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Abstract

Building compositional explanations requires

models to combine two or more facts that, to-

gether, describe why the answer to a question

is correct. Typically, these “multi-hop” expla-

nations are evaluated relative to one (or a small

number of) gold explanations. In this work, we

show these evaluations substantially underesti-

mate model performance, both in terms of the

relevance of included facts, as well as the com-

pleteness of model-generated explanations, be-

cause models regularly discover and produce

valid explanations that are different than gold

explanations. To address this, we construct a

large corpus of 126k domain-expert (science

teacher) relevance ratings that augment a cor-

pus of explanations to standardized science

exam questions, discovering 80k additional

relevant facts not rated as gold. We build three

strong models based on different methodolo-

gies (generation, ranking, and schemas), and

empirically show that while expert-augmented

ratings provide better estimates of explana-

tion quality, both original (gold) and expert-

augmented automatic evaluations still substan-

tially underestimate performance by up to 36%

when compared with full manual expert judge-

ments, with different models being dispropor-

tionately affected. This poses a significant

methodological challenge to accurately evalu-

ating explanations produced by compositional

reasoning models.

1 Introduction

Compositional inference is the high-level task of

combining two or more pieces of knowledge to

perform reasoning. In the context of question

answering, compositional (or “multi-hop”) infer-

ence typically takes the form of combining facts

from a knowledge base that allow a given solver

to form a complete chain-of-reasoning that moves

from question to correct answer. A desirable con-

sequence is that the facts used to assemble this

chain-of-reasoning can then be taken as an inter-

Question: When trees are cleared from the land,

what will most likely occur?

Answer: Soil Erosion

Gold Explanation

A tree is a kind of plant.

Roots are a part of a plant.

In the soil erosion process, plant roots are an inhibitor.

Removing an inhibitor causes that process to happen.

Soil erosion is when wind/water move soil.

Tree roots decrease soil erosion.

As deforestation increases, soil erosion will increase.

Deforested area is where humans cut down trees.

Clearing a forest means cutting down trees.

Model-Generated Explanation

Automated

Evaluation

Expert

Evaluation

Figure 1: An example science exam question, its gold expla-
nation from the WorldTree corpus, and a model-generated ex-
planation from one of the models (Tensorflow-Ranking-BERT)
trained using expert-generated relevance ratings produced in
this work. Though the model-generated explanation is strong,
it shares no facts in common with the gold explanation, and
automatic evaluations rate it neither relevant nor complete.

pretable record of that reasoning, as well as a

human-readable explanation for why the answer

is correct.

Compositional inference has seen steady growth

in the last three years, in large part due to the re-

cent availability of training and evaluation data for

the task (e.g. Yang et al., 2018; Khashabi et al.,

2018; Jansen et al., 2018), which has historically

been unavailable due to the challenges in annotat-

ing explanations, and the expense in generating

quality data at scale. To ease these burdens, nearly

all datasets have focused on small compositional

inference problems that require composing only

two representations, typically triples, sentences, or

whole paragraphs (see Wiegreffe and Marasović,

2021, for a survey of datasets).

In this work, we focus on the problem of gener-

ating and evaluating large explanations to science
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exam questions (with the average explanation in

this work requiring composing 6 facts). Our evalu-

ation experience in this domain has been uneasy –

we have developed seemingly well-reasoned mod-

els, only to receive comparatively low evaluation

scores relative to baseline models in automatic eval-

uations. When evaluated manually, as shown in

Figure 1, we observe that many models produce

compelling explanations, at least in part, but these

explanations score poorly because they differ from

gold explanations. This parallels the disparity in

automatic versus manual evaluations in other fields,

such as machine translation (Freitag et al., 2021).

In this work we systematically analyze the dif-

ference between automatic and expert manual eval-

uation, and formalize evaluation of large composi-

tional explanations in two aspects: by examining

the relevance of each fact to the question and an-

swer, as well as the completeness of the entire

explanation – that is, whether the collection of

facts in the explanation form a complete chain-of-

reasoning from question to answer. Of these two

metrics, obtaining accurate relevance measures is

in principle solvable by brute force – by creating an

exhaustive corpus of ratings – while exhaustively

enumerating possible n-fact explanations and rat-

ing them for completeness is likely less tractable.

Here, we focus on generating extensive relevance

annotation of the facts most likely to be incorpo-

rated in explanations, while providing an estimate

of the undercounting of completeness by manually

evaluating the completeness of explanations gener-

ated by three state-of-the-art models.

The contributions of this work are:

1. Resource: We produce a large set of 126k

expert-generated relevance ratings for build-

ing explanations to science exam questions

from atomic facts. Each rated fact was highly

ranked by a large language model trained on

gold explanations using distant supervision,

complementing those in the WorldTree V2

explanation corpus (Xie et al., 2020). The

domain experts (science teachers) discovered

80.6k additional facts, four times more than

provided in gold explanations, to be relevant

for explanation construction.

2. Models: We use these ratings to train

and evaluate three state-of-the-art exhaus-

tive models, using three different modeling

paradigms: explanation-as-ranking, genera-

tion, and constraint-based schemas.

3. Evaluation: We conduct large automatic and

manual evaluations, empirically demonstrat-

ing substantial differences in evaluation when

using better ratings and judgements. In fully-

automatic evaluations, original evaluations un-

derestimate relevance by up to 14% compared

with a fully-automatic evaluation that includes

expert ratings. But, this fully-automatic set-

ting still underestimates relevance by up to

29% and completeness by up to 36% com-

pared to full manual judgements.

2 Related Work

Compositional explanations: In their survey,

Weigreffe and Marasovic (2021) identified 14 struc-

tured explanation datasets for compositional rea-

soning. Due to the challenge in annotating large

compositional explanations, nearly all datasets to

date (such as QASC (Khot et al., 2020), Open-

BookQA (Mihaylov et al., 2018), and R4C (Inoue

et al., 2020)) require combining an average of only

2 facts. In this work, to study evaluation challenges

with the largest available explanations, we use the

WorldTree V2 explanation corpus (Xie et al., 2020),

whose explanations require composing an average

of 6 (and as many as 16) facts.

Evaluation with multiple gold explanations:

Nearly all compositional reasoning datasets anno-

tate (at most) a single gold explanation, with two

exceptions. eQASC (Jhamtani and Clark, 2020)

generates 10 perturbations of possible 2-fact QASC

explanations, and asks crowdworkers to rate these

as valid or invalid chains of reasoning. 26% are

rated valid, resulting in an average of 2.6 valid

2-fact explanations per question, which Jhamtani

and Clark (2020) then use to train a classifier and

ranker. Taking a different approach, R4C (Inoue

et al., 2020) uses crowdworkers to generate 3 expla-

nations (represented as chains of triples) to select

HotpotQA questions (Yang et al., 2018). R4C ex-

planations are short, with 68% containing 2 triples,

23% using 3 triples, and 9% use 4 or more triples.

Inoue et al. (2020) then define an alignment proce-

dure between model-generated output triples and

the 3 gold explanations, and take the highest scor-

ing alignment as the score of the explanation. In

this work, due to the intractability of generating

and rating explanatory perturbations with large ex-

planations, we instead use domain-experts to pro-

duce relevance ratings for component facts at scale.
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“explain: ...”

“extractive: ...”

“multiple
 choice: ...”

T5
UnifiedQA

“explanation”

“answer”

“MC answer”

Schema: Change of State

liquid water is called liquid water

gaseous  water is called steam

boiling changes from liquid to gas

boiling requires heating

gasses have variable shape

Tensorflow Ranking BERT T5-UnifiedQA CoSaTa Schema

Output: Model-Generated Compositional Explanation

Input: Question and Correct Answer

WorldTree V2

Explanation Corpus

21k

Ratings

Fully Automatic Evaluation

Rating

Score = 0.5

Automatic + Manual Evaluation

Manual Ratings

Rating

Score = 0.9

Relevant

Complete

Expert Ratings

Science Teachers

+126k

Relevance

Ratings

Fully Automatic Evaluation

Rating

Score = 0.7

Large

Underestimate

Moderate

Underestimate

Full Human

Judgement

Figure 2: An overview of this work. We generate a large set of relevance ratings for explanatory facts annotated by domain
experts (science teachers), that complement the original WorldTree explanation corpus. We use this new annotation for training
and evaluating three families of strong models (Tensorflow Ranking BERT, T5-UnifiedQA, and CoSaTa Schemas) on generating
explanations. We show through automatic and manual analyses that the current method of using a single gold explanation
for evaluation substantially undercounts explanation performance in terms of relevance and completeness, while even expert
relevance ratings (when used in fully-automatic evaluations) still moderately undercount true task performance compared to full
manual human judgements.

We then rate model explanations for completeness

manually, as we hypothesize that generating a large

database of alternative gold explanations as in In-

oue et al. (2020) is likely intractable for explana-

tions longer than two or three facts.

Rating completeness is challenging, with oppor-

tunities for bias. For example, Korman et al. (2020)

note that “all explanations are incomplete, but rea-

soners think some explanations are more complete

than others”, and empirically determined that hu-

mans prefer simpler explanations that reduce gaps

in causal explanatory steps. Here we consider ex-

planations correct if they are technically correct (as

determined by domain experts), and minimize gaps

in inferences, without measuring succinctness.

Modeling approaches to generating explana-

tions: A wide variety of approaches have been

proposed for building compositional explanations

(see Thayaparan et al., 2020, inter alia), including

integer linear programming (Khashabi et al., 2016),

formal logics and rules (Weber et al., 2019), itera-

tive construction methods (Cartuyvels et al., 2020),

and various explanation-as-ranking approaches

such as those proposed in the Shared Tasks for

Explanation Regeneration (e.g. Jansen and Ustalov,

2020). In this work we explore evaluation chal-

lenges grounded in the performance of three strong

and methodologically diverse models: reranking

exhaustive classifications of large language models

(e.g. Das et al., 2019; Li et al., 2020), generative

models (e.g. Khashabi et al., 2020), and schema-

based models (e.g. Lin et al., 2019; Jansen, 2020)

3 Overview

An overview of our approach is shown in Figure 2.

First, in Section 4 we generate a large set of ex-

pert relevance ratings that complement those in the

WorldTree V2 explanation corpus. We then use

these expert relevance ratings to demonstrate exist-

ing evaluations substantially undercount relevance

in explanation-as-ranking paradigms in Section 5.

In Section 6 we implement strong generative, rank-

ing, and schema-based models that produce whole

explanations (rather than ranked lists), and show

through manual analysis that automated metrics

substantially undercount relevance and complete-

ness of whole explanations, even when using better

ratings. We conclude with a discussion of implica-
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Q: Burning fossil fuels adds pollutants like sulphur into
the air. This pollution contributes to:

A: acid rain

TR Gold Fact
3 * Burning fossil fuels releases sulfur dioxide

into the atmosphere.
3 * Emitting sulfur dioxide causes acid rain.
2 Burning fossil fuels causes pollution.
2 * Emission is when something is added to.

the atmosphere.
2 Gasses from burning oil and coal that dissolve

in water in the atmosphere cause acid rain.
2 As the amount of sulphur gas in the atmosphere

increases, the PH of rain will decrease.
1 Acid rain negatively impacts water quality.
1 Coal is a kind of fossil fuel.
0 The air contains carbon dioxide.
0 Oil is a kind of pollutant.

Table 1: Example relevance ratings. (top) A question and
its correct answer. (bottom) A subset of the shortlist of facts,
teacher-generated relevance ratings (TR) for each fact, and
whether a given fact was included in the gold explanation
in the original WorldTree V2 explanations. Note: for space,
only a subset of the shortlist of facts and gold explanation are
shown.

tions for evaluation in multi-hop inference.

4 Dataset Description

To support our experimentation we created a re-

source that, for a given WorldTree V2 question,

provides a set of relevance ratings for the facts most

likely to be in an explanation. WorldTree V2 con-

tains 4.4k questions, and its supporting knowledge

base contains approximately 9k facts, meaning that

exhaustively evaluating the relevance of each fact

for each question would require approximately 40

million ratings, which is intractable even for this

comparatively small corpus. Instead, here, annota-

tors rate a shortlist of facts most likely to be rele-

vant to building possible explanations, producing

ratings for a total of 126k facts.

Initial Shortlist: To produce the shortlist, we

train two large language models, BERT (Devlin

et al., 2019) and RoBERTa (Liu et al., 2019), on

the task of retrieving relevant sentences from the

corpus. To encourage the models to find a broad

array of facts that might be relevant to building an

explanation, we model this retrieval as a distant

supervision classification problem where the gold

WorldTree explanations are used as positive exam-

ples, while 200 randomly sampled facts from the

corpus serve as negative training examples. For

each question, we exhaustively score all 9k facts

in the knowledge base using both models, take the

top 20 scoring facts from each model, and combine

them into a final shortlist. We also add any facts

from the gold explanation that were not ranked

in the top 20 by either model. Due to significant

overlap in the output of both models, the average

shortlist per question contains 28.9 facts.1

Rating protocol: Each question’s shortlist of

facts was independently rated by 2 domain-expert

annotators (science teachers), using the following

4-point rating scheme:

TR Label Description

3 Core Facts that directly address the core
topic the question is testing.

2 Important Key knowledge supporting the core
facts or grounding core knowledge in
examples the question uses.

1 Extra Detail Facts that (a) when included, add extra
detail to the explanation, but (b) when
missing, do not exclude important de-
tails from the explanation.

0 Irrelevant Facts not relevant to the question.

Table 2: 4-point Relevance Rating Scheme

Central to this rating scheme is a graded notion

of relevance, that includes optional facts (extra de-

tail) that enrich the explanation when included, but

do not cause critical gaps in the inference when not

included. Example ratings are shown in Table 1.

Raters: Three graduate research assistants in ed-

ucation served as domain experts, and worked for

several months to complete the relevance ratings.

Each has between 8 and 20 years of science teach-

ing experience at the elementary, middle-school, or

high-school level.

Interannotator Agreement: Even after substan-

tial training, the domain experts found this to be

a challenging task. Interannotator agreement (Co-

hen’s Kappa) was κ = 0.46, which is considered

moderate agreement (Landis and Koch, 1977). Raw

percent agreement between annotators was 61%,

with nearly all disagreements within ±1 of each

other (88% of disagreements). Annotators reported

that disagreements tended to be in determining

thresholds for the different categories – some an-

notators tended to err on the side of suggesting

more facts were important to generating an expla-

nation, while others preferred generating more min-

imalistic explanations. To account for individual

1Scoring only the top ≈30 facts per question was chosen
due to budgetary constraints and timing considerations.
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Teacher Rating
0 1 2 3

Irr. Ext. Imp. Core

W
T

2 Gold 315 2,846 9,063 8,579
Not Gold 24,795 36,962 36,399 7,245

Increase – 1299% 402% 84%

Table 3: Distribution of teacher ratings for shortlisted facts
across all explanations, broken down by each fact’s original
WorldTree V2 (WT2) rating. In total, this annotation proce-
dure discovered 80.6k additional relevant facts in the corpus
(approximately 18 facts per question) not originally included
in the single gold WorldTree explanation per question.

variation in detail preference, we average the final

ratings and round up the final scores.

Comparison with gold explanations: The dis-

tribution of relevance ratings is shown in Table 3,

broken down by whether a given fact was originally

included in the gold WorldTree explanation for a

given question. Of the 20.8k facts across all gold

WorldTree explanations, the teachers rated 98.5%

of these as also relevant (i.e., TR > 0), demonstrat-

ing strong agreement with the original explanation

authors. Teachers rated 17.6k (85%) of these facts

as core or important to the inference, while 2,846

(14%) were rated as extra detail facts that the expla-

nations could include or disclude without causing

significant gaps in the reasoning.

Most stark is the volume of additional facts rated

as relevant by the domain experts. In total, 80.6k

additional facts (approximately 18 facts per ques-

tion) were rated as relevant by teachers, but were

not used in a given question’s gold explanation,

with 43.6k of these facts (10 per question) rated

as core or important. As context, the original

WorldTree explanations contain an average of 6

facts – here, the expert ratings found that, on aver-

age, four times as many facts are relevant to build-

ing an explanation than are annotated in a given

question’s single explanation. This suggests that

while providing a single example explanation is

helpful for training a model, it is insufficient for

evaluating that model’s capacity for constructing

explanations, as it may be possible to build many

different compositional explanations from a given

collection of facts.

5 Experiments: Explanation-as-Ranking

To characterize differences in automatic evaluation

when using existing gold explanations versus ex-

pert relevance ratings, we first explore performance

in the explanation-as-ranking paradigm. Rather

than directly producing an explanation for a given

question, as a stepping-stone task, explanation-as-

ranking (Jansen and Ustalov, 2019; Das et al., 2019;

Li et al., 2020) is an explanatory retrieval analogue

that requires models to exhaustively rank all facts

in a knowledge base such that the most relevant

facts are selectively ranked to the top of the list.2

Models: We include the exhaustive BERT

and RoBERTa models trained on the original

WorldTree gold explanations, and used in generat-

ing the shortlist for the teacher ratings, as described

above. We also include a Tensorflow-Ranking-

BERT model (Han et al., 2020), which combines

BERT embeddings directly in a pointwise learning-

to-rank (Pasumarthi et al., 2019a) instead of classi-

fication framework, and achieves extremely strong

single-model performance for large benchmark

ranking tasks such as MS MARCO (Nguyen et al.,

2016). Unlike the baseline models, TFR-BERT

was trained on the expert-generated relevance rat-

ings. Due to the expense in evaluating this model,

here we rerank only the top 100 scoring facts from

the exhaustive BERT model.

Evaluation: Explanation-as-ranking perfor-

mance is reported using Mean Average Precision

(MAP). We evaluate in three settings: (1) Using the

original gold WorldTree explanations, (2) treating

each fact the experts rated as extra-detail or higher

as gold, or (3) treating each fact the experts rated

as important or higher as gold. Because the

expert ratings are graded (0-3) rather than binary

(gold/not gold), we also evaluate using Normalized

Discounted Cumulative Gain (NDCG).

Results: The results of the evaluation are shown

in Table 4. Using the original gold annotation, the

best scoring model, RoBERTa, achieves a MAP of

0.57. When evaluated using the expert relevance

ratings, this increases to 0.61 (+4%) when consid-

ering only important or higher facts as gold, while

increasing to 0.68 (+11%) when allowing extra de-

tail facts to be considered gold. Conversely, the

TFR-BERT shows comparatively low performance

using the original gold annotation, at 0.49 MAP.

2Note that the dataset generated in this paper was used for
the Third Shared Task on Multi-Hop Inference for Explanation
Regeneration, an explanation-as-ranking task (Thayaparan
et al., 2021) that ran concurrently with this submission. The
TFR-BERT model described here performs comparably with
the winning system (Pan et al., 2021), which reached 0.82
NDCG.
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Explanation-as-Ranking Evaluation Method (MAP)

Ranking Baseline Teacher Teacher Teacher
Model Setting WT2 (>= Extra (1)) ∆ (>=Important (2) ) ∆ NDCG

BERT Exhaustive 0.54 0.66 ↑0.11 0.58 ↑0.03 0.75
RoBERTa Exhaustive 0.57 0.68 ↑0.11 0.61 ↑0.04 0.78
TFR-BERT Rerank (K=100) 0.49 0.58 ↑0.09 0.63 ↑0.14 0.81

Table 4: Using more extensive expert relevance ratings causes substantially different MAP scores for the same models in
fully-automatic evaluation settings. (Left) Models, and their ranking setting. All models were exhaustively evaluated on the
entire corpus except TFR-BERT, which reranks the top-100 BERT facts per question. (Right) Evaluation scores when using
original WorldTree (WT2) ratings, or the top-K expert (science teacher) ratings produced in this work. Teacher evaluations are
provided in two settings: considering all facts rated “Extra” or above as gold, or all facts rated “Important” or above as gold. All
scores represent Mean Average Precision (MAP), except for the last column, which provides Normalized Discounted Cumulative
Gain (NDCG) for reference. Delta scores (∆) represent the difference between a given teacher evaluation and the WT2 baseline.
Automatic measures of relevance can differ by up to 14% when using either a single gold explanation or top-K expert relevance
ratings as gold.

When evaluated using the exhaustive teacher rat-

ings, this model achieves a MAP of 0.63 (+14%)

when considering only important or higher facts

as gold – becoming the best-performing model –

while reaching 0.58 (+9%) when considering extra

detail or better facts as gold. These results empiri-

cally demonstrate that using a single gold explana-

tion as an evaluation standard can dramatically un-

derestimate model performance compared to more

extensive relevance annotation. Further, this perfor-

mance decrease may not be uniform across models,

as demonstrated by RoBERTa’s performance being

underestimated by only 4% while TFR-BERT is

underestimated by 14% – suggesting that meaning-

ful comparisons between model performance may

not be possible with limited relevance annotation.

6 Experiments: Whole Explanations

Here we construct and evaluate a diverse set of gen-

erative, top-k ranking, and schema-based models

that return whole (short-length) explanations to a

user, in place of ranked lists. We evaluate these

in terms of both relevance and completeness, com-

paring both automatic and manual assessments of

these metrics.

6.1 Models

Each model is described briefly below, with details

and hyperparameters provided in the Appendix.

T5-UnifiedQA (Generative): UnifiedQA

(Khashabi et al., 2020) is a variant of T5 (Raffel

et al., 2020) that includes multi-task pretraining

for 4 different forms of question answering across

20 datasets, including extractive QA (i.e., locating

an answer span in a passage), abstractive QA

(i.e., generating an answer not supplied in a

passage), multiple-choice QA, and Boolean QA,

while achieving state-of-the-art performance on

10 datasets. Here we train T5-UQA-3B to also

generate compositional explanations by cueing

generation with the question and correct answer

candidate, and targeting generation to produce

strings of highly-rated facts delimited with an

[AND] separator token.

The model was trained to produce all facts rated

as relevant by expert raters for a given question.

This could result in long strings, so we trained

two independent subtasks: a CORE subtask that

includes all facts rated important or greater, and an

EXT subtask that includes only extra-detail (0 <

TR < 2) facts. The model was implemented using

Huggingface Transformers (Wolf et al., 2020). To

simplify evaluation, T5-generated facts are aligned

to their best-scoring WorldTree knowledge base

fact using ROUGE-1 scores (Lin and Hovy, 2003).

TFR-BERT (Ranking): A Tensorflow-Ranking-

BERT model (Han et al., 2020), trained on expert-

generated data, as described in Section 5. To move

from ranking to explanation generation, we simply

take the top-K ranked facts per question as the ex-

planation, using an empirically determined thresh-

old of K = 8 (where F1 performance plateaued on

the development set).

COSATA (Schema): A schema-based model im-

plemented using the Constraint Satisfaction over

Tables (COSATA) solver (Jansen, 2020). Schemas

take the form of constraint satisfaction patterns

over Worldtree facts represented as semi-structured

table rows, where valid solutions of a given schema

are only possible if all slots (facts) in a schema

can be successfully populated by satisfying their

constraints (see Figure 2). We use the 385 science-
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Automatic Analysis Average
Model Rel Comp F1

ex CompB F1
ex

B Expl. Length

Single Models

Generative and Ranking
T5-UQA-3BCORE 0.62 0.32 0.42 0.20 0.12 8
T5-UQA-3BCORE+EXT 0.55 0.39 0.45 0.23 0.14 13
TFR-BERT 0.74 0.59 0.66 0.50 0.37 8

Schema-based
Schema (1 Schema) 0.82 0.36 0.50 0.27 0.16 5
Schema (2 Schemas) 0.78 0.42 0.55 0.32 0.20 7
Schema (3 Schemas) 0.75 0.46 0.57 0.36 0.23 8

Ensembles

T5-UQA-3BC+E + TFR-BERT 0.62 0.70 0.66 0.54 0.48 21
Schema (3S) + TFR-BERT 0.75 0.71 0.73 0.59 0.49 16
Schema (3S) + T5-UQA-3BC+E 0.62 0.61 0.62 0.46 0.36 22
Schema (3S) + TFR-BERT + T5-UQA-3BC+E 0.65 0.77 0.71 0.61 0.57 30

Table 5: Performance of all single and ensemble models investigated, using automatic performance metrics. Relevance is
measured using expert (teacher) ratings, while completeness is measured using a combination of orginal WorldTree V2 and
teacher ratings (see text).

domain schema included with COSATA, each con-

taining an average of 12 facts (before filtering),

and run these over the WorldTree knowledge base,

generating a large set of 593k solutions that are

pre-cached for speed. Each solution is scored us-

ing exhaustive BERT rankings to select 1, 2, or 3

schemas to combine and output to the user. Before

output, low-scoring facts are filtered to improve

succinctness.

6.2 Automatic Evaluation Metrics

Here we evaluate models on relevance, complete-

ness, and an F1 analogue combining the two.

Relevance: The proportion of facts in an expla-

nation deemed not-irrelevant to the question (i.e.

that received a non-zero expert relevance rating).

Completeness: When evaluated automatically,

completeness represents the proportion of facts in

the gold WorldTree explanation that are also found

in the model-generated explanation. We also define

CompB , a binary measure, that is 1 if all facts in

the WorldTree gold explanation that were rated as

important or higher by the experts are included in

the model-generated explanation, and 0 otherwise.

Due to anticipated methodological issues – that

valid explanations other than the gold annotated

explanation are possible – we also evaluate CompB
manually in Section 6.4, using the criterion that

an experienced annotator believes the facts in the

explanations form a complete chain-of-reasoning

from question to answer without significant gaps.

F1: With relevance an analogue of precision, and

completeness an analogue of recall, to provide a

single score that reflects overall explanation perfor-

mance, we also provide an F1 analogue, defined as

the harmonic mean of relevance and completeness:

F1ex =
Relevance · Completeness

Relevance+ Completeness
(1)

6.3 Results using Automated Metrics

The performance of the ranking, generative, and

schema-based models using the expert-informed

automatic evaluation metrics is shown in Table 5,

broken down by single models and ensembles. In

terms of single models, at 0.82 the Schema-based

models perform highest in relevance – likely owing

to the constraints of each schema ensuring that col-

lections of facts are organized according to a partic-

ular theme – followed by TFR-BERT, with the best

performing T5-UQA model performing 20 points

lower, at 0.62. Conversely, TFR-BERT scores

highly in both graded and binary completeness,

reaching 0.50 CompB , while T5-UQA reaches less

than half this performance, and the schema models

reach a middle-ground of 0.36. The best-scoring

model, TFR-BERT, reaches 0.66 F1ex, or 0.37

F1ex
B

using binary completeness.

Given the variety of methodologies used, the

three model families have comparatively low over-

lap, and ensemble models that combine the output

of each model substantially improve completeness

and F1ex scores. The best-scoring model, which
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Automatic Analysis Manual Analysis Underestimate (∆)
Pattern Scoring Method Rel Comp F1

ex CompB F1
ex

B Rel CompB F1
ex

B Rel CompB F1
ex

B

T5-UQA-3BCORE 0.53 0.36 0.43 0.10 0.17 0.82 0.44 0.57 +0.29 +0.34 +0.40
TFR-BERT 0.72 0.59 0.65 0.36 0.48 0.93 0.72 0.81 +0.21 +0.36 +0.33
Schema (3 Schemas) 0.74 0.46 0.57 0.21 0.33 0.79 0.44 0.57 +0.05 +0.23 +0.24

Table 6: A manual analysis of relevance and completeness of three length-matched single models on 50 questions from the
development set. Here, each model produces an explanation with an average length of 8 facts. Underestimate refers to difference
scores between manual and automatic measures. Note: Automatic analysis numbers differ from those in Table 5 as they represent
performance on only the 50 questions included in this analysis.

Question: Which generates waves that are capable of
traveling through a vacuum?

Answer: a light bulb

Gold Explanation

TR Fact
3 * A light bulb generates visible light when turned on.
2 Visible light is a kind of light.
3 Light can travel through a vacuum.
2 * Light is a kind of wave.

Schema-Generated Explanation

Schema 1: Light Properties
3 Electromagnetic waves can travel through a vacuum.
3 (Light is a kind of electromagnetic radiation)
1 Light travels fastest through a vacuum.
2 * Light is a kind of wave.

Schema 2: Light Bulb Uses
1 A light bulb is used for seeing in the dark.
3 * A light bulb generates visible light when turned on.

Schema 3: Parts of things
1 A light bulb is a part of a lamp.

Table 7: An example schema-generated explanation rated
poorly by the automated analysis, but rated complete by the
manual analysis. TR signifies expert (teacher) ratings of each
fact. * signifies that a fact occurs in both generated and gold
explanation. (brackets) signify a fact was filtered out using
the schema filtering criterion to generate a more succinct ex-
planation, but is included for demonstrative purposes.

combines the output of the generative, ranking, and

schema models achieves an F1ex
B

of 0.57, reaching

20 points over the best-scoring single model.

6.4 Manual Evaluation of Completeness

The approximate automatic measure of complete-

ness used above is still problematic, because it re-

lies on a single gold explanation filtered to include

only the most important facts in the expert ratings.

To measure the difference between this automatic

measure of completeness and actual completeness,

we conducted a detailed manual evaluation of sin-

gle model performance for 50 questions in the de-

velopment set. To control for explanation length,

we chose single models whose average explanation

lengths were identical (8±0.5 facts long), while for

robustness we evaluated completeness using binary

judgements. In addition, any facts without expert

relevance ratings (i.e. facts that were not within

the initial top-K list rated by the expert annotators)

were provided binary relevance judgements.3

Raters: Annotating the completeness of a collec-

tion of facts as an explanation can be challenging,

particularly when locating gaps in an inference.

Due to timing constraints, in this analysis, com-

pleteness judgements were initially made by an

author (science-domain expert and compositional

reasoning expert), then compared against those gen-

erated by one of the domain-expert science teach-

ers from Section 4. Percent agreement between

the author and teacher was strong, at 89% for bi-

nary completeness judgements, and 88% for binary

relevance judgements.

Results: The results of this manual analysis are

shown in Table 6. This analysis shows that even

when supplemented with expert relevance ratings,

using a single gold explanation for automatically

evaluating completeness still provides a large un-

derestimate of task performance. In particular, man-

ual binary completeness ratings CompB exceeded

automatic evaluations by +23% to +36%, and in all

cases more than doubled the original estimate of

task performance. To illustrate this, Table 7 shows

an example of a gold explanation, and an expla-

nation generated by the Schema model. Both ex-

planations are complete, but the Schema-generated

explanation is rated poorly because it includes only

half of the highly-rated facts of the gold explana-

tion. Clearly as explanations become large, and

composed of increasingly atomic facts, many more

paths to generating complete explanations are pos-

sible, and alternate methods of accurately estimat-

ing completeness are required.

3A total of 327 facts, approximately 2 per model-generated
explanation, required these relevance judgements.
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7 Conclusion

Relevance performance is still undercounted:

While the expert-generated relevance ratings pro-

duced in this work provide more accurate estimates

of performance compared to single gold explana-

tions when used in fully-automatic evaluations,

these automatic estimates still undercount over-

all model performance. In our experiments we

show the expert ratings primarily provide a vehicle

for training better models, but that automatically

evaluating relevance performance still remains a

challenge, even with a large targeted increase in

relevance annotation. Further, annotators reported

that determining relevance of single facts in iso-

lation is challenging because it lacks the broader

compositional context of the rest of the candidate

explanation, suggesting ultimate limits to the utility

of exhaustive annotation.

Measuring completeness is a major challenge:

As explanations become larger, and facts become

more atomic, models are afforded more opportu-

nities to build explanations that differ from those

annotated as gold. Because of this, automatic com-

pleteness judgements substantially undercount true

(manual) completeness by at least a factor of two

across all models. Alignment approaches (Inoue

et al., 2020) and annotating multiple explanations

(Jhamtani and Clark, 2020) have been proposed for

short explanations, but are unlikely to scale well

as compositionality increases. Treatments similar

to those that use a formal semantics or theorem

proving to evaluate truth (e.g. Weber et al., 2019;

Clark et al., 2020) are attractive, but are unlikely

to offer generality at scale without substantial de-

velopment effort. Conversely, streamlined man-

ual evaluation frameworks are becoming increas-

ingly common for simpler generative tasks (e.g.

Khashabi et al., 2021), but it is unclear how accu-

rately non-technical crowdworkers would perform

on rating compositional completeness – and even

if possible, this would raise the time and cost asso-

ciated with evaluation dramatically.

Automatic model comparisons are inaccurate:

While T5-UQA and the Schema models show large

performance differences using automatic measures,

our manual analysis shows they actually have sim-

ilar performance characteristics as performance

underestimates disproportionately affect different

models. Comparing models to perform hypothesis

testing (i.e. Model A outperforms Model B) is cur-

rently challenging without substantial manual anal-

ysis, and a significant methodological limitation to

advancing the science of compositional reasoning

for building large explanations.

Open Data

Our corpus and analyses are available

at: http://cognitiveai.org/

explanationbank/ .
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WorldTree V2 includes a subset of the questions

from the Aristo Reasoning Challenge (ARC) cor-

pus (Clark et al., 2018). ARC questions are stan-

dardized science exam questions drawn from 12 US

states, where each question is a 4-choice multiple

choice question. In total, WorldTree V2 contains

2210 training, 496 development, and 1670 test set

questions.

A.2 Expert Relevance Ratings

A total of 236k expert judgements were collected

for 126k facts. While most facts were rated by

2 annotators, due to scheduling conflicts with the

COVID-19 pandemic, approximately 15% of ques-

tions are rated by a single teacher. 120 randomly

sampled questions (approximately 3.5k facts) were

used as training and calibration for all 3 annota-

tors, who iteratively rated facts then discussed and

resolved disagreements as a means of calibration

before annotating the remainder of questions.

Exclusions: The WorldTree V2 knowledge base

contains approximately 1.2k synonymy relations

(e.g. cooler means colder, or bike means bicycle)

that models tend to rate highly even though they

have minimal conceptual content. We filtered these

synonymy facts from the facts that the expert an-

notators rated before assembling the shortlists, to

ensure that expert time was spent on rating the rel-

evance of core scientific/world knowledge rather

than thesaurus-like facts.

A.3 Evaluation Metrics

A.3.1 Ranking Metrics

Mean Average Precision (MAP) and Normalized

Discounted Cumulative Gain (NDCG) follow their

standard definitions as used in Table 4.

A.3.2 Whole-explanation Metrics

Relevance: Relevance represents the proportion

of facts returned by a model that have a non-zero

expert-rated relevance score for a given question.

More specifically, relevance for a given explanation

of length L is defined as:

Relevance =

∑

L

i=1
Ri

L
(2)

Where TR(i, q) is an expert-annotated relevance

rating for fact i for question q, the relevance score

of a given fact in the explanation, Ri, is defined as:

Ri =

{

1, if TR(i, q) ≥ 1

0, otherwise
(3)

Note that facts without annotated relevance ratings

are assumed to have a rating of 0 (irrelevant).

Completeness: Completeness represents the pro-

portion of facts in the gold explanation for a

given question that are also present in the model-

generated explanation. Given a set of facts

representing a gold explanation of length N ,

G = {G1, G2, ..., GN}, and set of facts repre-

senting the model-generated explanation M =
{M1,M2, ...,ML}, the completeness of M is de-

fined as:

Completeness =
|G ∩M |

|M |
(4)

The binary measure of completeness, CompB , is

1 if Completeness is 1, and 0 otherwise.

A.4 Additional Model Details and

Hyperparameters

A.4.1 T5-UnifiedQA

UnifiedQA (Khashabi et al., 2020) is a variant of

T5 (Raffel et al., 2020) that includes multi-task pre-

training for 4 different forms of question answering

across 20 datasets, including extractive QA (i.e.,

locating an answer span in a passage), abstractive

QA (i.e., generating an answer not supplied in a

passage), multiple-choice QA, and Boolean QA,

while achieving state-of-the-art performance on 10

datasets. Here we train T5-UQA-3B to also gener-

ate compositional explanations by cueing genera-

tion with the question and correct answer candidate,

and targeting generation to produce long strings of

highly-rated facts delimited with an [AND] sepa-

rator token.

Cueing: For training and evaluation, data was

provided in the following format. Source (question)

data was provided in the following format:

explanation: <question

text> [ANSWER] <answer text>

[CUETOKEN]

Target (explanation) data was provided and gener-

ated in the following format:

<fact1> [AND] <fact2> [AND]

<fact3> [AND] ... [EOS]
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Where factN represents the sentence tokens for a

given fact in the explanation (e.g. “water is a kind

of liquid”). 5 permutations of fact orderings were

used to discourage reliance on fact ordering and

encourage robustness in model generations.

Pretraining: During a pretraining phase, T5-

UQA was cued with the question and answer (as

above), but provided with only a single fact from

the gold explanation to generate.

Model parameters: All experiments were per-

formed with the 3-billion parameter version of T5-

UQA. We made use of DeepSpeed ZeRo optimiza-

tions (Rajbhandari et al., 2020) to fit the 3B model

into the largest GPUs available to us (A100-40GB).

Models were trained to 30 epochs, where genera-

tion performance (ROUGE-1) plateaued. We use

the default hyperparameters for training provided in

the Huggingface Transformers library (Wolf et al.,

2020). To improve inference quality, at inference

time we use a batch size of 1, a beam search over 64

beams, and (given the diversity of generations, and

the preference for shorter generations even after

considerable training) combine all facts generated

in the top 10 beams (after splicing on the fact de-

limiter) into a candidate list of generated facts.

Model runtime: T5-UQA-3B took approxi-

mately 3 days to train on our dataset and another 2

days to evaluate, using 4x A100-40GB GPUs (i.e.

approximately 20 A100 GPU days, equivalent to

approximately 52 V100 GPU days).

Alignment to WorldTree knowledge base: To

enable automatic evaluation and direct comparison

with the other models, the output of T5-UQA was

aligned to existing WorldTree facts. The output of

the model was split on the [AND] delimiter, and

each fact was exhaustively scored against all 9k

facts in the WorldTree tablestore, where the fact

with the highest ROUGE-1 (Lin and Hovy, 2003)

alignment score was taken to be the appropriate

WorldTree fact. We empirically determined that

facts whose ROUGE-1 scores were lower than 0.70

tended to be poor alignments, most typically from

misgenerations, incorrect generations, or nonsensi-

cal generations, though occasionally from correct

generations that do not have a corresponding coun-

terpart in the WorldTree knowledge base.

A.4.2 TFR-BERT

A Tensorflow-Ranking-BERT model (Han et al.,

2020), which combines large language model em-

beddings with pointwise ranking (rather than clas-

sification) through the Tensorflow-Ranking frame-

work (Pasumarthi et al., 2019b).

Cueing: During training and evaluation, the

model was provided both the question and correct

answer text. During training, it was provided with

relevance rankings for the shortlist (approximately

top-30) expert-rated facts. During evaluation, it

was provided the top-100 ranked facts from the

exhaustive BERT baseline (ranked by their classifi-

cation scores), and re-ranked these facts.

Model parameters: Due to a large memory de-

pendency (TFR-BERT GPU RAM scales with

model parameter size and list size), we made use

of BERT-base-uncased, a 110M parameter model.

Default parameters were used for training and eval-

uation.

Model runtime: Training took approximately 2

days on a single A100-40GB GPU (multi-GPU

training is not currently supported). To evaluate on

comparatively large list sizes, evaluation was done

using CPUs rather than GPUs, and took approxi-

mately 3 days using 32 CPU cores.

Top-K tuning: TFR-BERT results are reported

both as a ranking model, where the output is a

ranking of the entire knowledge base, as well in a

whole-explanation paradigm where the output is

a discrete top-k-fact explanation. Here we choose

k = 8, where F1ex performance plateaued at 0.65

on the development set.

A.4.3 CoSaTa Schemas

A schema-based model implemented using the Con-

straint Satisfaction over Tables (COSATA) solver

(Jansen, 2020). Schemas take the form of con-

straint satisfaction patterns over Worldtree facts

represented as semi-structured table rows, where

valid solutions of a given schema are only pos-

sible if all slots (facts) in a schema can be suc-

cessfully populated by satisfying their constraints.

We use the 385 science-domain schema included

with COSATA, each containing an average of 12

facts, and run these over the WorldTree tablestore,

generating a large set of 593k solutions that are

pre-cached for speed.

Scoring: Scoring schema to create a shortlist of

relevant patterns is challenging. Pilot experiments

showed the simplest strategy had the best perfor-

mance: For a given question, we score a given
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schema solution by summing the BERT scores of

the individual facts used in that solution, while

clipping any fact scores below a threshold so as

not to heavily penalize a given solution for a small

number of irrelevant rows. We report scores for

systems that include a single schema solution, or

that combine 2 or 3 top-scoring schemas. Reported

performance is for a model that post-filters schemas

before giving them to the user. Specifically, any

facts in a schema with scores below a threshold

are filtered,4 generally significantly increasing rele-

vance while slightly decreasing completeness. Neg-

ative results: When scoring schema solutions, pilot

experiments showed a variety of different scoring

methodologies based on top-K scoring, or cued

scoring from other methods (e.g. T5, TFR-BERT)

performed worse than a simple thresholded sum.

We hypothesize TFR-BERT ranking scores per-

formed worse than BERT classification scores due

to a comparative robustness of combining multi-

ple classification scores into a single score, versus

combining multiple ranks for individual facts.

Model parameters: Scoring for CoSaTa

schemas uses the BERT-base-uncased (110M)

model. Other hyperparameters reported above.

Model runtime: Initial schema generation and

caching took approximately 2 days on 16 CPU

cores. Subsequent ranking, scoring, and filtering

took approximately 2 hours.

A.4.4 BERT and RoBERTa Baselines

The BERT and RoBERTa exhaustive baselines are

trained as classifiers, using a distant supervision

paradigm where (for a given question) all gold ex-

planation facts are taken as gold, and N randomly

sampled facts from the knowledge base are taken

as negative examples. Unlike Das et al. (Das et al.,

2019), who train an exhaustive model using all

non-gold facts in the knowledge base, here we sub-

sample only a subset of the corpus to minimize the

likelihood that the model would use a relevant fact

not annotated as in the gold explanation for a given

question as a negative example.

Model Parameters: We used a vanilla BERT-

base-uncased (110M), as well as RoBERTA-Large

(355M) pre-trained on the RACE reading compre-

hension benchmark (Lai et al., 2017).

4Here, both clipping and filtering thresholds were set at
zero.


