’,l', respectively. Then [5, Prop. 7.10] says that w1 (K#K’) = 7 xz 7', where the
generator of Z maps to m and m’ inside m and 7', respectively. In particular, the images
of m and m’ inside of 1 (K#K) are equal. Next, a peripheral system of K# K’ is given
by (m,ll’) (or by (m/,ll")), where we have abused notation by writing ! and {’ for their
images inside m (K#K'). This is true because one can write the longitude of a knot K in
terms of the Wirtinger generators by “tracing along the knot and recording crossings,”
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and in the connect sum, one can first trace along K and then along K’. By assumption,
we have Yx € H}[K|[Xi'] and Y € H[K'][XE}], and combining these statements
with the presentation of i [K# K'] shows that Yy, Yi € HT[K#K'| [XI%;&K,]. Finally,
since Yr 4k = Y Y-, this shows that Yiur € HF [K#K'| [X?E;&K,], which is what we
wanted. O

We will write K’ >, K if there is a surjection f : w1 (K’) — m1(K) which preserves
the peripheral systems: in other words, f(Xx/) = Xk and f(Yx/) = Y2 for some d € Z.
(Such surjections are not common, but they will be useful for our purposes for torus
knots.)

Lemma 4.2. Suppose for a knot K C S® there exist knots K; C S® satisfying (5./) such
that K; >, K for each i, with Y; — Yfé". Further suppose that the integers d; € 7Z
generate Z as a group. Then K satisfies (3.4).

Proof. The definitions of H and H™T in (3.3) are functorial. In particular a group ho-
momorphism f : m(K;) — m(K) induces an algebra morphism f, : H[K;] - H[K]
with f.(HT[K;]) C HT[K]. Since f preserves the peripheral systems and we have as-
sumed Y; € HT[K,][XF'], this shows that Y& € HT[K][X£']. By assumption, there
exist a; € Z such that Y, a;d; = 1. This implies that Y% wdi _ vy e g [X?El], which
completes the proof. O

Remark 4.3. The proof of Lemma 4.2 shows that the “covering” maps f; : m(K;) —
71 (K) need not be surjective to imply condition (3.4) for K.

5. Torus knots

In this section, we will prove Conjecture 3.4 for torus knots. To this end, we will use
the presentation of the BH algebra for two-generator groups given in the Appendix. Let
r and s be coprime integers such that 2 < r < s. The knot group of the (r, s)-torus knot
K = K(r, s) has the following presentation

m(K) = (u,v | u" =%,
and the meridian and longitude are represented by the elements (cf. [5, Prop. 3.28]):
m=u"v ", l=v'm "’ (5.1)
where k and n are integers satisfying
—rk+sn=1. (5.2)

We remark that m is independent of the choice of solution (k,n) to the equation (5.2).
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Now, let H = H[x| be the Brumfiel-Hilden algebra of the knot group m(K). As in
Section 3.1, let X and Y denote the images of the elements m and [ in H under the
canonical projection C[r] — H][r], and let HT[X*!] be the subalgebra of H generated
by H* and C[X*!]. Recall that Conjecture 3.4 is equivalent to the statement

Y € HT[X*H]. (5.3)
The main result of this section is
Theorem 5.1. Condition (5.3) holds for all torus knots.

We will prove Theorem 5.1 in several steps. First, we verify (5.3) for (p,p + 1)-torus
knots by direct calculation. Then, given a torus knot K (r, s) with rs even, we construct
a group epimorphism 7[K(p,p + 1)] — =[K(r,s)] and we use Lemma 4.2 to give a
covering argument to show that (5.3) holds for K (r, s), provided it holds for K (p,p+ 1)
for all p. Next, we show that (5.3) holds for (2,2p + 1) torus knots and use a similar
covering argument to show the same for K(r, s) with rs odd.

In the computations below we will use the classical Chebyshev polynomials of the first
and second kind. We recall that these polynomials are defined respectively by

To(y)
Uo(y)

17 Tl (y) Y, Tn+1 = 2yTn - Tn—l
1, Ul(y) = 2y, Un+1 = 2yUn — Unfl .

Alternative definitions are given by

_sin((n +1)9)

T(cos(¥)) :=cos(n?) , Up(cos(?)) := Sn(d) , n=0,1,2,... (5.4)

5.1. Torus knots of type (p,p+1)
This section is devoted to the proof of the following proposition.
Proposition 5.2. Condition (5.3) holds for (p,p+ 1) torus knots.

Fix an integer p > 2 and consider the torus knot K(p,p+1). f r=pand s=p+ 1,
we can take k =n =1 in (5.2), so that the peripheral elements (5.1) are given by

m=u"t, [=yPtly, Pt (5.5)

To do calculations it is convenient to change generators of the knot group taking a :=
ww~! and b = v. Then

m(K(p,p+1)) = (u,v|uP = Pty = (a,b | abab...aba = bP) | (5.6)
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where there are (p — 1) copies of b on the left-hand side. The peripheral pair becomes

m=a, l= pptig—r+1)

Next, recall the presentation of the BH algebra of the free group Fy = (a,b) given in
the Appendix:

H[F;)2RORt, t*=y*—-1

where R = C[X*!,y, 2], and where X = a,y = (b+b71)/2, 22 = ab+b"ta ' +(a+a 1)y,
and t = (b— b~1)/2. We will repeatedly use the following simple observation.

Lemma 5.3. For any word ¢ € Fy, we have
A =U(c)e—U,i(ch), n=1,2, ...
where ¢ 1= (c+¢71)/2.

Proof. For n =1, we have ¢ = 2[(c+c¢1)/2]c—1=2cTc—1=Ui(ct)e—Up(ch), and
for all n > 1, the claim follows easily by induction in n. O

Remark 5.4. Note that the identity of Lemma 5.3 holds actually in the group algebra
C[F»] but we will use it as an identity in H|[F].

Using Lemma 5.3, we compute the images of the left and right hand sides of the
relation (5.6) in H[F5]:

abab . ..a = (ab)Pb™?
= Up-1(Q)ab — Up—2(Q)b™"
= Up-1(Q)a — Up—2(Q)0™"
= Up-1(Q)X — Up—2(Q)y + Up—2(Q)t

where Q = (ab+b"ta™1) /2= (X(y+1t)+ (y—t)X1)/2 = 2y + 2. Second, we compute

W =Up-1(y)b—Up-2(y) (5.7)
=Up-1(y)y — Up—2(y) + Up—1(y)t
= Tp(y> + Upfl(y)t

Hence, abab...a — b? = A + Bt, where

—
—~
L

[
T
[ V)
—~
O
~
<

I
3
<
~

p

A=U,_
B:=U,_

[ V)
—
Q
~—
|
<
—_
—~~
<
=
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We would like to show that the longitude [ is in the subalgebra [R] C H[n] which
is the image of R under the quotient H[F5] — H|[w|. By Proposition 9.7, this is true if
l = [ro + rt] with r € J, where J is the ideal

Jy = (A, A% A% A°° B) (5.8)

Here we have written A° = o(A), etc. where ¢ : R — R is the involution of R and
0 : R — R is the o-derivation of R defined by

o(XT) =XTL oy =y, o)==
S(XH) = +22, 5(y) =d(z) =0
Note that since U,_1(y)y + Tp(y) = Up(y), we can rewrite A as
A=Up-1(Q)X — By — Up(y)
Hence,

A% = X7'U,-1(Q) — By — Uy(y)
A° =2U, 1(Q)z
A% = 20U, 1(Q)=

It follows that J; C R is defined by
Jl = <Up—1(Q)X - Up(y)a Up—l(Q)Xil - Up(y)7 Up—Q(Q) - Up—l(y)72Up—1(Q)>

Since @ = z + zy, we have

QUp-1(Q) = 2Up-1(Q) + 2yUp-1(Q)
= 2Up—1(Q) + y(XUp_1(Q) + X 'U,-1(Q)) /2
yUp(y) (mOd Jl)

This shows that .J; is generated by the elements

Up-1(Q)X = Up(y), Up1(QX ™ = Uyp(y), (5.9)
UP*Q(Q) - Upfl(y)a QUpfl(Q) - yUp(y)

Since Y = wPHlg Pt — pptlp=p(e+l) ¢ H(x], to verify (5.3) it suffices to show that
bP+1 € H+[X*1]. For this, by the same computation as in (5.7), it suffices to show that

Up(y) € N1 (5.10)
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We will need some elementary properties of Chebyshev polynomials, which we give in
the following:

Lemma 5.5. For any p > 2, we have

Up—lUp+1 =-1+ U,f
ged(Up = Up—1,Up—2 = Up—3) =1

To simplify the notation, we set

E:=Up1(Q), F:=Up—2(Q) = Up-1(y), N:=Up(y)

We also write “=” for congruences in R modulo Jy. The relations (5.9) imply
F=0 (5.11)
E=XN (5.12)
E=X"'N (5.13)
QFE =yN (5.14)
We need to show that N = 0. By (5.11) and Lemma 5.5, we have
UZFS(Q)E = Up73(Q)Up71(Q) (5.15)
= -1+ U;2(Q)
=-1+U71(y)
= Up—2(y)Up-1(y)
P 2(y)N
By (5.12) and (5.14),
QN = (X 'y)N (5.16)
Now if we combine (5.13), (5.15), and (5.16), we get
Up—2(y)N =U, 3(Q)E = XU, 3(Q)N = XU, _3(X 'y)N (5.17)

Now assume that p is even. Then U,_3 is an odd polynomial. Equations (5.12) and (5.13)
show that X2N = N, which implies

XUy 5(X'y)N = Up_s(y)N (5.18)
It therefore follows from (5.17) that

[Up-3(y) = Up—2(y)] N =0 (5.19)
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Similarly, by (5.14), Up—1(Q)N = X ~*U,(y)N, which by (5.16) implies
XUp-1 (X" y)N = Up(y)N (5.20)

Again, if p is even, then U,_; is an odd polynomial, so that XU, (X 'y)N =
Up—1(y)N. Hence, (5.20) becomes

[Up-1(y) = Up(y)] N =0 (5.21)

By Lemma 5.5, the polynomials U,_3 —U,_5 and U,_; — U, are relatively prime. Hence,
if p is even, equations (5.19) and (5.21) combined together imply

N

Il
o

Now, if p is odd, arguing in a similar fashion, we can also derive from (5.15) the relations

<
=
I
jen)

(Up73(Q) - Up*
(U(Q) ~ Up1(Q) N =0
where the Chebyshev polynomials depend on @ rather than y. By Lemma 5.5, we again

conclude that N = 0. Thus, for all p > 2 we have N = 0, which completes the proof of
Theorem 5.1 for (p,p+ 1) torus knots.

5.2. Torus knots with rs even

We will now deduce Theorem 5.1 for the K (r, s) torus knot with rs even using Proposi-
tion 5.2 about (p, p+1) torus knots combined with a covering argument using Lemma 4.2.
We first note that given relatively prime r, s € Z there exist n,k € Z such that

—rk+sn=1

Let p = rk, and let K be the (p,p+ 1) torus knot with generators @ and ¥ satisfying
P = Pt

Lemma 5.6. Let K be the (r, s) torus knot with generators u,v € w1 (K) satisfying u" = v®
and with meridian and longitude m = u™v™" and | = v*m™"% as in (5.1). Then there is
a covering map w1 (K) — w1 (K) sending m — m and [ — 1",

Proof. We construct the claimed covering map directly via @ +— u™ and ¥ — v*. We
then check
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which shows that this map is well-defined. It is surjective because u” = v® and because
n, k are relatively prime. We then note that by equation (5.5), the meridian and longitude
for K satisfy m = a0~ and [ = oPt1m @+ We then check

Similarly, we compute

[: ﬁp+1m_p(”+1) s vk(p-i—l)m—p(p-‘rl) _ ,Uk:snm—rksn _ (vsm—rs)km _ lkn

(We remark that the second to last equality follows from the fact that I commutes with m,
which implies that v* commutes with m also.) O

In the previous lemma we only used one solution (k,n) to the equation —rk+ sn = 1.
However, an arbitrary solution to this equation is given by

—r(k+ts) +s(n+tr) =1, teZ

Lemma 5.7. Let N(t) = (k + ts)(n + tr), and suppose that rs is even. Then the ideal in
Z generated by the set {N(t)} is equal to Z.

Proof. Let M C Z be the Z-submodule generated by N (t), and let ¢ = nk, b = sn + rk,
and a = rs, so that N(t) = at?> + bt + c. It is clear that M is generated by N(0), N(1)
and N (2), or equivalently, by 2a, a + b and c.

Now we claim that a and b are relatively prime. Suppose not, so that there is a prime
q dividing a = rs and b = sn + rk. Since r and s are relatively prime, ¢ must divide
either r or s. However, b = sn + rk = 2rk + 1, which means that ¢ cannot divide both r
and b. Similarly, b = 2sn — 1, which means that ¢ cannot divide both s and b, which is
contradiction.

Since 2a,2b € M and a,b are relatively prime, this shows 2 € M. Now we have
assumed that a = rs is even, which implies a + b = a + 2rk + 1 is odd. Since 2 € M and
a+ b€ M, this shows that 1 € M, which completes the proof. O

Corollary 5.8. If rs € Z is even, then the (r,s) torus knot satisfies condition (5.3).
Proof. This follows from Lemma 5.7 and Lemma 4.2. O

5.8. Torus knots with rs odd

In this section we use a covering argument similar to the one in the previous section
to prove that condition (5.3) for (r,s) torus knots with rs odd follows from the same
conjecture for (p,2p + 1) torus knots. We then show this condition holds for (p,2p + 1)
torus using some calculations along with results of the previous section.
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5.8.1. Covering
Assume that r, s € Z are both odd and are relatively prime. Then there exist k, . € Z
such that

—kr4+ns=1

Since r and s are both odd, one of k or 7 must be even. Assume without loss of generality
that k =: 2k is even, and let n := fi. Then we have

—2kr+ns=1 (5.22)

Define p := kr and ¢ := ns = 2p + 1. Arguing similarly to Lemma 5.6, we have a group
epimorphism

m(p,2p+1) > mi(r,s),  me—m, LI

Given a fixed choice of (n, k) satisfying (5.22), any possible choice (n’, k') satisfying the
same equation is given by

E:=k+st, n :=n+2rt, teZ

If we define N (t) := n'k’ = nk + (2rk + ns)t + 2rst?, then [ — [N Consider the ideal
in Z generated by the values of N(t):
I, :=(N({t)|teZ)yCZ

)

Lemma 5.9. We have the equality I, ; = Z.
Proof. Put a:=2rs, b=2rk+ns=4rk+1=2ns — 1, and ¢ = nk. Then
I.s = {c+bt+at’|teZ)

From the proof of Lemma 5.7, we see that (2a,2b,a + b,c) C I, ;. We then note that
gcd(a,b) = 1. Indeed, suppose some prime ¢ divides a = 2rs. Then ¢ divides either 2, r
or s, but in each case ¢ cannot divide b because b = 4rk + 1 = 2ns — 1.

Since ged(a,b) = 1, we have 2 = gcd(2a,2b) € I, 5. However, a = 2rs is even and
b = 2ns — 1 is odd, which implies a + b is odd. Therefore, I, s, =7Z. O

Corollary 5.10. Condition (5.3) for the (r,s) torus knot with rs odd follows from Condi-
tion (5.3) for the (p,2p + 1) torus knots.

5.3.2. (p,2p+ 1) torus knots
In this section we prove condition (5.3) for (p,2p + 1) torus knots. If p is even, then
we proved this in Section 5.2, so we will assume that p is odd.
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Proposition 5.11. If p is odd, then the (p,2p + 1) torus knot satisfies condition (5.3).
The proof will occupy the rest of this section.

Lemma 5.12. The ideal J; for the Brumfiel-Hilden algebra H = H|[r(p,2p + 1)] is gen-
erated by the following relations:

Up-1(Q)X — Uzp-1(y) + Up—2(Q) (5.23)
Up—1(Q)X ™" = Uzp_1(y) + Up—2(Q) (5.24)
2Up—2(Q)y — Uzp—2(y) (5.25)

2Up-1(Q) (5.26)

where Q = Ty(y)r + 2yz = (2y> — 1)a + 2y2.
Proof. Direct calculation similar to the one for (p,p + 1) torus knots. O

To prove condition (5.3), an argument similar to (5.7) shows that it is sufficient to
prove

ng(y) e Ji (527)

By the covering argument of the previous section, we know that [? € H*[X*!]. This
means that

(Tops1(y) + Uzp(y)t)? € HT[X*]
or, equivalently, that

Top+1(y)Usp(y) € J1 (5.28)

We again will write = for congruence modulo the ideal J;. We begin by rewriting
(5.23)—(5.26) and (5.28) in a more concise form. Denote

E:=U,_1(Q), N :=Uzp-1(y) — Up—2(Q)

Lemma 5.13. We have

EX=N (5.29)
EX'=N (5.30)
2yN = Uzp(y) (5.31)
QFE= (2> - 1)N <= QN=X"1(2)2 - 1)N (5.32)
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Proof. First, (5.31) follows from (5.25). In particular, we have

(5.25) <= 2Up—2(Q)y = U2p—2(y)
2y(Uzp-1(y) — N) = Uzp—2(y)
2yN = 2yUszp—1(y) — Uzp—2(y) = Uzp(y)

Second, we show that (5.32) follows from (5.26):

(5.26) = 2yzUp_1(Q) =0
(@~ (24> = D)2)Up-1(Q) = 0
QUp—1(Q) = <2y2 - DzUp-1(Q)
QF = (2 - 1N(X+ X HE/2=(2*-1)N O

Thus, knowing (5.28)—(5.32), we need to conclude (5.27), i.e. that Us,(y) = 0. Recall
that we assume p to be odd. From (5.31) we see that

YN =Usp(y) = 2WXE=Uyp(y) = 2yXUp_1(Q)N =Us(y)N

Since p is odd, Up—; is an even polynomial, hence, by (5.29) and (5.30) we see
Up—1(X1(2y* = 1))N = Up_1(2y?> — 1)N. If we formally set y = cos(a), we see that
2y? — 1 = Ty(y) = cos(2a). From this, it follows that

Uy a(292 = 1) = Uy a(Tafy) = Upafeos20) = 2
From this, we see that
2yUp71(2y2 1= QCosaSi.n 2pa _ Sh.l 2pa — Usp1(y)
sin 2« sin o
Thus, we obtain
XUzp-1(y)N = Uz (y)N (5.33)

To proceed further, we need the following identity.
Lemma 5.14. For all n > 0, we have

(L= y)Us () + T (y) =1
Proof. Let y = cosa. Then

sin?(n + 1)a

1 — cos?
( cos” ) .

+cos?(n + 1)a = sin?(n + )a +cos?’(n + 1)a=1 O
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Corollary 5.15. For all p > 1, we have

ged(Uap(y), yTopr1(y)) =

1
ged(Top(y), yTop+1(y)) =1

Proof. To prove the first statement, let n = 2p and define

a(y) = 1=y (),  by) =Tops1(y)/y

Note that b(y) € Cly] because Thpy1(y) is an odd polynomial. Then, by Lemma 5
have

a(y)Uzp(y) + b(y) (yT2p+1(y)) = 1
The proof of the second statement is similar. O
Now, combining (5.33) with (5.30) and (5.31), we get

Usp(y)N = XUsp11(y)N
YTopi1(y)N =0

Hence, by Corollary 5.15 we see
N = a(y)Uzp-1(y)NX
Again using (5.30) and (5.31), X?2N = N, which implies
XN =a()Usp-1(y)N = N = (a(y)Usp-1(y))*N
where a(y) = (1 — y?)Usp(y) as in the proof of Lemma 5.14. We conclude
[(@(n)Uzp1()* =1 N =0

We then compute

(a(y)U2p-1(y))* —

\ |
—

1- ) Up(y)U2p 1(y) -1

= [1-y*)Us5,»)] [(1 - y*) U351 (y)] — 1
( T2p+l(y))( T2p( )) 1

T22 (y )T2p+1(y) - sz(y) - T2p+1(y)

Therefore, (5.34) in combination with (5.28) gives

14 we

(5.34)
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T5,(y)N =0 (5.35)
By Corollary 5.15, ged(Top(y), yTop+1(y)) = 1. This shows that the polynomials

yT5p+1(y) has no common roots with T5,(y), which means it also has no roots in common
with T3, (y). We therefore have

ged(T5,(y), yTop11(y)) = 1
Combining this with (5.28) and (5.35) shows that
N=0
By (5.31), we now conclude that
ng(y) =0

This completes the proof of Proposition 5.11.
6. Two-bridge knots

In [3] we confirmed Conjecture 1.1 for 2-bridge knots using explicit computations from
[1] and a C[X*L Y*!] x Zy-submodule of H[§~!] defined as

M= HT[ X+ AT [Xx*F)Qs!

(See [3, Eq. (3.11)].) In this section we show that the module M is equal to the module
N from (3.5). In particular, this shows that M has a definition that does not depend on
the polynomial @), which was a specific polynomial used in the computations of [1]. We
then show the second assumption of Corollary 3.6 holds for two-bridge knots; namely,
that § = m —m ™! is not a zero divisor in H+[m*!]. We will adapt the notation of [3].

Proposition 6.1. If K is a two-bridge knot, then N = HY[X* + HY[X*TQs~ L. In
particular, the Brumfiel-Hilden condition (1.2) holds for K.

Proof. First, by Lemma 3.5 in [3], it is clear that HY[X*! Y] = H+[X41] in H[x].
By [3, Proof of Thm. 3.7], we know that

Y=fQ+gd—1 (6.1)
where we have written

f=2X"%(L+NJ)e H [ X*]
g=X"%(2N?J§ +2LM + A(X)) € Ht[XF']
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d
5245 en
n=1

X+X3 4+ X7Lifs#£0

A(X):{o, if s=0

It follows from (6.1) that (y + 1)0~! = g + fQd~!, which implies N C M.
To prove the inclusion M C N, we note that [1, pg. 119] shows that

L=1+2F?J —2G?1J
N =2DG + 2EF

This shows that fQ =2X~%(L + NJ)Q, which implies

fQ=2X"%(1+2F?J —2G?1J + 2DGJ + 2EFJ)Q
=2X"*[1+2(F?+ DG + EF)J|Q
=2X"%[1 +2(F* + DG + EF)$%Q

because I = 0 and JQ = 6°Q in H. Hence
Y41 =(fQ+gd)d ' =fQé +ge N
This implies
fQUITt=(Y+¢)8 "t —geN
which then implies
2X7%[142(F? 4+ DG + EF)§*]Q5~' = 2X°[Qd + 2(F% + DG + EF)éQ] € N

This implies 2X ~*Qd~! € N, which implies Qd~! € N, which finally implies M C N.

Finally, the last statement follows [3, Thm. 3.9], which proves the conditions in Propo-
sition 3.5 for the module M. O

We now show that § = X — X ! is not a zero divisor in H*[X*!], verifying the second

condition in Theorem 1.4. We first recall the classical Gauss Lemma. Let R be a UFD
and R[t] the polynomial ring over R. Recall the content of P(t) € R[t] is defined by

(Za t’) =gcd({a;}) € R

Note that the content is well-defined up to multiplication by units in R.
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Lemma 6.2 (Gauss). For any nonzero P,Q € R[t], we have
¢(P-Q) = c(P)e(Q)
Proposition 6.3. The element § = X — X! is regular in HT[X*1].

Proof. By [3, Thm. 3.3], the commutative algebra H+[X*!] has the following presenta-
tion:

CIX* 1,J]

HT (X = IQ, 1+ J—4(2z2—1))

where X = M and z = (X + X')/2, and Q(I,J) € Z[I,J] is the Brumfiel-Hilden
polynomial. Let R = C[X*!]. Since J = 4(2? — 1) — [ in HT[X*!] and 4(2? — 1) = §2,
we can rewrite this presentation as

HY[X*'] = R[I]/ (1Q)

Assume that § - @ = 0 in HY[X*!] for some @ = a(mod IQ) with a € R[I]. Then we
have

da=1Q-b (6.2)
for some b € RJ[I]. Since § € R, this shows that ¢ divides the content ¢(Q - b).
We now claim that ¢(Q) = 1. Indeed, by [1, Prop. A.4*.10], we know that Q(I,J) —1
is divisible by J in Z[I, J], so @ has the form

Q=1+JP=1+(*-1)P

for some P € C[6?, I]. Write

N
P=> p.(67)I"
n=0

Then
N
Q=1+"-1> pa(0>)I"
n=0
= (14 6%po) + (8%°p1 — po)I + -+ + (6%pn — pn—1) IV — p, IV T
Therefore

o(Q) = ged{1 + 6°po, 6%p1 — po, -+ 6°PN — PN—1,PN }
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Now if d divides ¢(Q) in R, then we have

52PN —PN—1 = dgn—1

6%p1 — po = dqo

1+ 6%py = dg—1
for some ¢; € R = C[X*1]. It follows from above that

PN-1 = 52PN —dgn—1 = d(52fJN - QN71>

PN_2 = 0°pN_1 — dqn—2 = d(6%qy — 0%qn-1 — qn—2)

po = 6%p1 — dgo = d[6* N Vgy — - — qo]
1=gq_1—0po=dlg—1 — 6"Nqn + -+ 6°qo]
This shows that d is a unit in R, which shows ¢(Q) = 1.

Since we know that § divides ¢(QIb), this shows that § divides ¢(b). In other words, we
have b = &b for some b € R[I]. By (6.2), da = IQ6b, and since R is an integral domain,
this implies @ = IQb. Hence a=0¢€ H+ [X*1], which completes the proof. O
7. Pretzel knots

In this section, we will verify Conjecture 3.4 for some (—2,3,2n + 1) pretzel knots.

7.1. Presentation and peripheral system

It is shown in [23, Prop. 2.1] (see also [20, Sect. 4.1]) that the knot group of a pretzel
knot of type (—2,3,2n + 1) has the following presentation:

m(K) = {(a,b| V"E = Fb")
where FE and F are the following words in Fy = (a, b):

E:=aba b ta ™, F:=a b tabab™" (7.1)
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The peripheral system with this presentation is given by
m = a, I =a " 2bab™ab™ aba>""° (7.2)

Remark 7.1. The above expression for the meridian and longitude have been found in

[23]. Our notation differs from theirs: our generators a*! and b*!

¢and [, I.

correspond to their ¢,

7.2. The Brumfiel-Hilden algebra

Recall (see the Appendix) that the Brumfiel-Hilden algebra has the following presen-
tation:

Hr]=(R® Rt) /(A + Bt)

where R = C[X*!,y, ], and

A+ Bt = b"E — Fb" € H[F)
To compute A and B, we first observe that F = E°b~!, where o : F» — F, is the
involution of the free group defined by o(a) = a™*, o(b) = b1, and o(ab) = o(a)o(b).
This involution acts on H[Fy] = R® Rt by X — X 1y y, 2+ 2, and t — —t. We
have

E=aba b a™! = ablaba) ™t = (Xy +at)(X 2y +2X 2 —1t)

Write E = Ey + E1t; then a direct calculation shows

Eo=aX+8, Ei=~vX+6 (7.3)

where we have used the elements

a=1—dayz — 2y* — 42° (7.4)
B = 2zy* + 2y

v =422y 4+ dzz — 2y

0= —2ay — 2z

Note that E7 = EJ — E{t, where ES = aX !+ f and EY = yX 1 + §. Hence,

A+ Bt=b"E—Fb"
=bE — Eobn—l
= (Ta(y) = Un-1(y)t) (Eo + Ent) = (B — E7)(Tn-1(y) + Un—2(y)t)
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By straightforward calculation, we then have

A=T,(y)Eo — Tn-1(y)E§ + Up—1(y)8(Eo) + (Un—1(y) + Un—2(y))E{ (y* — 1) (7.5)
B=T,(y)E1 + T 1(y)EY + Un—1(y)0(E1) + (Un-1(y) — Un—2(y)) ET (7.6)

where 0(Fy) = 2az and 0(E;) = 2yz. It follows that

A7 =T, (y)E§ — Tu-1(y)Eo + Un—1(y)6(Eo) + (Un—1(y) + Un—2(y)) E7 (y*> — 1)

(7.7)
5(A) = 6(Eo)(Tu(y) + Tn-1(y)) — 6(E1)(Un—1(y) + Un—2(y)) (> — 1) (7.8)

B? =T,(y)EY + Trn-1(y)E1 + Upn—1(y)0(E1) + (Un(y) — Un—2(y)) Eo (7.9)
6(B) = 6(E1)(Ta(y) — Tn-1(y)) — 0(Eo) (Un—1(y) — Un—2(y)) (7.10)

These computations combined with the computations in Appendix 9 show the following.
Lemma 7.2. The ideal J is generated by
J=(A,B,A° +§(B),5(A) + B (y* — 1)) (7.11)
where the elements A, B, etc. are given in equations (7.5) through (7.10).
Proof. This follows from Proposition 9.7. 0O
Remark 7.3. The symmetry condition (9.9), which was true in the case of torus knots,
does not hold for pretzel knots (cf. (7.6)). However, computer experiments suggest that
(for small n),
J=(A,B, A% B? §(A),i(B))

This seems hard to prove in general.
7.8. Computing the longitude

By (7.2), it suffices to prove that

[ := bab"ab™ab € Hy[r]

To compute this element we use the (anti-)involution v : F» — F5 given by a — a and
b — b (so that ab+— ba). It acts on H|[x| by

X=X, y—y, z—z t—t
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Thus
I = bab"ab™ab = (bab™)ary(bab™) = (C + Dt)X (C + Dt) (7.12)
where bab™ = C + Dt with

C = (Xy+22)Ta(y) + X (" = 1)Un-1(y) (7.13)
D= (Xy+22)U,_1(y) + X 'Tu(y) (7.14)

It follows that [ = Iy + [;¢, where

I, =CD°X +DC°X~ ' +2DD’ 2 (7.15)

with
C7 = (X"ty +22)T(y) + X(v* = YUn-1(y) (7.16)
D7 = (X"'y +22)Upn—1(y) + XTn(y) (7.17)

A computer calculation with Maple shows that for all n < 20 the element Iy defined
above belongs to the ideal J defined in (7.11). This implies

Theorem 7.4. The (—2,3,2n+1) pretzel knots satisfy Conjecture 3.4, at least for n < 20.

Remark 7.5. With enough effort it should be possible to verify the inclusion I, € J for
all n.

8. Closing remarks

In this section we provide some further remarks about the Brumfiel-Hilden condition
(3.4). First, we propose a generalization from SLs(C) to SL,(C) (although we will leave
the problem of relating this to higher rank DAHASs to later work). Second, it is natural
to ask whether there is a condition on the A-polynomial of a knot K that implies the
Brumfiel-Hilden condition for K. We show that there is such a condition on A, but
that it does not hold for the figure eight knot or for some torus knots. This makes it
seem less likely that the Brumfiel-Hilden condition can be proved using properties of the
A-polynomial.

8.1. Higher rank generalization

Given a group m, let Rep,,(7) := Hom(w, SL,,) be the variety of representations of =
into SL,,(C) (which are not considered up to isomorphism). We also define

H,[r] := T'(Rep,, (), M,,(C))Sk, H[r] :=T'(Rep, (r),C)SLn (8.1)

n
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Here if X is a space and V' a vector space, we have written I'(X, V) for V-valued functions
on X. If G acts on X and V, then T'(X, V)% is the space of G-equivariant V-valued
functions. The action of GL,, on the space M.(C) of n x n matrices is by conjugation,
and the action of GL,, on C is trivial.

By definition, H, [r] is the ring of functions on the SL,, character variety of 7. We
remark that one easy source of equivariant sections in H,[r]| are evaluations at elements
of m: given g € 7, define

evy : Rep(m) — M, (C), p = plg)

Similarly, an element g € m produces a function p — Tr(p(g)) in H, [n].

We now give a statement which implies Conjecture 1.1 when n = 2 and ¢ = —1.
However, we remark that we have no evidence for this statement other than n = 2. We
will write

X :=evy, € Hn|, Y :=ev,€ Hin|

where m and [ are the meridian and longitude of the knot, and we will use the fact
that H,[n] is an algebra (where the multiplication is “pointwise” and comes from matrix
multiplication).

Conjecture 8.1. We (optimistically) believe the following inclusion holds:
Hf [7][XF YH € Hyf [r][X ) (8.2)

The left hand side of this (conjectural at best) inclusion is the subalgebra of H,[n]
generated by H*[r] and the elements X! and Y*!, and similarly for the right hand
side. (The reverse inclusion is obvious.)

Remark 8.2. For n = 2, (8.2) is equivalent to the BH condition (3.4).
8.2. The A-polynomial and the Brumfiel-Hilden condition

Recall that for a knot K C S3 with 7 = 71(5% \ K) we define the algebra map
a: Clm* 1*Y — Hix]

We now define two ideals in C[m**, [+1]:

J := Ker(a) C C[m*!, 1%, (Jym —m™1) C Clm*,1#

Consider the following condition:

-7t e (Jym—m™t) c Clm™t, 1F) (8.3)
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Lemma 8.3. Condition (8.3) implies the conditions in Proposition 3.5.
Proof. If | — 7! € (J;m —m™1), then we can apply a to obtain

Y -Vl ealCm P ) (X -X"Y)cHI O
Remark 8.4. Condition (8.3) is equivalent to

=17 = f(m,1)(m —m™") (mod J)
for some f(m,1).
By [1, Prop 10.5], the ideal J has primary decomposition
J=p1Np2aN---Npy

where p; are the primary components belonging to the prime ideals of dimension 1. These

primary ideals are generated by powers of irreducible polynomials in C[m**!,1*1], i.e.
pi = (pj")
and the product of the p;’s is the A-polynomial:
k
Ag(m,l) = H Di
i=1
It follows that
J C (Ag(m,l)) (8.4)
The BH conjecture is that the containment 8.4 is actually an equality.
We will need a weaker version:
Conjecture 8.5 (Weak BH conjecture). (J,m —m™1) = (Ag(m,l),m —m™1)
We next introduce the following condition:
=17t e (Ag(m,1),m —m™1) (8.5)

Lemma 8.6. Condition (8.5) is equivalent to

Ag (£1,1) divides 1> — 1 € C[I] (8.6)
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Proof. (We refer to Cooper—Long’s 1998 paper [7] for results on the A-polynomial.) By
(7, Thm. 3.5], Ag(m,l) can be normalized so that A(m,l) = P(m? 1) € C[m?,1]. Write

ZP m — 1 (8.7)

so that Py(l) = P(1,1) = Ax(£1,1). Then

(A(m,1),m —m™) = (P(m?,1),m* — 1)
= <P(1vl)7m2 - 1>
= <A(ilvl)vm2 - ]->

Thus (8.5) holds iff (12 — 1) € (A(%1,1),m? — 1), which is equivalent to 1> — 1 =
a(l,m)A(£1,1) + b(l,m)(m? — 1). Finally, this equality can only hold when b(l,m) = 0,
which implies equation (8.6).

Conversely, the expansion (8.7) shows that (8.6) implies (8.5). O

Corollary 8.7. Condition (8.6) combined with the weak BH Conjecture 8.5 implies [3,
Conjecture 1] at ¢ = —1. We also have the following implication:

-1t e(,m—m™Y = Ag(£1L,])]|(0*-1)

8.2.1. Examples
We now give some examples to show that condition (8.6) does not hold in general.

Example 8.8 ((2,2p + 1) torus knots).
Ag(m, 1) = (1= 1)1 +1m?*®P) A (£1,0) =12 -1
Therefore, condition (8.6) holds. One can compute
(Y —1)(Y + X 2@y — 0 e H[x]
A computation then implies
Y-Y )i =X(1+X* 4+ +X")(1-Y)

p
= (1/2) | Tr(X?PT = Tr(YXPH) + ) (Tr(X2F1 = Te(V X2
k=1

Example 8.9 (The (p,q) torus knots with p,q > 2:). In this case,

Ag(m,l) = (I — 1)(=1 + 2m?P9)
Ap(£1,0) = (1 -1 (1> =1)

Since Ag (41,1) does not divide 12 — 1, we see that | — 7 ¢ (J,m —m™1).
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Proposition 8.10. Assume that the (equivalent) conditions of Proposition 3.5 hold for a
knot K but condition 8.6 fails. Then

(1) the map « is not surjective,
(2) Im(a) is not preserved by U = 6—1(1 + sY).

Proof. Assume that « is surjective. Then the first condition of Proposition 3.5 implies
Y —Y~! = F(X* Y*1)§ for some F. This implies

a(l—1""=Fm* =) (m-m™ 1)) =0, =
=1 P Fm* Y (m-—m™YHY eJ =

-1t e(Im—-—m™) Cc(Ag(m,l,m —m™1))

However, by Lemma 8.6, this is equivalent to Ag (£1,1) | (I>~1), which is a contradiction.

To prove the second claim, we argue by contradiction and assume that U[Im(«)] C
Im(a). Since we have already assumed that UM C M and Im(a) C M, we see that
Im(«) is a submodule of M. Since 1 € Im(«), we have that

(YU -UY N1 € Im(a)
But YU-UY !=§1(Y+s-Y ! —5)=0"5Y -Y1), and this combined with our
assumptions shows that (Y —Y ~1)§~1 € Im(a), which leads to a contradiction as in the
first claim. O
Example 8.11 (The figure eight). One may compute

(Y -y 15t = —(I+IJ)Tr(X) € H[r]

Then the proof of Proposition 8.10 implies that I + IJ ¢ Im(«) since condition (8.6)
fails to hold in this case.

Remark 8.12. By [7, Theorem 3.6], A(£1,1) always divides (I — 1)V for some N under

a certain (probably unnecessary) technical condition. We therefore have property (8.5)
in a weaker form:

(1—1"YHYN e (Ag(m,1),m —m*?)
for some N > 1. If the weak BH conjecture is true, this implies

(Y -y HN c HS
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9. Appendix: the Brumfiel-Hilden algebra

In this Appendix, we give an explicit presentation of the Brumfiel-Hilden algebra
H{[r] for an arbitrary group 7 with 2 generators and 1 relation.

9.1. The BH algebra of a free group on two generators

Let F := (a,b) be the free group on two generators a and b. We begin by recalling the
presentation of the BH algebra H[F] of F given in [1]. We will use the following notation
(cf. [1]): for any g € F, we write g% := (9+¢~1)/2 and g~ := (g —g¢~!)/2 in H[F]; also,

we set

la| :=a” = (a—a™1)/2
bl :=b"=(b—b"")/2
labl := (a"b")" =ab—bta—a’b— (ab)" +2aTbT

y:=b"

z:=(a"b")" = (ab)t —aTb"
Theorem 9.1 (/1, Prop 3.9]). For F = (a,b), we have H[F| = HT[F] & H~[F], where

(1) HY[F) = k[z,y, 2] is a free polynomial ring
(2) H-[F)=H"|a|® H"|b| ® H"|ab| is a free HY|F]-module

The multiplication table in H is given by

|al [b] |ab]
lal z2 -1 z + |ab| —zl|a| + (22 — 1)|b]
ol | z—lad| y? -1 —(y* = Dlal + z|b|
lab] | zlal = («® = D[] (y* = Dla] —z[b] 2? — (= - D>~ 1)

We will construct a different presentation of H[F] in terms of Ore extensions. First,
we recall basic definitions.

9.2. Ore extensions

Let k be a field. Given an associative k-algebra R and an endomorphism ¢ : R — R,
a (left) o-derivation 0 : R — R is a linear map satisfying the rule

d(ab) = a(a)d(b) + d(a)b
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Note that this rule implies d(a) = 0 for a € k. A typical example of a o-derivation is
given by a twisted inner derivation ad,(a) : R — R defined by ad,(a)[z] := az — o(z)a,
where a € R.

Definition 9.2. Given a commutative k-algebra R, an endomorphism ¢ : R — R, and a
o-derivation §, we define

R(t)
(ta=o(a)t+d6(a))

R[t;0,0] ==

The algebra R[t; 0, 0] is called the Ore extension of R with respect to (o, 9).
The following facts are standard and easy to prove (see, e.g., [22, 1.2.4]).
Lemma 9.3.
(1) If R is an integral domain and o is injective, then R[t;o,d] is a (noncommutative)
domain, which is free as a left and right module over R.
(2) If R is left (right) Noetherian, then R[t;o,0] is also left (right) Noetherian.

9.8. The BH algebra as an Ore extension

Let R := k[X*! y, 2], and let 0 € Aut(R) be an automorphism of R defined on
generators by

XXt X1'oX yeoy 292 (9.1)
To define §, we set
§(X) =2z, (X H=-22 §y)=06(2)=0.
Lemma 9.4. 0 extends to a (unique) o-derivation of R given by
§(X*) =22Up_1(2), YkeZ, (9.2)

where Uy_1(x) is the (k —1)-th Chebyshev polynomial of x = (X + X ~1)/2. This deriva-
tion satisfies the relations

c6=-60=05, 6*=0. (9.3)
Proof. First, check that §(X - X~1) = §(1) = 0. Indeed,

SX-XH=0(X)0(XH+6X) X =X"1(-22)+2:2X"1 =0
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Now, formula (9.2) follows easily by induction in k, while the relations (9.3) follow
(9.2). O

Using the above ¢ and ¢ on R, we define

k[X* y, 2](t)
(ty =yt, tz =2t, tX = X1+ 2z, X1 =Xt —2z)

R[t;0,0] = (9.4)

Note that, by Theorem 9.1, the o-invariant subalgebra R? = k[z,y, z] of R is isomorphic
to HT[F]. The next proposition shows that this isomorphism can be extended to the
entire algebra H[F].

Proposition 9.5. The assignment X*!' — a®', y = y, z — 2, t > |b| extends to a

surjective algebra homomorphism ¥ : R[t;0,0] — HI[F], with kernel generated by t*> —
y? + 1. Thus, we have an isomorphism of algebras

H[F] = R[t;0,0]/(t* —y* + 1)
that restricts to HY[F| = R = k[z,y, 2].
Proof. The map ¥ is well defined because

U(tX — X7t = 22) = |bl(z + |a]) — (= — |a])|b] — 22 = [b]|a| + |al[b] - 22

=z—|abl+z+|abl —22=0.
Similarly, U(tX ! — Xt + 22) = 0, and
B(1) = (XX = (0 + Jaf) (@ — Ja]) = 2 — [ = 1
The surjectivity of ¥ follows from the calculation

(X, t]) = U(Xt) = W(EX) = (2 + |al) o] — [bl(z + [a])
= lallb] = |blla] = 2 + |ab] — (= — |ab]) = 2|ab] .

Finally, we check that
-+ )= =P +1=9>—1—y>+1=0

and it is easy to see that t? — y2 + 1 generates the kernel of ¥. O
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Thus, we have the following commutative diagram

R[t;0,60] =
{?—y?+1) L

L.

‘Zf/ HJr[ail]
R? = H*

where the horizontal arrows are algebra isomorphisms and the vertical ones are inclusions.

Corollary 9.6. The algebra H[F) is a free quadratic extension of R = H™ [a*!] with basis

{1,¢}:
H[F|=R® Rt
The multiplication in H[F) is determined by the relation t*> = y? — 1.
Proof. This follows from the isomorphism of Proposition 9.5 and Lemma 9.3(1). O

We list several natural involutions on H[F] which are induced from involutions on the
free group F:

(1) Inverse anti-involution: x : H[F] — H[F], defined by a + a~* and b+ b~1.

(2) Canonical anti-involution: v : H[F| — H[F], defined by a — a, b — b, and v(ab) =
ba.

(3) Involution “switching a and b:” £ : H[F| — H[F], a — b, b+ a.

(4) Involution inverting a and b: o : H[F| — H[F], a— a1, b+ b~ L.

These involutions can be expressed in terms of their action on the generators X+, y, z
and t. For example, the involution ¢ extends the eponymous involution on R: it acts on
X+ yand z by (9.1), while o(t) = —t.

9.4. One-relator groups

We now use the results of the previous section to give a presentation of the
Brumfiel-Hilden algebra for a two generator groups with one relator. Thus, we con-
sider m = F{a, b)/{wiwy '), where w; and wy are two words in F({a, b). By Corollary 9.6,
H[F] = R ® Rt, with multiplication defined by t*> = y* — 1. Hence,

wl—wng—i—BteH[F]
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for some polynomials A4, B € R = k[X*!, y,2]. We will write (w; — wa) = (A + Bt) for
the two-sided ideal in H[F| generated by w; — ws.
By [1, Prop. 1.4] and Proposition 9.5 above, we can now identify

H[r] = R[t;0,6]/(A+ Bt,t* —y*> + 1) =2 [R® Rt]/(A + Bt) , (9.5)

and think of elements of H|[w| as elements of R @& Rt modulo the ideal (A + Bt). Our
goal is to give a criterion when an element [rg + r1t] € H[n] belongs to the commuta-
tive subalgebra Hy[n] generated by H*[r] and a™' € H|[r]. First, observe that, with
identification (9.5), we have

Hylr]=Z R/(R N (A+ Bt)) . (9.6)
To characterize the elements of Hy[w| we define
J=(reR:ro+rtec(A+ Bt) for somery € R) .

Note that » € J < rt = R modulo (A + Bt). Hence J is an ideal of R such that
RN (A+Bt) C J. (The last inclusion follows from the fact that for any r € R N (A+ Bt),
rt € (A+ Bt), because (A+ Bt) is an ideal of H[F], so rt = 0 modulo (A+ Bt).) Moreover,
it is immediate from (9.5) that

[7‘0 + Tlt] € H()[’]T] &S red. (97)

To make (9.7) an effective criterion we need to give generators of J as an ideal in R.
First, by definition, B € J. On the other hand, we have

(A4 Bt)t = B(y* — 1) + At
t(A+Bt) =tA+tBt = A%t + §(A) + B (y* — 1) + §(B)t
=0(A)+ B (y* — 1) + (A” + §(B))t
t(A+ Bt)t = (A7 +6(B))(y* — 1) + (6(A) + B (y* — 1)t
where A% := o(A), etc. Hence J also contains the elements A, A2 +6(B), §(A)+ B (y?—
1), A — §(B?) and §(A%) — B(y* — 1). Now, by (9.3), the last two elements coincide

with the previous and hence are redundant as generators; on the other hand, it is easy
to see that the rest do actually generate J: i.e.,

J = (A, B, A° +§(B), §(A) + B°(y* — 1)) (9.8)

Let us assume that 7 admits a palindromic presentation, i.e. the defining relation
wy = wp of 7 is such that the elements w; and wsy are both palindromic as words in a
and b. Then v(w;) = wy and y(ws) = we and hence y(w; — wg) = w; — wa, where v is



Y. Berest, P. Samuelson / Journal of Algebra 500 (2018) 644—690 689

the canonical anti-involution fixing a and b. The last condition implies that ¢tB = Bt in
H[F] or equivalently,

B =B. (9.9)
In this case, the ideal J simplifies as follows
J= (A, B, A%, 6(A)) . (9.10)

We summarize the above observations in the following Proposition which is the main
tool used in Sections 5 and 7.

Proposition 9.7. Let m = (a,b : w1w2_1> be a group with two generators and one relator.
Let wy —wy = A+ Bt € H[F]. Then

(1) H[r] = R[t;0,0]/(A+ Bt,t? —y*>+1) and Ho[r] = R/(R N (A+ Bt)).
(2) An element [ro + rt] € H[n] belongs to Ho[r| if and only if

reJ= (A, B, A% +§(B), 6(A)+ B (y* — 1)) .
(3) If the presentation of m has a palindromic presentation, then J in (2) is given by
J= (A, B, A%, 6(A)) .
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