

1 **Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62**

2

Samuel Itskanov¹, Katie M. Kuo², James C. Gumbart^{2,3}, and Eunyong Park^{4,*}

¹Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA.

²School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.

³School of Physics, Georgia Institute of Technology, Atlanta GA 30332, USA.

⁴Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.

*Corresponding author. Email: eunyong_park@berkeley.edu

3

4 **Abstract**

5 Many proteins are transported into the endoplasmic reticulum by the universally conserved Sec61 channel.
6 Post-translational transport requires the two additional proteins Sec62 and Sec63, but their functions are
7 poorly defined. Here, we determined cryo-electron microscopy structures of several variants of the fungal
8 Sec61-Sec62-Sec63 complexes and show that Sec62 and Sec63 induce opening of the Sec61 channel.
9 Without Sec62, the translocation pore of Sec61 remains closed by the plug domain, rendering the channel
10 inactive. We further show that the lateral gate of Sec61 must be first partially opened by interactions
11 between Sec61 and Sec63 in cytosolic and luminal domains, a simultaneous disruption of which
12 completely closes the channel. The structures and molecular dynamics simulations suggest that Sec62
13 may also prevent lipids from invading into the channel through the open lateral gate. Our study
14 illuminates how Sec63 and Sec62 work together in a hierarchical manner to activate Sec61 for post-
15 translational protein translocation.

16

17 **Main text**

18 In all organisms, about one third of proteins are transported across or integrated into a membrane upon
19 synthesis by the ribosome. The majority of these translocation processes occur in the endoplasmic
20 reticulum (ER) membrane in eukaryotes or the plasma membrane in prokaryotes, mediated by the
21 conserved heterotrimeric protein-conducting channel called the Sec61 (SecY in prokaryotes)
22 complex {Rapoport, 2017 #77;Voorhees, 2016 #3;Collinson, 2015 #76;Tsirigotaki, 2017 #80;Seinen,
23 2019 #81}. The main α subunit of the channel, comprised of ten transmembrane helices (TMs), forms an
24 hourglass-shaped cavity, through which polypeptides are transported as extended chains. The small β and
25 γ subunits peripherally associate with the α subunit in the membrane {Van den Berg, 2004 #1}. Previous
26 structures of Sec61/SecY showed that in the idle state the pore is blocked in the ER luminal (or
27 extracellular) funnel by the plug domain—a structure formed by a segment immediately following TM1
28 of the α subunit {Van den Berg, 2004 #1;Tsukazaki, 2008 #21;Voorhees, 2014 #23;Tanaka, 2015 #73},
29 whereas in translocating states the plug moves away {Li, 2016 #40;Voorhees, 2016 #41;Ma, 2019 #70}.
30 Sec61/SecY can also release polypeptides to the lipid phase through a gap (lateral gate) formed between
31 TM2 and TM7 of the α subunit. The opening of the lateral gate is required for recognition of hydrophobic
32 targeting signals (signal sequences) of soluble secretory proteins and integration of transmembrane
33 proteins. Thus, the channel is gated in two directions: vertically across the membrane by the plug domain

34 and laterally within the membrane by the lateral gate. How these gates are controlled and how they
35 regulate the translocation processes remain incompletely understood.

36 The Sec61/SecY channel alone is inactive and thus must associate with a partner to enable translocation.
37 In the co-translational mode, common in both prokaryotes and eukaryotes, The channel directly docks
38 with the ribosome-nascent-chain complex {Voorhees, 2016 #41;Braunger, 2018 #44;Gogala, 2014 #87}.
39 Many secretory proteins are targeted to the channel post-translationally after their release from the
40 ribosome {Ng, 1996 #5;Muller, 1987 #7;Lakkaraju, 2012 #6;Chen, 1985 #94;Cabelli, 1988 #79;Brundage,
41 1990 #93}. In bacteria, a single cytosolic ATPase called SecA binds to the SecY complex to drive post-
42 translational translocation {Cabelli, 1988 #79;Brundage, 1990 #93;Zimmer, 2008 #22;Li, 2016 #40;Ma,
43 2019 #70}. In eukaryotes, post-translational translocation is enabled by association between the Sec61
44 complex and the two essential integral membrane proteins Sec62 and Sec63, forming a machinery called
45 the Sec complex {Rothblatt, 1989 #9;Deshaies, 1991 #8;Meyer, 2000 #10;Tyedmers, 2000 #11}. In fungal
46 species, the Sec complex also contains the additional nonessential proteins Sec71 and Sec72, which are
47 bound to Sec63 in the cytosol. In the ER lumen, Sec63 recruits the Hsp70 ATPase BiP to the complex to
48 power translocation {Feldheim, 1992 #13;Matlack, 1999 #17}.

49 Recently, two cryo-EM studies reported structures of the Sec complex from *Saccharomyces cerevisiae* at
50 ~4 Å resolution {Itskanov, 2019 #69;Wu, 2019 #71}, which suggested a putative role of Sec63 in
51 activating the Sec61 channel for translocation by opening the lateral gate of the channel. However, in both
52 structures, Sec62 was barely visible, and thus its function remains unknown despite its essentiality.
53 Furthermore, the two structures displayed noticeable conformational differences in Sec61, despite
54 essentially identical specimen compositions. Most notably, in one structure the pore is blocked by the
55 plug domain {Wu, 2019 #71}, whereas in the other structure the plug is displaced leaving the pore
56 open {Itskanov, 2019 #69}. Although deemed important given the role of the plug domain in channel
57 gating, the cause of this difference remains a puzzle. Finally, although Sec63 has been suggested to open
58 the lateral gate of Sec61 {Itskanov, 2019 #69;Wu, 2019 #71}, the mechanism of opening remains
59 speculative without structures of mutants and other conformations. Thus, whether and how Sec62 and
60 Sec63 regulate the function of Sec61 are poorly understood. Addressing these issues is essential for our
61 understanding of eukaryotic post-translational translocation and the mechanism of the Sec61/SecY
62 channel in general. Mutations in Sec61 and Sec63 have been implicated in hyperuricemic
63 nephropathy {Bolar, 2016 #90}, diabetes {Lloyd, 2010 #91}, and polycystic liver disease {Davila, 2004
64 #92}.

65 Here, using cryo-EM, we analyzed several variants and mutants of the Sec complex from two fungal
66 species, *Saccharomyces cerevisiae* and *Thermomyces lanuginosus*. We show that Sec62 and Sec63
67 cooperate to open both the lateral and vertical gates of the Sec61 channel. The structures and molecular
68 dynamics (MD) simulations also suggest that Sec62 performs an additional function of preventing lipids
69 from invading into the channel through the open lateral gate. Our study provides a detailed mechanistic
70 model for how Sec62 and Sec63 activate the Sec61 channel for post-translational protein translocation in
71 eukaryotes.

72

73 Cryo-EM analysis of two fungal Sec complexes

74 To determine how the gating of the Sec61 channel is regulated in the Sec complex, we first analyzed a
75 large cryo-EM dataset of the wildtype (WT) Sec complex from *S. cerevisiae* (ScSec) (Fig. 1a,b, Table 1,
76 and Extended Data Fig. 1). While reconstruction from approximately 1 million particles yielded a 3.0-Å-
77 resolution consensus map (Extended Data Fig. 1b-d), we found that the particle set contained

78 subpopulations lacking Sec62 or Sec71-Sec72, despite apparent sample homogeneity (Extended Data Fig.
79 1a). We therefore performed additional three-dimensional (3D) classifications to separate particles with
80 and without Sec62 (referred to as Sec62+ and Sec62-) (Extended Data Fig. 1b,e). Furthermore, the
81 Sec62+ class could be further separated into two distinct subclasses (referred to as C1 and C2), which
82 show notable conformational differences in Sec62, the lateral gate, and the plug (Fig 1b and Extended
83 Data Fig. 1f,g; see below). The three structures (i.e., Sec62-, C1, and C2) were resolved at overall
84 resolutions of 3.1–3.2 Å. Although an atomic model for Sec62 could not be built due to insufficient local
85 resolution, the classification significantly improved Sec62 features, enabling unambiguous assignment of
86 individual domains (Fig. 1d).

87 To gain insights into structural and mechanistic conservation across species, we also purified the Sec
88 complex from the thermophilic fungus *T. lanuginosus* (*Tl*Sec) and determined its structures at overall
89 resolutions of 3.6 to 3.9 Å (Fig. 1c, Table 1, and Extended Data Fig. 2). Recombinant expression of the
90 *Tl*Sec complex allowed us to analyze complexes completely lacking Sec62 (Δ Sec62 *Tl*Sec) or containing
91 a mutant Sec62 copy for structural comparisons. Like WT *Sc*Sec, the WT *Tl*Sec dataset yielded two
92 classes with and without Sec62 (referred to as *Tl*Sec[Sec62+] and *Tl*Sec[Sec62-]), which closely
93 resemble the *Sc*Sec [C2] and [Sec62-] structures, respectively (brackets denote classes). We could not
94 find a C1-equivalent class from the *Tl*Sec dataset perhaps because the specimen freezing condition (4°C)
95 might have biased the conformation distribution of this thermophilic complex towards C2. The structure
96 of *Tl*Sec[Sec62-] was found to be essentially identical to a separately determined structure of Δ Sec62
97 *Tl*Sec, validating our approach to separate distinct subpopulations of the Sec complexes by cryo-EM
98 image analysis (Extended Data Fig. 2g–i). Importantly, the domain arrangement of *Tl*Sec62 is the same as
99 that of *Sc*Sec62 despite ~30% overall sequence identity (Fig. 1c and Supplementary Fig. 1). This
100 corroborates the conserved architecture of Sec62. Compared to *Sc*Sec62, *Tl*Sec62 is better resolved such
101 that we could register amino acids to its TM1.

102 **Sec62 forms a V-shaped structure**

103 Sec62 consists of a cytosolic, globular N-terminal domain (NTD), two TMs (TM1 and TM2) connected
104 by a short ER luminal loop (L1/2), and a cytosolic C-terminal segment (Fig. 1d). Functionally essential
105 regions have previously been mapped to the two TMs and a segment of ~30 amino acids immediately
106 following TM2 (ref. {Wittke, 2000 #28}). The TMs of Sec62 are arranged as a V shape in front of the
107 lateral gate with L1/2 directed to the lateral gate opening (Fig. 1a–d). The contact with the channel is
108 mainly formed by an interaction of Sec62-TM1 with TM3 and the N-terminal segment of Sec61α.

109 Following TM2, Sec62 contains an oval-shaped structure lying flat on the membrane interface (Fig. 1a–d,
110 and Extended Data Fig 3a–b). This amphipathic structure, which we termed the anchor domain, is most
111 likely formed by an ~20-residue-long conserved segment within the abovementioned 30 amino acids, and
112 is rich in hydrophobic amino acids (Supplementary Fig. 1). While single-point mutations of these
113 hydrophobic residues caused no growth defect, alanine substitutions of three consecutive residues in
114 positions 215–220 were lethal (Extended Data Fig. 3d), suggesting that decreased hydrophobicity
115 interrupts its functionally essential interaction with the membrane. The structure of a *Tl*Sec mutant
116 (Δ anchor *Tl*Sec) with the anchor domain replaced with a glycine/serine linker showed virtually no visible
117 Sec62 features (Extended Data Fig. 3e,f), suggesting that Sec62 becomes too mobile without the domain.
118 Taken together, these observations suggest that the function of the anchor domain is to properly position
119 the V-shaped TMs of Sec62 at the lateral gate.

120 The revealed position and topology of Sec62 raise an important question about how the channel would
121 engage with substrate polypeptides. During the initial stage of post-translational translocation, a substrate

122 polypeptide is expected to insert into the channel as a loop with both its N- and C- termini exposed to the
123 cytosol {Shaw, 1988 #82} (Extended Data Fig. 4a). While the N-terminal signal sequence may sit initially
124 at the lateral gate as seen in structures of mammalian co-translational and bacterial post-translational
125 complexes {Li, 2016 #40; Voorhees, 2016 #41; Ma, 2019 #70}, later it must engage with the signal
126 peptidase for cleavage {Paetzel, 2002 #83}. Although the exact timing of the signal sequence cleavage
127 remains unknown, the presence of Sec62 might pose a problem in this step because it may block the
128 release of the signal sequence from the lateral gate or prevents the signal peptidase from accessing the
129 cleavage site. The answer may be provided by a conformational transition from C1 to C2 as visualized in
130 the *Sc*Sec structure (Fig. 1e). While in both structures the seam between the Sec62-TM1 and Sec61 α -TM3
131 is tight, a sufficient gap is formed on the other side of the lateral gate between the Sec62-TM2 and
132 Sec61 α -TM7 in the *Sc*Sec[C2] structure. A similar gap also exists in the *Tl*Sec structures (Extended Data
133 Fig. 4b). Thus, the signal sequence of the substrate may exit through the gap transiently formed between
134 Sec62-TM2 and Sec61 α -TM7 during translocation.

135 **Sec62 regulates the gates of Sec61**

136 Three distinct classes of *Sc*Sec (i.e., C1, C2, and Sec62 $-$) showed notable conformational differences in
137 the lateral gate (Fig. 2a, Supplementary Movie 1). Although open in all three structures, the extent of the
138 lateral gate opening varies on the ER luminal side, with C1 most open and Sec62 $-$ least open. The C2
139 structure, in which Sec62-TM2 is disengaged, is open to an intermediate degree. The movement is mainly
140 mediated by a rigid-body rotation of the TM7, TM8, and the intervening loop (L7/8) of Sec61 α (Fig. 2a),
141 which seems to be induced by the interaction between L1/2 of Sec62 and the lateral gate (Fig. 1a-d). Thus,
142 this movement is distinct from the hinge-like motion between the two halves (TM1-5 and TM6-10) of
143 Sec61 α which mediates opening of the channel from the fully closed state {Van den Berg, 2004 #1; Egea,
144 2010 #45; Park, 2014 #72; Pfeffer, 2015 #63}.

145 Importantly, the motion of TM7-8 of Sec61 α appears to control the position of the plug (Fig. 2 b-e). In
146 *Sc*Sec[Sec62 $-$], the plug is clearly visible immediately below the pore constriction ('plug-closed'
147 conformation; Fig. 2 b,d, Extended Data Fig. 5). By contrast, in *Sc*Sec[C1], the plug is displaced to a
148 position near the C-terminus of Sec61 γ ('plug-open' conformation; Fig. 2 c,e), thus opening the pore. The
149 position of the plug in this conformation is consistent with the previous observations that the plug can
150 interact with TM of the SecE (a prokaryotic equivalent of Sec61 γ) subunit {Flower, 1995 #107; Harris,
151 1999 #108}. In *Sc*Sec[C2], the plug seems disordered, probably because it takes intermediate positions
152 between the two conformations. Similar observations were also made with the *Tl*Sec structures: compared
153 with the Sec62 $-$ and Δ Sec62 structures, the Sec62 $+$ structure shows a shifted position of Sec61 α TM7-8
154 as in *Sc*Sec[C2] (Extended Data Fig. 6) and concomitant plug mobilization, where 53% and 42% particles
155 classified into the plug- closed and open conformations, respectively (Extended Data Figs. 2 and 6b,c).
156 The plug displacement is likely caused by the Sec62-induced movement of Sec61 α TM7 since the plug
157 interacts with TM7 and L7/8 in the plug-closed conformation {Egea, 2010 #45; Hizlan, 2012 #109}
158 (Extended Data Fig. 6e).

159 **Partially open Sec61 is inactive**

160 Despite the observed channel gating by Sec62, physiological importance of this role remained unclear.
161 Without Sec62, the lateral gate can still be opened by Sec63. Even though the pore is blocked by the plug,
162 it has been proposed that insertion of a substrate polypeptide would push the plug away {Wu, 2019 #71}.
163 To investigate importance of the Sec62-dependent gating, we sought for mutations affecting Sec61 gating
164 as Δ Sec62 does, but independently of Sec62. If the gating function of Sec62 is essential, such mutations
165 would be expected to compromise cell viability.

166 We first chose to mutate the fibronectin III (FN3) domain of Sec63, which interacts with the cytosolic
167 loop 6/7 (L6/7) of Sec61 α (Fig. 3a). L6/7 also provides a major interaction site for the ribosome in
168 cotranslational translocation and the SecA ATPase in bacterial post-translational translocation and thus
169 has been universally implicated in priming or activating the channel {Cheng, 2005 #66;Becker, 2009
170 #65;Voorhees, 2014 #23;Zimmer, 2008 #22;Tsukazaki, 2008 #21}. We found that none of the FN3
171 mutants had a growth defect at 30°C (Fig. 3b, left). Only a mild defect was seen at 37°C even with the
172 most severe mutant (FN3mut) (Extended Data Fig. 7b). To understand this unexpectedly weak phenotype,
173 we determined the structure of FN3mut ScSec (Fig. 3d,e, Table 2, and Extended Data Fig. 7c,d). The
174 structure showed that the FN3 domain was indeed disengaged from L6/7 by the mutation, causing ~10°
175 rotation of Sec61 along the membrane normal (Extended Data Fig. 7e,f). Nonetheless, the lateral gate was
176 still open (Fig. 3d). Importantly, the FN3mut complex still exhibited Sec62-induced TM7 movement and
177 plug mobilization (Fig. 3 d,e), which may explain the near-WT growth phenotype of the mutant.

178 Next, we mutated the pore of Sec61 α . In closed SecY structures {Van den Berg, 2004 #1;Tsukazaki, 2008
179 #21;Voorhees, 2014 #23;Tanaka, 2015 #73}, the aliphatic amino acids lining the pore constriction (called
180 the pore ring residues) make a hydrophobic interaction with the plug. Compared to other species, the pore
181 ring of ScSec61 α appears significantly less hydrophobic {Itskanov, 2019 #69}. Thus, we reasoned that a
182 mutant with a more hydrophobic pore ring (M90L/T185I/M294I/M450L; collectively denoted PM) might
183 bias the plug towards the closed conformation. In growth complementation assays, PM itself did not
184 affect cell growth. However, strong synthetic growth impairment was observed when combined with
185 FN3mut (Fig. 3b, right). Importantly, a plug deletion {Junne, 2006 #75} (Δ Plug) could rescue growth of
186 the FN3mut/PM, suggesting that the growth inhibition originates from a gating defect (Fig. 3c).
187 Consistent with this idea, the structures of the combined mutant (FN3mut/PM) showed a strong density of
188 the plug in the closed position and no Sec62-dependent movement of lateral gate helices (Fig. 3f,g, and
189 Extended Data Fig. 7g). This conformation thereby closely resembles the gating state of ScSec[Sec62-]
190 despite the presence of Sec62 in front of the lateral gate. On the other hand, the structure of PM alone still
191 showed Sec62-mediated movements in the lateral gate and plug, similar to WT (Extended Data Fig. 7h,i).
192 Taken together, these results show that the channel conformation seen in the absence of Sec62 is inactive
193 for post-translational translocation.

194 Sec62 prevents invasion of lipids into the channel

195 In addition to the role in channel gating, the Δ Sec62 T/Sec structure suggests another function of Sec62—
196 preventing lipids from moving into the channel. In Δ Sec62 T/Sec, strong, well-ordered densities of lipid
197 or detergent tails are visible at the lateral gate (Fig. 4a). The densities are vertically aligned along the
198 hydrophobic groove of the open lateral gate (Fig. 4a and Extended Data Fig. 8a). By contrast, in the
199 Sec62+ structures, only weak fragmented densities were observed (Fig. 4b). In the cytosolic leaflet, a
200 lipid/detergent molecule seems to be accommodated with an outward rotation of the TM2–3 of Sec61 α
201 (Extended Data Fig. 8b). Sec62 may inhibit lipids from entering the lateral gate by restricting this
202 movement. In the ER luminal leaflet, the L1/2 of Sec62 seems to sterically block lipids from entering
203 (Fig. 4b). We did not observe a strong lipid/detergent density in the lateral gate of ScSec[Sec62-],
204 perhaps because of a lower affinity to lipid/detergent. However, one of the previous ScSec structures {Wu,
205 2019 #71}, the conformation of which resembles the Δ Sec62 T/Sec structure, has shown a lipid-like
206 density at the lateral gate and the movement of Sec61 α TM2–3 similarly to Δ Sec62 T/Sec (Extended Data
207 Fig. 8c,d). Collectively, these observations suggest that in the absence of Sec62, lipid molecules may
208 penetrate the lateral gate that is opened by Sec63.

209 To further investigate a role of Sec62 in blocking lipid penetration, we performed 200-ns all-atom MD
210 simulations (Fig. 4 c–h and Extended Data Fig. 9). In simulations of the Sec62-containing structures (i.e.,

211 WT *Tl*Sec[Sec62+/plug-open] and WT *Sc*Sec[C1] and [C2]), the translocation pore largely remained
212 unobstructed and devoid of lipids (Fig. 4c,f, Extended Data Fig. 9 a–d, and Supplementary Movies 2–4).
213 Only one phospholipid molecule partially penetrated the lateral gate in the cytosolic leaflet of the
214 membrane, although its aliphatic tails remained outside; further incursion is unlikely as the interior of the
215 cytosolic half of the channel is highly polar. Notably, no lipids penetrated the channel in the luminal
216 leaflet during the entire duration of the simulations, despite a larger opening (~20 Å in *Tl*Sec and ~30 Å
217 in *Sc*Sec) between TM3 and TM7 of Sec61 α (Fig. 4f, and Extended Data Fig. 9b,d). Because the plug is
218 displaced in these structures, the luminal funnel of Sec61 α remained completely unoccupied. By contrast,
219 simulations of the Sec62-lacking structures (Δ Sec62 *Tl*Sec and *Sc*Sec[Sec62–]) showed substantially
220 deeper penetration of lipid molecules into the lateral gate (Fig. 4 d,g, Extended Data Fig. 9e,f, and
221 Supplementary Movies 5 and 6). In both the cytosolic and luminal leaflets of the membrane, the lateral
222 gate became occupied with lipids within ~80 ns. These results are consistent with the lipid/detergent
223 densities seen in the cryo-EM structure of Δ Sec62 *Tl*Sec.

224 Our cryo-EM structures and MD simulations suggested that the V-shaped transmembrane domain of
225 Sec62 effectively blocks lipids from entering the open lateral gate, particularly on the ER luminal leaflet.
226 We thus hypothesized that without Sec62, the pore may be invaded by lipids if both lateral gate and plug
227 remain open. We tested this idea by running another set of MD simulations on *Tl*Sec[Sec62+] and
228 *Sc*Sec[C1] but excluding the Sec62 subunit (Fig. 4e,h, Extended Data Fig. 9c,f, Supplementary Movies 7
229 and 8). The results indeed show that in both *Tl*Sec and *Sc*Sec, lipids invaded into the pore, substantially
230 obstructing the translocation pathway. It is likely that lipid molecules occupying the pore would inhibit
231 insertion of substrate polypeptides. Thus, Sec62 seems to play an important role in maintaining the
232 functionality of Sec61 by keeping lipids away from the open channel.

233 Mechanism of Sec61 gating by Sec63

234 One unexpected finding was that the FN3–L6/7 interaction was dispensable for the protein translocation
235 function of the Sec complex. This indicates that there must be another mechanism for Sec63 to open the
236 lateral gate. Besides the FN3 domain, Sec63 forms major contacts with Sec61 through two other parts:
237 TM3, which anchors Sec63 to the Sec61 complex, and a short ER luminal segment (residues 210–216)
238 preceding the TM3, which together with the N-terminal segment of Sec63, interacts with a crevice on the
239 back of the channel (opposite from the lateral gate) (Fig. 5a). We reasoned that the latter interaction might
240 control lateral gating through a lever-like mechanism. In the WT background, replacement of this
241 segment with a glycine/serine linker (Δ210–216) alone did not cause growth inhibition (Fig. 5b). However,
242 when combined with FN3mut, cells did not grow (Fig. 5b).

243 To understand the structural basis of this synthetic defect, we determined the structure of the
244 FN3mut/Δ210–216 *Sc*Sec complex (Fig. 5c and Extended Data Fig. 10) The structure showed that indeed
245 both the lateral and vertical gates of the Sec61 channel are completely closed, resembling the idle
246 archaeal SecY channel structure {Van den Berg, 2004 #1} (Fig. 5c and Extended Data Fig. 10). This
247 demonstrates that Sec63 uses both its cytosolic and luminal domains to open the lateral gate in a two-
248 pronged mechanism. The C-terminal cytosolic domain of Sec63 (following TM3) and Sec71–Sec72 are
249 still attached to Sec61 through TM3. However, most of the parts preceding TM3 were invisible due to
250 increased flexibility. Importantly, Sec62 was no longer visible either despite copurification with the
251 complex (Fig. 5c, and Extended Data Fig. 10a). Sec62 is likely associated with Sec63 through an
252 electrostatic interaction with the C-terminal tail of Sec63 (ref. {Wittke, 2000 #28; Willer, 2003 #29}) (Fig.
253 1d), but it seems to no longer bind to the lateral gate due to structural incompatibility with the closed gate.
254 Therefore, the lateral gate must be first opened by Sec63 before Sec62 can activate the channel for protein
255 translocation.

256 **Discussion**

257 In summary, our study defines the functions of Sec62 and reveals the mechanism by which Sec63 and
258 Sec62 regulate the gates of the Sec61 channel. The function of Sec62 had been elusive for three decades
259 since its discovery as an essential component in eukaryotic post-translational translocation {Deshaines,
260 1989 #62;Rothblatt, 1989 #9;Deshaines, 1991 #8}. Our study shows that once the lateral gate of the Sec61
261 channel is opened by Sec63, Sec62 fully activates the channel by further mobilizing the plug domain (Fig.
262 6). At the same time, Sec62 seems to prevent lipids from penetrating the channel interior through the open
263 lateral gate by forming a barrier in front of the lateral gate. Such lipid penetration into the lateral gate and
264 translocation pore would likely impair the protein translocation activity by competitively inhibiting
265 insertion of polypeptide substrates into the channel. The lipids may also affect movements of
266 polypeptides in later stages of protein translocation. The V-shaped structure formed by the
267 transmembrane domain of Sec62 is rather dynamic with respect to the rest of the complex and loosely
268 associated with the lateral gate, as suggested by its relatively low-resolution densities in our cryo-EM
269 maps. This flexibility may be important for insertion of signal sequences into and its egress from the
270 lateral gate. It is also possible that the movement of Sec62 is modulated by binding of signal sequences
271 and other protein translocation factors (e.g., BiP) to the Sec61 channel.

272 The fully open conformation of the WT Sec complexes observed in our cryo-EM structures likely
273 represents a resting state prior to substrate engagement. Although the channel's conformation and their
274 dynamics in the native membrane environment remains to be determined, we speculate that this open state
275 is likely a predominant form in the native ER membrane at least in fungal species, based on the stable
276 association between Sec61, Sec62, and Sec63. A pre-opened Sec61 channel in the post-translational
277 complex contrasts with a relatively closed Sec61 channel seen with resting co-translational complexes,
278 where the lateral gate is only marginally open, and the plug domain remains in the closed position
279 {Voorhees, 2014 #23}. It has been generally thought that during initial substrate engagement, the Sec61
280 channel would be opened by a hydrophobic interaction between the signal sequence (or TM helix) and the
281 lateral gate {Gogala, 2014 #87;Voorhees, 2014 #23;Voorhees, 2016 #3;Voorhees, 2016 #41;Kater, 2019
282 #88}. Our mutagenesis analysis however indicates that such a partially open state, like the one induced by
283 Sec63 alone, is insufficient for post-translational protein translocation. This is probably because the plug
284 domain in the closed position would impose a too high energy barrier for post-translational polypeptide
285 substrates to insert into the pore.

286 Many post-translational substrates are known to contain a signal sequence with relatively lower
287 hydrophobicity {Ng, 1996 #5}. Eukaryotic post-translational substrates are also expected to interact more
288 transiently with Sec61 during initial insertion because they are not tethered to the ribosome as in the co-
289 translational mode or the SecA ATPase as in the bacterial post-translational mode. These features of
290 substrates for the Sec complex may require both lateral and vertical gates of the channel to be pre-opened
291 for efficient insertion. A reduced energy barrier for substrate insertion by pre-opening the gates would
292 allow polypeptides to promptly engage with the Sec61 complex, without which polypeptides may lose
293 translocation competency because of premature folding or aggregation. Maintaining a stably open
294 conformation by Sec63 and Sec62 may also be important for subsequent translocation steps as it may
295 reduce friction in polypeptide movements. Our structural analysis shows that Sec63 and Sec62 open the
296 gates of the Sec61 channel in a stepwise fashion to activate the channel, explaining their essentiality in
297 cell viability. Given the high degree of sequence conservation of these components, the gating mechanism
298 we discovered here is likely conserved across all eukaryotic species.

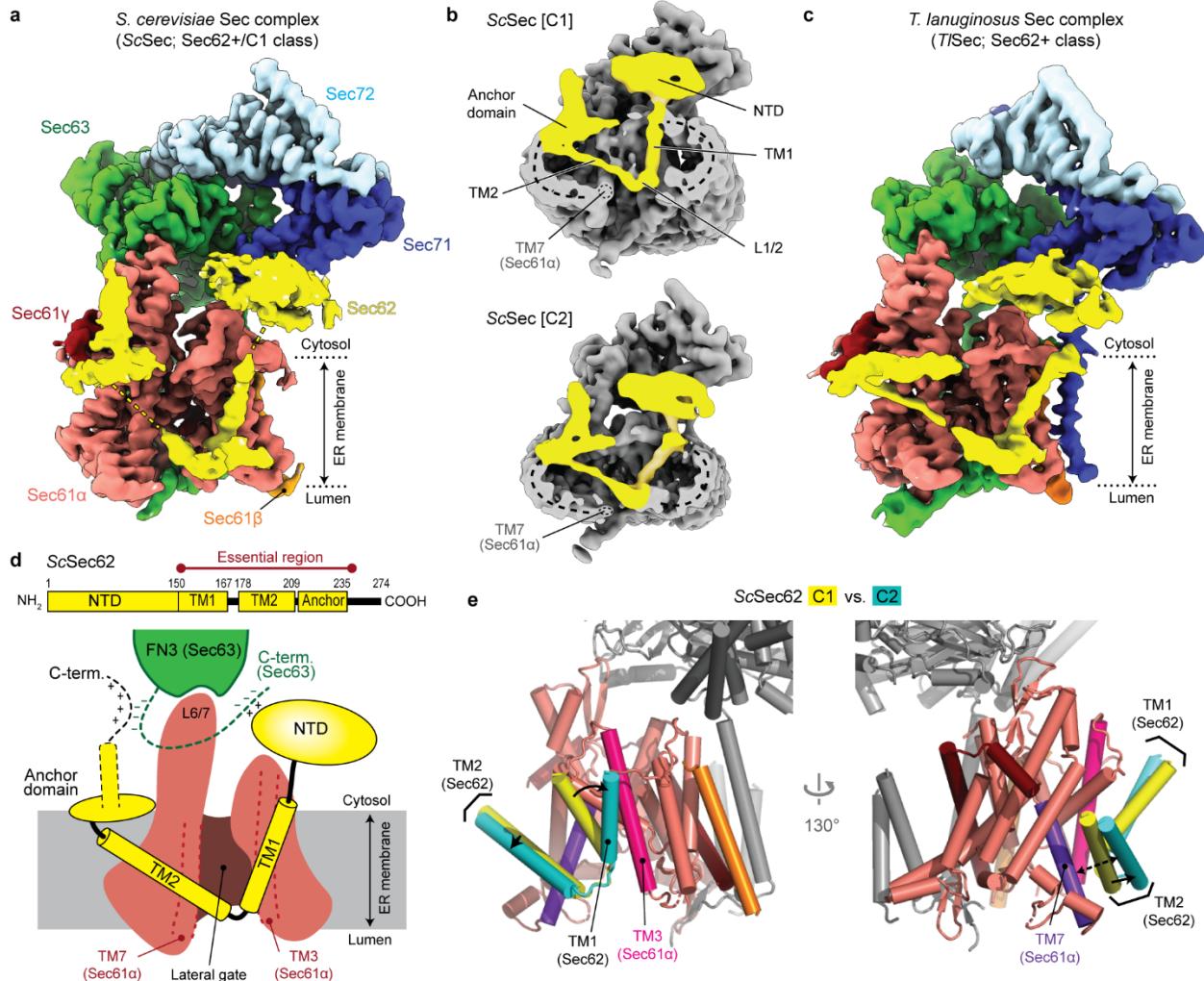
299 **Acknowledgments**

300 We thank D. Toso and J. Remis for support for electron microscope operation, and J. Hurley and E.
301 Nogales for critical reading of manuscript. This work was supported by the Vallee Scholars Program (E.P.)
302 and the National Institutes of Health (J.C.G.; R01-GM123169). Computational resources were provided
303 through the Extreme Science and Engineering Discovery Environment (XSEDE; TG-MCB130173),
304 which is supported by a National Science Foundation Grant (ACI-1548562). Additional resources were
305 provided by the Partnership for an Advanced Computing Environment (PACE) at the Georgia Institute of
306 Technology.

307 **Author contributions**

308 S.I. prepared samples and performed functional analysis. S.I. and E.P. collected and analyzed cryo-EM
309 data, built atomic models, interpreted results. K.M.K and J.C.G performed MD simulations and interpret
310 results, and E.P. supervised the project and wrote the manuscript with input from all authors.

311 **Competing interests**

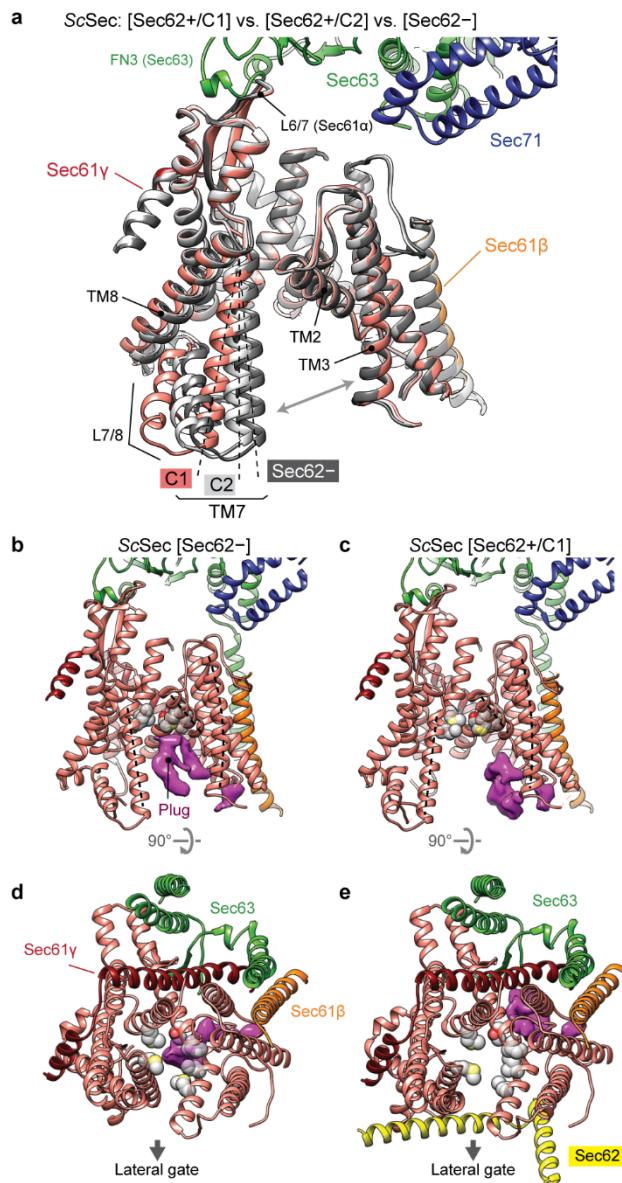

312 The authors declare no competing interests.

313 **Data and materials availability:**

314 The atomic coordinates and cryo-EM density maps of the Sec complexes were deposited to the Protein
315 Data Bank (PDB) and Electron Microscopy Data Bank (EMDB), respectively. Their PDB and EMDB
316 accession codes are as follows: EMD-22785 for *ScSec*[consensus]; 7KAH and EMD-22770 for
317 *ScSec*[Sec62-]; 7KAI and EMD-22771 for *ScSec*[C1]; 7KAJ and EMD22772 for *ScSec*[C2]; 7KAO and
318 EMD-22778 for PM *ScSec*[Sec62-]; 7KAP and EMD-22779 for PM *ScSec*[C1]; 7KAQ and EMD-22780
319 for PM *ScSec*[C2]; 7KAR and EMD-22781 for FN3mut *ScSec*[Sec62-]; 7KAS and EMD-22782 for
320 FN3mut *ScSec*[Sec62+]; 7KAT and EMD-22783 for PM/FN3mut *ScSec*[Sec62-]; 7KAU and EMD-
321 22784 for PM/FN3mut *ScSec*[Sec62+]; 7KB5 and EMD-22787 for FN3mut/Δ210-216 *ScSec*; EMD-
322 22786 for WT *TlSec*[Sec62+]; 7KAK and EMD-22773 for *TlSec*[Sec62-]; 7KAL and EMD-22774 for
323 *TlSec*[Sec62+/plug-open]; 7KAM and EMD-22775 for *TlSec*[Sec62+/plug-closed]; 7KAN and EMD-
324 22776 for ΔSec62 *TlSec*; EMD-22777 for Δanchor *TlSec*. Yeast strains and plasmids that were generated
325 in this study are available upon request.

326

327



328

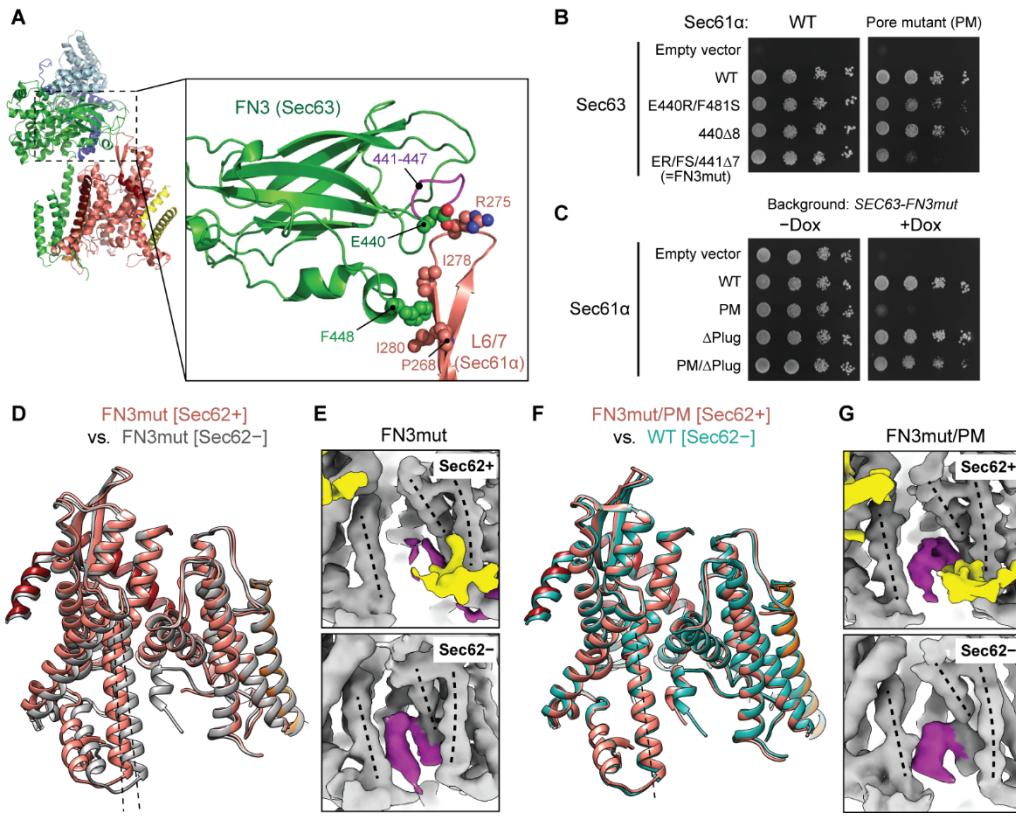
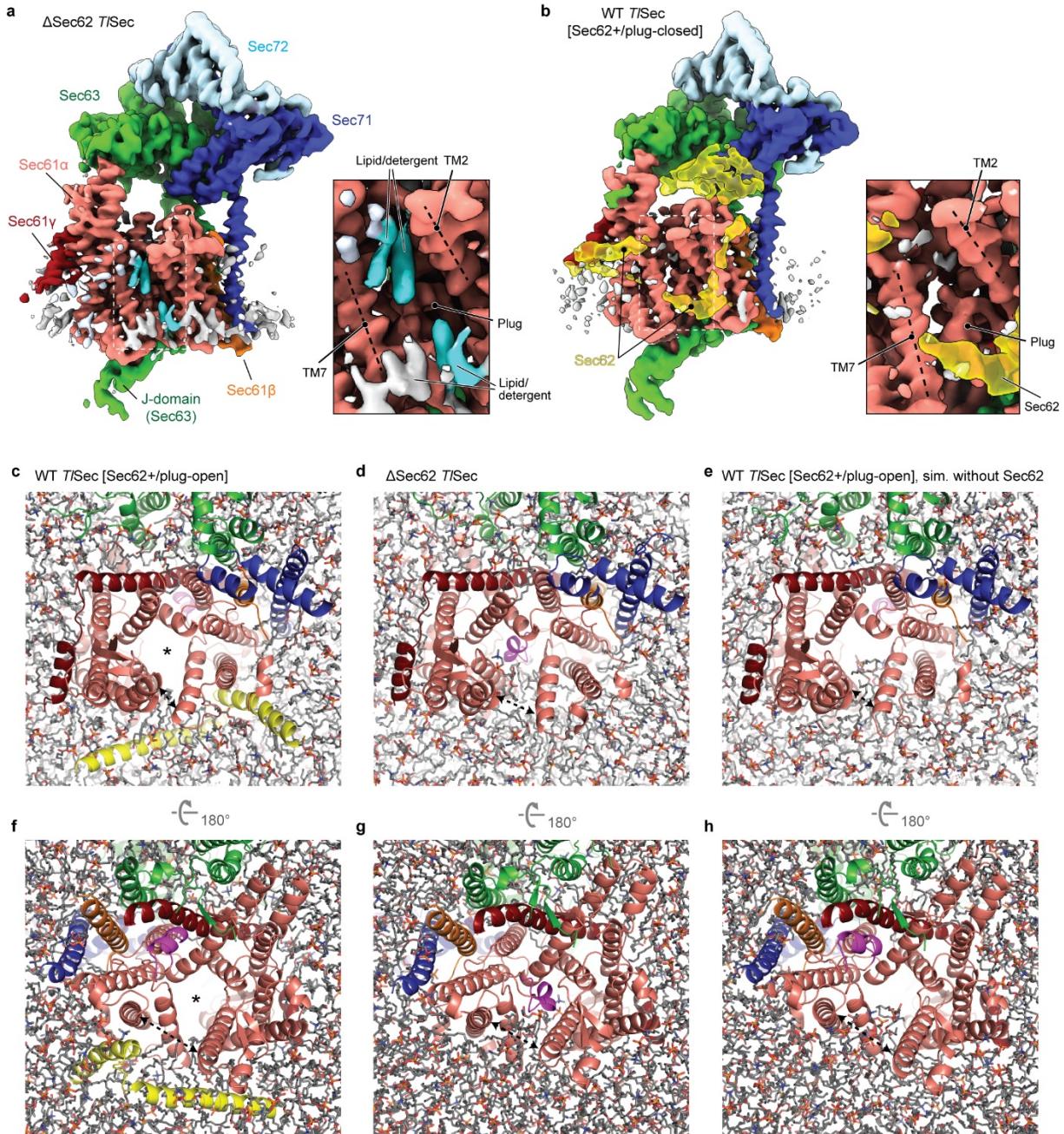
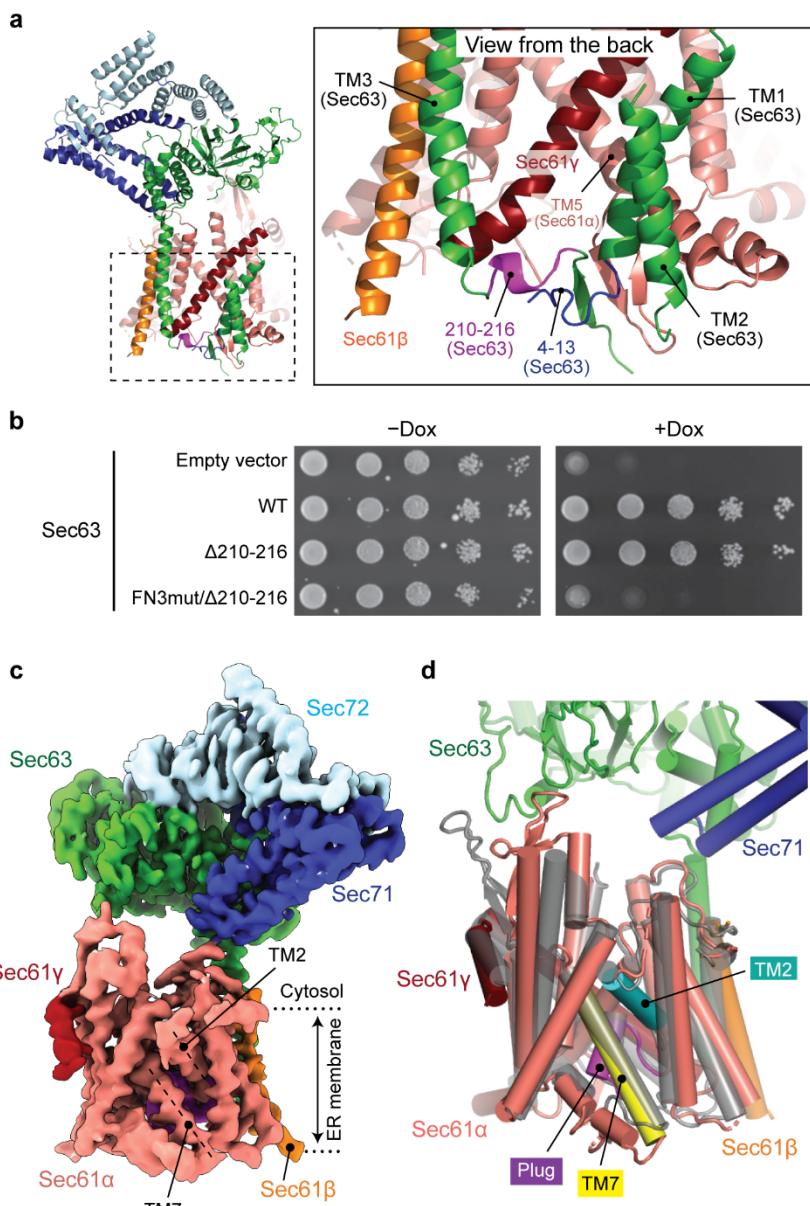

329

Figure 1. Cryo-EM analysis of fungal Sec complexes and the structure of Sec62. **a**, The 3.1-Å-resolution cryo-EM reconstruction of the yeast Sec complex (C1 class, front view into the lateral gate). Yellow dash lines indicate the connections that are visible at a lower contour level (see panel b). In yeast nomenclature, the α , β , and γ subunits of the Sec61 complex are called Sec61p, Sbh1p, and Sss1p, respectively. **b**, Cutaway views showing Sec62 (yellow). Shown are 6-Å-lowpass-filtered C1 (upper panel; a tilted view from the ER lumen) and C2 (lower panel; front view) maps. Dashed line, detergent micelle. **c**, The 3.8-Å-resolution reconstruction of the *T. lanuginosus* Sec complex (the consensus Sec62+ map). **d**, Domain organization of Sec62. Previous studies suggest an interaction between the NTD of Sec62 and the C-terminal tail of Sec63 (ref. {Wittke, 2000 #28; Willer, 2003 #29}). In addition, based on the proximity, the C-terminal tails of Sec62 and Sec63 may also interact with each other through an electrostatic interaction. **e**, Interactions between the Sec62 TMs and lateral gate. Dashed arrow, a gap between Sec61 α TM7 and Sec62 TM2 in the C2 conformation. Sec61 α is in salmon with its TM3 and TM7 in magenta and violet, respectively. Sec61 β and Sec61 γ are in orange and dark red, respectively. Sec62 is in yellow (C1) or cyan (C2). Sec63, Sec71, and Sec72 are in grey.

344


347 **Figure 2. Regulation of the lateral and vertical gates by Sec62.** **a**, A comparison of the Sec61 channel
 348 conformation between the three *ScSec* classes, C1 (in color), C2 (light grey) and Sec62- (dark grey).
 349 Dashed lines, TM7 of Sec61 α . Grey arrows, the lateral gate. Sec62 is not shown. **b–e**, A comparison of
 350 the plug domain (purple density) between Sec62-lacking and -containing *ScSec* classes. Grey spheres,
 351 pore ring residues. Dashed lines, lateral gate helices (left to right: TM7, TM2, and TM3 of Sec61 α).
 352 Shown are front views (b and c) and cytosolic views (d and e).

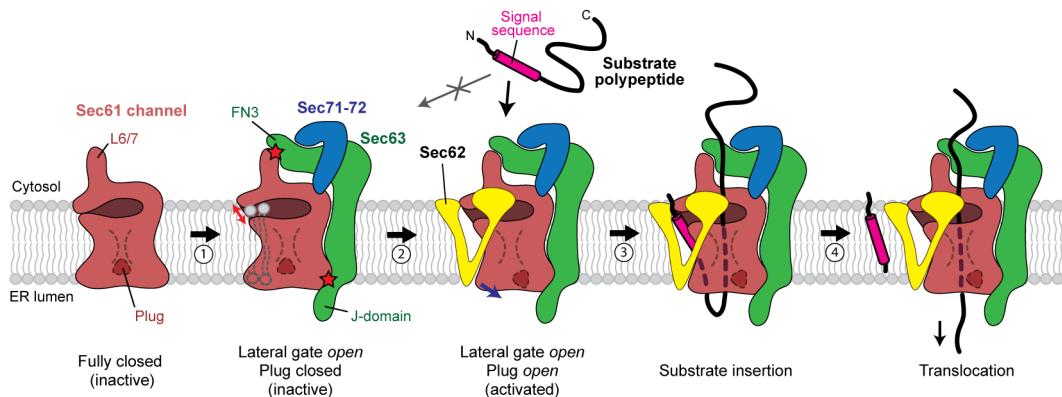
354


Figure 3. Structural and functional analysis of a gating-defective mutant complex. a, The interaction between the FN3 domain of Sec63 and the L6/7 loop of Sec61 α (shown is WT *ScSec*[C1]). Amino acids involved in the interactions are indicated. **b**, Yeast growth complementation experiments (at 30°C) testing functionality of indicated FN3 mutants of Sec63 in the background of WT (left) or pore-mutant (PM) Sec61 α (right). FN3mut refers to a combination of E440R (ER) and F481S (FS) mutations and a deletion of seven amino acids 441–447 (441 Δ 7). To repress chromosomal WT Sec63 expression (under a tetracycline promoter), doxycycline was added. Also see [Extended Data Fig. 7a](#). **c**, As in b, but testing for indicated Sec61 α mutants in the background of Sec63-FN3mut as a sole Sec63 copy. The addition of doxycycline (Dox) represses chromosomal WT Sec61 α expression. **d**, As in Fig. 2a, but with the FN3mut *ScSec* structures with and without Sec62. **e**, A comparison of the plug domain (purple density) between the FN3mut *ScSec* structures with and without Sec62 (yellow). Dashed lines, lateral gate helices (left to right: TM7, TM2, and TM3 of Sec61 α). **f**, As in d, but comparing the Sec62-containing FN3mut/PM structure and the Sec62- class of WT *ScSec*. **g**, As in e, but with the FN3mut/PM *ScSec* structures.

368

369

370 **Figure 4. Sec62 prevents lipids from invading into the Sec61 channel.** **a**, Lipid/detergent molecules at
371 the lateral gate in the *T*/Sec structure lacking Sec62 (Δ Sec62). The left panel is a front view. Non-protein
372 densities are in grey. Densities in cyan are lipid/detergent molecules intercalated at the lateral gate. The
373 right panel is a zoomed-in view of the lateral gate (area indicated by the white dashed box in the left
374 panel). **b**, As in a, but with the Sec62+/plug-closed class of WT *T*/Sec. We note that similarly, the
375 Sec62+/plug-open class does not show lipid/detergent densities at the lateral gate. **c–h**, All-atom MD
376 simulations with indicated *T*/Sec structures in a model membrane. The Sec complex is shown in a ribbon
377 representation in the same colors as in a and b. Lipids are shown in a stick representation. Panels c–e are
378 views from the cytosol, and f–h are views from the ER lumen. In c and f, the translocation pore is marked
379 by an asterisk. The lateral gate openings are indicated by a dashed arrow. The frames are from 200 ns
380 after the initiation of simulations.



382

Figure 5. The structure of a fully closed Sec complex. **a**, The interaction between Sec61 and Sec63 in the ER lumen (view from the back). The N-terminal segment (positions 4–13) and the segment preceding TM3 (positions 210–216) of Sec63 are in blue and purple, respectively. Shown is the *Sc*Sec[C1] structure. **b**, Yeast growth complementation (at 30°C) testing functionality of the indicated Sec63 mutants. The addition of doxycycline (Dox) represses chromosomal WT Sec63 expression. **c**, The 3.8-Å-resolution cryo-EM structure of the *Sc*Sec complex containing FN3mut/Δ210–216 double-mutant Sec63. The lateral gate helices TM2 and TM7 are indicated. **d**, As in c, but showing the atomic model of the Sec61 complex. For comparison, the closed *M. jannaschii* SecY structure (PDB 1RH5; semitransparent grey) is superimposed.

393

394

395

396

Figure 6. A model for activation of the Sec61 channel by Sec62 and Sec63. The Sec61 channel alone assumes a fully closed conformation (the leftmost cartoon). Step 1, association of Sec63 opens the lateral gate (indicated by a red arrow) through interactions with Sec61 in both the cytosol and ER lumen (indicated by red stars). However, the channel in this conformation is inactive due to the plug in a closed state. In addition, without Sec62, lipids may enter the open lateral gate. Step 2, Sec62 interacts with the lateral gate of Sec61 and further opens the lateral gate (blue arrow), which results in opening of the plug. The V-shaped transmembrane domain of Sec62 excludes lipids from the channel. Step 3, a substrate polypeptide inserts into the open pore of the channel as a loop with the signal sequence sitting at the lateral gate. Step 4, The signal sequence is cleaved by the signal peptidase (not shown), and the polypeptide is translocated into the ER lumen. For simplicity, the BiP ATPase, which drives translocation by interactions with the polypeptide and J-domain, is not shown.

408

409 **Table 1. Cryo-EM data collection, refinement and validation statistics of wildtype ScSec and**
 410 **wildtype and mutant TlSec complexes**

	Wildtype ScSec			Wildtype TlSec			Δ Sec62 TlSec	Δ anchor TlSec
	Sec62-	Sec62+/C1	Sec62+/C2	Sec62-	Plug-open	Plug-closed		
EM Databank accession code	22770	22771	22772	22773	22774	22775	22776	22777
PDB accession code	7KAH	7KAI	7KAJ	7KAK	7KAL	7KAM	7KAN	N/A
Data collection								
Magnification	42,017x			43,860x			43,860x	42,017x
Voltage (kV)	300			200			200	300
Electron exposure (e ⁻ /Å ²)	49.1			50.0			50.0	49.1
Defocus range (μm)	-0.8 to -2.5			-0.6 to -2.4			-0.9 to -2.2	-0.7 to -2.9
Pixel size (Å)	1.19			1.14			1.14	1.19
Processing								
Symmetry imposed	C1	C1	C1	C1	C1	C1	C1	C1
Initial particle images (no.)	2,686,839			1,632,659			546,712	229,825
Final particle images (no.)	391,885	193,263	193,661	155,601	114,704	143,227	222,047	76,726
Map resolution (Å)	3.1	3.2	3.1	3.9	4.0	3.8	3.7	4.4
FSC threshold	0.143	0.143	0.143	0.143	0.143	0.143	0.143	0.143
Map resolution range (Å)	2.6 – 11	2.8 – 12	2.7 – 12	3.4 – 13	3.3 – 13	3.3 – 12	3.3 – 12	3.7 – 14
Refinement								
Initial model used (PDB code)	6N3Q	WT ScSec [Sec62-]	WT ScSec [Sec62-]	Δ Sec62 TlSec	Δ Sec62 TlSec	Δ Sec62 TlSec	6N3Q	-
Model resolution (Å)	3.2	3.3	3.3	4.1	4.2	4.0	4.0	-
FSC threshold	0.5	0.5	0.5	0.5	0.5	0.5	0.5	-
Map sharpening B factor (Å ²)	86.6	80.8	75.9	110.3	90.7	105.2	127.8	-
Model composition								
Nonhydrogen atoms	10,495	10,718	10,712	10,438	10,794	10,921	10,661	-
Protein residues	1,349	1,399	1,399	1,371	1,429	1,445	1,371	-
Ligands	-	-	-	-	-	-	2 (PC2)	-
B factors, average (Å ²)	73	61	58	117	126	74	30	-
R.m.s. deviations								
Bond lengths (Å)	0.003	0.003	0.003	0.002	0.002	0.003	0.003	-
Bond angles (°)	0.522	0.508	0.513	0.524	0.489	0.521	0.623	-
Validation								
MolProbity score	1.43	1.42	1.33	1.51	1.42	1.48	1.55	-
Clashscore	4.61	4.14	3.87	6.33	5.62	5.60	6.18	-
Poor rotamers (%)	0	0	0	0	0	0	0	-
Ramachandran plot								
Favored (%)	96.83	96.58	97.01	97.09	97.42	96.96	96.72	-
Allowed (%)	3.17	3.42	2.99	2.91	2.58	3.04	3.28	-
Disallowed (%)	0	0	0	0	0	0	0	-

411

412