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Abstract

In (Compos. Math. 152(7): 1333-1384, 2016), Berest and Samuelson proposed a
conjecture that the Kauffman bracket skein module of any knot in 3 carries a natural
action of a rank 1 double-affine Hecke algebra SH, ;, ;, depending on 3 parameters
q, 11, tr. As a consequence, for a knot K satisfying this conjecture, we defined a three-
variable polynomial invariant JnK (g, t1, tp) generalizing the classical coloured Jones
polynomials JnK (g)- In this paper, we give explicit formulas and provide a quantum
group interpretation for the polynomials J X (g, #1, ). Our formulas generalize the so-
called cyclotomic expansion of the classical Jones polynomials constructed by Habiro
(Invent. Math. 171(1): 1-81,2008) : as in the classical case, they imply the integrality of
J,f( (g, t1, r2) and, in fact, make sense for an arbitrary knot K independent of whether
or not it satisfies the conjecture of Berest and Samuelson (Compos. Math. 152(7):
1333-1384, 2016). When one of the Hecke deformation parameters is set to be 1, we
show that the coefficients of the (generalized) cyclotomic expansion of JnK (g, 1) are
expressed in terms of Macdonald orthogonal polynomials.
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1 Introduction and statement of results

One of the most interesting ‘quantum’ invariants of an oriented 3-manifold M stud-
ied extensively in recent years is the Kauffman bracket skein module K, (M). This
invariant—introduced by Przytycki [21] and Turaev [26] in the early 1990s—is defined
topologically as the quotient vector space spanned by all (framed unoriented) links
in M modulo the Kauffman skein relations depending on a parameter g. In [1], the
first and third authors conjectured that the skein module K, (M) of the complement
Mg = §3 \ K of a knot in $3 carries a natural action of a rank one (spherical)
double-affine Hecke algebra SH, 4, ,, which depends—in addition to the ‘quantum’
parameter g—on two new ‘Hecke’ parameters #; and #» (see Conjecture 2.12). Our
conjecture boils down to the assumption that K, (M) possesses a certain symmetry
of algebraic nature that allows one to deform the topological action of the skein alge-
bra K, (0 M) of the boundary 2-torus into the action of SH, ;. We verified our
conjecture in a number of nontrivial cases, including torus knots and some (nonalge-
braic) 2-bridge knots (see [1,2]). An important consequence of this conjecture is the
existence of polynomial knot invariants JnK (g, t, ) € (C[qil, tlil, tzil] depending
on the three variables g, t1, f,, which specialize (when #; = #, = 1) to the classical
(slp, coloured) Jones polynomials JnK (g). We call JnK (g, t1, 1) the generalized Jones
polynomials of K.

The goal of this paper is to give an explicit formula for the polynomials J X (¢, t1, )
generalizing the so-called cyclotomic expansion of the coloured Jones polynomials
JK(q) discovered by K. Habiro. We recall that Habiro proved in [8] the following
remarkable theorem.

Theorem 1.1 ([8]) For any knot K in S3, the n-th coloured Jones polynomial of K can
be written in the form

K@) = cnini@HE (9 (1.1)
i=1

where Hili (@) € Z[g*" are integral Laurent polynomials depending on the knot K
(but not on the ‘colour’ n), and the coefficients c, ;—1(q) are independent of K and
given by the elementary formulas

1 n+i—1
ni-10q) == =—= l_[ @ —q?"), 1<iz<n (1.2)
4 4 p=n—i+1

Following [6], we refer to Hili 1(q@), i = 1, as the Habiro polynomials of K. It is
not hard to show that the Hl.li 1(g)’s always exist as rational functions in Q(g); the
nontrivial part of Theorem 1.1 is that these rational functions are actually Laurent
polynomials in Z[g*!]. The coefficients c, ;_(q) are called the cyclotomic coeffi-
cients: besides explicit formulas (1.2) it is often convenient to define them in terms of
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generating functions which can be written in the following form:

o

det Byi(g; A) .
E Cni—1(@A" = —21-_[1 , i>1, (1.3)
n=0 N=1VYN

where B»;(q; ) is the (2i x 2i)-matrix

0w 0al 0 o
Bi »v1n 0 0 ---0 O
B 0 yp 0 ---0 O
B 0 0 y3 ---0 0 (1.4)
Baici 0 0 O --- 0y
with entries
) ._ (_pyi-k| 21 ._ _ 2N, 2N -1
a,’ = (=1 i—k |, By =I[Nlp2, yw:=¢" +q —A—=A1 .
q
(1.5)

(See Sect. 2 for notation.)

Next, we recall the construction of the generalized Jones polynomials JnK (g,t1,12)
from [1]. The starting point for this construction is a well-known topological formula
(due to Kirby and Melvin [12]) that expresses the classical coloured Jones polynomials
J,,K (¢) in terms of the Kauffman bracket skein module K, (M ). To give this formula
we note that K, (M) carries a natural action Kq(Tz) x Kq(Mg) = K,(Mg) of
the skein algebra Kq(Tz) of the boundary torus 72 = d Mk, and there is a natural
Clg*")-linear pairing

(= =) : Kg(S' x D) @k, (12) Ky(Mk) — Ky($) =Clg™']  (1.6)

induced topologically by gluing the solid torus S' x D? to the knot complement Mg
along the common boundary 72 = S! x S! to obtain the 3 (see Sect. 2.1.2 for more
details). The Kirby—Melvin formula reads (cf. Theorem 2.7):

JK @) = ()" Nz, Sumi (L) - @), (1.7)

where S,_1(L) € Kq(Tz) is the (n — 1)-th Chebyshev polynomial evaluated at the
(0-framed) longitude L of T? viewed as an operator in Kq(Tz) acting on a distin-
guished element (the ‘empty link’) @ in K, (Mg ). Now, the main conjecture of [1]
(see Conjecture 2.12 in Sect. 2.3) asserts that the action of K|, (T?) on K, (Mk) admits
a canonical deformation to an action of the double-affine Hecke algebra SHg 4 1, »

and pairing (1.6) deforms toa C[g*!, !, £5°']-linear pairing balanced over SH, 1, 1,
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(c¢f. Lemma 3.1):

(— =) Kg(S' x D?) ®syy,, . Kg(Mg) — Clg*!, i, i1 (1.8)

q,11.12
Moreover, the longitude operator L € Kq(Tz) appearing in (1.7) has a natural ana-
logue (deformation) in SH, 4,1, —the so-called Askey-Wilson operator Ly, ;, (see
[19])—that specializes to L when #; = f, = 1. Having all ingredients in hand, we can
deform Kirby—Melvin formula (1.7) and define polynomials (cf. Definition 2.13)

IK (g, 0, 10) = (D" NS, Su1(Liy.1) + D), (1.9)

where -; stands for the deformed action of SH, 4, on K ,(Mk). By construction,
JnK (g, t1, ) specializes to JnK (g) whent; = t, = 1; however, formula (1.9) defining
JK (g, t1, ) makes sense only if Conjecture 2.12 holds true.

The main result of the present paper can now be stated as follows.

Theorem 1.2 Assume Conjecture 2.12 holds for a knot K C S3. Then generalized
Jones polynomials (1.9) can be written in the form

n
IK@ 1,0 =) Eici(g. 0, ) HE () (1.10)

i=1

where Hl.lil (q) are the Habiro polynomials of K. The coefficients ¢, i—1(q, t1, 12) are
independent of K and determined by the following generating functions:

o _
- det By (g, t1, t2; A) .

Do Gnici(g )i = == i (.11

n=0 N=1VN

where Bz,’ (g, t1, 12; A) is the (2i x 2i)-matrix

0 aY) @

0 ay 0 a;

B1 Y1 0 0 0 0

B2 b 1) 0 0 0
0 0 (1.12)

Bz  bu b P
Bai—1 bai—1,1 bai—12 bai—13 -+ bai—12i-2 V2i-1
with entries oc,g) and By the same as in (1.5) and b, ny and yn given by

by = (=D ({p+ Nlg = (p = Nlg) (s — 1), k=p—N+1 (mod 2)
=g N g™y — - l<p,N<2i—1 (1.13)
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(In (1.13) we use the notation {n}, :=g" —g~", cf. Sect. 2.)

Note that, for #; = #, = 1, matrix (1.12) reduces to (1.4), so comparing generating
functions (1.3) and (1.10) shows ¢, ;—1(q, 1, 1) = c,,i—1(g) as required.

One important consequence of formula (1.11) is that the generalized cyclotomic
coefficients are integral, i.e. ¢;,j—1 € Z[qil, tlil, tzil] (¢f- Remark 3.12). Theorem
1.2 thus says that each JX (¢, 1, 1) is a linear combination of the Habiro polynomials
with integral coefficients'. Together with Habiro’s Theorem 1.1, this implies

Corollary 1.3 The generalized Jones polynomials are integral: for alln > 0
IK(q.n,0) € ZIgT, 1 1]

In the special case when #, = 1, we can compute the (generalized) cyclotomic
coefficients ¢, x—1(q, t1, 12) in a simple closed form using the classical Macdonald
orthogonal polynomials.

Theorem 1.4 For (11, 1) = (¢, 1), the (generalized) cyclotomic coefficients in (1.10)
are given by

. pn—i(qut_l; q4i|q4) ! q2k_lt_1 _ q—Zk—Ht
Cni—1(g,1) = Cn,i—1(q)
k=2

pn_i(qu; q4i|q4) q2k7] _ q72k+1

(1.14)

where p, (z; Blq) are the Macdonald symmetric polynomials of type A1 and c;, ;i —1(q)
are classical cyclotomic coefficients (1.2).

We remark that the Macdonald polynomials p,(z; B|g) can be expanded in terms
of g-binomial coefficients, so formulas (1.14) are entirely explicit (see Remark 3.12).
The Habiro polynomials are known for certain families of knots (see, e.g. [8] and
[16]). In those cases, Theorem 1.4 gives a closed-form expression for generalized
Jones polynomials.

Example 1.5 1. For the unknot, Hé] =1 and H,f] = 0 forn > 1. In this case,

p-1@®t 1 qtgh ¢ — g7 () — (P H ™

I (q.)=Cro(g. =

" ! po-1(a% q*la®)  q* —q72 R
where we have used a well-known evaluation formula for Macdonald polynomials
Pn—1(z; q4|q4) = ("— z‘”)/(q2 — q‘z) (see [3, p. 202]). This recovers the result
of [1, Thm. 6.10].

2. For the figure eight knot, H”K = 1 for all n > 0. Hence, by Theorem 1.4,

n 2i.—1.  4i| 4 L 2k—1,—1 —2k+1
K Pn—i(@7't™ 59" |q") qg= 1 —q t
Tu (q. 1) = Z 1_[ gF—T — g2kt | misl
i k=2

1 By contrast, the polynomials J,lK (g, t1, t7) cannot be written, in general, as linear combinations of the

classical coloured Jones polynomials JnK (g) with coefficients in (C[q:H s tlil, tzil] (cf. Remark 3.4 in
Sect. 3.2).
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Note that when ¢ = 1, this formula specializes to the well-known formula for the
Jones polynomials of the figure 8 knot,

n 1 n  n+i—1
Jn(q) = ch,i—l == Z 1_[ @ —q7")
i=1 79 "0 p=n—i+l

The last result that we want to state in Introduction provides an interpretation of
our generalized Jones polynomials JX (g, 71, #2) in terms of quantum groups: more
precisely, we express JnK (g, t1, tp) via the universal sl invariant J K of the knot K
introduced by R. Lawrence [14,15] (see also [7,8]). Recall that J K takes values in the
centre Z (Uj,) of the (h-adically) complete quantized enveloping algebrald), := Uy (sl)
defined over the formal power series ring Q, = Q[[/]] (see Sect. 3.4). Wesetg = /4
and let Ry 1,1, := Ko(RepUp) ®z Q(q)[tlil, tzil] denote the representation ring of
the category Rep(Uf;,) of finite-dimensional {-modules over the commutative ring
Q(q)[tlil, tzil]. The ring Ry 1, 1, is a free module over (@(q)[t(;tl, tzil] generated by
the classes {[V,]},>1 of irreducible representations of U,; it comes together with a
natural bilinear map

try(— =) 1 Un X Ry, — Qule!, 157 (1.15)

defined by quantum traces of elements of U4, acting on finite-dimensional modules
(see Sect. 3.4). If z € Z(Up,) is a central element of U/, we write

2=ty (2 =)t Ry — Qulti", 1 (1.16)
and note that, by the Schur lemma,
Z(VuD) = [nl2 20 (1.17)
where z,, is the scalar in (Q, by which z acts on the irreducible representation V,,.

Now, to state our theorem we define a sequence of functions a, , € Q(g) [tlil, tzil]
(indexed by the integers n > 1 and p > 0) inductively, using the recurrence relation:

ant1,p = Apan,p—1 + (Ap — Api1)anp + A—pan ptr1 — an—1,p  (1.18)
with ‘boundary’ conditions
a1=1, an0=0, ay,=0 (1= p), (1.19)
where

_1.—1 _ -1
¢ =g+ -1

AP = q2p—1 _ ql—Zp
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Theorem 1.6 Forn > 1, let [Vn] denote the class in Ry 1,1, given by the formula

[Val:=) (=1)""ay, , [V,] (1.20)

p=1

where the coefficients a, p = an, p(q, t1, 12) are defined by (1.18) and (1.19). Then
1K@, n,0) = TX V], (1.21)

where JX is quantum trace map (1.16) defined by the universal invariant J¥ .

Note that when t; = 7, = 1, we have A, = 1 for all p, and it follows easily from
(1.18) and (1.19) that a, p is equal to 1 for p = n and is 0 otherwise. Formula (1.21)
thus reduces to JX (¢) = JK[V,], which is a well-known formula for the coloured
Jones polynomials. For arbitrary ¢1, r, € C*, one can easily compute from (1.18) the
first ‘top” terms of the sequence {a,, p}:

Ap.pn = ArAz - Ay, (n>2)
Apn—1 = A2A3---A,_1(A] — Ay)

By (1.20), this gives
Vil=[Vil,  [Val = Aa[Val + (A2 — AD[V1] (1.22)

In general, for n > 3, the recursive formulas for a,, , are more complicated: in fact,
we could not find a nice closed-form expression for these coefficients (which seems
like an interesting problem). The origin of recurrence Eqs. (1.18) and (1.19) and their
relation to the double-affine Hecke algebra J77 ;, ;, is explained in the proof of Lemma
3.3.

We conclude this Introduction with some questions and motivation for studying our
generalized Jones polynomials JX (g, #1, #,). The main result of this paper (Theorem
1.2) shows that JX (g, t1, 12) can be expressed in terms of Habiro polynomials HX | (¢),
and hence, strictly speaking, are not new knot invariants. Although this is certainly
disappointing, there are still good reasons for studying these polynomials.

First of all, notice that the right-hand side of formula (1.10) of Theorem 1.2 makes
sense for an arbitrary knot K C S3, even though the polynomials JnK (q,t1, 1) are
defined only under the assumption that K satisfies Conjecture 2.12. Hence, the very
existence of a formula like (1.10) for JnK (g, t1, tp) can be viewed as a further evidence
for the main conjecture of [1].
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Next, we remark that the relation of JnK (g, 11, to) to the classical Jones polynomials
JnK (g) is somewhat more subtle than that to the Habiro polynomials. While the values
of JnK (g) for all ¢ € C* can be directly recovered from JnK (g, 1, 12) (by simply
specializing 1 = #p, = 1), the converse is not true?: for generic #1 and f,, the values
of JnK (g, 11, ) at roots of unity, g = €™ IN/2n are not determined by the values of
JK(q) at these g’s. This is because universal formulas (3.3), expressing JX (¢, 11, 12)
in terms of JnK (g), involve rational functions as coefficients which have poles exactly
at ¢ € {"N/?" . N > 0} (cf Remark 3.4). The nontriviality of this relationship
between JnK (g,t1, 1) and JnK (g) was already demonstrated in [1], where we used
the properties of JnK (g, 1, 1) to prove some conjectures about the classical Jones
polynomials JnK (q) (see, e.g. loc.cit., Theorem 2 and Theorem 3).

Finally, we mention that the values of the coloured Jones polynomials JX (¢) at
roots of unity—called the Kashaev invariants—play an important role in quantum
topology. In particular, they appear in the celebrated Volume Conjecture that predicts
a deep connection between quantum and geometric invariants of knots (see [9], [17]
and also [6], [18] for more recent results). In its original form, this conjecture reads:

Conjecture ([9,171) For any hyperbolic knot K in S,

JnK(erri/2n)

1
T | = — Vol(Mg) (1.23)

21

where Vol(M) is the (hyperbolic) volume of the knot complement Mg = S3\ K.

The existence and the integrality property of the generalized Jones polynomials
JnK (g, t1, 1) established in this paper naturally lead us to the following

Question Does the Volume Conjecture limit

lim 2 log Ty €7, 11, 1)

- 1.24
n—o0 1 JU (™2 11, 1) (129

exist for some (1, t) € (C*)2 other than (11, t») = (1, 1)? If so, what is its geometric
meaning?

The fact that the values of JnK (¢, 11, 1) at roots of unity are not determined by those
of JX(g) seems to indicate that the above question is interesting and far from being
trivial. The closed formulas for JX (g, #,1,) given in this paper open the way for
studying limit (1.24) analytically, at least in case of simple knots when the Habiro
polynomials are explicitly known (see, e.g. Example 1.5). We plan to address this
question in our future work.

2 For this reason and also to avoid confusion with terminology of [1] we will keep referring to JnK (g, t1,1)
as ‘generalized’ Jones polynomials, even though they are not generalizing the classical Jones polynomials
in the same way as other multivariable polynomial knot invariants (arising, for example, from Khovanov
homology).
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The paper is organized as follows. In Sect. 2, we introduce notation and review basic
results of [1], including the main conjecture of [1] (see Sect. 2.3) and the definition
of the generalized Jones polynomials JnK (g, t1, 1) (see Sect. 2.4). Section 3 contains
the proofs of the 3 theorems stated in Introduction; it also fills in some details and
provides definitions needed for the precise statements of these theorems.

2 Preliminaries

In this section we provide some background material needed for the present paper.
This includes basic properties of Kauffman bracket skein modules and double-affine
Hecke algebras, as well as a summary of main results of [1]. Throughout we use the
following standard notation:

N E— _ {nlq [ } S ln—k+ 1,
(n}lg :==4q q ", [n]y = \ ]!:[1 kT l]q (n,m € N)

2.1 Kauffman bracket skein modules

A framed link in an oriented 3-manifold M is an embedding of a disjoint union of
annuli S! x [0, 1]into M, considered up to ambient isotopy. In what follows, the letter
g will denote either a nonzero complex number or a formal parameter generating the
field

Cq =C(q)
(we will specify which when it matters).
Let 2 (M) be the vector space over C, spanned by the set of ambient isotopy

classes of framed unoriented links in M (including the empty link &). Let £/ (M)
denote the smallest subspace of .Z’(M) containing the skein expressions in Fig. 1

-— -—
N PR ~

PO -
/ \ \ / \\ l\/\\
1 \ 1 1
l h— I

1 q \ Il - q_l l\ /\ II
/
\\ ,/ \\/\//

Fig.1 Framed skein relations
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where the diagrams represent embeddings of annuli which are identical outside of
the oriented 3-ball represented by the dotted circle.

Definition 2.1 ([21]) The Kauffman bracket skein module of an oriented 3-manifold
M is the quotient vector space K, (M) := Z(M)/£'(M). It contains a canonical
element @ € K, (M) corresponding to the empty link.

Remark 2.2 1f F is a surface, we will often write K, (F') for the skein module K, (F x
[0, 1]) of the cylinder over F.

In general, K, (M) carries only a linear structure. However, the assignment M —
K, (M) is functorial with respect to oriented embeddings, which implies the following
facts:

(1) If M = My U M, then K, (M) = K,(M) ® K, (M>).
(2) For any surface F, the embedding [0, %] L [%, 1] — [0, 1] induces a map

' Ky(F) ® Ky(F) — Ky (F)

which make K, (F') an associative unital algebra (with unit &).
(3) If oM = F and if M = F x [0, 1] U N represents a decomposition of M into a
tubular neighbourhood of the boundary and a retract N = M, the map

m: Ky (F) ® Kg(M) — K, (M)

gives M the structure of a left module over K, (F).

Example 2.3 An original motivation for defining K, (M) was a theorem of Kauffman
[10] asserting that the natural map

Cy > Ky (8, 1o

is an isomorphism of vector spaces, and that the inverse image of a link L in S3 under
this isomorphism is the Jones polynomial of L. Clearly Kq(S3) is of dimension at
most 1 over C, thanks to the skein relations; the key point of Kauffman’s theorem is
that this map is injective.

Example 2.4 Let M = S! x D? be the solid torus, or complement of the unknot. If x
is the nontrivial loop, then the map C,[x] — K, (S ' D?) sending x” to n parallel
copies of x is surjective (because all crossings and trivial loops can be removed using
the skein relations). Less obvious is the fact that this map is injective and thus an
isomorphism (see, e.g. [24]).

2.1.1 The Kauffman bracket skein module of the torus

Recall that the quantum Weyl algebra (or quantum torus) is defined by

A (C[q:tl]<X:t1, Y:tl)
77 (XY —q2YX)
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Note that this algebra carries a Z, action defined by the automorphism (X, Y) —
x~Lyh.

We now recall a theorem of Frohman and Gelca [5] that gives a connection between
Kq(TZ) and the invariant subalgebra AqZZ. Let 7, € C[x] be the Chebyshev polyno-
mials defined by

Tv=2, T1=x, Thy1=xT,—T,_1.

If m, 1 are relatively prime, write (m, /) for the m, [ curve on the torus (the simple
curve wrapping around the torus / times in the longitudinal direction and m times
in the meridian’s direction). It is clear that the links (m, )" span Kq(Tz), and it
follows from [24] that this set is actually a basis. However, a more convenient basis
is given by the elements (m,l)7 = Td((%, ‘l—l)) (where d = gcd(m,[)). Define
ers =q " X'Y® € Ay, which form a linear basis in A,.

Theorem 2.5 ([5]) The map Kq(Tz) — Agz given by (m, )t — ep1+e_m —1isan
isomorphism of algebras.

Remark 2.6 If K is an oriented knot, then the meridian/longitude pair (m,[) gives a
canonical identification of S' x §! with the boundary of S3\ K. If the orientation of K
is reversed, this identification is twisted by the ‘hyper-elliptic involution’ of S! x !
(which negates both components). However, this induces the identity isomorphism on
Kq(T2 x [0, 1]), so the A?Z—module structure on Kq(S3 \ K) is canonical and does
not depend on the choice of orientation of K.

2.1.2 Topological pairings and coloured Jones polynomials

Let M be any closed 3-manifold. If (M7, M>) represents a Heegaard splitting of M,
that is, M1, M> C M are oriented submanifolds with boundary satisfying

MiUM, =M MiNMy=0My=0M, =F,

the inclusion ¢ : M1 U My — M determines by functoriality the map

Ky() 1 Kg(M) ® Kg(M2) - Ky(M),  [L1]®[L2] = [L1 ULyl (2.1)
where [L1] and [L,] are isotopy classes of links in M and M>, respectively. Now put an
orientation on F as the boundary of M5, and let Ny C M be a tubular neighbourhood
of F with respect to this orientation. Let ¢; : Np — M;,i € {1,2} be the natural
inclusions. As usual, > gives M> the structure of a left module over K, (Nr). However,
as the orientation of F is reversed from that of d M, the map ¢ gives K, (M) the

structure of a right module over K, (NF). As a skein in Ny can be pushed into either
M or M, this tells us that (2.1) actually factors as a map

Kq(t) : Kq(Ml) ®Kq(F) Kq(MZ) - Kq(M)
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37 Page 120f32 Y. Berest et al.

If M = S3, then M 1 is the tubular neighbourhood of a knot K and M, = S3 \ K, and
we refer to this map as the ropological pairing

(= =) : Kg(S' x D) @k, 12) K4(S* \ K) = Ky (5%) = C, (2.2)

The coloured Jones polynomials J X (¢) € C[g*!]ofaknot K C § 3 were originally
defined by Reshetikhin and Turaev in [22] using the representation theory of U, (s2).
Here we recall a theorem of Kirby and Melvin that shows how JX () can be computed
in terms of the topological pairing.

If D> x S! is a tubular neighbourhood of the knot K, then we identify K g (D? x
shy ~ Cylul, where u € Kq(D2 x S1) is the image of the (O-framed) longitude
l € Ky B(S3\ K)). Let S, € C,4[u] be the Chebyshev polynomials of the second
kind, which satisfy the initial conditions So = 1 and S; = u, and the recursion
relation Sy 41 = uS, — Sp—1.

Theorem 2.7 ([12])If @ € Kq(S3 \ K) is the empty link, we have

IE (@) = (1" S 1(w), @)

As the zero-framed longitude / considered as an element in the skein module of the
boundary torus Kq(Tz) is identified with Y 4+ ¥ ~! under Theorem 2.5, we have

)"k =@ - S+ Y, 0 = (2, S +Y . 2)  (23)

Remark 2.8 The sign correction is chosen so that for the unknot we have J,,(g) =
[n,2 = (¢*" —q~*)/(q* — q~?). Also, with this normalization, J§ (¢) = 0 and
J IK (g) = 1 for every knot K. This agrees with the convention of labelling irreducible
representations of U (s2) by their dimension.

2.2 The double-affine Hecke algebra

In this section we define a 5-parameter family of algebras 7 ,—called the double-
affine Hecke algebra of type CV C;—originally introduced in [23] (see also [19] and
[1] for our present notation). This family represents the universal deformation of
the algebra C[X*!, Y*!] x Z,, the crossed product of the Laurent polynomial ring
C[XZE!, y*!], with Z, acting by the natural involution (see [20]). The algebra 7 ,
forg € C*andt = (11,12, 13, 14) € (CH*is generated by the elements T, 7>, T3, and
T, subject to the five relations

(T —t)(T +17H) =0
(T —)(T+1,') =0
(T3 —13) (T3 +13 1) =0

(Ts — 1) (Ty +1,1) =0
LWI3NhT, =¢q 24
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Recall that, by definition, the crossed product algebra A, x Z, is generated by
X, Y, s, satisfying

sX=X"1s, sy=v"1, s =1 XY =g4°YX.

Let D, .= Cy(X )Y*E/(XY — ¢?Y X) denote the localized quantum Weyl algebra
obtained from A, by inverting all (nonzero) polynomials in X. Note that the action of
Z extends to D, so that we can form the crossed product D, x Z>. Now, consider
the following elements in Dy X Z:

N nx +r
Ty :=t1sY + %(1 —s5Y)
gX —q'X~!
s 13 + 14X
T3 = t35 + W(l —5) 2.5

These elements are called the Dunkl-Cherednik and Demazure-Lusztig operators,
respectively. The next proposition establishes the relation between the algebras J77
and A, X Z;.

Proposition 2.9 ( [23], see also [19, Thm. 2.22]) The assignment
T — fl, 3 — f3, T — qfl_lx, Ty — X_lf'?’_l (2.6)

extends to an injective algebra homomorphism ¢, ; — Dy % Zs.

Note that A; x Z; embeds in Dy % Z via the natural localization map. When
t = 1, the assignment in (2.6) becomes

T'—sY, Tzr—s, ThrqgsYX, Ty sX 2.7

and the image of J7; | coincides with the image of A; x Z. Thus, using (2.7), we
can identify J%, | = A, X Z,.

Remark 2.10 The algebra 777 ; is also generated by the (invertible) elements
X:=¢ ', Y:=TT, T:=T;
which satisfy the relations

XT=T"'x"-4
T-ly=vT+4
T? =1+nT
TXY =¢’T 'YX — ¢*’1X —qbr — 14Y (2.8)

where 7; = 1; — tfl . With this presentation it is immediate that S | = A, X Z. Note
that while the operator X does not depend on #, the operator ¥ does. We will write this
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last operator as Y; when we want to stress its dependence on ¢. Explicitly, we have
Y, = f3 f'l

where 7} and T3 are given by formulas (2.5).

The following simple observation can be regarded as a motivation for the main
conjecture of [1]. For f(X) € C(X), define the operators

Y fX)=[f@q°X), X-fX)=Xf(X), s-fX)=fx""

These operators give C(X) the structure of a left D, < Z-module. The subspace
C[X*!] ¢ C(X) is obviously preserved by Ay X Zy and is called the polynomial
representation. A remarkable fact (which can be checked by direct calculation) is that
C[X*!] s also preserved by ;. (for all 1) under the action of (2.6). This gives the
polynomial representation of % ;, which can thus be viewed as a deformation of the
polynomial representation of A, X Z;.

The element e := (T3 + 15 ! )/ (3 + 15 1) is an idempotent in 77 ;, and the algebra
SH, = ety ceis called the spherical subalgebra of 4 ;. It is easy to check that e
commutes with X + X! and that the subspace e - CIX* c Clx*is equal to the
subspace C[X + X~!] of symmetric polynomials in C[X*!]. The spherical algebra
therefore acts on C[X + X '], and this module is called the symmetric polynomial
representation of S ;.

2.3 Main conjecture of [1]

We firstrecall that the algebras A, x Z; and Ag ? are Morita equivalent. More precisely,
if g — 1 is invertible, then the functors

eA ®4 — : Mod(A) - Mod(eAe)
Ae ®ege — : Mod(eAe) — Mod(A) 2.9)

are mutually inverse equivalences of categories.

We can identify (A, % Z;)e = A, as left A3q X Zn-modules and eAe = Aq as
C -algebras Let K be aknotin $3, so that K;(S”\ K) has the canonical structure of a

left A -module. Applying the previous proposition, we may form the nonsymmetric
skein module K (s3 \ K)
K, (S3\ K) := 4, ® K, (S*\ K).

This is naturally a left A; X Z;-module, and so we may localize it at all nonzero
polynomials in X. Call the resulting D, X Zs-module K ZOC(S3 \ K), i.e.

Kl (S*\ K) i= (Dy % L) @4, 2z, Kg(S*\ K)
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By Proposition 2.6, I/(\é""(S3 \ K) is then a J% (1, 1,,13,1,)-module.

Example 2.11 Let K be the unknot. In this case, K, ($>\ K) = C,[X*']asaC,[X*']-
module. The action of the generators Y, s € A; % Z is given by the formulas

Y-f(X):=—f(q@*X), s-fX)=-f(x"h

The localized skein module K (II"C(S3 \ K) is simply C,(X). Thus in this case the
natural localization map

n: Kg($*\ K) — Kl°($° \ K)

is injective, and we can identify K, q (83 \ K) with its image under 1. We want to know

if the 777 ; action preserves this image as in the case of the polynomial representation.
Recall that by Remark 2.10, the algebra 777 ; is generated by the operators X, Ty, T3,

which act on polynomials by formulas (2.5):

N . 1— 2nX2n

Ty X" =6, X ™" + g " X " (g2 X% + gl X)— 1~

1— 6]2 X2
Xt X
- X'"=-6X"4+@G+1X) ——
3 X+ B+ uX)——r

We see that T always preserves I?q ($3\K) C K ([1"C(S3 \ K), while T3 preserves this
subspace only when 13 = 74 = 1. Conjecturally, this behaviour generalizes to all
knots. To be precise, we have

Conjecture 2.12 ([1]) For all knots K C s3, the following are true:

(1) The localization map n : I/(\q(S3 \ K) — I?[IIDC(AS'3 \ K) is injective.
(2) The natural action of 7 (1) 1,,1,1) on I?é"" (S3\ K) preserves the subspace Eq ($3\
K), the image of the localization map 1.

By symmetrization, the second statement of Conjecture 2.12 implies that the spher-
ical subalgebra SJ% ;, 1, 1,1 acts on the skein module K, (83 \ K) itself. It is shown in
[1] and [2] that this holds in many cases: for the unknot, figure eight, and (2, 2p + 1)-
torus knots for generic ¢, and for 2-bridge knots, all torus knots, and connect sums of
such when g = —1.

2.4 The generalized Jones polynomials

An interesting consequence of Conjecture 2.12 is the existence of a multivariable
generalization of the (coloured) Jones polynomials JX (¢). Recall, by Theorem 2.7,
JnK (g) can be computed using the natural (topological) pairing of the Kauffman bracket
skein modules, by the Kirby—Melvin formula (cf. (2.3)):

JK@ =12, Sy + 77 - o) (2.10)
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Under Morita equivalence 2.9, the topological pairing (—, —) extends uniquely to a
bilinear pairing of nonsymmetric skein modules?:

(—, =) : Ky(S' x D?) x K,($*\ K) — C, (2.11)

and formula (2.10) still holds for this extended pairing (see [1, Cor. 5.3]). We note that
by construction, this bilinear pairing is in fact balanced over A; X Z, i.e. it induces
a C,-linear map

(— =) 1 Kg(S" x DY) @4, xz, Kg(8*\ K) = C4 (2.12)

The right action of A, x Zy on K,(S' x D?) in (2.12) is described explicitly in [1,
Lemma 5.5]. Specifically, K q(S ' x D?) can be identified with the space of Laurent
polynomials C,[U +1 with A4 X Z acting by

fW)-Y:=fwy-u!
fU)-X :=—f(q*U)
fU)-s:=—fU™hH (2.13)

The distinguished element (‘empty link’) & in qu (8! x D?) corresponds under this
identification to the element U — U~ ! € CylU +17 which we still denote by @.

When a knot K satisfies Conjecture 2.12, the nonsymmetric skein module K g ($3\
K) carries a natural action of the DAHA 7, ;, ;, and the ‘longitude’ operator Y admits
a natural deformation to the DAHA operator Y;, ;, := 1371 (see Remark 2.10). This
motivates the following.

Definition 2.13 ([1]) Assume that K C S° satisfies Conjecture 2.12. Then we define
the generalized Jones polynomial of K by

I 1 0) = (D)@, Sus1 (Y + Y1) - @) (2.14)

where (—, —) is extended topological pairing (2.11).

Note that formula (2.14) makes sense precisely because, by Conjecture 2.12, the
skein module qu ($3 \ K) is a module over J7 ; ;,- When t| = f» = 1, it reduces
to Kirby—Melvin formula (2.10), and we have JnK g,1,1) = JnK (g). The general-
ized Jones polynomial JnK (g, 11, t2) can be thus viewed as a two-parameter (‘Hecke”)
deformation of JX (¢).

3 Proofs

In this section, we prove our three main theorems stated in Introduction.

3 Abusing notation, we denote the extended pairing of nonsymmetric skein modules in the same way as
the ‘symmetric’ (topological) one.
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3.1 The deformed pairing

To compute generalized Jones polynomials (2.14), we need a ‘deformed’ version of
formula (2.3), which leads us to the natural question: Is topological pairing (2.11)
balanced over J7 ;, 1, for t1, t» # 1? The (affirmative) answer to this question is the
starting point for our calculations:

Lemma 3.1 Assume that a knot K C S satisfies Conjecture 2.12. Then, for any
t1, tp € C*, pairing (2.11) induces a linear map

(= =) 1 Kg(S' x D) @y, . Kg(S\ K) — Cylt1.12) (3.1)

1.0
where the (right) 75 1, 1,-module structure on qu (S' x D?) is defined by (2.13) via
Demazure-Lusztig and Dunkl-Cherednik operators (2.5).

Proof Recall that pairing (2.11) is balanced over A, x Zj (see (2.12)). To prove the
lemma, it is sufficient to show that it is balanced over an invertible generating set of
F,(11,12)» which we take to be X, s, and the operator

¢’ X2 +qir X

T, =t1sY —
1 1S 1—q2X2

(1—sY)

Since the pairing is already balanced over s and X and Y, it will suffice to show it is

balanced with respect to F]—z)(z(l —sY). Since the image of I/(\q ($3\ K) is preserved

in its localization, if m € K, (S3 \ K) then there exists a unique m’ € Eq ($3\ K)
such that

A=sY)-m=1-¢g>X>-m'

Thus we can compute

(uk, 1—q—2x2(1 —sY)-m) = (U*, m').

On the other hand, acting on the right by the same operator gives

. 1 1

_ k
1
— k 22N,/
—(U'm7(1—qx)m>
— (Uk,m/)
This completes the proof of Lemma 3.1. O
Corollary 3.2 If K satisfies Conjecture 2.12, then
1K@ n.0) = (D)"ND - S (Y + Y, 2) (3.2)
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Proof Formula (3.2) is immediate from Definition 2.13 and Lemma 3.1. m]

3.2 Proof of Theorem 1.2

From now, we fix a knot K C S3 and (unless otherwise stated) assume that it satisfies
the conditions of Conjecture 2.12.

Lemma3.3 Foralln > 0,

n
K. n.0) =) (D" Pay p(q. 1. 1) TK (@), 33)
p=1

where the coefficients a,, , = an, p(q, 11, 12) are defined in Introduction (see (1.18)
and (1.19)).

Remark 3.4 We note that a, (g, t1, t2) in (3.3) are rational functions of ¢, and it is
by no means obvious that the right-hand side of formula (3.3) is polynomial in g. We
will show later—invoking the Habiro Theorem—that this is indeed the case for any
knot K, whether or not it satisfies Conjecture 2.12.

Proof of Lemma 3.3 Recall that under the identification qu(S Iy D?) CylU =17 (see
(2.14)), the empty link @ in qu (S2 X Dz) corresponds to the element U — Ul e
C,lU =19, The operators S,_1(Yy 1, + Ytlf}z) are invariant under (i.e. commute with)
the action of Z; on (C,,[Uil]. Hence, for all n > 1, we can expand (U — U

Sn1 (Vi + Y5 1) in Cg[UE!] as

1,12
n
U =U" Sy + Y1) =D an,(UP —UP) (3.4)
p=1

for some (uniquely determined) coefficients a,,, € C4(t1, t2). By Corollary 3.2, this
gives

Jn(g.t1.0) = (="M@ - Sy 1 Yy + Yy 1), D)

=" NU-U) Spm1(Yy + Y1), ©)

n
= (D)"Y a, ,(UP - U, @)
p=1

=Y =D)""ay , Jp(g)

p=1

where the last equality is the consequence of Kirby—Melvin formula (2.3) (cf. [1,
Lemma 5.6]). Thus, to complete the proof of the lemma it suffices to show that the
coefficients a,_ p in (3.4) are determined precisely by relations (1.18) and (1.19). This
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can be done by a lengthy but straightforward induction (in n) using the defining
relations S,, = uS,,—1 — S, for the Chebyshev polynomials. We leave this calculation
as an exercise for the reader. O

Combining formula (3.3) of Lemma 3.3 with Habiro’s expansion of the classical
Jones polynomials (see Theorem 1.1), we get

n n P
In(g 11, 0) = > (=" Pay p Jp(q) = > (=) Pay,p (Zcp,i_l Hi—l)

p=1

n 4 n n
=YY =0)'"Pay pep i1 Himp =) (Z(—l)”ﬂ’an,p Cp,i—l) Hi_y

p=li=1 i=1 \p=i

where H;_1 = H;_1(q) are the Habiro polynomials of the knot K and c), ;1 are the
classical cyclotomic coefficients defined by formula (1.2). Since ¢, ;1 = Ofor p < i,
we can rewrite the last formula in the form

n
Jn(g. t1,0) =Y Eni1 Hicy (3.5)
i=1
where
n
Cnict = Y (=" Pay pepio (3.6)
p=1

Now, to prove Theorem 1.2 we need to compute the generating functions G; (1) :=
Y o2 o €ni—1A". Using (3.6) we can write these functions in the form

Gi0) =) (=DPanpcpici(=1)", i=1 3.7)

n=0 p=1

Formula (3.6) suggests that G; (1) may be expressed in a simple way in terms of the
generating series of the double sequence {a,, p}:

oo (0.¢]
F(U,}) = Z Z an, pUPA" (3.8)
n=0 p=—00
which we define by formally extending the functions p — a, p to all integers p € Z
using recurrence relation (1.18) for p < 0. Note that, by symmetry of (1.18), we
actually have

Qn,—p = —Qy,p, VpeZ (3.9
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Together with ‘boundary’ conditions (1.19) this implies
Z an,pyUP = Z an, pUP = Zan L(UP —U™P)
p=—n
Hence (3.8) can be rewritten in the form

[e.e]

F(U, )\ = Z Zan,p(w’ —UP) | (3.10)

n=0 \ p=1

Remark 3.5 To reduce notation, for the rest of this section we write

{n} :=={n}y

Comparing (3.10) with formula (3.7) for i = 1, we see at once that
Gi(») = : F(- 9]
1 A q s
{2}
The next lemma extends this observation to all G;(A)’s.

Lemma3.6 Foralli > 1,

Gi(\) = {Z}Za(')F( >Ny (3.11)

where
<z> ik -1
= (=1 |: _k i| (3.12)

Proof Using the explicit formulas for the cyclotomic coefficients ¢, ;1 (see (1.2))
and the (skew) symmetry of the a,_ ,’s (see (3.10)), we write

n
> (=DPap pepi-1
p=1

{2} Z( DPan, p(2(p — (G = N} 2(p = DH2pMH2(p + D} - - 2(p + G = D)}

n

1
= an,p(2(p — (i — D)} {2(p — D} =gHP2(p + D} -+ (2(p + (i — D)}

p=—n

1
D) |: D anpUPR(p — (i — 1)} 2(p — DH2(p + D} -+ 2(p + (i — 1))}}

p=—00 U:—q2
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Since UP - f(X*) = UP f(—q~?P) for any f(X) € C[X*!], we can rewrite the
last sum in the form

n o0
1 .

Y (=DPap pepio1 = 3 > an P PO(X)

p=1 p=—00 U=—¢q2

where P (X) € C[X*!] are the Laurent polynomials defined by
i—1
PiX) =@ X =¥ X H@*X —g7x7%), iz

k=1

By formula (3.7), we get

1 .
(A = — ). pWD
Gi() = o [FU. =2 PO 0]

U=—q2

Writing the polynomials P (X) in the form
P(l)(X) — b(()l) _|_ Zbl(:)(sz + X*Zk)
k=1
we compute
. 171 .
FU, =) POX) = b FU, -+ Y b (F(q‘“‘U, 3+ F(g~*U, —A))

k=1

Now, substituting U = —g? and using the skew-symmetry F(U ') = —F (U) of the
generating series, we find

i
[Fw. - POX] =300~ Fg* 0 )
T k=1

Whence

i

1 . .
Gi) = 5 3o (0 = B) Fi=g?® D, )
k=1

To complete the proof of the lemma, it suffices to notice that
b b = Vizl, 1<k<i-1
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which can be seen easily from the formula

i—1 i
(X _ X—l)P(l)(X) — l_[ (q2kX _ q—zkx—l) — Zal(cl)(x2k—l _ X_2k+l).
k=—(i—1) k=1

This finishes the proof of Lemma 3.6. O

Thus, by Lemma 3.6, the generating functions G; () are determined by the values
of F(U,A) atU = —q2(2k’1) for k > 1. To compute these values we will use the
functional equation

FU. LN Yy +Y,,—r=2"H=0"-U (3.13)

which is equivalent to recurrence relations (1.18) defining the coefficients ay, ,. The
equivalence of (3.13) and (1.18) follows easily from formulas (3.4) and (3.10) and the
standard generating series of Chebyshev polynomials:

o
Y oS+ ==+ = —aTh
n=0

We need one more technical lemma.

Lemma3.7 Forany N € Z and any f(U) € (Cq[Uil],

[f(U) : (Ytl,tz + Ytl_,}z)]U=7q2N

=g +17'¢*M) f(=¢*)
N-—1
+ 0y 2p} (=g
p=0
N-—1

— by {2p+ 1} f(=g?P7VD) (3.14)
p=0

Proof Recall that the Dunkl-Cherednik operator Yy, ;, := Yy, 1,,1,1 is given explicitly
by the formula (cf. (2.5) and Remark 2.10):

Yoo =tY —aX)(Y —s)
where

ghX ' +06 _ f+n0@'X)
gX'—q¢7'X  1-(¢7'X)?

a(X) =
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For any k € Z, using (2.13) we compute
Uk . Ytl,lz — tl Uk71 _ a(_q2k)(1 + UZk—l)U—k

Then, evaluating at U = —g?" yields

N-1
[Uk _ YMZ]U__ = a7 Y g (g
N-1
+1 Z q*2p71(_q4p72N+2)k
p=0

Hence, for any f(U) € C[U*!] we have

[f W) Y]y on == t1a7 N f(=¢*™)

=—q
N—1
DB )
p=0
N—1
+h Y g (=P NED) (3.15)
p=0

A similar calculation with the inverse operator

Y, =0 —aXx hy ' —s5) —is

yields
_ -1.2 2
[f(U) : Yn,}z]U?qm =—1"'¢"" f(—¢*"
N-1
Fi Y g f (=g
p=0
N-1
_ _2 q2p+1f(_q2(2p—N+1)) (316)
p=0
Adding up (3.15) and (3.16) we get formula (3.14). O

Now we are in a position to complete the proof of Theorem 1.2.

Proof of Theorem 1.2 Using Lemma 3.7, from functional Eq. (3.13) we get the system
of linear equations for the values F (—qu , —A):

N—1 N—1
ywF(=q*) =11 Y 2pIF(—g* P~y 4+ 5 3 2p + 11F(—g* PN D) = —(2N)
p=1 p=0
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where yy = —A — A" + CIZNII_I + ¢~ ?N1,. This system can be written in the matrix
form

i 0 0 - F(—¢?%) 2)

byir y2 0 -+ F(—q% {4}

b31b32y3 - F(—q% | =~ | {6} (3.17)
where

byn =) ({p+N}—{p—N)i, withi=p—N+1 (mod?2)

By Lemma 3.6, the generating functions G;()) are given by linear combinations of
solutions of this system, F(—qZN, —A), with N = 2k — 1 for k > 1. Solving (3.17)
by Cramer’s rule, we can formally express these linear combinations in terms of the
matrix Ezi (g, t1, t2; 1) described in Introduction (see (1.12)). This yields required
formulas (1.11) for G;()), finishing the proof of Theorem 1.2. O

3.3 Proof of Theorem 1.4

In this subsection we specialize r, = 1 and give an explicit formula for the coefficients
Cpn,i in terms of classical Macdonald polynomials of type Aj. We begin by recalling
the definition.

Definition 3.8 The Macdonald polynomials p,(x; Blq), n > 0 are the symmetric
orthogonal polynomials in C[g*!, B*!][x + x~!] satisfying the 3-term recurrence
relation

qn/2 _ q—n/2 IBq(n—l)/Z _ ﬂ—lq(l—n)/Z
13]/2qn72 _ ﬂfl/2qfn/2 ,31/2q(n—1)/2 _ /g—l/2q(l—n)/2p”_1

Pati = +x")p,—

with po = 1 and p; = x + x~ 1.

After the following renormalization®

(B; @n

Cu(x; Blg) == @D

pn(x; Blg)

the Macdonald polynomials assemble into the generating series (see, e.g. [11]):

00 . —1.
Z C,,(x; ,3|q)Zn — (Zﬂxv q)OO(Z,Bx ’ q)OO , (318)

. —1.
=0 (2%; @)oo (2X ™5 @)oo

4 The polynomials Cy, (x; B]q) are sometimes called the g-ultraspherical (or Rogers) polynomials (cf. [11,
Sect. 14.10.1]).
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where

@ @)y = 1 n=20
GO =AMz —agh 1<n <00

(For n = oo one assumes that |g| < 1.) In fact, these polynomials can be given by

n

Ca(x; Blg) =) _

k=0

(Bs i (B q)n_kxn,Zk

(3.19)
G D (qs Pn—rk

If we specialize ¢ — ¢* and B — ¢, then formulas (3.18) and (3.19) become

> 1
Y Culxiq¥lghH" =

-1 m T (3.20)
n=0 [Tico( — g*zx)(1 — g*zx—1)

and

: k+i—1 n—k+i—1
Cn(x;q“’lq“):Z[ O } [ o ] X2k (3.21)
k=0 q* q*

Note that the last formula shows that C,, (x; ¢*|¢*) € Z[g™*1[x +x~!]foralln > 0.
To prove Theorem 1.4 we compare (3.20) to the generating function G; (A). First, we
simplify formula (1.11) for G;(A) given in Theorem 1.2 by explicitly computing the
determinant of By; in the case t, = 1. The result is given by the following

Proposition 3.9 Forty =t and ty = 1, we have

ciio1 [Ty Ak(0)

Gi(h) = i 1 22k=1)4—1 2(2k—1 (3.22)
[Tici 4+ 271 — g2@k=Dy=1 — g =2Ck=Dy)
where
2k—1,—1 12k
q - —q t
Ar(t) = g1 — g1k

Proof We break up the proof into two steps stated as Lemmas 3.10 and 3.11. First,
Lemma 3.10 shows that

det [El]
Hi:l()» + 11— q2(2k—l)t—1 _ q—2(2k—1)t)

Cni—1 =

where B; is a certain submatrix of I§2i. Then Lemma 3.11 computes the determinant
of B; by induction, showing that

det [Bi+1] = —{2(20)}{22i + D)} A;4+1 det[Bi] (3.23)
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Together with (1.11), this gives formula (3.22). ]
Lemma3.10 Foralli > 1,

det [B;]

Gi(h) = — -1 2(2k—1)4—1 —2(2k—1)
[lie A +2"1—g t=1—q 1)

where B; is the matrix

0 o o .. a?, 1
B1 V1 0 :
B3 b3 3 0
B := : : o0 (3.24)
Boj—1 b2j—1,1 b2j—12 - v2j-1 0
Boi—1 bai—1,1 bai—12 -+ -+ baic12i-2 V2i-1

Proof Note thatif £, = 1 and i — j is even, then b; j = 0. This means that the second-

to-last column in f?zi has exactly one nonzero entry, which is y»;_», located on the
diagonal. Expanding the determinant along this column, we see that the same is true
with the resulting (2i — 1) x (2i — 1) matrix. Then induction shows

i
det(By;) = det(B) [ [ v2j—2
j=2
The result then follows from this identity combined with Theorem 1.2. O
Lemma3.11 det[B;] = (—1) (]‘[ﬁ;’;{{zN}) (1‘[;;22 Ak(t)).
Proof The proof consists of a sequence of row and column operations to show that
step det [Bi11] = —{2(2i)}{2(2i + 1)}A;41 det [B;]. First, we kill all entries in the

first row of B;y1 except for the last using column operations to obtain the following
matrix:

0 0 0 1
Bi Y1 0
Bai-1 bai—1,1 bri—12 o yj-1 0

+1) @

(i 1)
Bait1 b2iv11 — ) " U vait1 baiv12 —Qy  CV2idl o V2idd

Then we reduce the size of this matrix by one, expanding the determinant along its
first row. Next, we add a,ﬁ’H)
matrix

multiples of the first i rows to the last row to obtain the
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Bi Vi o --- 0
=Dy : i :
Bai-1 boi-1.1 bai-12 -+ y2j-1
Bait1 bait1,1 boiv12 -+ boiy1i

where
5 i+ i+ 1
Bait1 = 06§I+ B4 +06,-(ZJr )Boi1 + Baiti

1
~ i+1 i+1
brit1k = b2k + Ol,i'+ "k = yais1) + Z 0‘;-'+ )b2./'—1,k
j=k+1

Now, observe that by (3.17) we havg ,521-+ 1 = 0, so we move the last row to the top and
divide it by its last entry, which is by;+1,;. Finally, by a straightforward computation,
we check that the resulting matrix is exactly B;. O

Proof of Theorem 1.4 1t follows from Lemma 3.9 that

&= ciic1 [They Ax
e [Tzl (h 4 A1 — g2@k+D =1 g=20k+1)yp)

) A" (3.25)

where the notation [A"] means the coefficient of A" in the preceding expression. If we
change variables z = ¢ 2¢~D and x = ¢?¢~! in (3.20) and compare the result with
(3.25) we obtain

i
Gnict = ciio1g D, i@ 1 gV gh [ | Ax (3.26)
k=2
By specializing ¢+ = 1 in (3.26), we see that

. . i1y C "71
Cu-iq™; q¥lg") = g*" 707D = :
ii—

Hence, it follows from (3.26) that
i i

Enict Cusi(@®t7 Y5 g% g™ <1—[ ) Pu—i(@® 171 g% gt (
Lt R Ar ) = H Ak
k=2

cni-1 Ca-i@®:q%1gY  \[ 5 Pu-i(g*: q*]q*)
(3.27)

This completes the proof of Theorem 1.4. O
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Remark 3.12 Using (3.21), we can rewrite formula (3.26) in the following explicit
form:

i—1
En,i—l :(q2t71)n H(q2k+1 +q72k71)(q72k71t _ q2k+1t71)
k=1

n—i
8. 8. k+i—1 n—k—1 20 it2k
X(C],C])z—lz[ i1 }4[ i1 4(q 1)
k=0 q q
which makes the integrality of ¢, ;_1 (Corollary 1.3) obvious.

3.4 Proof of Theorem 1.6

Theorem 1.6 follows easily by comparing our results (specifically Lemma 3.3) with
Habiro’s results proved in [8]. For the reader’s convenience (and to avoid confusion
with notation), we will state Habiro’s main theorem on universal s(,-invariants below.
First, we recall from Introduction that U}, = U}, (sl,) stands for the quantized universal
enveloping algebra of the Lie algebra sl,: this is an #-adically complete Q[[/]]-algebra
(topologically) generated by elements E, F, H satisfying the relations

K—K™!

[H,El=2E, [H,F]l=-2F, [E,F]= —

(3.28)

vV—V

where v := ¢/? and K := vH = ¢"H/2 This algebra carries a natural (complete)
ribbon Hopf algebra structure with universal R-matrix given by

-1
R = H®H2 3" o020V g (3.29)
=0 [n]y!
(where we have used the notation [n],! := ]_[Zzl[k]q). Using R-matrix (3.29), for

any (ordered, oriented, framed) link L in S 3 R. Lawrence [14,15] constructed a link
invariant JL, called the universal 5[2-invariant5 of L. If L has £ components, the

Lawrence invariant J* takes its values in L{;?Z, the h-adically completed tensor prod-
uct of / copies of Uj,. In the case of knots (i.e. a link K with a single component), the
Lawrence invariant JX is contained in the centre Z(},), which is a complete com-
mutative subalgebra of U, (topologically) freely generated by the Casimir element
C=wWw—v H2FE+ @WK +v K1 —v—0v7h.

Habiro found a general formula for JX expressing it in terms of polynomials
HkK(v) € Z[v3, v 2

5 Lawrence’s universal invariants can be defined for more general Lie algebras than sl and for more general
link-type diagrams (bottom tangles), see [7].
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Theorem 3.13 ( [8, Theorem 4.5]) For any (string, 0-framed) knot K, the Lawrence
universal sly-invariant is given by

o0
T =" HE W) (3.30)
k=0
where
k . .
o =[[(C* = +v ) eZU)., k=0
i=1
Now, Habiro’s Theorem 1.1 stated in Introduction follows from Theorem 3.13 by
evaluating the elements o} on finite-dimensional irreducible representations of 4,
using quantum traces. It is well known that such representations V), are classified by
the nonnegative integers—the dimension (i.e. the rank of V,, as a free module over
QI[A]]). Recall, for a finite-dimensional representation py : U — Endgqpuy(V) and
an element u € U, the quantum trace tr(‘; (u) is defined by

try (u, v) ;= Try[py (Ku)] (3.31)

where Try is the usual (matrix) trace on V. For central elements z € Z(U}y) one can
compute (3.31) using the Harish-Chandra homomorphism

Z(Up) — Up — QIIAIIH]
defined (on the PBW basis of U},) by
¢(F'H/EY) = 8; 08¢0 H'
Specifically, for any n > 1, we have
trg (2, V) = dimy (Vy)ev, (¢(2)) = [nlveva(e(2) (3.32)

where ev,, : Q[[2]][H] — QI[[X]] is the evaluation map f(H) — f(n).
Using formula (3.32), it is straightforward to show that

1 n+k
trg (ox; Vi) = p—— 1_[ WP —v7P), Vk>1
p=n—k
Thus, setting v = qz, we obtain®
trg (ok, Vi) = cn k(@) (3.33)

6 We warn the reader that our q differs from the ¢ in [8]: in fact, the ¢ in [8] equals vz, which is our q4.
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where ¢, x(q) are precisely cyclotomic coefficients (1.2). If follows from Theorem
3.13 and formula (3.33) that

TEW) =0y (UK, Vi) =) " cnn@ HE (@) = T (9) (3.34)
k>0

Now, the proof of Theorem 1.6 reduces to the one-line calculation
n
TEW) =Y (=1 Pay , J5 (V)
p=l1

n
(324) Z(_l)n+pan,P Jlg( (q)
p=1

=JK@g,n,n)

where the last equality is formula (3.3) of Lemma 3.3.

Remark 3.14 In connection with Theorem 1.6, one might wonder why an invariant
defined by a DAHA action on a skein module could be expressed in terms of the
representation ring of U, (sly). A brief explanation for this is as follows: consider the
Temperley-Lieb category, which is a monoidal category whose objects are the natural
numbers and whose morphisms from m to n are the (m, n)-tangles’ in [0, 1] x [0, 1]
regarded modulo the Kauffman bracket skein relations. The monoidal structure comes
from addition on objects, and on morphisms is defined using juxtaposition of disks.
It is a classical fact (see [4,13,25] and references therein) that (the Karoubi enve-
lope of) the Temperley-Lieb category is equivalent to the category Rep (4, (sl2)) of
finite-dimensional representations of U (sl>). This implies that there is a natural map
H Hy(RepU, (s12))) — K, (S' x D?) from the Hochschild homology of Rep (U (s12))
to the skein module of (closed) loops in the annulus, which is actually an isomorphism.
On the other hand, for any semisimple category C, there is a canonical (Chern charac-
ter) map ch : Ko(C) — H Hyp(C) which becomes an isomorphism upon linearization
of Ko(C). This means in our case that we can naturally identify the representation
ring R, := Ko(Rep(U, (sl))) with the skein algebra K, (S! x D?). As aresult, for a
knot K we get a commutative diagram

R, 5 K, (S' x D?)

o -2
QI[~]]

which leads to formula (3.34).

7 An (m, n)-tangle is a properly embedded 1-manifold in [0, 1] x [0, 1] with m endpoints on {0} x [0, 1]
and n endpoints on {1} x [0, 1].
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