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Abstract—Accurate and precise terrain estimation is a difficult
problem for robot locomotion in real-world environments. Thus,
it is useful to have systems that do not depend on accurate
estimation to the point of fragility. In this paper, we explore
the limits of such an approach by investigating the problem
of traversing stair-like terrain without any external perception
or terrain models on a bipedal robot. For such blind bipedal
platforms, the problem appears difficult (even for humans) due
to the surprise elevation changes. Our main contribution is to
show that sim-to-real reinforcement learning (RL) can achieve
robust locomotion over stair-like terrain on the bipedal robot
Cassie using only proprioceptive feedback. Importantly, this
only requires modifying an existing flat-terrain training RL
framework to include stair-like terrain randomization, without
any changes in reward function. To our knowledge, this is the first
controller for a bipedal, human-scale robot capable of reliably
traversing a variety of real-world stairs and other stair-like
disturbances using only proprioception.

I. INTRODUCTION

In order to be useful in the real world, bipedal and humanoid

robots need to be able to climb and descend stairs and stair-

like terrain, such as raised platforms or sudden vertical drops,

which are common features of human-centric environments.

The ability to robustly navigate these environments is crucial

to getting robots to work with and alongside humans safely.

Achieving this level of robustness on a bipedal platform is no

easy task; while other platforms such as quadrupedal robots

benefit from inherent stability due to multiple points of contact

with the ground at a given time and the ability to stop and

stand like a table, bipedal robots such as Cassie rely entirely

on dynamic stability (essentially always existing in a state of

falling). On stair-like environments, this is especially apparent

due to the difficulty of recovery from missteps with only two

legs.

By contrast, robots with quadrupedal morphologies have

been able to use proprioception alone to negotiate stairs [1, 2],

and hexapedal robots have even been able to use open-loop

control to ascend and descend stairs [3]. While planar bipedal

robots have been shown to be able to reject disturbances like

large unexpected dropsteps [4], the vast majority of approaches

seeking to enable such robots to negotiate stairs in the real

world require either accurate vision systems [5, 6, 7] or

operation in a carefully controlled laboratory environment

[8, 9, 10], meaning the robot is localized through a known
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Fig. 1: In this work, we investigate the limits of blind bipedal locomo-
tion. We present a training pipeline which produces policies capable
of blindly ascending and descending stairs in the real world. These
policies learn proprioceptive reflexes to reject significant disturbances
in ground height, resulting in highly robust behavior to many real-
world environments.

start location or the stairs are designed in tandem with robot

morphology.

However, robots must be able to operate outside of con-

trolled laboratory conditions and handle the massive variety

of conditions in the real world. This goal is not compatible

with a complete reliance on exteroceptive sensors such as

RGB and depth cameras for accurate terrain estimation, which

introduce fragility to real world conditions [11]. For instance,

cameras may be unreliable if exposed to occlusion, fog, or

varying lighting conditions. Further, integrating a state-of-

the-art computer vision system into a high-speed controller

is technically difficult, especially on a computationally lim-

ited platform like a mobile robot. For practical purposes,

underlying controllers should be as robust as possible while

relying on as little information about the world as possible.

Ideally, a bipedal robot should be able to traverse as much of

the entire breadth of human environments as possible using

proprioception, while relying on exteroceptive sensing for

further efficiency and high-level planning (and being robust

to mistaken perception). This begs the question: how robust



can a blind bipedal robot be?

Reinforcement learning (RL) based approaches have begun

to show significant promise at robust real-world legged lo-

comotion [1, 12, 13]. Unlike optimization or heuristic-based

control methods which rely on prescribed ground contact

schedules or force-based event detection, RL can produce con-

trol policies which learn proprioceptive reflexes and strategies

for dealing with unexpectedly early or late contact and rough

terrain through exposure to a variety of disturbances during

training. However, the limits of this approach are unclear and

prior work has not been demonstrated on the scale and variety

of disturbances involved in stair-like terrain.

In this work, we show that robust proprioceptive bipedal

control for complex stair-like terrain can be learned via an

existing RL framework with surprisingly little modification. In

particular, the only adjustment needed is the terrain random-

ization used during training, where we define a distribution

over upward and downward going stairs including variation in

height, width, and slope of the contact planes. Learning on this

distribution allows for blind locomotion up and down unknown

stairs as well as handling more general stair-like terrain charac-

teristics, e.g. logs, curbs, dropoffs, etc. The learned controller

is demonstrated in simulation and a variety of real-world

settings. To our knowledge, this is the first demonstration of

its kind and suggests the continued exploration into the limits

of robust proprioceptive bipedal control.

II. REINFORCEMENT LEARNING FORMULATION

We follow a sim-to-real reinforcement learning (RL) ap-

proach for learning bipedal locomotion and assume basic

familiarity with RL [14]. In the general RL setting, at each

discrete time step t the robot control policy π receives the

current state st and returns an action at , which is applied

and results in a transition to the next state st+1. The state

transition dynamics are unknown to the robot and are governed

by a combination of environmental conditions, such as terrain

type, and the robot dynamics. In addition, during learning,

each state transition is associated with a real-valued reward rt .

The reward is governed by the application goals to encourage

the desired behavior during learning. The RL optimization

objective considered in this work is to learn a policy through

interaction with the environment that maximizes the expected

cumulative discounted reward over a finite-horizon T . That is,

find a policy π that maximizes: J(π) = E
[
∑T

t=0 γ tRt
]
, where

γ ∈ [0,1] is the discount factor and Rt is a random variable

representing the reward at time t when following π from a

state drawn from an initial state distribution.

For complex environments, RL typically requires large

amounts of training experience to identify a good policy.

Further, for biped locomotion, the training will involve many

falls and crashes, especially early in training. Thus, training

from scratch in the real-world is not practical and we instead

follow a sim-to-real RL paradigm. Training is done completely

in a simulation environment, with dynamics randomization

(see below), and the resulting policy is then used in the real-

world.

In the remainder of this section, we detail the specific sim-

to-real RL formulation used in this work, which follows recent

work [13] on learning different biped gaits over flat terrain.

Surprisingly, only minimal changes were required to enable

policy learning for the much more complex stair-like terrains

of this paper1 In particular, the only major modification

required was the randomized domain generation of stair-like

rather than mostly flat terrain as discussed later in Section III;

no novel stair-specific reward terms were needed.

A. State Space

The state st that is input to the control policy at each

time step includes three main components. First, the state

contains information about the robot’s instantaneous physical

state, including the pelvis orientation in quaternion format,

the angular velocity of the pelvis, the joint positions, and the

joint velocities. The second component of st is composed of

command inputs, which come from a human operator. These

commands are subject to randomization during training to give

the policies a wide breadth of experience attempting to traverse

stairs over a variety of speeds and approach angles. Details of

this randomization can be seen in Table I.

Command Probability of Change Range
Forward Speed 1/300 [-0.3m/s, 1.5m/s]
Sideways Speed 1/300 [-0.3m/s, 0.3m/s
Turn Rate 1/300 [-90deg/s, 90deg/s]

TABLE I: At each timestep, each command input to the policy is
subject to a 1/300 probability of being altered. When this occurs, a
new command is sampled from a uniform distribution parameterized
by the rightmost column. Given that maximum episode length is 300
discrete timesteps, this means each command will change at least
once on average per episode.

The third component includes two cyclic clock inputs, each

corresponding to a leg of the robot, p:

p =

{
sin(2π(φt +0.0))
sin(2π(φt +0.5))

(1)

Here φt is a phase variable which increments from 0 to 1, then

rolls back over to 0, keeping track of the current phase of the

gait. The constant offsets 0.0 and 0.5 are phase offsets used to

make sure that the left and right legs are always diametrically

opposite of each other in terms of phase during locomotion.

B. Action Space

The output action at of the control policy at each time step

(running at 40Hz) is an 11 dimensional vector with the first

10 entries corresponding to PD targets for the joints, each of

which are fed into a PD controller for each joint operating at

2KHz. Prior work has found it advantageous to learn actions

in the PD target space rather than directly learning the higher-

rate actuation commands [15].

1This was only discovered after a careful ablation analysis of our first
success on stair-like terrain, which originally included seemingly necessary
modifications to prior work, such as more complex reward functions and state
features.



The final dimension of at is a clock delta δt (refer to II-A

for information on clocks), which allows the policy to regulate

the stepping frequency of the gait. Intuitively, this allows the

controller to choose an appropriate stepping frequency for a

particular gait, command, and terrain. Specifically, the phase

variable φ in the state representation (Section II-A) is updated

at each timestep t by,

φt+1 = fmod(φt +δt ,1.0). (2)

This delta is bounded in a way such that the policy can choose

to regulate the gait cycle between 0.5x and 1.5x the nominal

stepping frequency (which is approximately one gait cycle

every 0.7 seconds). While this component is included in the

control policy action, it does not appear to have a large impact

on performance and the learned policy does not vary δt much

in response to disturbances. We suspect that future ablation

analysis will show that it is not important for performance on

the real robot.2

C. Reward Function

We use the method introduced in [13] to specify our reward

function. To briefly review this method, we desire a reward

framework which allows for penalizing the policy for large

magnitudes of some quantities of the environment at certain

times, while permitting those quantities to be large at other

times. We designate foot forces and foot velocities as two

such quantities; punishing foot forces incentivizes the policy

to lift the foot, while punishing foot velocities incentivizes

the policy to place the foot. We add additional cost terms

on top of these foundational reward terms, including a cost

incentivizing the policy to match a translational velocity and

orientation. We also employ costs which encourage smooth

actions, energy efficiency, and to reduce pelvis shakiness. For

a detailed explanation of the reward function used, see the

Appendix. As in [13], we do not rely on expert reference

trajectories to learn behaviors.

D. Dynamics Randomization

In order to overcome any modeling errors that may be

present in our simulated Cassie environment, we randomize

several important quantities of the dynamics at the beginning

of each episode during training as in previous work [16] [13].

These randomized parameters are listed in Table II.

E. Policy Representation and Learning

We represent the control policy as an LSTM recurrent neural

network [17], with two recurrent hidden layers of dimension

128 each. We opt to use a memory-enabled network because of

previous work demonstrating a higher degree of proficiency in

handling partially observable environments [18] [16] [19]. For

ablation experiments, involving non-memory-based control

policies, we use a standard feedforward neural network with

two layers of dimension 300, with tanh activation functions,

2We leave this as a hypothesis here, since we have not been able to test on
the real robot at the time of submission.

Parameter Unit Range
Joint damping Nms/rad [0.5,3.5]×default values
Joint mass kg [0.5,1.7]×default values
Ground Friction – [0.5,1.1]
Joint Encoder Offset rad [−0.05,0.05]
Execution Rate Hz [37,42]

TABLE II: To prevent overfitting to simulation dynamics and
facilitate a smooth sim-to-real transfer, we employ dynamics ran-
domization. The above ranges parameterize a uniform distribution for
each listed parameters. Damping, mass, friction, and encoder offset
are randomized at the beginning of each rollout, while execution rate
is randomized at each timestep to mimic the effect of variable system
delay on the real robot.

Fig. 2: In order to ensure robustness over a variety of possible stair-
like terrain, we randomize a number of parameters when generating
stairs at the start of each episode in simulation. These parameters
include the number of stairs, the height of each stair, the length of
each stair, the length of the landing atop the stairs, and the slope of
the ground immediately before and after the stairs.

such that the number of parameters is approximately equal to

that of the LSTM network.

For sim-to-real training of the policy, we use Proximal

Policy Optimization (PPO) [20], a model-free deep RL algo-

rithm. Specifically, we use a KL-threshold-termination variant,

wherein each time the policy is updated, the KL divergence

between the updated policy and the former policy is calculated

and the update is aborted if the divergence is too large. During

training, we make use of a mirror loss term [21] in order

to ensure that the control policy does not learn asymmetric

gaits. For recurrent policies, we sample batches of episodes

from a replay buffer as in [19], while for feedforward policies

we sample batches of timesteps. Each episode is limited to

be 300 timesteps, which corresponds to about 7.5 seconds of

simulation time.

III. TERRAIN RANDOMIZATION

Previous work on applying RL to Cassie has either trained

on flat ground [12] [19] or on randomized slight inclines [13].

Other work in applying deep RL has investigated employing

a curriculum of rough terrains which become increasingly

difficult as training progresses [1]. For the purpose of simplic-

ity, we find that training on interactions with a randomized

staircase without a curriculum is sufficient to learn robust

behavior.



To this end, we train on a plane whose incline is randomized

at the beginning of each rollout in the pitch and roll axes. This

incline is between -0.03 radians and 0.03 radians. As part of

the dynamics randomization, ground friction is randomized,

increasing the potential difficulty of the environment. The

starting position of the stairs are randomized at the beginning

of each rollout, such that the episode can start with the policy

already on top of the stairs, or with the stairs up to 10 meters

in front of the policy. This is done in order to ensure that

the policy is able to see lots of experience on flat or inclined

ground, as well as on stairs.

The dimensions of the stairs are randomized within typical

city code dimensions, with a per-step rise of between 10cm

and 21cm, and a run of 24cm to 30cm. The number of stairs

is also randomized, such that each set of stairs has between 1

and 8 individual steps. A small amount of noise (± 1cm) is

added to the rise and run of each step such that the stairs are

never entirely uniform, to prevent the policy from deducing

the precise dimensions of the stairs via proprioception and

subsequently overfitting to perfectly uniform stairs.

IV. RESULTS

We trained four groups of policies, each containing five

policies initialized with different random seeds. First, we

trained a group of simple LSTM policies with stair terrain

randomization; these are referred to in this section as Stair
LSTM. To investigate the importance of memory, we trained

a group of feedforward policies also with stair terrain random-

ization; we denote these Stair FF. We also trained a group of

policies without stair terrain randomization, and denote these

Flat Ground LSTM, to investigate the importance of the

terrain randomization introduced in this work. The final group

was trained with a simple additional binary input informing

the policy whether or not stairs were present within one meter

of the policy, referred to here as Proximity LSTM, in order to

investigate the benefit of leaking information about the world

to the policies.

Each policy was trained until 300 million timesteps were

sampled from the virtual environment, simulated with MuJoCo

[22]. Our selection of hyperparameters for the PPO algorithm

includes a replay buffer size of 50,000 timesteps, a batch size

of 64 trajectories for recurrent policies, and a batch size of

1024 timesteps for feedforward policies. Each replay buffer is

sampled for up to five epochs, with optimization terminating

early if the KL divergence reached the maximum allowed

threshold of 0.02. We clear our replay buffer at the start of

each iteration. We use the Adam [23] optimizer with a learning

rate of 0.0005 for both the actor and critic, which are learned

separately and do not share parameters.

A. Simulation

1) Probability of Successfully Ascending and Descending
Stairs: To understand the importance of memory and terrain

randomization, we evaluate three groups of policies on the

task of successfully climbing and descending a set of stairs

Fig. 3: The learned policies exhibit a high degree of blind robustness
to a variety of stair-like terrain, and can reliably ascend and descend
stairs of typical dimensions found in human environments.

in simulation. We compare the performance of Stair FF, Stair

LSTM, and Flat Ground LSTM policies on this task.

Specifically, we run 150 trials testing how often a policy is

successfully able to climb a set of stairs with five steps, each

with a tread of 17cm and a depth of 30cm (a typical real-

world and relatively mild stair geometry). This should give

us an estimate of how reliably each group of control policies

can climb a flight of stairs that it approaches blindly. Success

is defined as reaching the top of the flight of stairs without

falling. We also apply this procedure for descending stairs,

running 150 trials on stairs with the same dimensions, and

record the rate at which each group of policies can reach the

bottom without falling.

The results of these tests for three different training condi-

tions is shown in figure 4. We note that the Stair LSTM policy

has the highest overall probability of success. Nevertheless,

the probability of success is dependent, in large part, on

approach speed. The policies experience higher rates of failure

at low speeds, where they may lack the momentum to propel

themselves past poorly chosen foot placements. They also

experience higher rates of failure at high speeds, possibly due

to the more dynamic nature of high-speed gaits.

The Flat Ground LSTM policies, having never seen stair-

like terrain during training, are unable to compensate and ex-

periences a high rate of failure for both ascent and descent. The

Stair FF policies, despite encountering stairs during training,

are unable to learn an effective strategy for handling stairs,

implying that memory may be an important mechanism for

robustness to stair-like terrain.



Fig. 4: We evaluate the probability of successfully climbing and
descending stairs without falling as a function of commanded speed
between 0.25 m/s and 1.5 m/s over 150 trials. For Stair LSTM
policies, there seems to be an optimal approach speed for climbing
stairs and a separate optimal descent speed. Stair FF policies do not
attain high performance, implying that memory could be an important
component of the learned behavior. Flat Ground LSTM policies,
having never encountered stairs in training, are virtually unable to
climb stairs while finding some success in descending stairs without
falling over.

2) Energy Efficiency Comparison: To understand the con-

sequences of training with terrain randomization, we also

compare the cost of transport between Flat Ground LSTM

policies, Stair LSTM policies, and Proximity LSTM policies.

The cost of transport (CoT) is a common measure of efficiency

of legged robots, humans and animals. It is the energy used

per distance, normalized by weight to be unitless. It is defined

as

CoT =
Em

Mgd
, (3)

where Em is the energy used by the motors, M is the total

mass of the robot, g is the gravitational acceleration and d is

the distance traveled. The energy used by Cassie is calculated

using positive actuator work and resistive losses via

Em =
∫ T

0

(
∑

i
max(τi ·ωi, 0)+

ωmax
i

Pmax
i

τ2
i

)
dt. (4)

Here τi is the torque applied to motor i and ωi is its rotational

velocity. We use two parameters to define the resistive losses

in terms of torque, Pmax
i is the maximum input power and

ωmax
i is the maximum speed of motor i. The results of testing

steady state CoT at 1 m/s on flat ground can be seen in Table

III. These calculations of CoT do not include the overhead

power draw from computation and control electronics so they

should not be used to compare between robots, only between

control policies.

Policy Group Mean CoT Std. CoT
Proximity LSTM (stairs) 0.47 0.0086
Stair LSTM 0.46 0.0323
Proximity LSTM (flat) 0.39 0.0257
Flat Ground LSTM 0.38 0.0205

TABLE III: Locomotion efficiency as measured by cost of transport
(CoT) for walking at 1 m/s over flat ground in simulation between
three groups of policies over all five random seeds. We note that
policies not trained on stair terrain randomization tend to learn
more energy efficient gaits, though some energy efficiency can be
recovered by providing the stair-trained policies with a binary stair
presence/absence input.

We find that Flat Ground LSTM policies learn the most

energy efficient gaits for walking on flat ground. Stair LSTM

policies learn less efficient flat-ground gaits in order to be

robust to stairs; however, the stair proximity input to the

Proximity LSTM can help to recover some of this lost energy

efficiency by allowing the learned controller to switch between

a stair-ready gait and a more energy efficient, flat-ground gait.

B. Behavior Analysis

To understand the strategy adopted by the policy, we can

benefit from taking the perspective of experimental biology.We

specifically look at the behavior as the robot contacts the first

step up or down after walking along flat ground. First we will

analyze the swing leg motion to understand how the robot

places its foot on step ups and step downs. Once the swing

foot contacts a step up or down, the force applied by the foot

on the ground during stance phase can be modulated to better

prepare the robot for future steps. We analyze how the ground

reaction force and total impulse varies in the case of step ups

and step downs.

1) Swing Foot Motion: To understand the change the stair

terrain makes in the foot swing path we compare the result of

a Flat Ground LSTM policy and a Stair LSTM policy when

they encounter a drop step. The foot swing path during a drop

step lets us see where the policy would place the foot if it

had encountered a step up or a step down. Fig. 5a shows the

foot swing path of these two policies relative to the ground.

We can see that the Stair LSTM policy takes a much higher

step compared to the Flat Ground LSTM policy which gives

it additional clearance so it can step up onto a large step. A

second interesting observation is the steeper path of the swing



(a) Swing foot paths for the stair trained policy and the flat ground policy
overlaid on example step ups and step downs.

(b) The leg angle between the robot body and the swing foot as the foot
descends toward touchdown.

Fig. 5: A comparison of the swing foot motion of the Stair LSTM
policy and the Flat Ground LSTM policy while locomoting at 1.0
m/s. There is a significant change in the leg swing policy as a result
of training on randomized stairs. The most significant changes are
higher foot clearance, a steeper foot descent and a faster leg angle
retraction rate.

foot for the Stair LSTM policy. The swing foot only moves

forward 14 cm while it is in the height range where it may

encounter the front face of a step up. We hypothesize this

is a strategy that prevents the foot from stubbing the toe too

hard on the front face of a stair and causing the robot to trip

forward.

A second viewpoint to understand leg swing motion is to

look at the leg swing retraction. In humans and in bipedal

birds it is observed that the swing leg is swung backwards,

relative to the body, towards the ground near the end of stance

[24, 25]. This has the benefits of reducing the velocity of the

foot relative to the ground and thus reducing the impact [26]

as well as improving ground height disturbance rejection by

automatically varying the leg touchdown angle [27].

Our training procedure does not explicitly incentivize the

policy to exhibit these leg swing retraction behaviors, but we

do see them emerge as shown in Fig. 5b. This figure shows the

angle of the swing foot relative to the body between the peak

of leg swing and contact with the maximum step down. The

Stair LSTM policy has a faster leg retraction rate compared to

the Flat Ground LSTM policy. With only this data we cannot

say if this retraction profile is optimal or even if it is the cause

of the improved performance on stairs. However, the fact that

there is a significant change in the leg retraction profile as a

result of training on stairs is an interesting observation.

2) Ground Reaction Forces: Once the robot’s foot has

touched down its control authority is limited due to the

underactuated nature of bipedal locomotion. However, the

robot still has a significant amount of control through the

ground reaction force. To understand how the Stair LSTM

policy reacts to a 10 cm step up or down we plot the horizontal

and vertical ground reaction forces in the sagittal plane in Fig.

6. At the beginning of stance there is a large spike in force that

dwarfs the normal forces during stance. The force value during

this spike is largely defined by the tuning of the simulation

contact model so it is not of primary interest to understanding

the behavior of the policy. The first interesting thing we see

in subplot A is that the maximum nominal leg force is held

relatively constant which is a predicted result of a well adjusted

leg swing policy [28]. Second we see that the magnitude of

the second hump in the double humped ground reaction forces

is increased in the step down and decreased in the step up.

In the horizontal forces (subplot B) we see an oscillating

signal where the oscillations match the frequency of policy

evaluation. We hypothesize that this is the policy working to

control the attitude of the pelvis. Prioritizing body attitude

over forward velocity would be similar to the explicit priorities

during single stance in Virtual Model Control [29]. The lower

two subplots (C and D) show the cumulative impulse in the

vertical and forward directions throughout the stance phase.

We can see that the step up applies a larger vertical impulse

and the step down a smaller vertical impulse. This agrees with

the intuition that the robot should apply a smaller vertical

impulse to lower itself down a step compared to lifting itself

up a step. The horizontal impulse tells us if the robot speeds

up or slows down in the forward direction during the stance

phase. We see that the step down results in a significantly

larger forward impulse and the step up reduces the vertical

impulse very slightly. This aligns with the predicted behavior

from a well tuned swing leg retraction policy.

C. Hardware

The recurrent policies transferred to hardware without any

notable difficulties. We were able to take the robot for a

walk around a large university campus using a randomly

selected Stair LSTM policy and attempt to climb the staircases

we came across. We observed robust and error-correcting

behavior, as well as successful and repeatable stair ascents and

descents. In addition, we noted robustness to uneven terrain,

logs, and curbs, none of which were modeled in training. The

policy was similarly robust to inclines and deformable terrain,

demonstrated by a walk through a wet grass field and up a

small hill. These experiments can be seen in our submission



Fig. 6: The ground reaction forces and cumulative impulses of a Stair LSTM policy when it encounters varying ground height. The peak
vertical force (A) after the impact remain roughly equivalent while the force in the second half of stance is modulated. The horizontal force
(B) shows oscillations that match the frequency of the learned policy execution rate. This may be the policy controlling the body’s attitude.
The total vertical impulse (C) shows the expected result of a larger impulse stepping up and a smaller one stepping down. The horizontal
impulse (D) shows a result that is predicted by leg swing retraction. When stepping down the foot is shifted backwards relative to the body
which results in net acceleration forward which is shown here by a positive horizontal impulse.

video 3, and a still image of one such experiment can be seen

in Fig. 3.

In addition to testing one-off terrains all over the university

campus, we ran ten trials ascending stairs, and ten trials

descending stairs on an outdoor real-world staircase. We

recorded an 80% success rate in ascending stairs using the

selected Stair LSTM policy, and a 100% success rate in

descending stairs. A full video of this trial can be seen in

our attachment to this submission. We note that the learned

behavior is robust to missteps, and can quickly recover from

mistakes, though the policy is not completely infallible and

will fall if it makes a particularly egregious error. This ex-

periment can be seen in our supplemental video 4. The blind,

proprioceptive learned strategy appears to rely on a solid stair

face; evaluating policies on slatted stairs in simulation resulted

in a much higher failure rate, pointing to the limits of such an

approach. Even when explicitly included in training, slatted

stairs tended to trip up policies on ascent. By contrast, stairs

with randomly inclined steps (e.g., ones where each step had a

unique pitch and roll orientation) did not seem to be difficult

for ascent or descent. Likewise, approaching and ascending

stairs at an angle did not seem to be an issue for policies.

V. CONCLUSION

In this work, we have motivated the desirability of a highly

robust but blind walking controller, and demonstrated that such

a blind bipedal walking controller is capable of climbing a

wide variety of real-world stairs. In addition, we note that

3[Web link to submission video: youtu.be/MPhEmC6b6XU]
4[Web link to supplemental video: youtu.be/nuhHiKEtaZQ]

producing such a controller requires very little modification to

an existing training pipeline [13], and in particular no stair-

specific reward terms; simply adding stairs to the environment

with no further information is sufficient for learning stair-

capable control policies. An important requirement of this

learned ability appears to be a memory mechanism of some

kind, probably due to the partially observable nature of the

task of walking through unknown terrain while blind. In

future work, it will be interesting to investigate how vision

can be most effectively used to improve the efficiency and/or

performance of a blind bipedal robot. Further, this work has

demonstrated surprising capabilities for blind locomotion and

leaves open the question of where the limits lie.
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APPENDIX

Reward Function

To briefly review the approach taken in [13], we wish to

take advantage of the complementary nature of foot forces

and foot velocities during locomotion to construct a reward

function which will punish one and allow the other, and vice

versa, at key intervals during the gait. We use a probabilistic

framework to represent uncertainty around the timings of these

intervals. More specifically, we make use of a binary-valued

random indicator function Ii(φ) for each quantity qi which

https://youtu.be/MPhEmC6b6XU
https://youtu.be/nuhHiKEtaZQ


we wish to penalize at some time during the gait cycle. This

indicator function is likely to be 1 during the interval in which

it is active, and likely to be 0 during intervals in which it

is not active. The distribution of this binary-valued random

function is defined via the Von Mises distribution; for a more

comprehensive description, see [19]. In addition, rather than

use the actual random variable in the reward we instead opt

to use its expectation for more stable learning; see Fig. 7 for

a plot of this expectation.

Our full reward function is as follows;

R(s,φ) = 1−E[ρ(s,φ)] (5)

Which is to say, our reward is the difference of a bias and the

expectation of a probabilistic penalty term ρ(s,φ) as described

in [13]. See Table IV for detailed information on the exact

quantities and weightings used.

Weight Cost Component

0.140 1−E[Ileft force(φ)] · exp(−.01‖Fl‖)
0.140 1−E[Iright force(φ)] · exp(−.01‖Fr‖)
0.140 1−E[Ileft velocity(φ)] · exp(−‖vl‖)
0.140 1−E[Iright velocity(φ)] · exp(−‖vr‖)
0.140 1− exp(−εo)

0.140 1− exp(−|ẋdesired − ẋactual|)
0.078 1− exp(−|ẏdesired − ẏactual|)
0.028 1− exp(−5 · ‖at −at−1‖)
0.028 1− exp(−0.05 · ‖τ‖)
0.028 1− exp(−0.1(‖pelvisrot‖+‖pelvisacc‖))

TABLE IV: The cost terms which are summed together to compose
the expected penalty, E[ρ(s,φ)]. Terms involving an expectation of
a variable Ii(φ) vary over the course of the gait cycle, with the goal
of penalizing foot forces and foot velocities at key intervals to teach
the policy to lift and place the feet periodically in order to walk.
Other terms exist for the sake of commanding the policy to move
forward, backwards, or sideways, or turn the robot to face a desired
heading. Finally, the remaining terms exist to reduce behaviors which
are shaky and thus unlikely to work well on hardware.

We define Fl and Fr as the vectors of translational forces

applied to the left and right foot, and vl and vr similarly as the

vectors of left and right foot velocities. To maintain a steady

orientation, an orientation error εo is used, which is equal to,

εo = 3(1− q̂T q body)
2 +10

(
(1− q̂T q l)

2 +(1− q̂T q r)
2
)

(6)

where q l and q r are the quaternion orientations of the left and

right foot, q body is the quaternion orientation of the pelvis, and

q̂ is a desired orientation (for our purposes, fixed to be always

be facing straight ahead).

The quantities ẋdesired and ẏdesired correspond to a com-

manded translational speed, while ẋactual and ẏactual are the

actual translational speed of the robot. The term pelvisrot

represents the angular velocity while pelvisacc represents

translational acceleration; these terms are used in the cost

component to reduce the shakiness of locomotion behavior.

The terms at and at−1 refer to the current timestep’s action

and the previous timestep’s action, and their use in the cost

component is to encourage smooth behaviors. The term τ is

the vector of net torques applied to the joints, and its use in

the cost component is intended to encourage energy efficient

gaits.

Fig. 7: By alternatingly punishing foot forces during a ‘stance’ phase
to teach the policy to lift the foot, and punishing foot velocities during
a ‘swing’ phase to teach the policy to place the foot on the ground,
we can construct a foundation on which to learn simple walking
behavior. Following in the path of previous work, we define these
cyclic coefficents as random indicator functions of the phase, and
take their expectation.
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André Seyfarth. Swing leg control in human running.

Bioinspiration & biomimetics, 5(2):026006, 2010.
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