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Abstract—Hyperdimensional (HD) computing is a brain-
inspired form of computing based on the manipulation of high-
dimensional vectors. Offering robust data representation and
relatively fast learning, HD computing is a promising candidate
for energy-efficient classification of biological signals. This pa-
per describes the application of HD computing-based machine
learning to the classification of biological gender from resting-
state and task functional magnetic resonance imaging (fMRI)
from the publicly available Human Connectome Project (HCP).
The developed HD algorithm derives predictive features through
mean dynamic functional connectivity (dFC) analysis. Record en-
coding is employed to map features onto hyperdimensional space.
Utilizing adaptive retraining techniques, the HD computing-based
classifier achieves an average biological gender classification
accuracy of 87%, as compared to 84% achieved by edge entropy
measure.

I. INTRODUCTION

The prevalence of IoT (interenet of things) devices has
led to the emergence of the distributed computing framework
for edge computing. In edge computing, bandwidth intensive
tasks are performed within an IoT device as opposed to
sending data to the cloud for processing [1], leading to load
reductions in cloud networks, decreases in response times, and
the localization of user data. Edge computing is attractive for
the resource intensive task of machine learning [2]. However,
this approach is hampered by state-of-the-art machine learning
algorithms being too computationally expensive to run on
resource-limited IoT devices [3]. Thus, machine learning with
edge computing necessitates the development of algorithms
that balance efficiency with performance.

Hyperdimensional (HD) computing is a brain-inspired com-
puting framework that has been shown to produce energy-
efficient classifiers while retaining acceptable accuracy. HD
computing differs from traditional computing methods in that
it computes with high-dimensional (D ≥ 1, 000) vectors.
These hyperdimensional vectors are meant to mimic neural
states within the human brain [4]. HD computing has been
shown to be a viable alternative in a myriad of different clas-
sification tasks such as text categorization [5], speech recog-
nition [6], DNA sequencing [7], and language recognition [8].
In particular, there have been many successful applications
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of HD computing-based classification to biological signals
including EMG gesture detection [9], ECoG seizure detection
[10], and EEG event-error detection [11]. While performing
classification with these high-temporal resolution biological
signals, HD computing has been shown to achieve high accu-
racy while using significantly less resources and training data
than competing algorithms. However, there is no literature, to
the best knowledge of the authors, on the effectiveness of HD
computing in machine learning tasks centered on acquisition
methods for biological signals with low-temporal resolution,
such as functional magnetic resonance imaging (fMRI).

In neuroimaging, several applications have investigated the
use of fMRI in predicting individual attributes (age [12],
gender, fluid IQ, and fluid ability [13]) of a subject via machine
learning. Traditionally, these models assume that functional
connectivity within the brain is stationary over time, referred
to as static functional connectivity [14]. However, it has been
recently shown that analysis methods for dynamic functional
connectivity (dFC) can be extended to fMRI [15]. Often used
in high-temporal resolution biological signals, dynamic func-
tional connectivity differs from its static counterpart in that it
is able to capture spatio-temporal fluctuations in correlation
between brain regions [16]. The use of dynamic functional
connectivity in deriving features for classification has been
reported to exceed or match the performance of previous static
methods in the prediction of biological gender [13].

This paper aims to extend dFC-based feature extraction
to HD computing through the task of biological gender
prediction via fMRI. In doing so, this paper also demonstrates
a novel application of HD computing to classification
of low-temporal resolution biological signals. The HDC
classifier proposed in this paper is able to achieve a gender
classification accuracy of 87%. The remaining sections of
the paper are organized as follows. In Section 2, we outline
the theoretical framework behind a high-performance HD
computing-based classifier that utilizes record encoding
[17] and retraining [18]. In Section 3, we detail the fMRI
dataset, dFC-based feature extraction method, and HD model
specifications used in the proposed model. In Section 4,
we provide experimental results followed by comparison to
state-of-the-art methods in biological gender classification via
fMRI [13]. Section 5 concludes the paper.



II. HYPERDIMENSIONAL COMPUTING

A. Basics

HD computing (HDC) at its core is the manipulation of high
dimensional vectors, referred to as hypervectors. A hypervec-
tor v of dimension d ≥ 1, 000 can be binary (v ∈ {0, 1}d),
bipolar (v ∈ {−1, 1}d), or real-valued (v ∈ Rd). Real-
valued hypervectors store significantly more information than
their rudimentary counterparts at the expense of increased
memory usage. As a result, binary hypervectors are often
implemented in HDC models that prioritize efficiency over
accuracy. However, techniques for training HDC models using
higher fidelity real-valued hypervectors and then compressing
through compHD [3] or binarization [19] have been proposed.

When working with hypervectors, there exist three standard
operations: multiplication, addition, and permutation (MAP).
Definitions of the MAP operations differ between the various
types of hypervectors [20]. The proposed method in this paper
utilizes multiplication as defined for binary hypervectors and
addition as defined for real-valued hypervectors. In this sense,
mulitplication is performed by evaluating the XOR of two
binary hypervectors while addition is simply element-wise
addition of n real-valued hypervectors.

B. Record Encoding

In the same vein as feature scaling data for gradient
descent-based algorithms in traditional machine learning, data
transformations are required for HDC models to perform
optimally. In the proposed method, a time-series consisting
of n samples must be mapped onto a hypervector in d-
dimensional space. Within HD computing, one of several
processes used for creating robust representations of time-
series data in hyperdimensional space is record encoding [17].

Record encoding consists of binding temporal locations
of samples to their respective values via multiplication. To
achieve this, each sample index is assigned a randomly gener-
ated representative hypervector. The collection of n orthogonal
hypervectors, representing the n sample locations, are stored
in item memory (IM). In a similar fashion, the range of values
that a sample can take are quantized into bins represented by
hypervectors stored in the continuous item memory (CiM).
The minimum bin value of the signal is assigned to a randomly
generated base hypervector. For mapping hypervectors to
increasing bin values, a defined number of distinct bits are
flipped each time such that the hypervector representing the
maximum value bin approximately represents the negation of
the base hypervector. The process of successive bit flipping
preserves the locality of signal values in high dimensional
space. The number of hypervectors present in the CiM is
dependent upon the precision required. The implementation
of an m-level CiM for an n sample signal is displayed in
Fig. 1. Each sample location is bound to its value through the
multiplication of the corresponding IM and CiM hypervectors.
The n resulting hypervectors are summed to create a single
encoded hypervector representative of the original data.

Fig. 1. HDC memory structure for record encoding [17]. CiM hypervectors
are mapped onto value ranges. IM hypervectors are mapped to sample indices.

C. Classification and Retraining

A useful property of hypervectors is that any two randomly
generated hypervectors are orthogonal to each other with
high probability [20]. This property implies that measures of
orthogonality between hypervectors can double as measures
of similarity. With real-valued hypervectors, the standard mea-
surement of similarity is the cosine similarity given by:

Sim(A,B) =
A ·B
|A||B|

(1)

Thus, Sim(A,B) ≈ 0 indicates orthogonal or dissimilar
hypervectors while hypervectors with Sim(A,B) close to 1
are similar.

Similarity measurements form the basis of classification
with HD computing. While passing over encoded training data,
an HDC-based classifier sums all the training hypervectors
in each class to construct a collection of class prototype
hypervectors. Class prototype hypervectors, or simply class
hypervectors, are representative of the typical hyperdimen-
sional mapping of data belonging to a class. Classification of
encoded query data is then accomplished through finding the
closest class hypervector to the query hypervector via cosine
similarity.

While HDC-based classification has been touted as capa-
ble of one-shot learning [11], the performance of an HDC
model has been shown to significantly improve via the use
of AdaptHD retraining [18]. Retraining in HDC-based clas-
sifiers is achieved through the alteration of a model’s class
hypervectors. The AdaptHD framework features two retraining
methods: iteration dependent and data dependent. In both
methods, the incorrect classification of an encoded training
sample Q from the class corresponding to class hypervector
Ccorrect is penalized according to the following scheme:

Ccorrect = Ccorrect + αQ (2)
Cwrong = Cwrong − αQ (3)

where Cwrong is the class hypervector of the incorrectly
predicted class and α is the learning rate. The value of α in
iteration dependent retraining is set after each epoch based



Fig. 2. AdaptHD [18] iteration and data dependent retraining. Incorrect
classification of a training example is penalized by altering class hypervectors.

on the training accuracy of the model. Intuitively, a lower
training accuracy corresponds to a larger α value. In contrast,
the learning rate in data dependent retraining is decided on an
individual basis for each incorrectly classified training exam-
ple. Specifically, the model performance within data dependent
retraining is based on cosine similarity distance from the
correct class, Sim(Q,CWrong) − Sim(Q,CCorrect), where
a larger distance necessitates a greater α value. In both cases,
user-defined look-up tables map a cosine similarity distance
or training accuracy to a respective α value. In general,
hyper-parameters within AdaptHD consist of the maximum
value defined for α and the number of retraining iterations
performed. The two methods stated can be combined by
tracking independent learning rates and then averaging when
altering class hypervectors. A high level overview of AdaptHD
retraining penalizing an incorrect prediction on training data
is illustrated in Fig. 2.

III. PROPOSED METHOD

A. Dataset

The fMRI data used is sourced from the Q2 data release
of the publicly available Human Connectome Project (HCP)
Database. The HCP dataset consists of 477 subjects each with
8 distinct brain scans. The demographic spread of subjects
within the dataset is as follows: 198 males, 297 females. As
outlined in the HCP procedures, a subject has their brain
imaged via fMRI while performing 1 of 7 different tasks or in
resting state [21]. The latter is referred to as task fMRI while
the former is resting-state fMRI. The seven tasks performed
by subjects include: emotional processing, gambling, working
memory, relational, language processing, motor function, and
social processing. The raw fMRI data is processed following
the procedure outlined in [13] to produce thousands of blood
oxygen level dependent (BOLD) signals corresponding to
fluctuations in blood flow between 2 mm isotropic voxels in
the brain. To reduce the dimensionality of the data, 85 brain
regions of interest are identified using the Freesurfer cortical
parcellation atlas [22]. The mean BOLD signal of all the
voxels in each of the 85 regions is then calculated, resulting in
85 BOLD time-series per task for each subject. The temporal
resolution of the BOLD signals for each subject is 1Hz on
average across task and resting state [21].

Fig. 3. Mean dFC. Absolute correlation coefficient matrices are calculated
for each window and then averaged over the BOLD signal duration.

B. Feature Extraction via Mean dFC

For feature extraction, dynamic functional connectivity of
the BOLD signals collected from the 85 regions of interest
is calculated through the sliding window correlation method
[23]. The BOLD signal is first multiplied by a sliding window
function to isolate the pertinent samples. These samples are
then used to calculate an 85× 85 matrix of absolute Pearson
correlation coefficients. The sliding window is shifted forward
by a set number of samples and the process is repeated for the
duration of the signal. The length of sliding window used was
68 samples, corresponding to approximately 50s, as suggested
in [24]. In addition, various levels of window stride length
(5,10,15) were tested to determine an optimal value of 10
samples per shift, resulting in a 58 sample overlap between
windows.

The set of correlation matrices that result from dFC analysis
can be decomposed through several different methods. In
previous works, ICA, PCA, and PARAFAC decomposition
have all been applied to the windowed correlation matrices
to extract 25 to 75 brain states that function as classification
features. However, the proposed model opts for the com-
putationally lean method of mean dFC [13]. In contrast to
existing resource intensive decomposition methods, mean dFC
simply takes the element-wise average of the set of absolute
Pearson correlation matrices. The resulting mean dFC matrix
is of dimension 85 × 85 and contains

(
85
2

)
= 3570 distinct

classification features due to symmetry in the correlation
matrices. The process of calculating mean dFC is illustrated
in Fig. 3. Note that mean dFC results in a high dimensional
feature space; however, HD computing has been shown to not
require domain expert knowledge for feature selection [11].
Thus, no feature selection is performed by the model proposed
in this work.

C. Limitations

There are several data limitations present when using fMRI
data sourced from the HCP database. Most notably, task fMRI
scans and resting-state fMRI scans have transient durations
of 3-6 minutes and 12 minutes, respectively. Given the low
temporal resolution of the signals, learning with each of the
scan types by themselves can lead to a model with poor
predictive abilities. To extend signal duration, the BOLD



Fig. 4. Training accuracy of HDC biological gender classifier through
successive iterations of retraining.

signals from each task and the resting-state are concatenated
to create a single combined fMRI scan. This requires that all
8 fMRI scans are present for a subject, which is valid for
477 subjects in the Q2 release. To further compensate for data
limitations, additional training data is generated via sliding
window [25]. Through this technique, the number of training
samples is increased by a factor of 84.

D. Proposed HDC Classifier

The proposed HDC-based classifier prioritizes high per-
formance gender classification over all else. To that end,
real-valued hypervectors with d = 10, 000 are used along
with both iteration and data dependent retraining. Mean dFC
feature extraction is carried out on combined BOLD signal
data to create an 85× 85 mean dFC matrix for each training
sample. All distinct feature values of the mean dFC matrix are
contained in either the lower or upper triangle of the matrix.
Thus, the lower triangle of a mean dFC matrix is flattened and
mapped onto a hypervector via record encoding. An initial pass
over the training data is performed such that the model trains
two preliminary class hypervectors. Both retraining methods
are then used to enforce high training accuracy.

IV. EXPERIMENTAL RESULTS

The proposed HDC-based classifier is validated through 5-
fold cross-validation (CV) [26]. The 477 subjects are dis-
tributed evenly into five folds, four of which are used for
training the model while the remaining fold serves as test
data. Using in-fold validation, the optimal number of retraining
steps in AdaptHD was determined as six. The maximum α
values were 0.3 and 1.2 for iteration and data dependent
retraining, respectively. Fig. 4 demonstrates the significant
improvements in model training accuracy achieved through
retraining. For characterization of the HDC model’s perfor-
mance, the standard classification metrics of accuracy, sensi-
tivity (female accuracy), and specificity (male accuracy) are
reported. All reported results are averaged over ten executions
of the model to account for variations in testing accuracy.

The total gender classification accuracy of the proposed
HDC model across all available types of fMRI data is reported
in Fig 5. The HDC-based classifier is able to maintain a
classification accuracy above 70% in all forms of fMRI task

Fig. 5. Performance of proposed HDC biological gender classifier across the
various categories of fMRI data.

Fig. 6. Performance of proposed HDC biological gender classifier across
various dFC sliding window stride lengths.

data. Resting-state fMRI data leads to the highest accuracy of
all the uncombined data types at 82%. The concatenation of all
8 forms of fMRI data into a single combined time-series leads
to a classification accuracy of 87%. As discussed in Section 3,
the comparatively longer BOLD signals in rest and combined
fMRI data most likely lend to the increases in classification
accuracy achieved through using these scan types. In terms
of feature extraction methods, the performance of the HDC
classifier with several mean dFC sliding window stride lengths
is shown in Fig. 6. As indicated in Section 3, a stride length
of 10 samples is optimal; however, high accuracy results are
achieved with all three options.

The performance of the HDC classifier with combined
fMRI data type is compared against existing state-of-the-art
biological gender classification via fMRI methods in Table I.
All methods stated in Table I were executed using the Q2
release of the HCP and 5 fold CV. The state-of-the-art methods
presented utilize the widely popular and powerful random
forest machine learning algorithm. The proposed HDC-based
classifier is able to achieve 87% total accuracy with 92% sensi-
tivity and 80% specificity, surpassing the overall performance
of 8 out of the 9 reported methods. In addition, the proposed
model and constrained PARAFAC decomposition with random
forest are the only two methods able to surpass 90% female
classification accuracy while retaining at least 80% male clas-
sification accuracy. The highest performing feature extraction



TABLE I
COMPARISON OF RESULTS FOR BIOLOGICAL GENDER

CLASSIFICATION VIA FMRI [13]

Method Features Accuracy Sensitivity Specificity
Constrained PARAFAC 25 0.94 0.97 0.87

HDC Mean dFC (proposed) 3570 0.87 0.92 0.80
Edge Entropy 3570 0.84 0.89 0.81

Partial Least Squares 15 0.80 0.66 0.86
Node Entropy 85 0.75 0.83 0.66

Random Forest Mean dFC 3570 0.74 0.85 0.66
Correlation 15 0.73 0.64 0.75
dFC ICA 75 0.71 0.55 0.85

Network Features 54 0.69 0.74 0.65
dFC PCA 75 0.5 0.48 0.51

method of constrained PARAFAC decomposition was tested
with the proposed HDC-based classifier but led to negative
results. It may be noted that the PARAFAC method requires
tensor decomposition and is computationally more complex.

We note that the mean dFC feature extraction method saw
a 13% increase in overall performance when utilized in the
proposed HDC model as opposed to the random forest algo-
rithm. Using this lean feature extraction method, HDC serves
as a higher performance alternative to the traditional random
forest algorithm. Finally, the proposed model outperforms both
methods, edge entropy and mean dFC with random forest,
that retained a 3570 dimension feature space, indicating that
HDC-based classification has a higher tolerance for noise in
the extracted features.

V. CONCLUSION

In this paper, we have demonstrated how classification with
hyperdimensional computing can be extended to the task of
biological gender detection via fMRI. The proposed HDC-
based classifier employs the AdaptHD retraining framework
and mean dFC feature extraction. Through these methods, the
proposed HDC biological gender model is able to achieve an
overall performance of 87% accuracy with 92% accuracy for
females and 80% accuracy for males. This performance was
shown to be at par with leading methods of biological gender
classification via fMRI. Future work will address the extension
of mean dFC feature extraction to seizure detection via HD
computing. The applications of HD computing-based classi-
fication to predicting fluid intelligence and fluid ability via
fMRI will also be investigated using the framework presented
in this paper.
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