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Abstract. We calculate the torsional moduli of single-walled transition metal

dichalcogenide (TMD) nanotubes using ab initio density functional theory (DFT).

Specifically, considering forty-five select TMD nanotubes, we perform symmetry-

adapted DFT calculations to calculate the torsional moduli for the armchair and zigzag

variants of these materials in the low-twist regime and at practically relevant diameters.

We find that the torsional moduli follow the trend: MS2 > MSe2 > MTe2. In addition,

the moduli display a power law dependence on diameter, with the scaling generally

close to cubic, as predicted by the isotropic elastic continuum model. In particular, the

shear moduli so computed are in good agreement with those predicted by the isotropic

relation in terms of the Young’s modulus and Poisson’s ratio, both of which are also

calculated using symmetry-adapted DFT. Finally, we develop a linear regression model

for the torsional moduli of TMD nanotubes based on the nature/characteristics of the

metal-chalcogen bond, and show that it is capable of making reasonably accurate

predictions.
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1. Introduction

The synthesis of carbon nanotubes around three decades ago [1] has revolutionalized the

fields of nanoscience and nanotechnology. Even in the specific instance of nanotubes —

quasi one-dimensional hollow cylindrical structures with diameters in the nanometer

range — nearly two dozen nanotubes have now been synthesized [2, 3, 4], with the

potential for thousands more given the large number of stable two-dimensional materials

that have been predicted from first principles calculations [5, 6, 7]. Nanotubes have

been the subject of intensive research, inspired by the novel and enhanced mechanical,

electronic, optical, and thermal properties relative to their bulk counterparts [2, 3, 4].

Nanotubes can be categorized based on the classification adopted for the

corresponding two-dimensional materials from which they can be thought to be
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constructed. Among the different groups, the transition metal dichalcogenide (TMD)

group — materials of the form MX2, where M and X represent a transition metal

and chalcogen, respectively — is currently the most diverse, particularly given that

they contain the largest number of distinct nanotubes synthesized to date [2, 3, 4].

TMD nanotubes have a number of interesting properties including high tensile strength

[8, 9, 10, 11], mechanically tunable electronic properties [12, 13, 14, 15, 16, 17, 18],

and low cytotoxicity [19]. These properties make TMD nanotubes suited to a

number of applications, including reinforcement of composites [20, 21, 22, 23, 24, 25],

nanoelectromechanical (NEMS) devices [26, 18, 27], and medicine [28], where knowledge

of their mechanical properties is important from the perspective of both design and

performance.

In view of the above, there have been a number of efforts to characterize the elastic

properties of TMD nanotubes, both experimentally [29, 10, 30, 31] and theoretically

[12, 32, 33, 34, 17, 35, 36, 37, 14, 38, 39]. However, these studies are limited to only a

few TMDs, and that too only for the case of axial tension/compression. In particular,

determining the torsional moduli for these systems — relevant for applications such as

resonators in NEMS devices [27, 26, 18] — has been limited to very few experimental

[40, 27, 18] and theoretical [41, 42] research works, and that too only for a couple of

materials. Indeed, the study of torsional deformations at practically relevant twists

and nanotube diameters is intractable to ab initio methods like Kohn-Sham density

functional theory (DFT) [43, 44] — expected to provide higher fidelity than tight binding

and force field calculations for nanoscale systems — given the large number of atoms that

are required when employing the standard periodic boundary conditions [45]. Therefore,

accurate estimates for a fundamental mechanical property like torsional modulus is not

available for TMD nanotubes, which provides the motivation for the current work.

In this work, we calculate the torsional moduli of forty-five select single-walled

armchair and zigzag TMD nanotubes using Kohn-Sham DFT. Specifically, considering

nanotubes that have been synthesized or are expected to be so in the future, we perform

symmetry-adapted DFT calculations to calculate the torsional moduli of these materials

at practically relevant twists and nanotube diameters. We find the following relation

for the torsional moduli values: MS2 > MSe2 > MTe2. In addition, we find that the

moduli display a power law dependence on diameter, with a scaling that is generally

close to cubic, as predicted by the isotropic elastic continuum model. In particular, the

shear moduli so determined are in good agreement with that predicted by the isotropic

relation in terms of the Young’s modulus and Poisson’s ratio, both of which are also

calculated here using symmetry-adapted DFT. We also develop a linear regression model

for the torsional moduli of TMD nanotubes based on the nature and characteristics of

the metal-chalcogen bond, and show that it is capable of making reasonably accurate

predictions.

The remainder of the manuscript is organized as follows. In Section 2, we discuss

the chosen TMD nanotubes and describe the symmetry-adapted DFT simulations for

calculation of their torsional moduli. Next, we present and discuss the results obtained
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in Section 3. Finally, we provide concluding remarks in Section 4.

2. Systems and methods

We consider the following single-walled TMD nanotubes with 2H-t symmetry [46, 47]:

M={V, Nb, Ta, Cr, Mo, W, Fe, Cu} and X={S, Se, Te}; and the following ones

with 1T-o symmetry [46, 47]: M={Ti, Zr, Hf, Mn, Ni, Pd, Pt} and X={S, Se,

Te}. These materials have been selected among all the possible transition metal-

chalcogen combinations as they have either been synthesized as single/multi-walled

nanotubes [48, 49, 50, 51, 46, 52, 53, 54, 55] or the corresponding two-dimensional atomic

monolayers have been predicted to be stable from ab initio calculations [5, 56, 57]. The

radii for these nanotubes have been chosen so as to be commensurate with those that

have been experimentally synthesized, and in cases where such data is not available,

we choose radii commensurate with synthesized nanotubes that are expected to have

similar structure.

We utilize the Cyclix-DFT code [45] — adaptation of the state-of-the-art real-

space DFT code SPARC [58, 59, 60] to cylindrical and helical coordinate systems, with

the ability to exploit cyclic and helical symmetry in one-dimensional nanostructures

[45, 61, 62] — to calculate the torsional moduli of the aforementioned TMD nanotubes in

the low twist limit. Specifically, we consider three-atom unit cell/fundamental domains

that has one metal atom and two chalcogen atoms, as illustrated in Fig. 1. Indeed,

such calculations are impractical without the symmetry adaption, e.g., a (57,57) MoS2

nanotube (diameter ∼ 10 nm) with an external twist of 2× 10-4 rad/Bohr has 234, 783

atoms in the simulation domain when employing periodic boundary conditions, well

beyond the reach of even state-of-the-art DFT codes on large-scale parallel machines

[63, 64, 58]. It is worth noting that the Cyclix-DFT code has already been successfully

employed for the study of physical applications [65, 66, 45, 67], which provides evidence

of its accuracy.

We employ optimized norm-conserving Vanderbilt (ONCV) [68] pseudopotentials

from the SG15 [69] collection and the semilocal Perdew–Burke–Ernzerhof (PBE) [70]

exchange-correlation functional. Apart from the tests by the developers [69], we have

verified the transferability of the chosen pseudopotentials by comparisons with all-

electron DFT code Elk [71] for select bulk systems. In addition, we have found that

the equilibrium geometries of the nanotubes and their two-dimensional counterparts

(Supplementary Material) are in very good agreement with previous DFT results

[5, 6, 32, 36, 14, 72, 73, 74, 57]. There is also very good agreement with experimental

measurements [50, 75, 46, 48], confirming the suitability of the chosen exchange-

correlation functional. Since we are interested in torsional moduli for the low-twist

regime — corresponds to small (linear) perturbations of electron density from the

undeformed nanotube — the use of more sophisticated functionals and/or inclusion

of relativistic effects through spin orbit coupling (SOC) are not expected to change the

results noticeably, especially considering that significant error cancellations occur while
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Figure 1: Illustration showing the cyclic and helical symmetry present in a twisted (6,6)

TMD nanotube with 2H-t symmetry. In particular, all atoms in the nanotube can be

considered to be cyclic and/or helical images of the metal and chalcogen atoms that have

been colored red and blue, respectively. This symmetry is exploited while performing

electronic structure simulations using the Cyclix-DFT code [45].

taking differences in energy. This is evidenced by the small differences in the ground

state electron density between PBE and more sophisticated hybrid functionals for the

TMD monolayer systems, even in the presence of SOC [67].

We calculate the torsional modulus in the low-twist regime by first performing

ground state DFT simulations for various twisted configurations of the nanotube, and

then fitting the data to the following quadratic relation:

E(d, θ) = E(d, 0) +
1

2
K(d)θ2 , (1)

where K is the torsional modulus, d is the diameter of the nanotube, and θ and E are the

twist and ground state energy densities, respectively, i.e., defined per unit length of the

nanotube. Indeed, small enough twists are chosen so that linear response is observed,

i.e., the torsional modulus is independent of the twist (Supplementary Material). It

is important to note that the resulting shear strains — quantity that better describes

the behavior/response of nanotubes, by allowing systematic comparison between tubes

with different diameters — are commensurate with those found in torsion experiments

[18, 27, 40]. All numerical parameters in Cyclix-DFT, including grid spacing, number

of points for Brillouin zone integration, vacuum in the radial direction, and structural

relaxation tolerances (both cell and atom) are chosen such that the computed torsional

moduli are numerically accurate to within 1% of their reported value. In terms of the

energy, this translates to the value at the structural and electronic ground state being

converged to within 10−5 Ha/atom, a relatively stringent criterion that is necessary to

capture the extremely small energy differences that occur at low values of twist.

3. Results and discussion

As described in the previous section, we utilize symmetry-adapted DFT simulations to

calculate torsional moduli of the forty-five select armchair and zigzag TMD nanotubes.
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The simulation data for all the results presented here can be found in the Supplementary

Material. Observing a power law dependence of the torsional modulus with nanotube

diameter d, we fit the data to the following relation:

K(d) = kdα +K(0) , (2)

where k and α will be henceforth referred to as the torsional modulus coefficient and

exponent, respectively. The values so obtained for the different materials are presented

in Table 1. Observing that the exponents are generally close to α = 3, in order to enable

comparison between the different materials that can have nanotubes with significantly

different diameters, we also fit the data to the relation:

K(d) = k̂d3 +K(0) , (3)

where k̂ is referred to as the average torsional modulus coefficient. The results so

obtained are presented through violin plots in Figure 2.

Table 1: Torsional modulus coefficient (k) and exponent (α) for the forty-five select

armchair and zigzag TMD nanotubes.

M

MS2 MSe2 MTe2

Diameter Torsional modulus Torsional modulus Torsional modulus

range coefficient k (eV nm1− α) coefficient k (eV nm1− α) coefficient k (eV nm1− α)

(nm) and exponent α and exponent α and exponent α

Armchair Zigzag Armchair Zigzag Armchair Zigzag

W 2 - 10 267 (3.02) 256 (3.04) 226 (3.03) 230 (3.01) 179 (3.04) 158 (3.09)

Mo 2 - 10 232 (3.03) 213 (3.07) 197 (3.03) 175 (3.09) 150 (3.03) 143 (3.04)

Cr 6 - 10 194 (3.08) 222 (2.98) 171 (3.00) 178 (2.99) 135 (2.95) 191 (2.76)

V 6 - 10 161 (3.07) 170 (3.00) 149 (3.00) 133 (3.00) 98 (2.98) 92 (2.97)

Ta 14 - 40 158 (3.07) 205 (2.95) 176 (2.97) 160 (2.97) 165 (2.85) 155 (2.86)

Nb 2 - 14 133 (3.08) 181 (2.92) 140 (3.00) 162 (2.91) 90 (3.01) 66 (3.17)

Pt 6 - 10 154 (3.01) 156 (3.00) 127 (3.01) 129 (3.00) 133 (2.92) 259 (2.53)

Hf 6 - 30 162 (3.00) 165 (2.98) 136 (3.00) 135 (2.99) 93 (3.00) 85 (3.02)

Zr 6 - 30 149 (3.00) 160 (2.96) 125 (3.00) 127 (2.98) 98 (2.93) 84 (2.98)

Ti 2 - 10 140 (3.03) 153 (2.98) 106 (3.08) 127 (2.94) 75 (3.03) 83 (2.93)

Ni 6 - 10 147 (2.99) 147 (3.00) 127 (2.93) 120 (2.98) 136 (2.63) 156 (2.53)

Pd 6 - 10 114 (3.02) 119 (2.99) 94 (3.02) 100 (2.98) 107 (2.85) 223 (2.40)

Mn 6 - 10 108 (3.08) 122 (3.00) 39 (3.23) 29 (3.38) 27 (3.40) 52 (2.99)

Fe 6 - 10 60 (3.26) 49 (3.29) 102 (2.90) 157 (2.71) 76 (2.87) 109 (2.66)

Cu 6 - 10 30 (3.19) 32 (3.13) 27 (3.14) 49 (2.76) 35 (3.20) 102 (2.35)

We observe that the torsional modulus coefficients span around an order of

magnitude between the different materials, with WS2 and CuSe2 having the largest

and smallest values, respectively. Notably, even the largest value obtained here is

nearly three times smaller than the carbon nanotube (733 eV/nm2) [45], which can be
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Figure 2: Average torsional modulus coefficient (k̂) for the forty-five select armchair and

zigzag TMD nanotubes.

attributed to the extremely strong covalent carbon-carbon bonds. In comparison with

experiments, where only the torsional modulus of WS2 has been measured to date (∼384

eV/nm2) [18], there is good agreement with the average torsional modulus coefficient

reported here (275 eV/nm2). In particular, the computed value is well within the

error bound communicated for the experimental result. In comparison with theoretical

predictions, where only the values for MoS2 are available from force field (armchair: 249

eV/nm2 and zigzag: 243 eV/nm2) [42] and tight binding (armchair: 265 eV/nm2 and

zigzag: 265 eV/nm2) [41] simulations, there is good agreement with the average torsional

modulus coefficients reported here (armchair: 244 eV/nm2 and zigzag: 239 eV/nm2).

Overall, we observe that the torsional moduli values generally follow the trend MS2 >

MSe2 > MTe2. This can be explained by the metal-chalcogen bond length having the

reverse trend, with shorter bonds generally expected to be stronger due to the increase

in orbital overlap.

We also observe from the results in Table 1 that the torsional modulus exponents

are in the neighborhood of α = 3, in agreement with the isotropic elastic continuum

model [76]. In such an idealization, the shear modulus G can be calculated from the

torsional modulus coefficient using the following relation derived from the continuum

analysis of a homogeneous isotropic circular tube subject to torsional deformations‡:

G =
k̂

2π
. (4)

The results so obtained are presented in Figure 3. Note that since there are some

noticeable deviations from α = 3 (Table 1) — suggests that the shear modulus changes

with diameter — the results in Figure 3 correspond to the case when k̂ is determined

from the single data point corresponding to the largest diameter nanotube studied for

‡ Since there is only a single parameter (i.e., shear modulus) in the continuum model, it can be

determined from the average torsional modulus coefficient using Equation 4. In the case of discrete

finite-element models of nanotubes [77, 78], which can provide significant computational efficiency

relative to ab initio methods for studying mechanical behavior, a number of other DFT simulations

would need to be performed to determine the force constants inherent to such models.
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each material. To verify their isotropic nature, we also determine the shear moduli of

the nanotubes as predicted by the isotropic relation in terms of the Young’s modulus

(E) and Poisson’s ratio (ν): G = E/2(1 + ν), both of which are also calculated using

Cyclix-DFT, the results of which are summarized in Figure 3. It is clear that there

is very good agreement between the computed and predicted shear moduli, suggesting

that TMD nanotubes can be considered to be elastically isotropic.

Pr
ed

ic
te

d 
sh
ea
r m

od
ul

us
 (N

/m
)  

   
   

   
  

MS2 MSe2 MTe2

  0

  10

  20

  30

Sh
ea

r m
od

ul
us

 (N
/m

)

M W Mo Cr V Ta Nb Pt Hf Zr Ti Ni Pd Mn Fe Cu

armchair
zigzag
armchair
zigzag

  0

20

40

60

80

100

120

140

MS2 MSe2 MTe2

Yo
un

g'
s 

m
od

ul
us

 (N
/m

)

M W Mo Cr V Ta Nb Pt Hf Zr Ti Ni Pd Mn Fe Cu

MS2 MSe2 MTe2

Po
is

so
n'

s 
ra

tio

 40

  50

  60 armchair
zigzag
armchair
zigzag

armchair
zigzag
armchair
zigzag

0 10 20 30 40 50 60
0

10

20

30

40

50

60
y = x
armchair (R2=0.90) 
zigzag (R2=0.91)

Computed shear modulus (N/m)

M W Mo Cr V Ta Nb Pt Hf Zr Ti Ni Pd Mn Fe Cu
0

0.1

0.2

0.3

0.4

0.6

0.7

0.5

Figure 3: Young’s modulus (E), shear modulus (G), and Poisson’s ratio (ν) of the forty-

five select armchair and zigzag TMD nanotubes. The predicted shear modulus refers to

that obtained from the isotropic relation in terms of the Young’s modulus and Poisson’s

ratio. The values of R2 shown in the legend denotes the coefficient of determination for

the linear regression. The results correspond to the largest diameter nanotube that has

been studied for each material.

We observe from the results in Figure 3 that the Young’s moduli follow a similar

trend as the torsional modulus coefficients and therefore the shear moduli, which can

be again explained by the strength of the metal-chalcogen bond, consistent with results

obtained for molybdenum and tungsten TMD monolayers [79, 80, 81]. In regards to the

Poisson’s ratio, we find that the MnS2, MnSe2, MnTe2, CrTe2, WTe2, MoTe2, TaTe2,

and NiTe2 nantotubes have a value near zero. In addition, the CuS2, CuSe2, CuTe2, VS2

and FeS2 nanotubes have ν greater than the isotropic theoretical limit of 0.5, which can

be justified by the anistropic nature of these materials — evidenced by the relatively

poor agreement between the predicted and computed shear moduli (Figure 3) — where

this bound is not applicable [82]. In regards to failure of these materials, it is possible

to use Frantsevich’s rule [83] — materials with ν > 0.33 and ν < 0.33 are expected



8

to be ductile and brittle, respectively — to predict that M={Cu, Nb, Fe, Ta and V}
nanotubes are ductile and M={W, Mo, Cr, Pt, Hf, Zr, Ti, Ni, Pd, Mn} are brittle.

In particular, there is a clear divide between the Poisson’s ratio of these two sets, as

seen in Figure 3. Note that the computed Young’s moduli and Poisson’s ratio values

are in good agreement with those available in literature [12, 41, 32, 33, 17, 37], further

confirming the fidelity of the simulations performed here.

The above results indicate that the torsional moduli of TMD nanotubes are

dependent on the nature and strength of the metal-chalcogen bond, which can be

expected to depend on the bond length, difference in electronegativity between the

atoms, and sum of their ionization potential and electron affinity. The first feature

mentioned above is used to mainly capture the strength of the bond, and the other

two features are used to mainly capture the nature of the bonding [84, 85, 86, 87].

Using these three features, we perform a linear regression on the set of average torsional

modulus coefficients, the results of which are presented in Figure 4. The fit is reasonably

good, suggesting that the features chosen here play a significant role in determining the

torsional moduli of TMD nanotubes. Note that inclusion of the bond angle as a feature

did not improve the quality of the fit, and therefore has been neglected here. Also

note that though the quality of the fit can be further increased by using higher order

polynomial regression, it can possibly lead to overfitting, and is hence not adopted here.
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Figure 4: The set of computed average torsional modulus coefficients (k̂) and its

linear regression with the features being the metal-chalcogen bond length, difference

in electronegativity between the metal and chalcogen atoms, and sum of the metal’s

ionization potential and chalcogen’s electron affinity. The values of R2 shown in the

legend denotes the coefficient of determination for the linear regression.

4. Concluding remarks

We have calculated the torsional moduli of forty-five select single-walled TMD nanotubes

using ab initio DFT simulations. Specifically, we have computed torsional moduli for

the armchair and zigzag variants of the chosen TMD nanotubes at practically relevant

twists and nanotube diameters, while considering materials that have been synthesized
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or are likely to be synthesized. We have found that the variation of the torsional

moduli values between the different nanotubes follows the trend: MS2 > MSe2 > MTe2.

In addition, we have found that the moduli display a power law dependence on the

diameter, with the scaling generally close to cubic, as predicted by the isotropic elastic

continuum model. In particular, the shear moduli so determined have been found to

be in good agreement with that predicted by the isotropic relation in terms of the

Young’s modulus and Poisson’s ratio, both of which have also been calculated in this

work from DFT simulations. Finally, we have developed a linear regression model for

the torsional moduli of TMD nanotubes that is based on the nature and characteristics

of the metal-chalcogen bond, and have shown that it is capable of making reasonably

accurate predictions.

In regards to future research, given their significant applications in semiconductor

devices, the electromechanical response of TMD nanotubes to torsional deformations

presents itself as an interesting topic worthy of pursuit. In addition, given the plethora

of multi-walled TMD nanotubes that have been synthesized, studying their mechanical

and electronic response to torsional deformations also presents itself as a worthy subject

of investigation.
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