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a b s t r a c t

We present SPARC: Simulation Package for Ab-initio Real-space Calculations. SPARC can perform Kohn–
Sham density functional theory calculations for isolated systems such as molecules as well as extended
systems such as crystals and surfaces, in both static and dynamic settings. It is straightforward to
install/use and highly competitive with state-of-the-art planewave codes, demonstrating comparable
performance on a small number of processors and increasing advantages as the number of processors
grows. Notably, SPARC brings solution times down to a few seconds for systems with O(100–500)
atoms on large-scale parallel computers, outperforming planewave counterparts by an order of
magnitude and more.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code Metadata

Current code version v1.0.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2020_221
Code Ocean compute capsule
Legal Code License GNU General Public License v3.0
Code versioning system used git
Software code languages, tools, and services used C, MPI, BLAS, LAPACK, ScaLAPACK (optional), MKL (optional)
Compilation requirements, operating environments & dependencies OS: Unix, Linux, or MacOS
If available Link to developer documentation/manual https://github.com/SPARC-X/SPARC/tree/master/doc
Support email for questions phanish.s@gmail.com

1. Motivation and significance

Over the course of the past few decades, quantum mechani-
al calculations based on Kohn–Sham density functional theory
DFT) [1,2] have become a cornerstone of materials research by
irtue of the predictive power and fundamental insights they pro-
ide. The widespread use of the methodology can be attributed to
ts generality, simplicity, and high accuracy-to-cost ratio relative
o other such ab initio approaches [3,4]. However, while less
xpensive than wavefunction based methods, the solution of the
ohn–Sham equations remains a formidable task. In particular,
he computational cost scales cubically with the number of atoms,
everely limiting the range of physical systems accessible to

∗ Corresponding author.
E-mail address: phanish.suryanarayana@ce.gatech.edu (P. Suryanarayana).

such first principles investigation. These limitations become even
more acute in quantum molecular dynamics (QMD) simulations,
wherein the equations for the electronic ground state may be
solved tens or hundreds of thousands of times to reach time
scales relevant to phenomena of interest [3].

The planewave pseudopotential method [5] has been among
the most widely used techniques for the solution of the Kohn–
Sham problem [6–13]. The underlying Fourier basis is complete,
orthonormal, independent of atomic positions, diagonalizes the
Laplacian, and provides spectral convergence for smooth prob-
lems. As a result, the planewave method is accurate, simple to use
since it relies on a single convergence parameter, has negligible
egg box effect [14,15], and is highly efficient on moderate com-
putational resources with the use of well optimized Fast Fourier
Transforms (FFTs) and efficient preconditioning schemes. How-
ever, the Fourier basis restricts the method to periodic boundary

conditions, whereby finite systems such as clusters and
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olecules, as well as semi-infinite systems such as surfaces
nd nanowires, require the introduction of artificial periodic-
ty with large vacuum regions. This limitation also necessitates
he introduction of an unphysical neutralizing background den-
ity when treating charged systems in order to avoid Coulomb
ivergences. Moreover, the global nature of the Fourier basis
ampers scalability on parallel computing platforms and compli-
ates the development of linear-scaling methods [16–18], limiting
he system sizes and time scales accessible.

The limitations of the planewave method have motivated the
evelopment of a number of alternative solution strategies em-
loying systematically improvable, localized representations [19–
9]. Among these, perhaps the most mature and widely used to
ate are the finite-difference methods [40,41], wherein computa-
ional locality is maximized by discretizing all quantities of inter-
st on a uniform real-space grid that is independent of atomic
ositions.1 As a result, convergence is controlled by a single pa-
ameter and both periodic and Dirichlet boundary conditions are
aturally accommodated, thus enabling the efficient and accurate
reatment of finite, semi-infinite, bulk, and charged systems alike.
oreover, real-space methods are amenable to the development
f linear scaling methods, and large-scale parallel computational
esources can be efficiently leveraged by virtue of the method’s
implicity, locality, and freedom from communication-intensive
ransforms such as FFTs [24,35,43–45]. With these and other
dvances, real-space methods have been applied to systems con-
aining thousands of atoms, and have demonstrated substantially
educed solution times compared to established planewave codes
n applications to both finite [46] and extended [36] systems.

However, despite the significant advantages afforded by real-
pace methods, the planewave method has remained the method
f choice in practice for the better part of the past two decades.
his is largely due to the ease of use, extensive feature sets,
stablished accuracy/robustness, and straightforward installation
f the associated codes, having been in development and pro-
uction for a longer period of time. Perhaps most importantly,
owever, planewave codes have typically yielded shorter times to
olution using moderate computational resources, as most widely
vailable to researchers in practice [36,46]. Moreover, even with
ccess to larger-scale machines, real-space codes have not al-
ays yielded shorter times to solution, further hindering wider
doption in practice.
In this work, we present an open-source software package

or the accurate, efficient, and scalable solution of the Kohn–
ham equations, referred to as SPARC. The package is straightfor-
ard to install/use and highly competitive with state-of-the-art
lanewave codes, demonstrating comparable performance on a
mall number of processors and order-of-magnitude advantages
s the number of processors increases.

. Software description

The central focus of SPARC is the accurate and efficient so-
ution of the finite-temperature Kohn–Sham equations for the
lectronic ground state [1,2,47]:(
Hσ

≡ −
1
2
∇

2
+ V σeff

[
ρα, ρβ;R

])
ψσ

n = λσnψ
σ
n ,

n = 1, 2, . . . ,Nσs , σ ∈ {α, β} ,

(1)

1 Nonuniform adaptive grids [42] have the potential to reduce number of
egrees of freedom significantly. However, they introduce additional parameters
o be tuned, additional computations to effect transformations, atom-position
ependence and associated Pulay forces, and complicate load balancing in
arallel computations.

where the superscript σ denotes the spin, i.e., spin-up or spin-
down, Hσ is the Hamiltonian, ψσ

n are the orthonormal orbitals
with energies λσn , V

σ
eff is the effective potential, Nσs is the number

of states, and R denotes the set of atomic positions. In addition,
ρσ represents the spin-resolved electron density:

ρσ (x) =
Nσs∑
n=1

gσn |ψ
σ
n (x)|

2
, σ ∈ {α, β} , x ∈ R3 , (2)

where gσn are the orbital occupations, typically given by the
Fermi–Dirac distribution. In implementations of the above equa-
tions, once a suitable fundamental domain/unit cell has been
identified, zero Dirichlet or Bloch-periodic boundary conditions
are prescribed on the orbitals along the directions in which the
system is finite or extended, respectively.

2.1. Software architecture

SPARC employs the pseudopotential approximation [5] to fa-
cilitate the efficient solution of the Kohn–Sham equations for
the whole of the periodic table of elements. In addition, it em-
ploys a local real-space formulation of the electrostatics [48,49],
wherein the electrostatic potential – component of V σeff that is
the sum of ionic and Hartree contributions – is given by the
solution of a Poisson problem, with Dirichlet or periodic boundary
conditions prescribed along directions in which the system is
finite or extended, respectively. In this framework, SPARC per-
forms a uniform real-space discretization of the equations, using
a high-order centered finite-difference approximation for differ-
ential operators and the trapezoidal rule for integral operators.
The actual code is written in the C language and achieves par-
allelism through the message passing interface (MPI) [50]. An
overview of the SPARC framework for performing Kohn–Sham
DFT calculations is shown in Fig. 1.

SPARC can perform single-point calculations, structural relax-
ations (atom and/or cell), and QMD simulations. For single-point
calculations, the electronic ground state is determined for fixed
ionic positions and cell dimensions, whereas for structural relax-
ations, positions and/or cell dimensions are varied to minimize
the Kohn–Sham energy using the Hellmann–Feynman atomic
forces [36,46] and/or stress tensor [51]. For QMD, the ionic po-
sitions, velocities, and accelerations are evolved by integrating
the equations of motion, with or without a thermostat, using
the atomic forces. In all cases, the calculations can be either
spin-polarized or unpolarized, with various choices of local and
semilocal exchange–correlation functionals.

SPARC requires two input files for every calculation: (i) a
.inpt file containing the options and parameters to be used
in the calculation, including the choice of exchange–correlation
functional, flag for spin-polarization, type of static/dynamic cal-
culation, ionic temperature in the case of QMD, cell dimensions,
boundary condition in each direction, and finite-difference grid
specification; and (ii) a .ion file containing information on the
atomic configuration, including atom types, positions, and paths
to corresponding pseudopotential files. Note that, in order to
enable detailed control of the simulation, a large number of
parameters and options can be specified, as described in the
accompanying user guide. However, by virtue of carefully chosen
defaults, relatively few parameters typically need be specified
in practice. Note also that, since all files are simple, human-
readable text, series of simulations are readily scripted. A Python
package containing helper functions for generating input files and
submitting simulations is also available.

The Kohn–Sham problem for the electronic ground state needs
to be solved for every configuration of atoms encountered during
the DFT simulation. In SPARC, this is achieved using the self-

consistent field (SCF) method [5], which represents a fixed-point

2
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Fig. 1. Overview of the SPARC framework for performing Kohn–Sham DFT calculations. The Cartesian topology is formed by embedding a three-dimensional processor
grid into the MPI_COMM_WORLD communicator. The eigensolver topology is a collection of smaller Cartesian topologies, created by first splitting the MPI_COMM_WORLD
ommunicator into multiple spin groups, then splitting each spin group into multiple Brillouin zone integration groups, then splitting each Brillouin zone integration
roup into multiple band groups, and finally, embedding each band group with a Cartesian topology.

teration with respect to either the electron density or poten-
ial. For the first SCF iteration in the simulation, a superposition
f isolated atom electron densities is used as the initial guess,
hereas for every subsequent atomic configuration encountered,
xtrapolation based on solutions to previous configurations is
mployed [52]. The convergence of the SCF iteration is acceler-
ted using the restarted variant [53] of the Periodic Pulay mixing
cheme [54] with a real-space preconditioner [55]. In the case

of spin-polarized calculations, mixing is performed simultane-
ously on both components, i.e., on a vector of twice the original
length containing both spin-up and spin-down density/potential
components.

In each SCF iteration, SPARC performs a partial diagonaliza-
tion (i.e., eigenvalues and eigenvectors calculated approximately)
of the linear eigenproblem using the Chebyshev filtered sub-
space iteration (CheFSI) [56,57], with multiple Chebyshev filtering
3
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Fig. 2. Examples demonstrating the major functionalities of SPARC.

teps performed in the first iteration of the simulation [58]. The
amiltonian-matrix/vector products are performed in matrix-
ree fashion, using the finite-difference stencil for the Laplacian
nd the outer product nature of the nonlocal pseudopotential
perator. While doing so, zero-Dirichlet or Bloch-periodic bound-
ry conditions are prescribed on the orbitals along directions in
hich the system is finite or extended, respectively. In calculating
he effective potential, the Poisson problem for the electrostatic
otential is solved using the alternating Anderson–Richardson
AAR) method [59,60], with Laplacian-vector products again per-
ormed in matrix-free fashion using the finite-difference stencil.
hile doing so, Dirichlet or periodic boundary conditions are

prescribed on the electrostatic potential along directions in which
the system is finite or extended, respectively. In particular, Dirich-
let values are determined using a multipole expansion for isolated
systems and a dipole correction for surfaces and nanowires [61,
62].

In SPARC, information pertaining to the overall DFT simulation
is written to the .out file, including progression of the SCF
iteration, electronic ground state energy, maximum atomic force,
maximum stress, and various timings. Based on the type of calcu-
lation, a .static, .geopt, or .aimd file may also be written. The
.static file contains information about the single-point calcu-
lation, including atom positions, electronic ground state energy,
4
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Fig. 3. Examples demonstrating the performance of SPARC.

orces, and stress tensor. The .geopt file contains information
bout the structural relaxation, including (i) atom positions, elec-
ronic ground state energy, and forces (atomic relaxation), and
ii) cell information and stress tensor (cell relaxation). The .aimd
file contains information about the QMD simulation, including
atom positions, forces, and velocities. To seamlessly continue
from a previously stopped simulation, a .restart file is written
for structural relaxation and QMD calculations. SPARC provides
other outputs if specified as well, e.g., a .eigen file containing
eigenvalues and occupations and .dens file containing the charge
density.

2.2. Software functionalities

The current version of SPARC is capable of performing spin-
polarized and unpolarized ab initio calculations based on Kohn–
Sham DFT for isolated systems such as molecules as well as
extended systems such as crystals, surfaces, and nanowires, in
both static and dynamic settings. Specifically, it can perform
single-point calculations for a given atomic configuration, struc-
tural relaxations with respect to atom positions and/or cell di-
mensions [63–66], and NVE/NVT/NVK QMD simulations [67–69].
Available exchange–correlation functionals include various forms
of local density approximation (LDA) [70,71] and general-
ized gradient approximation (GGA) [72–74]. Types of pseudopo-
tentials employed are optimized norm conserving Vanderbilt
(ONCV) [75] and Troullier–Martins [76], both in psp8 format [8].
Over the course of simulations, in addition to electronic density
and free energy, SPARC can calculate atomic forces, pressure, and
the stress tensor for extended systems. The outputs from such

including lattice constant, cohesive energy, polarization, elastic
moduli, density of states, electronic band structure, pair distribu-
tion function, equations of state, shear viscosity, defect energy,
surface energy, absorption energy, equilibrium bond lengths,
HOMO–LUMO gap, and dipole moment.

3. Illustrative examples

We now demonstrate the major functionalities of SPARC
through examples representative of physical applications. Specif-
ically, we consider (i) 200-atom NVT QMD simulation for liquid
Al88Si12 alloy at 973 K, with LDA and Γ -point for Brillouin zone
integration; (ii) structural atomic relaxation for a 52-atom system
modeling a NH3 adsorbate on a (110) TiO2 surface with GGA
and 4 × 4 grid for Brillouin zone integration; (iii) structural cell
relaxation for a 102-atom MoS2 nanotube of diameter 3 nm with
GGA and 10 points for Brillouin zone integration; (iv) single-point
calculation of a 55-atom icosahedral Co nanoparticle with GGA
and spin polarization; and (v) single-point calculations for a 74-
system test suite containing isolated systems such as clusters and
molecules as well as extended systems such as crystals, surfaces,
and nanowires, ranging from 2 to 204 atoms, encompassing
48 different chemical elements and spin-polarized as well as
unpolarized calculations.

We employ the Perdew–Zunger parametrization for LDA [70],
PBE variant for GGA [72], and ONCV pseudopotentials [75,77]. We
present the results in Fig. 2 [78] (illustrations using VESTA [79])
and compare them to established planewave codes Quantum
Espresso (QE) [9] and ABINIT [8], as well results from the litera-
ture [80,81]. It is clear that there is excellent agreement between
DFT calculations can be used to calculate a number of properties, SPARC and established planewave codes, with errors substantially

5
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maller than required in typical applications. Note that SPARC
emonstrates excellent energy conservation with negligible drift
n QMD simulations, in agreement with previous results [36],
urther verifying the accuracy of atomic forces computed. In-
eed, the accuracy/quality of the results is further increased as
he discretization is refined in SPARC. Overall, these examples
emonstrate the capability of SPARC to obtain highly accurate
esults for a broad range of system compositions, configurations,
nd dimensionalities.

. Impact

Kohn–Sham DFT simulations occupy a large fraction of high-
erformance computing resources around the world every day
82,83], a consequence of the unique insights and robust predic-
ions they have been shown to provide. The majority of these cal-
ulations are performed using established planewave codes [6–
0,13]. Therefore, any new implementation that is able to con-
istently outperform these state-of-the-art DFT codes, thereby
nabling the ab initio investigation of larger length and time
cales than previously accessible, with the accuracy required,
tands to have significant and immediate impact. This is particu-
arly true of a code like SPARC that is open-source with minimal
ependencies so that it can be easily installed on computers large
nd small around the world.
Accordingly, we compare the accuracy and efficiency of SPARC

o Quantum Espresso (QE) [9], an established state-of-the-art
lanewave DFT code. We employ the same pseudopotentials [75,
7] and exchange–correlation functionals [70,72] in both codes.
esults and computational parameters for the study, containing a
ide range of system sizes, are shown in Fig. 3. [78] It is clear that
PARC demonstrates comparable performance to QE on a small
umber of processors and increasing advantages as the number
f processors grows. In particular, SPARC brings solution times
own to a few seconds for systems with O(100–500) atoms on
arge-scale parallel computers, outperforming QE by more than
n order of magnitude. Furthermore, SPARC achieves wall times
er QMD step of just over 20 seconds for the largest systems
ontaining more than a thousand atoms, achieved on only 312
ores for Al1372. For such systems and larger, the ability of SPARC
o efficiently scale to many thousands of processors and more is
urrently limited by the subspace diagonalization step performed
n each SCF iteration, which due to its cubic scaling and limited
arallel scalability takes a larger fraction of wall time as the
ystem size grows.
Going forward, we plan to first implement a structure-adapted

igensolver in SPARC to push back the cubic-scaling bottleneck,
nd then the Discrete Discontinuous Basis Projection (DDBP)
ethod [26] to enable strong scaling of SPARC to still larger num-
ers of processors, bringing down time to solution still further.
he DDBP method will also enable efficient DFT calculations with
ybrid functionals and the linear-scaling Spectral Quadrature (SQ)
ethod [45,84], which will be implemented subsequently. In or-
er to enable the effective use of exascale computing platforms, a
arallel engine for SPARC that enables highly efficient distributed
emory communication and offloading to GPUs will be com-
leted. Moreover, machine-learning methods will be explored to
mprove efficiency still further. Along with these developments,
e plan to implement cyclic and helical symmetry-adapted DFT

ormulations that allow for the highly efficient study of associated
echanical deformations as well as systems with such symme-

ries [85–88]; and a coarse-grained DFT formulation that enables
he study of crystal defects at realistic concentrations [89]. In-
eed, many of these developments will be accelerated by using
he M-SPARC code [90]—same structure, algorithms, input, and
utput as SPARC—for rapid prototyping.

SPARC and its variants are currently being used by multiple
research groups. Moving forward, the user base is expected to
grow, given the current open-source distribution, simplicity of
installation and use, high accuracy, and ability to reach larger
length and time scales than current state-of-the-art planewave
codes. The impact thus stands to be both broad and substantial.

5. Conclusions

SPARC has now become a mature code for performing real-
space Kohn–Sham DFT calculations, prompting its open-source
release with this publication. Currently, it can perform pseudopo-
tential spin-polarized and unpolarized simulations for isolated
systems such as molecules and clusters as well as extended
systems such as crystals, surfaces, and nanowires, in both static
and dynamic settings. SPARC is not only highly accurate, but also
highly competitive with established state-of-the-art planewave
codes on modest computational resources, with increasing ad-
vantages as the number of processors increases. In particular,
SPARC efficiently scales to thousands of processors, bringing solu-
tion times for moderate-sized systems consisting of O(100–500)
atoms to within a few seconds, making it an attractive choice
for QMD simulations in particular. Given its superior scalability,
and ability to incorporate attractive features such as linear scal-
ing methods and variety of boundary conditions, SPARC has the
potential to enable a number of new and exciting applications in
science and engineering that were previously beyond reach.
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