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Abstract
In (Compos. Math. 152(7): 1333–1384, 2016), Berest and Samuelson proposed a
conjecture that the Kauffman bracket skein module of any knot in S3 carries a natural
action of a rank 1 double-affine Hecke algebra SHq,t1,t2 depending on 3 parameters
q, t1, t2. As a consequence, for a knot K satisfying this conjecture, we defined a three-
variable polynomial invariant J K

n (q, t1, t2) generalizing the classical coloured Jones
polynomials J K

n (q). In this paper, we give explicit formulas and provide a quantum
group interpretation for the polynomials J K

n (q, t1, t2). Our formulas generalize the so-
called cyclotomic expansion of the classical Jones polynomials constructed by Habiro
(Invent.Math. 171(1): 1–81, 2008) : as in the classical case, they imply the integrality of
J K

n (q, t1, t2) and, in fact, make sense for an arbitrary knot K independent of whether
or not it satisfies the conjecture of Berest and Samuelson (Compos. Math. 152(7):
1333–1384, 2016). When one of the Hecke deformation parameters is set to be 1, we
show that the coefficients of the (generalized) cyclotomic expansion of J K

n (q, t1) are
expressed in terms of Macdonald orthogonal polynomials.
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1 Introduction and statement of results

One of the most interesting ‘quantum’ invariants of an oriented 3-manifold M stud-
ied extensively in recent years is the Kauffman bracket skein module Kq(M). This
invariant—introduced byPrzytycki [21] andTuraev [26] in the early 1990s—is defined
topologically as the quotient vector space spanned by all (framed unoriented) links
in M modulo the Kauffman skein relations depending on a parameter q. In [1], the
first and third authors conjectured that the skein module Kq(MK ) of the complement
MK := S3 \ K of a knot in S3 carries a natural action of a rank one (spherical)
double-affine Hecke algebra SHq,t1,t2 , which depends—in addition to the ‘quantum’
parameter q—on two new ‘Hecke’ parameters t1 and t2 (see Conjecture 2.12). Our
conjecture boils down to the assumption that Kq(MK ) possesses a certain symmetry
of algebraic nature that allows one to deform the topological action of the skein alge-
bra Kq(∂ MK ) of the boundary 2-torus into the action of SHq,t1,t2 . We verified our
conjecture in a number of nontrivial cases, including torus knots and some (nonalge-
braic) 2-bridge knots (see [1,2]). An important consequence of this conjecture is the
existence of polynomial knot invariants J K

n (q, t1, t2) ∈ C[q±1, t±1
1 , t±1

2 ] depending
on the three variables q, t1, t2, which specialize (when t1 = t2 = 1) to the classical
(sl2, coloured) Jones polynomials J K

n (q). We call J K
n (q, t1, t2) the generalized Jones

polynomials of K .
The goal of this paper is to give an explicit formula for the polynomials J K

n (q, t1, t2)
generalizing the so-called cyclotomic expansion of the coloured Jones polynomials
J K

n (q) discovered by K. Habiro. We recall that Habiro proved in [8] the following
remarkable theorem.

Theorem 1.1 ([8]) For any knot K in S3, the n-th coloured Jones polynomial of K can
be written in the form

J K
n (q) =

n∑

i=1

cn,i−1(q)H K
i−1(q) (1.1)

where H K
i−1(q) ∈ Z[q±1] are integral Laurent polynomials depending on the knot K

(but not on the ‘colour’ n), and the coefficients cn,i−1(q) are independent of K and
given by the elementary formulas

cn,i−1(q) := 1

q2 − q−2

n+i−1∏

p=n−i+1

(q2p − q−2p), 1 ≤ i ≤ n (1.2)

Following [6], we refer to H K
i−1(q), i ≥ 1, as the Habiro polynomials of K . It is

not hard to show that the H K
i−1(q)’s always exist as rational functions in Q(q); the

nontrivial part of Theorem 1.1 is that these rational functions are actually Laurent
polynomials in Z[q±1]. The coefficients cn,i−1(q) are called the cyclotomic coeffi-
cients: besides explicit formulas (1.2) it is often convenient to define them in terms of
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generating functions which can be written in the following form:

∞∑

n=0

cn,i−1(q)λn = det B2i (q; λ)
∏2i−1

N=1 γN
, i ≥ 1 , (1.3)

where B2i (q; λ) is the (2i × 2i)-matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 α
(i)
1 0 α

(i)
2 · · · 0 α

(i)
i

β1 γ1 0 0 · · · 0 0
β2 0 γ2 0 · · · 0 0
β3 0 0 γ3 · · · 0 0
...

...
...

...
. . .

...
...

β2i−1 0 0 0 · · · 0 γ2i−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(1.4)

with entries

α
(i)
k := (−1)i−k

[
2i − 1
i − k

]

q2
, βN := [N ]q2 , γN := q2N + q−2N − λ − λ−1.

(1.5)

(See Sect. 2 for notation.)
Next, we recall the construction of the generalized Jones polynomials J K

n (q, t1, t2)
from [1]. The starting point for this construction is a well-known topological formula
(due toKirby andMelvin [12]) that expresses the classical coloured Jones polynomials
J K

n (q) in terms of the Kauffman bracket skein module Kq(MK ). To give this formula
we note that Kq(MK ) carries a natural action Kq(T 2) × Kq(MK )

·−→ Kq(MK ) of
the skein algebra Kq(T 2) of the boundary torus T 2 = ∂ MK , and there is a natural
C[q±1]-linear pairing

〈−,−〉 : Kq(S1 × D2) ⊗Kq (T 2) Kq(MK ) → Kq(S3) ∼= C[q±1] (1.6)

induced topologically by gluing the solid torus S1 × D2 to the knot complement MK

along the common boundary T 2 = S1 × S1 to obtain the S3 (see Sect. 2.1.2 for more
details). The Kirby–Melvin formula reads (cf. Theorem 2.7):

J K
n (q) = (−1)n−1〈∅, Sn−1(L) · ∅〉 , (1.7)

where Sn−1(L) ∈ Kq(T 2) is the (n − 1)-th Chebyshev polynomial evaluated at the
(0-framed) longitude L of T 2 viewed as an operator in Kq(T 2) acting on a distin-
guished element (the ‘empty link’) ∅ in Kq(MK ). Now, the main conjecture of [1]
(see Conjecture 2.12 in Sect. 2.3) asserts that the action of Kq(T 2) on Kq(MK ) admits
a canonical deformation to an action of the double-affine Hecke algebra SHq,t1,t2 ,
and pairing (1.6) deforms to aC[q±1, t±1

1 , t±1
2 ]-linear pairing balanced over SHq,t1,t2
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(cf. Lemma 3.1):

〈−,−〉 : Kq(S1 × D2) ⊗SHq,t1,t2
Kq(MK ) → C[q±1, t±1

1 , t±1
2 ] (1.8)

Moreover, the longitude operator L ∈ Kq(T 2) appearing in (1.7) has a natural ana-
logue (deformation) in SHq,t1,t2 —the so-called Askey-Wilson operator Lt1,t2 (see
[19])—that specializes to L when t1 = t2 = 1. Having all ingredients in hand, we can
deform Kirby–Melvin formula (1.7) and define polynomials (cf. Definition 2.13)

J K
n (q, t1, t2) := (−1)n−1〈∅, Sn−1(Lt1,t2) ·t ∅〉 , (1.9)

where ·t stands for the deformed action of SHq,t1,t2 on Kq(MK ). By construction,
J K

n (q, t1, t2) specializes to J K
n (q)when t1 = t2 = 1; however, formula (1.9) defining

J K
n (q, t1, t2) makes sense only if Conjecture 2.12 holds true.
The main result of the present paper can now be stated as follows.

Theorem 1.2 Assume Conjecture 2.12 holds for a knot K ⊂ S3. Then generalized
Jones polynomials (1.9) can be written in the form

J K
n (q, t1, t2) =

n∑

i=1

c̃n,i−1(q, t1, t2)H K
i−1(q) (1.10)

where H K
i−1(q) are the Habiro polynomials of K . The coefficients c̃n,i−1(q, t1, t2) are

independent of K and determined by the following generating functions:

∞∑

n=0

c̃n,i−1(q, t1, t2)λ
n = det B̃2i (q, t1, t2; λ)

∏2i−1
N=1 γ̃N

, i ≥ 1 (1.11)

where B̃2i (q, t1, t2; λ) is the (2i × 2i)-matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 α
(i)
1 0 α

(i)
2 · · · 0 α

(i)
i

β1 γ̃1 0 0 · · · 0 0
β2 b21 γ̃2 0 · · · 0 0
β3 b31 b32 γ̃3 · · · 0 0
...

...
...

...
. . .

...
...

β2i−1 b2i−1,1 b2i−1,2 b2i−1,3 · · · b2i−1,2i−2 γ̃2i−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(1.12)

with entries α
(i)
k and βN the same as in (1.5) and bp,N and γ̃N given by

bp,N := (−1)k ({p + N }q − {p − N }q
)
(tk − t−1

k ), k ≡ p − N + 1 (mod 2)

γ̃N := q2N t−1
1 + q−2N t1 − λ − λ−1, 1 ≤ p, N ≤ 2i − 1 (1.13)
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(In (1.13) we use the notation {n}q := qn − q−n , cf. Sect. 2.)
Note that, for t1 = t2 = 1, matrix (1.12) reduces to (1.4), so comparing generating

functions (1.3) and (1.10) shows c̃n,i−1(q, 1, 1) = cn,i−1(q) as required.
One important consequence of formula (1.11) is that the generalized cyclotomic

coefficients are integral, i.e. c̃n,i−1 ∈ Z[q±1, t±1
1 , t±1

2 ] (cf. Remark 3.12). Theorem
1.2 thus says that each J K

n (q, t1, t2) is a linear combination of the Habiro polynomials
with integral coefficients1. Together with Habiro’s Theorem 1.1, this implies

Corollary 1.3 The generalized Jones polynomials are integral: for all n ≥ 0

J K
n (q, t1, t2) ∈ Z[q±1, t±1

1 , t±1
2 ]

In the special case when t2 = 1, we can compute the (generalized) cyclotomic
coefficients c̃n,k−1(q, t1, t2) in a simple closed form using the classical Macdonald
orthogonal polynomials.

Theorem 1.4 For (t1, t2) = (t, 1), the (generalized) cyclotomic coefficients in (1.10)
are given by

c̃n,i−1(q, t) = pn−i (q2i t−1; q4i |q4)

pn−i (q2i ; q4i |q4)

(
i∏

k=2

q2k−1t−1 − q−2k+1t

q2k−1 − q−2k+1

)
cn,i−1(q)

(1.14)

where pn(z;β|q) are the Macdonald symmetric polynomials of type A1 and cn,i−1(q)

are classical cyclotomic coefficients (1.2).

We remark that the Macdonald polynomials pn(z;β|q) can be expanded in terms
of q-binomial coefficients, so formulas (1.14) are entirely explicit (see Remark 3.12).
The Habiro polynomials are known for certain families of knots (see, e.g. [8] and
[16]). In those cases, Theorem 1.4 gives a closed-form expression for generalized
Jones polynomials.

Example 1.5 1. For the unknot, HU
0 = 1 and HU

n = 0 for n ≥ 1. In this case,

JU
n (q, t)= c̃n,0(q, t)= pn−1(q2t−1; q4|q4)

pn−1(q2; q4|q4)

q2n − q−2n

q2 − q−2 = (q2t−1)n − (q2t−1)−n

q2t−1 − q−2t

where we have used a well-known evaluation formula for Macdonald polynomials
pn−1(z; q4|q4) = (zn − z−n)/(q2−q−2) (see [3, p. 202]). This recovers the result
of [1, Thm. 6.10].

2. For the figure eight knot, H K
n = 1 for all n ≥ 0. Hence, by Theorem 1.4,

J K
n (q, t) =

n∑

i=1

pn−i (q2i t−1; q4i |q4)

pn−i (q2i ; q4i |q4)

(
i∏

k=2

q2k−1t−1 − q−2k+1t

q2k−1 − q−2k+1

)
cn,i−1

1 By contrast, the polynomials J K
n (q, t1, t2) cannot be written, in general, as linear combinations of the

classical coloured Jones polynomials J K
n (q) with coefficients in C[q±1, t±1

1 , t±1
2 ] (cf. Remark 3.4 in

Sect. 3.2).
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Note that when t = 1, this formula specializes to the well-known formula for the
Jones polynomials of the figure 8 knot,

Jn(q) =
n∑

i=1

cn,i−1 = 1

q2 − q−2

n∑

i=1

n+i−1∏

p=n−i+1

(q2p − q−2p)

The last result that we want to state in Introduction provides an interpretation of
our generalized Jones polynomials J K

n (q, t1, t2) in terms of quantum groups: more
precisely, we express J K

n (q, t1, t2) via the universal sl2 invariant J K of the knot K
introduced by R. Lawrence [14,15] (see also [7,8]). Recall that J K takes values in the
centreZ(Uh) of the (h-adically) complete quantized enveloping algebraUh := Uh(sl2)
defined over the formal power series ringQh = Q[[h]] (see Sect. 3.4).We set q = eh/4

and let Rq,t1,t2 := K0(RepUh) ⊗Z Q(q)[t±1
1 , t±1

2 ] denote the representation ring of
the category Rep(Uh) of finite-dimensional Uh-modules over the commutative ring
Q(q)[t±1

1 , t±1
2 ]. The ring Rq,t1,t2 is a free module over Q(q)[t±1

q , t±1
2 ] generated by

the classes {[Vn]}n≥1 of irreducible representations of Uh ; it comes together with a
natural bilinear map

trq(−,−) : Uh × Rq,t1,t2 → Qh[t±1
1 , t±1

2 ] (1.15)

defined by quantum traces of elements of Uh acting on finite-dimensional modules
(see Sect. 3.4). If z ∈ Z(Uh) is a central element of Uh , we write

ẑ := trq(z,−) : Rq,t1,t2 → Qh[t±1
1 , t±1

2 ] (1.16)

and note that, by the Schur lemma,

ẑ([Vn]) = [n]q2 zn (1.17)

where zn is the scalar in Qh by which z acts on the irreducible representation Vn .
Now, to state our theorem we define a sequence of functions an,p ∈ Q(q)[t±1

1 , t±1
2 ]

(indexed by the integers n ≥ 1 and p ≥ 0) inductively, using the recurrence relation:

an+1,p = Apan,p−1 + (Ap − Ap+1)an,p + A−pan,p+1 − an−1,p (1.18)

with ‘boundary’ conditions

a1,1 = 1, an,0 = 0, an,p = 0 (n ≥ p), (1.19)

where

Ap := q2p−1t−1
1 − q1−2pt1 + t2 − t−1

2

q2p−1 − q1−2p
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Theorem 1.6 For n ≥ 1, let [Ṽn] denote the class in Rq,t1,t2 given by the formula

[Ṽn] :=
n∑

p=1

(−1)n+pan,p [Vp] (1.20)

where the coefficients an,p = an,p(q, t1, t2) are defined by (1.18) and (1.19). Then

J K
n (q, t1, t2) = Ĵ K [Ṽn] , (1.21)

where Ĵ K is quantum trace map (1.16) defined by the universal invariant J K .

Note that when t1 = t2 = 1, we have Ap = 1 for all p, and it follows easily from
(1.18) and (1.19) that an,p is equal to 1 for p = n and is 0 otherwise. Formula (1.21)
thus reduces to J K

n (q) = Ĵ K [Vn], which is a well-known formula for the coloured
Jones polynomials. For arbitrary t1, t2 ∈ C

∗, one can easily compute from (1.18) the
first ‘top’ terms of the sequence {an,p}:

an,n = A2A3 · · · An, (n ≥ 2)

an,n−1 = A2A3 · · · An−1(A1 − An)

By (1.20), this gives

[Ṽ1] = [V1], [Ṽ2] = A2[V2] + (A2 − A1)[V1] (1.22)

In general, for n ≥ 3, the recursive formulas for an,p are more complicated: in fact,
we could not find a nice closed-form expression for these coefficients (which seems
like an interesting problem). The origin of recurrence Eqs. (1.18) and (1.19) and their
relation to the double-affine Hecke algebraHq,t1,t2 is explained in the proof of Lemma
3.3.

We conclude this Introduction with some questions and motivation for studying our
generalized Jones polynomials J K

n (q, t1, t2). The main result of this paper (Theorem
1.2) shows that J K

n (q, t1, t2) canbe expressed in termsofHabiro polynomials H K
i−1(q),

and hence, strictly speaking, are not new knot invariants. Although this is certainly
disappointing, there are still good reasons for studying these polynomials.

First of all, notice that the right-hand side of formula (1.10) of Theorem 1.2 makes
sense for an arbitrary knot K ⊂ S3, even though the polynomials J K

n (q, t1, t2) are
defined only under the assumption that K satisfies Conjecture 2.12. Hence, the very
existence of a formula like (1.10) for J K

n (q, t1, t2) can be viewed as a further evidence
for the main conjecture of [1].
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Next, we remark that the relation of J K
n (q, t1, t2) to the classical Jones polynomials

J K
n (q) is somewhat more subtle than that to the Habiro polynomials. While the values

of J K
n (q) for all q ∈ C

∗ can be directly recovered from J K
n (q, t1, t2) (by simply

specializing t1 = t2 = 1), the converse is not true2: for generic t1 and t2, the values
of J K

n (q, t1, t2) at roots of unity, q = eπ i N/2n , are not determined by the values of
J K

n (q) at these q’s. This is because universal formulas (3.3), expressing J K
n (q, t1, t2)

in terms of J K
n (q), involve rational functions as coefficients which have poles exactly

at q ∈ {eπ i N/2n : N ≥ 0} (cf. Remark 3.4). The nontriviality of this relationship
between J K

n (q, t1, t2) and J K
n (q) was already demonstrated in [1], where we used

the properties of J K
n (q, t1, t2) to prove some conjectures about the classical Jones

polynomials J K
n (q) (see, e.g. loc.cit., Theorem 2 and Theorem 3).

Finally, we mention that the values of the coloured Jones polynomials J K
n (q) at

roots of unity—called the Kashaev invariants—play an important role in quantum
topology. In particular, they appear in the celebrated Volume Conjecture that predicts
a deep connection between quantum and geometric invariants of knots (see [9], [17]
and also [6], [18] for more recent results). In its original form, this conjecture reads:

Conjecture ([9,17]) For any hyperbolic knot K in S3,

lim
n→∞

1

n
log

∣∣∣∣
J K

n (eπ i/2n)

JU
n (eπ i/2n)

∣∣∣∣ = 1

2π
Vol(MK ) (1.23)

where Vol(MK ) is the (hyperbolic) volume of the knot complement MK = S3\K .

The existence and the integrality property of the generalized Jones polynomials
J K

n (q, t1, t2) established in this paper naturally lead us to the following

Question Does the Volume Conjecture limit

lim
n→∞

1

n
log

∣∣∣∣
J K

n (eπ i/2n, t1, t2)

JU
n (eπ i/2n, t1, t2)

∣∣∣∣ (1.24)

exist for some (t1, t2) ∈ (C∗)2 other than (t1, t2) = (1, 1)? If so, what is its geometric
meaning?

The fact that the values of J K
n (q, t1, t2) at roots of unity are not determined by those

of J K
n (q) seems to indicate that the above question is interesting and far from being

trivial. The closed formulas for J K
n (q, t1, t2) given in this paper open the way for

studying limit (1.24) analytically, at least in case of simple knots when the Habiro
polynomials are explicitly known (see, e.g. Example 1.5). We plan to address this
question in our future work.

2 For this reason and also to avoid confusion with terminology of [1] we will keep referring to J K
n (q, t1, t2)

as ‘generalized’ Jones polynomials, even though they are not generalizing the classical Jones polynomials
in the same way as other multivariable polynomial knot invariants (arising, for example, from Khovanov
homology).
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The paper is organized as follows. In Sect. 2, we introduce notation and review basic
results of [1], including the main conjecture of [1] (see Sect. 2.3) and the definition
of the generalized Jones polynomials J K

n (q, t1, t2) (see Sect. 2.4). Section 3 contains
the proofs of the 3 theorems stated in Introduction; it also fills in some details and
provides definitions needed for the precise statements of these theorems.

2 Preliminaries

In this section we provide some background material needed for the present paper.
This includes basic properties of Kauffman bracket skein modules and double-affine
Hecke algebras, as well as a summary of main results of [1]. Throughout we use the
following standard notation:

{n}q := qn − q−n, [n]q := {n}q

{1}q
,

[
n
m

]

q
:=

m∏

k=1

[n − k + 1]q

[m − k + 1]q
, (n, m ∈ N)

2.1 Kauffman bracket skeinmodules

A framed link in an oriented 3-manifold M is an embedding of a disjoint union of
annuli S1×[0, 1] into M , considered up to ambient isotopy. In what follows, the letter
q will denote either a nonzero complex number or a formal parameter generating the
field

Cq := C(q)

(we will specify which when it matters).
Let L (M) be the vector space over Cq spanned by the set of ambient isotopy

classes of framed unoriented links in M (including the empty link ∅). Let L ′(M)

denote the smallest subspace of L (M) containing the skein expressions in Fig. 1

− q−1− q

+ (q2 + q−2)

Fig. 1 Framed skein relations
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where the diagrams represent embeddings of annuli which are identical outside of
the oriented 3-ball represented by the dotted circle.

Definition 2.1 ([21]) The Kauffman bracket skein module of an oriented 3-manifold
M is the quotient vector space Kq(M) := L (M)/L ′(M). It contains a canonical
element ∅ ∈ Kq(M) corresponding to the empty link.

Remark 2.2 If F is a surface, we will often write Kq(F) for the skein module Kq(F ×
[0, 1]) of the cylinder over F .

In general, Kq(M) carries only a linear structure. However, the assignment M →
Kq(M) is functorial with respect to oriented embeddings, which implies the following
facts:

(1) If M = M1 � M2, then Kq(M) ∼= Kq(M1) ⊗ Kq(M2).
(2) For any surface F , the embedding [0, 1

3 ] � [ 23 , 1] → [0, 1] induces a map

μ : Kq(F) ⊗ Kq(F) → Kq(F)

which make Kq(F) an associative unital algebra (with unit ∅).
(3) If ∂ M ∼= F and if M = F × [0, 1] � N represents a decomposition of M into a

tubular neighbourhood of the boundary and a retract N ∼= M , the map

m : Kq(F) ⊗ Kq(M) → Kq(M)

gives M the structure of a left module over Kq(F).

Example 2.3 An original motivation for defining Kq(M) was a theorem of Kauffman
[10] asserting that the natural map

Cq
∼→ Kq(S3), 1 �→ ∅

is an isomorphism of vector spaces, and that the inverse image of a link L in S3 under
this isomorphism is the Jones polynomial of L . Clearly Kq(S3) is of dimension at
most 1 over Cq thanks to the skein relations; the key point of Kauffman’s theorem is
that this map is injective.

Example 2.4 Let M = S1 × D2 be the solid torus, or complement of the unknot. If x
is the nontrivial loop, then the map Cq [x] → Kq(S1 × D2) sending xn to n parallel
copies of x is surjective (because all crossings and trivial loops can be removed using
the skein relations). Less obvious is the fact that this map is injective and thus an
isomorphism (see, e.g. [24]).

2.1.1 The Kauffman bracket skein module of the torus

Recall that the quantum Weyl algebra (or quantum torus) is defined by

Aq := C[q±1]〈X±1, Y ±1〉
(XY − q2Y X)
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Note that this algebra carries a Z2 action defined by the automorphism (X , Y ) �→
(X−1, Y −1).

We now recall a theorem of Frohman and Gelca [5] that gives a connection between
Kq(T 2) and the invariant subalgebra AZ2

q . Let Tn ∈ C[x] be the Chebyshev polyno-
mials defined by

T0 = 2, T1 = x, Tn+1 = xTn − Tn−1.

If m, l are relatively prime, write (m, l) for the m, l curve on the torus (the simple
curve wrapping around the torus l times in the longitudinal direction and m times
in the meridian’s direction). It is clear that the links (m, l)n span Kq(T 2), and it
follows from [24] that this set is actually a basis. However, a more convenient basis
is given by the elements (m, l)T := Td((m

d , l
d )) (where d = gcd(m, l)). Define

er ,s = q−rs Xr Y s ∈ Aq , which form a linear basis in Aq .

Theorem 2.5 ([5]) The map Kq(T 2) → AZ2
q given by (m, l)T �→ em,l + e−m,−l is an

isomorphism of algebras.

Remark 2.6 If K is an oriented knot, then the meridian/longitude pair (m, l) gives a
canonical identification of S1× S1 with the boundary of S3 \ K . If the orientation of K
is reversed, this identification is twisted by the ‘hyper-elliptic involution’ of S1 × S1

(which negates both components). However, this induces the identity isomorphism on
Kq(T 2 × [0, 1]), so the AZ2

q -module structure on Kq(S3 \ K ) is canonical and does
not depend on the choice of orientation of K .

2.1.2 Topological pairings and coloured Jones polynomials

Let M be any closed 3-manifold. If (M1, M2) represents a Heegaard splitting of M ,
that is, M1, M2 ⊂ M are oriented submanifolds with boundary satisfying

M1 ∪ M2 = M M1 ∩ M2 = ∂ M1 = ∂ M2 = F,

the inclusion ι : M1 � M2 → M determines by functoriality the map

Kq(ι) : Kq(M1) ⊗ Kq(M2) → Kq(M), [L1] ⊗ [L2] �→ [L1 ∪ L2] (2.1)

where [L1] and [L2] are isotopy classes of links in M1 and M2, respectively.Nowput an
orientation on F as the boundary of M2, and let NF ⊂ M be a tubular neighbourhood
of F with respect to this orientation. Let ιi : NF → Mi , i ∈ {1, 2} be the natural
inclusions. As usual, ι2 gives M2 the structure of a left module over Kq(NF ). However,
as the orientation of F is reversed from that of ∂ M1, the map ι1 gives Kq(M1) the
structure of a right module over Kq(NF ). As a skein in NF can be pushed into either
M1 or M2, this tells us that (2.1) actually factors as a map

Kq(ι) : Kq(M1) ⊗Kq (F) Kq(M2) → Kq(M).
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If M = S3, then M1 is the tubular neighbourhood of a knot K and M2 = S3 \ K , and
we refer to this map as the topological pairing

〈−,−〉 : Kq(S1 × D2) ⊗Kq (T 2) Kq(S3 \ K ) → Kq(S3) ∼= Cq (2.2)

The coloured Jones polynomials J K
n (q) ∈ C[q±1] of a knot K ⊂ S3 were originally

defined by Reshetikhin and Turaev in [22] using the representation theory of Uq(sl2).
Here we recall a theorem of Kirby andMelvin that shows how J K

n (q) can be computed
in terms of the topological pairing.

If D2 × S1 is a tubular neighbourhood of the knot K , then we identify Kq(D2 ×
S1) ∼= Cq [u], where u ∈ Kq(D2 × S1) is the image of the (0-framed) longitude
l ∈ Kq(∂(S3 \ K )). Let Sn ∈ Cq [u] be the Chebyshev polynomials of the second
kind, which satisfy the initial conditions S0 = 1 and S1 = u, and the recursion
relation Sn+1 = uSn − Sn−1.

Theorem 2.7 ([12]) If ∅ ∈ Kq(S3 \ K ) is the empty link, we have

J K
n (q) = (−1)n−1〈Sn−1(u), ∅〉

As the zero-framed longitude l considered as an element in the skein module of the
boundary torus Kq(T 2) is identified with Y + Y −1 under Theorem 2.5, we have

(−1)n−1 J K
n (q) = 〈∅ · Sn−1(Y + Y −1), ∅〉 = 〈∅, Sn−1(Y + Y −1) · ∅〉 (2.3)

Remark 2.8 The sign correction is chosen so that for the unknot we have Jn(q) =
[n]q2 = (q2n − q−2n)/(q2 − q−2). Also, with this normalization, J K

0 (q) = 0 and
J K
1 (q) = 1 for every knot K . This agrees with the convention of labelling irreducible

representations of Uq(sl2) by their dimension.

2.2 The double-affine Hecke algebra

In this section we define a 5-parameter family of algebras Hq,t—called the double-
affine Hecke algebra of type C∨C1—originally introduced in [23] (see also [19] and
[1] for our present notation). This family represents the universal deformation of
the algebra C[X±1, Y ±1] � Z2, the crossed product of the Laurent polynomial ring
C[X±1, Y ±1], with Z2 acting by the natural involution (see [20]). The algebra Hq,t

for q ∈ C
∗ and t = (t1, t2, t3, t4) ∈ (C∗)4 is generated by the elements T1, T2, T3, and

T4 subject to the five relations

(T1 − t1)(T1 + t−1
1 ) = 0

(T2 − t2)(T2 + t−1
2 ) = 0

(T3 − t3)(T3 + t−1
3 ) = 0

(T4 − t4)(T4 + t−1
4 ) = 0

T4T3T1T2 = q (2.4)
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Recall that, by definition, the crossed product algebra Aq � Z2 is generated by
X , Y , s, satisfying

s X = X−1s, sY = Y −1s, s2 = 1, XY = q2Y X .

Let Dq := Cq(X)[Y ±1]/(XY − q2Y X) denote the localized quantum Weyl algebra
obtained from Aq by inverting all (nonzero) polynomials in X . Note that the action of
Z2 extends to Dq so that we can form the crossed product Dq � Z2. Now, consider
the following elements in Dq � Z2:

T̂1 := t1sY + qt̄1X + t̄2
q X − q−1X−1 (1 − sY )

T̂3 := t3s + t̄3 + t̄4X

1 − X2 (1 − s) (2.5)

These elements are called the Dunkl-Cherednik and Demazure-Lusztig operators,
respectively. The next proposition establishes the relation between the algebras Hq,t

and Aq � Z2.

Proposition 2.9 ( [23], see also [19, Thm. 2.22]) The assignment

T1 �→ T̂1, T3 �→ T̂3, T2 �→ qT̂ −1
1 X , T4 �→ X−1T̂ −1

3 (2.6)

extends to an injective algebra homomorphism Hq,t ↪→ Dq � Z2.

Note that Aq � Z2 embeds in Dq � Z2 via the natural localization map. When
t = 1, the assignment in (2.6) becomes

T1 �→ sY , T3 �→ s, T2 �→ qsY X , T4 �→ s X (2.7)

and the image of Hq,1 coincides with the image of Aq � Z2. Thus, using (2.7), we
can identify Hq,1 ∼= Aq � Z2.

Remark 2.10 The algebra Hq,t is also generated by the (invertible) elements

X := q−1T1T2, Y := T3T1, T := T3

which satisfy the relations

XT = T −1X−1 − t̄4
T −1Y = Y −1T + t̄1

T 2 = 1 + t̄3T

T XY = q2T −1Y X − q2 t̄1X − qt̄2 − t̄4Y (2.8)

where t̄i = ti − t−1
i . With this presentation it is immediate thatHq,1 ∼= Aq �Z2. Note

that while the operator X does not depend on t , the operator Y does. We will write this
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last operator as Yt when we want to stress its dependence on t . Explicitly, we have

Yt = T̂3 T̂1

where T̂1 and T̂3 are given by formulas (2.5).

The following simple observation can be regarded as a motivation for the main
conjecture of [1]. For f (X) ∈ C(X), define the operators

Y · f (X) = f (q−2X), X · f (X) = X f (X), s · f (X) = f (X−1)

These operators give C(X) the structure of a left Dq � Z2-module. The subspace
C[X±1] ⊂ C(X) is obviously preserved by Aq � Z2 and is called the polynomial
representation. A remarkable fact (which can be checked by direct calculation) is that
C[X±1] is also preserved by Hq,t (for all t) under the action of (2.6). This gives the
polynomial representation ofHq,t , which can thus be viewed as a deformation of the
polynomial representation of Aq � Z2.

The element e := (T3 + t−1
3 )/(t3 + t−1

3 ) is an idempotent inHq,t , and the algebra
SHq,t := eHq,te is called the spherical subalgebra ofHq,t . It is easy to check that e
commutes with X + X−1 and that the subspace e · C[X±1] ⊂ C[X±1] is equal to the
subspace C[X + X−1] of symmetric polynomials in C[X±1]. The spherical algebra
therefore acts on C[X + X−1], and this module is called the symmetric polynomial
representation of SHq,t .

2.3 Main conjecture of [1]

Wefirst recall that the algebras Aq �Z2 and AZ2
q areMorita equivalent.More precisely,

if q4 − 1 is invertible, then the functors

eA ⊗A − : Mod(A) → Mod(eAe)

Ae ⊗eAe − : Mod(eAe) → Mod(A) (2.9)

are mutually inverse equivalences of categories.
We can identify (Aq � Z2)e = Aq as left Aq � Z2-modules and eAe ∼= AZ2

q as
Cq -algebras. Let K be a knot in S3, so that Kq(S3 \ K ) has the canonical structure of a

left AZ2
q -module. Applying the previous proposition, we may form the nonsymmetric

skein module K̂q(S3 \ K )

K̂q(S3 \ K ) := Aq ⊗
A

Z2
q

Kq(S3 \ K ).

This is naturally a left Aq � Z2-module, and so we may localize it at all nonzero
polynomials in X . Call the resulting Dq � Z2-module K̂ loc

q (S3 \ K ), i.e.

K̂ loc
q (S3 \ K ) := (Dq � Z2) ⊗Aq �Z2 K̂q(S3 \ K )
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By Proposition 2.6, K̂ loc
q (S3 \ K ) is then a Hq,(t1,t2,t3,t4)-module.

Example 2.11 Let K be the unknot. In this case, K̂q(S3\K ) ∼= Cq [X±1] as aCq [X±1]-
module. The action of the generators Y , s ∈ Aq � Z2 is given by the formulas

Y · f (X) := − f (q−2X), s · f (X) = − f (X−1)

The localized skein module K̂ loc
q (S3 \ K ) is simply Cq(X). Thus in this case the

natural localization map

η : K̂q(S3 \ K ) → K̂ loc
q (S3 \ K )

is injective, and we can identify K̂q(S3 \ K ) with its image under η. We want to know
if theHq,t action preserves this image as in the case of the polynomial representation.

Recall that byRemark2.10, the algebraHq,t is generated by the operators X , T1, T3,
which act on polynomials by formulas (2.5):

T1 · Xn = t1q2n X−n + q−2n X−n(q2t1X2 + qt2X)
1 − q2n X2n

1 − q2X2

T3 · Xn = −t3X−n + (t3 + t4X)
Xn + X−n

1 − X2

We see that T1 always preserves K̂q(S3 \ K ) ⊂ K̂ loc
q (S3 \ K ), while T3 preserves this

subspace only when t3 = t4 = ±1. Conjecturally, this behaviour generalizes to all
knots. To be precise, we have

Conjecture 2.12 ([1]) For all knots K ⊂ S3, the following are true:

(1) The localization map η : K̂q(S3 \ K ) → K̂ loc
q (S3 \ K ) is injective.

(2) The natural action ofHq,(t1,t2,1,1) on K̂ loc
q (S3\K ) preserves the subspace K̂q(S3\

K ), the image of the localization map η.

By symmetrization, the second statement of Conjecture 2.12 implies that the spher-
ical subalgebra SHq,t1,t2,1,1 acts on the skein module Kq(S3 \ K ) itself. It is shown in
[1] and [2] that this holds in many cases: for the unknot, figure eight, and (2, 2p + 1)-
torus knots for generic q, and for 2-bridge knots, all torus knots, and connect sums of
such when q = −1.

2.4 The generalized Jones polynomials

An interesting consequence of Conjecture 2.12 is the existence of a multivariable
generalization of the (coloured) Jones polynomials J K

n (q). Recall, by Theorem 2.7,
J K

n (q) canbe computedusing the natural (topological) pairing of theKauffmanbracket
skein modules, by the Kirby–Melvin formula (cf. (2.3)):

J K
n (q) = (−1)n−1〈∅, Sn−1(Y + Y −1) · ∅〉 (2.10)
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Under Morita equivalence 2.9, the topological pairing 〈−,−〉 extends uniquely to a
bilinear pairing of nonsymmetric skein modules3:

〈−,−〉 : K̂q(S1 × D2) × K̂q(S3 \ K ) → Cq (2.11)

and formula (2.10) still holds for this extended pairing (see [1, Cor. 5.3]). We note that
by construction, this bilinear pairing is in fact balanced over Aq � Z2, i.e. it induces
a Cq -linear map

〈−,−〉 : K̂q(S1 × D2) ⊗Aq�Z2 K̂q(S3 \ K ) → Cq (2.12)

The right action of Aq � Z2 on K̂q(S1 × D2) in (2.12) is described explicitly in [1,
Lemma 5.5]. Specifically, K̂q(S1 × D2) can be identified with the space of Laurent
polynomials Cq [U±1] with Aq � Z2 acting by

f (U ) · Y := f (U ) · U−1

f (U ) · X := − f (q2U )

f (U ) · s := − f (U−1) (2.13)

The distinguished element (‘empty link’) ∅ in K̂q(S1 × D2) corresponds under this
identification to the element U − U−1 ∈ Cq [U±1], which we still denote by ∅.

When a knot K satisfies Conjecture 2.12, the nonsymmetric skein module K̂q(S3 \
K ) carries a natural action of the DAHAHq,t1,t2 and the ‘longitude’ operator Y admits
a natural deformation to the DAHA operator Yt1,t2 := T3T1 (see Remark 2.10). This
motivates the following.

Definition 2.13 ([1]) Assume that K ⊂ S3 satisfies Conjecture 2.12. Then we define
the generalized Jones polynomial of K by

J K
n (q, t1, t2) := (−1)n−1〈∅, Sn−1(Yt1,t2 + Y −1

t1,t2) · ∅〉 (2.14)

where 〈−,−〉 is extended topological pairing (2.11).

Note that formula (2.14) makes sense precisely because, by Conjecture 2.12, the
skein module K̂q(S3 \ K ) is a module over Hq,t1,t2 . When t1 = t2 = 1, it reduces
to Kirby–Melvin formula (2.10), and we have J K

n (q, 1, 1) = J K
n (q). The general-

ized Jones polynomial J K
n (q, t1, t2) can be thus viewed as a two-parameter (‘Hecke’)

deformation of J K
n (q).

3 Proofs

In this section, we prove our three main theorems stated in Introduction.

3 Abusing notation, we denote the extended pairing of nonsymmetric skein modules in the same way as
the ‘symmetric’ (topological) one.
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3.1 The deformed pairing

To compute generalized Jones polynomials (2.14), we need a ‘deformed’ version of
formula (2.3), which leads us to the natural question: Is topological pairing (2.11)
balanced over Hq,t1,t2 for t1, t2 �= 1? The (affirmative) answer to this question is the
starting point for our calculations:

Lemma 3.1 Assume that a knot K ⊂ S3 satisfies Conjecture 2.12. Then, for any
t1, t2 ∈ C

∗, pairing (2.11) induces a linear map

〈−,−〉 : K̂q(S1 × D2) ⊗Hq,t1,t2
K̂q(S3 \ K ) → Cq(t1, t2) (3.1)

where the (right) Hq,t1,t2 -module structure on K̂q(S1 × D2) is defined by (2.13) via
Demazure-Lusztig and Dunkl-Cherednik operators (2.5).

Proof Recall that pairing (2.11) is balanced over Aq � Z2 (see (2.12)). To prove the
lemma, it is sufficient to show that it is balanced over an invertible generating set of
Hq,(t1,t2), which we take to be X , s, and the operator

T1 = t1sY − q2 t̄1X2 + qt2X

1 − q2X2 (1 − sY )

Since the pairing is already balanced over s and X and Y , it will suffice to show it is
balanced with respect to 1

1−q2X2 (1− sY ). Since the image of K̂q(S3 \ K ) is preserved

in its localization, if m ∈ K̂q(S3 \ K ) then there exists a unique m′ ∈ K̂q(S3 \ K )

such that

(1 − sY ) · m = (1 − q2X2) · m′

Thus we can compute

〈U k,
1

1 − q2X2 (1 − sY ) · m〉 = 〈U k, m′〉.

On the other hand, acting on the right by the same operator gives

〈U k · 1

1 − q2X2 (1 − sY ), m〉 = 〈U k .
1

1 − q2X2 , (1 − sY ) · m〉

= 〈U k · 1

1 − q2X2 , (1 − q2X2)m′〉
= 〈U k, m′〉

This completes the proof of Lemma 3.1. ��
Corollary 3.2 If K satisfies Conjecture 2.12, then

J K
n (q, t1, t2) = (−1)n−1〈∅ · Sn−1(Yt1,t2 + Y −1

t1,t2), ∅〉 (3.2)
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Proof Formula (3.2) is immediate from Definition 2.13 and Lemma 3.1. ��

3.2 Proof of Theorem 1.2

From now, we fix a knot K ⊂ S3 and (unless otherwise stated) assume that it satisfies
the conditions of Conjecture 2.12.

Lemma 3.3 For all n ≥ 0,

J K
n (q, t1, t2) =

n∑

p=1

(−1)n+pan,p(q, t1, t2) J K
p (q), (3.3)

where the coefficients an,p = an,p(q, t1, t2) are defined in Introduction (see (1.18)
and (1.19)).

Remark 3.4 We note that an,k(q, t1, t2) in (3.3) are rational functions of q, and it is
by no means obvious that the right-hand side of formula (3.3) is polynomial in q. We
will show later—invoking the Habiro Theorem—that this is indeed the case for any
knot K , whether or not it satisfies Conjecture 2.12.

Proof of Lemma 3.3 Recall that under the identification K̂q(S1× D2) ∼= Cq [U±1] (see
(2.14)), the empty link ∅ in K̂q(S2 × D2) corresponds to the element U − U−1 ∈
Cq [U±1]. The operators Sn−1(Yt1,t2 + Y −1

t1,t2) are invariant under (i.e. commute with)
the action of Z2 on Cq [U±1]. Hence, for all n ≥ 1, we can expand (U − U−1) ·
Sn−1(Yt1,t2 + Y −1

t1,t2) in Cq [U±1] as

(U − U−1) · Sn−1(Yt1,t2 + Y −1
t1,t2) =

n∑

p=1

an,p(U
p − U−p) (3.4)

for some (uniquely determined) coefficients ãn,p ∈ Cq(t1, t2). By Corollary 3.2, this
gives

Jn(q, t1, t2) = (−1)n−1〈∅ · Sn−1(Yt1,t2 + Y −1
t1,t2), ∅〉

= (−1)n−1〈(U − U−1) · Sn−1(Yt1,t2 + Y −1
t1,t2), ∅〉

= (−1)n−1
n∑

p=1

an,p〈U p − U−p, ∅〉

=
n∑

p=1

(−1)n+pan,p Jp(q)

where the last equality is the consequence of Kirby–Melvin formula (2.3) (cf. [1,
Lemma 5.6]). Thus, to complete the proof of the lemma it suffices to show that the
coefficients an,p in (3.4) are determined precisely by relations (1.18) and (1.19). This
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can be done by a lengthy but straightforward induction (in n) using the defining
relations Sn = uSn−1−Sn−2 for theChebyshev polynomials.We leave this calculation
as an exercise for the reader. ��

Combining formula (3.3) of Lemma 3.3 with Habiro’s expansion of the classical
Jones polynomials (see Theorem 1.1), we get

Jn(q, t1, t2) =
n∑

p=1

(−1)n+pan,p Jp(q) =
n∑

p=1

(−1)n+pan,p

⎛

⎝
p∑

i=1

cp,i−1 Hi−1

⎞

⎠

=
n∑

p=1

p∑

i=1

(−1)n+pan,p cp,i−1 Hi−1 =
n∑

i=1

⎛

⎝
n∑

p=i

(−1)n+pan,p cp,i−1

⎞

⎠ Hi−1

where Hi−1 = Hi−1(q) are the Habiro polynomials of the knot K and cp,i−1 are the
classical cyclotomic coefficients defined by formula (1.2). Since cp,i−1 ≡ 0 for p < i ,
we can rewrite the last formula in the form

Jn(q, t1, t2) =
n∑

i=1

c̃n,i−1 Hi−1 (3.5)

where

c̃n,i−1 :=
n∑

p=1

(−1)n+pan,p cp,i−1 (3.6)

Now, to prove Theorem 1.2 we need to compute the generating functions Gi (λ) :=∑∞
n=0 c̃n,i−1λ

n . Using (3.6) we can write these functions in the form

Gi (λ) =
∞∑

n=0

n∑

p=1

(−1)pan,pcp,i−1(−λ)n, i ≥ 1 (3.7)

Formula (3.6) suggests that Gi (λ) may be expressed in a simple way in terms of the
generating series of the double sequence {an,p}:

F(U , λ) :=
∞∑

n=0

∞∑

p=−∞
an,pU pλn (3.8)

which we define by formally extending the functions p �→ an,p to all integers p ∈ Z

using recurrence relation (1.18) for p < 0. Note that, by symmetry of (1.18), we
actually have

an,−p = −an,p, ∀p ∈ Z (3.9)
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Together with ‘boundary’ conditions (1.19) this implies

∞∑

p=−∞
an,pU p =

n∑

p=−n

an,pU p =
n∑

p=1

an,p(U
p − U−p)

Hence (3.8) can be rewritten in the form

F(U , λ) =
∞∑

n=0

⎛

⎝
n∑

p=1

an,p(U
p − U−p)

⎞

⎠ λn (3.10)

Remark 3.5 To reduce notation, for the rest of this section we write

{n} := {n}q

Comparing (3.10) with formula (3.7) for i = 1, we see at once that

G1(λ) = 1

{2} F(−q2,−λ)

The next lemma extends this observation to all Gi (λ)’s.

Lemma 3.6 For all i ≥ 1,

Gi (λ) = 1

{2}
i∑

k=1

α
(i)
k F(−q2(2k−1),−λ) (3.11)

where

α
(i)
k = (−1)i−k

[
2i − 1
i − k

]

q2
(3.12)

Proof Using the explicit formulas for the cyclotomic coefficients cp,i−1 (see (1.2))
and the (skew) symmetry of the an,p’s (see (3.10)), we write

n∑

p=1

(−1)pan,pcp,i−1

= 1

{2}
n∑

p=1

(−1)pan,p{2(p − (i − 1))} · · · {2(p − 1)}{2p}{2(p + 1)} · · · {2(p + (i − 1))}

= 1

{2}
n∑

p=−n

an,p{2(p − (i − 1))} · · · {2(p − 1)}(−q2)p{2(p + 1)} · · · {2(p + (i − 1))}

= 1

{2}

⎡

⎣
∞∑

p=−∞
an,pU p{2(p − (i − 1))} · · · {2(p − 1)}{2(p + 1)} · · · {2(p + (i − 1))}

⎤

⎦

U=−q2

123



Cyclotomic expansion of generalized Jones polynomials Page 21 of 32    37 

Since U p · f (X±1) = U p f (−q−2p) for any f (X) ∈ C[X±1], we can rewrite the
last sum in the form

n∑

p=1

(−1)pan,pcp,i−1 = 1

{2}

⎡

⎣
∞∑

p=−∞
an,pU p · P(i)(X)

⎤

⎦

U=−q2

where P(i)(X) ∈ C[X±1] are the Laurent polynomials defined by

Pi (X) :=
i−1∏

k=1

(q−2k X − q2k X−1)(q2k X − q−2k X−2k), i ≥ 1

By formula (3.7), we get

Gi (λ) = 1

{2}
[

F(U ,−λ) · P(i)(X)
]

U=−q2

Writing the polynomials P(i)(X) in the form

P(i)(X) = b(i)
0 +

i−1∑

k=1

b(i)
k (X2k + X−2k)

we compute

F(U ,−λ) · P(i)(X) = b(i)
0 F(U ,−λ) +

i−1∑

k=1

b(i)
k

(
F(q4kU ,−λ) + F(q−4kU ,−λ)

)

Now, substituting U = −q2 and using the skew-symmetry F(U−1) = −F(U ) of the
generating series, we find

[
F(U ,−λ) · P(i)(X)

]

U=−q2
=

i∑

k=1

(b(i)
k−1 − b(i)

k )F(−q2(2k−1),−λ)

Whence

Gi (λ) = 1

{2}
i∑

k=1

(
b(i)

k−1 − b(i)
k

)
F(−q2(2k−1),−λ)

To complete the proof of the lemma, it suffices to notice that

b(i)
k−1 − b(i)

k = α
(i)
k ∀i ≥ 1, 1 ≤ k ≤ i − 1
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which can be seen easily from the formula

(X − X−1)P(i)(X) =
i−1∏

k=−(i−1)

(q2k X − q−2k X−1) =
i∑

k=1

α
(i)
k (X2k−1 − X−2k+1).

This finishes the proof of Lemma 3.6. ��
Thus, by Lemma 3.6, the generating functions Gi (λ) are determined by the values

of F(U , λ) at U = −q2(2k−1) for k ≥ 1. To compute these values we will use the
functional equation

F(U , λ) · (Yt1,t2 + Y −1
t1,t2 − λ − λ−1) = U−1 − U (3.13)

which is equivalent to recurrence relations (1.18) defining the coefficients an,p. The
equivalence of (3.13) and (1.18) follows easily from formulas (3.4) and (3.10) and the
standard generating series of Chebyshev polynomials:

∞∑

n=0

Sn−1(z + z−1)λn = −(z + z−1 − λ − λ−1)−1

We need one more technical lemma.

Lemma 3.7 For any N ∈ Z and any f (U ) ∈ Cq [U±1],
[

f (U ) · (Yt1,t2 + Y −1
t1,t2)

]

U=−q2N

= −(t1q−2N + t−1
1 q2N ) f (−q2N )

+ t̄1

N−1∑

p=0

{2p} f (−q2(2p−N ))

− t̄2

N−1∑

p=0

{2p + 1} f (−q2(2p−N+1)) (3.14)

Proof Recall that the Dunkl-Cherednik operator Yt1,t2 := Yt1,t2,1,1 is given explicitly
by the formula (cf. (2.5) and Remark 2.10):

Yt1,t2 = t1Y − a(X)(Y − s)

where

a(X) := qt̄1X−1 + t̄2
q X−1 − q−1X

= t̄1 + t̄2(q−1X)

1 − (q−1X)2
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For any k ∈ Z, using (2.13) we compute

U k · Yt1,t2 = t1U k−1 − a(−q2k)(1 + U 2k−1)U−k

Then, evaluating at U = −q2N yields

[
U k · Yt1,t2

]

U=−q2N
= −t1q−2N (−q2N )k − t̄1

N−1∑

p=0

q−2p(−q2p−2N )k

+t̄2

N−1∑

p=0

q−2p−1(−q4p−2N+2)k

Hence, for any f (U ) ∈ C[U±1] we have
[

f (U ) · Yt1,t2

]
U=−q2N = − t1q−2N f (−q2N )

− t̄1

N−1∑

p=0

q−qp f (−q2(2p−N ))

+ t̄2

N−1∑

p=0

q−2p−1 f (−q2(2p−N+1)) (3.15)

A similar calculation with the inverse operator

Y −1
t1,t2 = t1Y −1 − a(X−1)Y −1 − s) − t̄1s

yields

[
f (U ) · Y −1

t1,t2

]

U=−q2N
= − t−1

1 q2N f (−q2N

+ t̄1

N−1∑

p=0

q2p f (−q2(2p−N )

− t̄2

N−1∑

p=0

q2p+1 f (−q2(2p−N+1)) (3.16)

Adding up (3.15) and (3.16) we get formula (3.14). ��
Now we are in a position to complete the proof of Theorem 1.2.

Proof of Theorem 1.2 Using Lemma 3.7, from functional Eq. (3.13) we get the system
of linear equations for the values F(−q2N ,−λ):

γN F(−q2N ) − t̄1

N−1∑

p=1

{2p}F(−q2(2p−N )) + t̄2

N−1∑

p=0

{2p + 1}F(−q2(2p−N+1)) = −{2N }
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where γN = −λ − λ−1 + q2N t−1
1 + q−2N t1. This system can be written in the matrix

form

⎛

⎜⎜⎜⎝

γ1 0 0 · · ·
b2,1 γ2 0 · · ·
b3,1 b3,2 γ3 · · ·
...

...
...

. . .

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

F(−q2)

F(−q4)

F(−q6)
...

⎞

⎟⎟⎟⎠ = −

⎛

⎜⎜⎜⎝

{2}
{4}
{6}
...

⎞

⎟⎟⎟⎠ (3.17)

where

bp,N := (−1)i ({p + N } − {p − N }) t̄i , with i ≡ p − N + 1 (mod 2)

By Lemma 3.6, the generating functions Gi (λ) are given by linear combinations of
solutions of this system, F(−q2N ,−λ), with N = 2k − 1 for k ≥ 1. Solving (3.17)
by Cramer’s rule, we can formally express these linear combinations in terms of the
matrix B̃2i (q, t1, t2; λ) described in Introduction (see (1.12)). This yields required
formulas (1.11) for Gi (λ), finishing the proof of Theorem 1.2. ��

3.3 Proof of Theorem 1.4

In this subsection we specialize t2 = 1 and give an explicit formula for the coefficients
c̃n,i in terms of classical Macdonald polynomials of type A1. We begin by recalling
the definition.

Definition 3.8 The Macdonald polynomials pn(x;β|q), n ≥ 0 are the symmetric
orthogonal polynomials in C[q±1, β±1][x + x−1] satisfying the 3-term recurrence
relation

pn+1=(x + x−1)pn − qn/2 − q−n/2

β1/2qn−2 − β−1/2q−n/2

βq(n−1)/2 − β−1q(1−n)/2

β1/2q(n−1)/2 − β−1/2q(1−n)/2
pn−1

with p0 = 1 and p1 = x + x−1.

After the following renormalization4

Cn(x;β|q) := (β; q)n

(q; q)n
pn(x;β|q)

the Macdonald polynomials assemble into the generating series (see, e.g. [11]):

∞∑

n=0

Cn(x;β|q)zn = (zβx; q)∞(zβx−1; q)∞
(zx; q)∞(zx−1; q)∞

, (3.18)

4 The polynomials Cn(x; β|q) are sometimes called the q-ultraspherical (or Rogers) polynomials (cf. [11,
Sect. 14.10.1]).
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where

(a; q)n :=
{

1 n = 0∏n−1
k=0(1 − aqk) 1 ≤ n ≤ ∞

(For n = ∞ one assumes that |q| < 1.) In fact, these polynomials can be given by

Cn(x;β|q) =
n∑

k=0

(β; q)k(β; q)n−k

(q; q)k(q; q)n−k
xn−2k (3.19)

If we specialize q �→ q4 and β �→ q4i , then formulas (3.18) and (3.19) become

∞∑

n=0

Cn(x; q4i |q4)zn = 1
∏i−1

k=0(1 − q4k zx)(1 − q4k zx−1)
(3.20)

and

Cn(x; q4i |q4) =
n∑

k=0

[
k + i − 1

i − 1

]

q4

[
n − k + i − 1

i − 1

]

q4
xn−2k (3.21)

Note that the last formula shows that Cn(x; q4i |q4) ∈ Z[q±4][x + x−1] for all n ≥ 0.
To prove Theorem 1.4 we compare (3.20) to the generating function Gi (λ). First, we
simplify formula (1.11) for Gi (λ) given in Theorem 1.2 by explicitly computing the
determinant of B2i in the case t2 = 1. The result is given by the following

Proposition 3.9 For t1 = t and t2 = 1, we have

Gi (λ) = ci,i−1
∏i

k=2 Ak(t)∏i
k=1(λ + λ−1 − q2(2k−1)t−1 − q−2(2k−1)t)

(3.22)

where

Ak(t) = q2k−1t−1 − q1−2k t

q2k−1 − q1−2k

Proof We break up the proof into two steps stated as Lemmas 3.10 and 3.11. First,
Lemma 3.10 shows that

c̃n,i−1 = det [B̄i ]∏i
k=1(λ + λ−1 − q2(2k−1)t−1 − q−2(2k−1)t)

where B̄i is a certain submatrix of B̃2i . Then Lemma 3.11 computes the determinant
of B̄i by induction, showing that

det [B̄i+1] = −{2(2i)}{2(2i + 1)}Ai+1 det [B̄i ] (3.23)
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Together with (1.11), this gives formula (3.22). ��
Lemma 3.10 For all i ≥ 1,

Gi (λ) = det [B̄i ]∏i
k=1(λ + λ−1 − q2(2k−1)t−1 − q−2(2k−1)t)

where B̄i is the matrix

B̄i :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α
(i)
1 α

(i)
2 · · · α

(i)
i−1 1

β1 γ1 0 · · ·
β3 b3,1 γ3 0 · · ·
...

...
...

. . . 0 · · ·
β2 j−1 b2 j−1,1 b2 j−1,2 · · · γ2 j−1 0 · · ·

...
...

... · · · ...
. . .

β2i−1 b2i−1,1 b2i−1,2 · · · · · · b2i−1,2i−2 γ2i−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.24)

Proof Note that if t2 = 1 and i − j is even, then bi, j = 0. This means that the second-
to-last column in B̃2i has exactly one nonzero entry, which is γ2i−2, located on the
diagonal. Expanding the determinant along this column, we see that the same is true
with the resulting (2i − 1) × (2i − 1) matrix. Then induction shows

det(B̃2i ) = det(B̄i )

i∏

j=2

γ2 j−2

The result then follows from this identity combined with Theorem 1.2. ��

Lemma 3.11 det [B̄i ] = (−1)i
(∏2i−1

N=1{2N }
) (∏i

k=2 Ak(t)
)

.

Proof The proof consists of a sequence of row and column operations to show that
step det [B̄i+1] = −{2(2i)}{2(2i + 1)}Ai+1 det [B̄i ]. First, we kill all entries in the
first row of B̄i+1 except for the last using column operations to obtain the following
matrix:

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 · · · 1
β1 γ1 0 · · ·
...

...
. . . · · ·

β2i−1 b2i−1,1 b2i−1,2 · · · γ2 j−1 0
β2i+1 b2i+1,1 − α

(i+1)
1 γ2i+1 b2i+1,2 − α

(i+1)
2 γ2i+1 · · · · · · γ2i+1

⎞

⎟⎟⎟⎟⎟⎠

Then we reduce the size of this matrix by one, expanding the determinant along its
first row. Next, we add α

(i+1)
k multiples of the first i rows to the last row to obtain the

matrix
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(−1)i+3γ2i+1

⎛

⎜⎜⎜⎝

β1 γ1 0 · · · 0
...

...
. . . · · · ...

β2i−1 b2i−1,1 b2i−1,2 · · · γ2 j−1

β̃2i+1 b̃2i+1,1 b̃2i+1,2 · · · b̃2i+1,i

⎞

⎟⎟⎟⎠

where

β̃2i+1 = α
(i+1)
1 β1 + · · · + α

(i+1)
i β2i−1 + β2i+1

b̃2i+1,k = b2i+1,k + α
(i+1)
k (γk − γ2i+1) +

i∑

j=k+1

α
(i+1)
j b2 j−1,k

Now, observe that by (3.17) we have β̃2i+1 = 0, so wemove the last row to the top and
divide it by its last entry, which is b̃2i+1,i . Finally, by a straightforward computation,
we check that the resulting matrix is exactly B̄i . ��

Proof of Theorem 1.4 It follows from Lemma 3.9 that

c̃n,i−1 =
(

ci,i−1
∏i

k=2 Ak∏i−1
k=0(λ + λ−1 − q2(2k+1)t−1 − q−2(2k+1)t)

)
[λn] (3.25)

where the notation [λn] means the coefficient of λn in the preceding expression. If we
change variables z = q−2(i−1)λ and x = q2i t−1 in (3.20) and compare the result with
(3.25) we obtain

c̃n,i−1 = ci,i−1q−2(n−i)(i−1)Cn−i (q
2i t−1; q4i |q4)

i∏

k=2

Ak (3.26)

By specializing t = 1 in (3.26), we see that

Cn−i (q
2i ; q4i |q4) = q2(n−i)(i−1) cn,i−1

ci,i−1

Hence, it follows from (3.26) that

c̃n,i−1

cn,i−1
= Cn−i (q2i t−1; q4i |q4)

Cn−i (q2i ; q4i |q4)

(
i∏

k=2

Ak

)
= pn−i (q2i t−1; q4i |q4)

pn−i (q2i ; q4i |q4)

(
i∏

k=2

Ak

)

(3.27)

This completes the proof of Theorem 1.4. ��
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Remark 3.12 Using (3.21), we can rewrite formula (3.26) in the following explicit
form:

c̃n,i−1 =(q2t−1)n
i−1∏

k=1

(q2k+1 + q−2k−1)(q−2k−1t − q2k+1t−1)

× (q8; q8)i−1

n−i∑

k=0

[
k + i − 1

i − 1

]

q4

[
n − k − 1

i − 1

]

q4
(q−2i t)i+2k

which makes the integrality of c̃n,i−1 (Corollary 1.3) obvious.

3.4 Proof of Theorem 1.6

Theorem 1.6 follows easily by comparing our results (specifically Lemma 3.3) with
Habiro’s results proved in [8]. For the reader’s convenience (and to avoid confusion
with notation), we will state Habiro’s main theorem on universal sl2-invariants below.
First, we recall from Introduction that Uh = Uh(sl2) stands for the quantized universal
enveloping algebra of the Lie algebra sl2: this is an h-adically completeQ[[h]]-algebra
(topologically) generated by elements E, F, H satisfying the relations

[H , E] = 2E, [H , F] = −2F, [E, F] = K − K −1

v − v−1 (3.28)

where v := eh/2 and K := vH = eh H/2. This algebra carries a natural (complete)
ribbon Hopf algebra structure with universal R-matrix given by

R = vH⊗H/2
∑

n≥0

vn(n−1)/2 (v − v−1)n

[n]v! En ⊗ Fn (3.29)

(where we have used the notation [n]q ! := ∏n
k=1[k]q ). Using R-matrix (3.29), for

any (ordered, oriented, framed) link L in S3, R. Lawrence [14,15] constructed a link
invariant J L , called the universal sl2-invariant5 of L . If L has � components, the

Lawrence invariant J L takes its values in U ⊗̂�
h , the h-adically completed tensor prod-

uct of l copies of Uh . In the case of knots (i.e. a link K with a single component), the
Lawrence invariant J K is contained in the centre Z(Uh), which is a complete com-
mutative subalgebra of Uh (topologically) freely generated by the Casimir element
C = (v − v−1)2F E + (vK + v−1K −1 − v − v−1).

Habiro found a general formula for J K expressing it in terms of polynomials
H K

k (v) ∈ Z[v2, v−2]:

5 Lawrence’s universal invariants can be defined formore general Lie algebras than sl2 and formore general
link-type diagrams (bottom tangles), see [7].
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Theorem 3.13 ( [8, Theorem 4.5]) For any (string, 0-framed) knot K , the Lawrence
universal sl2-invariant is given by

J K =
∞∑

k=0

H K
k (v)σk (3.30)

where

σk =
k∏

i=1

(C2 − (vi + v−i )2) ∈ Z(Uh), k ≥ 0

Now, Habiro’s Theorem 1.1 stated in Introduction follows from Theorem 3.13 by
evaluating the elements σk on finite-dimensional irreducible representations of Uh

using quantum traces. It is well known that such representations Vn are classified by
the nonnegative integers—the dimension (i.e. the rank of Vn as a free module over
Q[[h]]). Recall, for a finite-dimensional representation ρV : Uh → EndQ[[h]](V ) and
an element u ∈ Uh , the quantum trace trV

q (u) is defined by

trq(u, v) := TrV [ρV (K u)] (3.31)

where TrV is the usual (matrix) trace on V . For central elements z ∈ Z(Uh) one can
compute (3.31) using the Harish-Chandra homomorphism

Z(Uh) ↪→ Uh → Q[[h]][H ]

defined (on the PBW basis of Uh) by

ϕ(Fi H j Ek) = δi,0δk,0H j

Specifically, for any n ≥ 1, we have

trq(z, Vn) = dimv(Vn)evn(ϕ(z)) = [n]vevn(ϕ(z)) (3.32)

where evn : Q[[h]][H ] → Q[[h]] is the evaluation map f (H) �→ f (n).
Using formula (3.32), it is straightforward to show that

trq(σk; Vn) = 1

v − v−1

n+k∏

p=n−k

(v p − v−p), ∀k ≥ 1

Thus, setting v = q2, we obtain6

trq(σk, Vn) = cn,k(q) (3.33)

6 We warn the reader that our q differs from the q in [8]: in fact, the q in [8] equals v2, which is our q4.
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where cn,k(q) are precisely cyclotomic coefficients (1.2). If follows from Theorem
3.13 and formula (3.33) that

Ĵ K (Vn) = trq(J K , Vn) =
∑

k≥0

cn,k(q)H K
k (q) = J K

n (q) (3.34)

Now, the proof of Theorem 1.6 reduces to the one-line calculation

Ĵ K (Ṽn) =
n∑

p=1

(−1)n+pan,p Ĵ K (Vn)

(3.34)=
n∑

p=1

(−1)n+pan,p J K
p (q)

= J K
n (q, t1, t2)

where the last equality is formula (3.3) of Lemma 3.3.

Remark 3.14 In connection with Theorem 1.6, one might wonder why an invariant
defined by a DAHA action on a skein module could be expressed in terms of the
representation ring of Uq(sl2). A brief explanation for this is as follows: consider the
Temperley-Lieb category, which is a monoidal category whose objects are the natural
numbers and whose morphisms from m to n are the (m, n)-tangles7 in [0, 1] × [0, 1]
regarded modulo the Kauffman bracket skein relations. The monoidal structure comes
from addition on objects, and on morphisms is defined using juxtaposition of disks.
It is a classical fact (see [4,13,25] and references therein) that (the Karoubi enve-
lope of) the Temperley-Lieb category is equivalent to the category Rep(Uq(sl2)) of
finite-dimensional representations of Uq(sl2). This implies that there is a natural map
H H0(Rep(Uq(sl2))) → Kq(S1×D2) from theHochschild homologyofRep(Uq(sl2))
to the skeinmodule of (closed) loops in the annulus, which is actually an isomorphism.
On the other hand, for any semisimple category C , there is a canonical (Chern charac-
ter) map ch : K0(C) → H H0(C) which becomes an isomorphism upon linearization
of K0(C). This means in our case that we can naturally identify the representation
ring Rq := K0(Rep(Uq(sl2))) with the skein algebra Kq(S1 × D2). As a result, for a
knot K we get a commutative diagram

Rq Kq(S1 × D2)

Q[[h]]

ch

Ĵ K 〈−,∅〉

which leads to formula (3.34).

7 An (m, n)-tangle is a properly embedded 1-manifold in [0, 1] × [0, 1] with m endpoints on {0} × [0, 1]
and n endpoints on {1} × [0, 1].
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