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Abstract—Accurate and precise terrain estimation is a difficult
problem for robot locomotion in real-world environments. Thus,
it is useful to have systems that do not depend on accurate
estimation to the point of fragility. In this paper, we explore
the limits of such an approach by investigating the problem
of traversing stair-like terrain without any external perception
or terrain models on a bipedal robot. For such blind bipedal
platforms, the problem appears difficult (even for humans) due
to the surprise elevation changes. Our main contribution is to
show that sim-to-real reinforcement learning (RL) can achieve
robust locomotion over stair-like terrain on the bipedal robot
Cassie using only proprioceptive feedback. Importantly, this
only requires modifying an existing flat-terrain training RL
framework to include stair-like terrain randomization, without
any changes in reward function. To our knowledge, this is the first
controller for a bipedal, human-scale robot capable of reliably
traversing a variety of real-world stairs and other stair-like
disturbances using only proprioception.

I. INTRODUCTION

In order to be useful in the real world, bipedal and humanoid
robots need to be able to climb and descend stairs and stair-
like terrain, such as raised platforms or sudden vertical drops,
which are common features of human-centric environments.
The ability to robustly navigate these environments is crucial
to getting robots to work with and alongside humans safely.
Achieving this level of robustness on a bipedal platform is no
easy task; while other platforms such as quadrupedal robots
benefit from inherent stability due to multiple points of contact
with the ground at a given time and the ability to stop and
stand like a table, bipedal robots such as Cassie rely entirely
on dynamic stability (essentially always existing in a state of
falling). On stair-like environments, this is especially apparent
due to the difficulty of recovery from missteps with only two
legs.

By contrast, robots with quadrupedal morphologies have
been able to use proprioception alone to negotiate stairs [1, 2],
and hexapedal robots have even been able to use open-loop
control to ascend and descend stairs [3]. While planar bipedal
robots have been shown to be able to reject disturbances like
large unexpected dropsteps [4], the vast majority of approaches
seeking to enable such robots to negotiate stairs in the real
world require either accurate vision systems [5, 6, 7] or
operation in a carefully controlled laboratory environment
[8, 9, 10], meaning the robot is localized through a known
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Fig. 1: In this work, we investigate the limits of blind bipedal locomo-
tion. We present a training pipeline which produces policies capable
of blindly ascending and descending stairs in the real world. These
policies learn proprioceptive reflexes to reject significant disturbances
in ground height, resulting in highly robust behavior to many real-
world environments.

start location or the stairs are designed in tandem with robot
morphology.

However, robots must be able to operate outside of con-
trolled laboratory conditions and handle the massive variety
of conditions in the real world. This goal is not compatible
with a complete reliance on exteroceptive sensors such as
RGB and depth cameras for accurate terrain estimation, which
introduce fragility to real world conditions [11]. For instance,
cameras may be unreliable if exposed to occlusion, fog, or
varying lighting conditions. Further, integrating a state-of-
the-art computer vision system into a high-speed controller
is technically difficult, especially on a computationally lim-
ited platform like a mobile robot. For practical purposes,
underlying controllers should be as robust as possible while
relying on as little information about the world as possible.
Ideally, a bipedal robot should be able to traverse as much of
the entire breadth of human environments as possible using
proprioception, while relying on exteroceptive sensing for
further efficiency and high-level planning (and being robust
to mistaken perception). This begs the question: how robust



can a blind bipedal robot be?

Reinforcement learning (RL) based approaches have begun
to show significant promise at robust real-world legged lo-
comotion [1, 12, 13]. Unlike optimization or heuristic-based
control methods which rely on prescribed ground contact
schedules or force-based event detection, RL can produce con-
trol policies which learn proprioceptive reflexes and strategies
for dealing with unexpectedly early or late contact and rough
terrain through exposure to a variety of disturbances during
training. However, the limits of this approach are unclear and
prior work has not been demonstrated on the scale and variety
of disturbances involved in stair-like terrain.

In this work, we show that robust proprioceptive bipedal
control for complex stair-like terrain can be learned via an
existing RL framework with surprisingly little modification. In
particular, the only adjustment needed is the terrain random-
ization used during training, where we define a distribution
over upward and downward going stairs including variation in
height, width, and slope of the contact planes. Learning on this
distribution allows for blind locomotion up and down unknown
stairs as well as handling more general stair-like terrain charac-
teristics, e.g. logs, curbs, dropoffs, etc. The learned controller
is demonstrated in simulation and a variety of real-world
settings. To our knowledge, this is the first demonstration of
its kind and suggests the continued exploration into the limits
of robust proprioceptive bipedal control.

II. REINFORCEMENT LEARNING FORMULATION

We follow a sim-to-real reinforcement learning (RL) ap-
proach for learning bipedal locomotion and assume basic
familiarity with RL [14]. In the general RL setting, at each
discrete time step ¢ the robot control policy 7 receives the
current state s, and returns an action a;, which is applied
and results in a transition to the next state s;,4+;. The state
transition dynamics are unknown to the robot and are governed
by a combination of environmental conditions, such as terrain
type, and the robot dynamics. In addition, during learning,
each state transition is associated with a real-valued reward r;.
The reward is governed by the application goals to encourage
the desired behavior during learning. The RL optimization
objective considered in this work is to learn a policy through
interaction with the environment that maximizes the expected
cumulative discounted reward over a finite-horizon 7. That is,
find a policy 7 that maximizes: J(7) = E[¥/_, V'R, ], where
y € ]0,1] is the discount factor and R; is a random variable
representing the reward at time ¢ when following 7 from a
state drawn from an initial state distribution.

For complex environments, RL typically requires large
amounts of training experience to identify a good policy.
Further, for biped locomotion, the training will involve many
falls and crashes, especially early in training. Thus, training
from scratch in the real-world is not practical and we instead
follow a sim-to-real RL paradigm. Training is done completely
in a simulation environment, with dynamics randomization
(see below), and the resulting policy is then used in the real-
world.

In the remainder of this section, we detail the specific sim-
to-real RL formulation used in this work, which follows recent
work [13] on learning different biped gaits over flat terrain.
Surprisingly, only minimal changes were required to enable
policy learning for the much more complex stair-like terrains
of this paper' In particular, the only major modification
required was the randomized domain generation of stair-like
rather than mostly flat terrain as discussed later in Section III;
no novel stair-specific reward terms were needed.

A. State Space

The state s; that is input to the control policy at each
time step includes three main components. First, the state
contains information about the robot’s instantaneous physical
state, including the pelvis orientation in quaternion format,
the angular velocity of the pelvis, the joint positions, and the
joint velocities. The second component of s, is composed of
command inputs, which come from a human operator. These
commands are subject to randomization during training to give
the policies a wide breadth of experience attempting to traverse
stairs over a variety of speeds and approach angles. Details of
this randomization can be seen in Table I.

Command Probability of Change  Range

Forward Speed 1/300 [-0.3m/s, 1.5m/s]
Sideways Speed  1/300 [-0.3m/s, 0.3m/s
Turn Rate 1/300 [-90deg/s, 90deg/s]

TABLE I: At each timestep, each command input to the policy is
subject to a 1/300 probability of being altered. When this occurs, a
new command is sampled from a uniform distribution parameterized
by the rightmost column. Given that maximum episode length is 300
discrete timesteps, this means each command will change at least
once on average per episode.

The third component includes two cyclic clock inputs, each
corresponding to a leg of the robot, p:

_ { sin (27(¢r +0.0)) o
sin (27(¢; +0.5))

Here ¢, is a phase variable which increments from 0O to 1, then
rolls back over to 0, keeping track of the current phase of the
gait. The constant offsets 0.0 and 0.5 are phase offsets used to
make sure that the left and right legs are always diametrically
opposite of each other in terms of phase during locomotion.

B. Action Space

The output action a, of the control policy at each time step
(running at 40Hz) is an 11 dimensional vector with the first
10 entries corresponding to PD targets for the joints, each of
which are fed into a PD controller for each joint operating at
2KHz. Prior work has found it advantageous to learn actions
in the PD target space rather than directly learning the higher-
rate actuation commands [15].

This was only discovered after a careful ablation analysis of our first
success on stair-like terrain, which originally included seemingly necessary
modifications to prior work, such as more complex reward functions and state
features.



The final dimension of a; is a clock delta & (refer to II-A
for information on clocks), which allows the policy to regulate
the stepping frequency of the gait. Intuitively, this allows the
controller to choose an appropriate stepping frequency for a
particular gait, command, and terrain. Specifically, the phase
variable ¢ in the state representation (Section II-A) is updated
at each timestep ¢ by,

¢r1 = fmod(¢y + &, 1.0). )

This delta is bounded in a way such that the policy can choose
to regulate the gait cycle between 0.5x and 1.5x the nominal
stepping frequency (which is approximately one gait cycle
every 0.7 seconds). While this component is included in the
control policy action, it does not appear to have a large impact
on performance and the learned policy does not vary §, much
in response to disturbances. We suspect that future ablation
analysis will show that it is not important for performance on
the real robot.”

C. Reward Function

We use the method introduced in [13] to specify our reward
function. To briefly review this method, we desire a reward
framework which allows for penalizing the policy for large
magnitudes of some quantities of the environment at certain
times, while permitting those quantities to be large at other
times. We designate foot forces and foot velocities as two
such quantities; punishing foot forces incentivizes the policy
to lift the foot, while punishing foot velocities incentivizes
the policy to place the foot. We add additional cost terms
on top of these foundational reward terms, including a cost
incentivizing the policy to match a translational velocity and
orientation. We also employ costs which encourage smooth
actions, energy efficiency, and to reduce pelvis shakiness. For
a detailed explanation of the reward function used, see the
Appendix. As in [13], we do not rely on expert reference
trajectories to learn behaviors.

D. Dynamics Randomization

In order to overcome any modeling errors that may be
present in our simulated Cassie environment, we randomize
several important quantities of the dynamics at the beginning
of each episode during training as in previous work [16] [13].
These randomized parameters are listed in Table II.

E. Policy Representation and Learning

We represent the control policy as an LSTM recurrent neural
network [17], with two recurrent hidden layers of dimension
128 each. We opt to use a memory-enabled network because of
previous work demonstrating a higher degree of proficiency in
handling partially observable environments [18] [16] [19]. For
ablation experiments, involving non-memory-based control
policies, we use a standard feedforward neural network with
two layers of dimension 300, with tanh activation functions,

2We leave this as a hypothesis here, since we have not been able to test on
the real robot at the time of submission.

Parameter Unit
Joint damping Nms/rad
Joint mass kg

Range
0.5,3.5] x default values
0.5,1.7] x default values

Ground Friction - 0.5,1.1
Joint Encoder Offset | rad —0.05,0.05]
Execution Rate Hz 37,42]

TABLE II: To prevent overfitting to simulation dynamics and
facilitate a smooth sim-to-real transfer, we employ dynamics ran-
domization. The above ranges parameterize a uniform distribution for
each listed parameters. Damping, mass, friction, and encoder offset
are randomized at the beginning of each rollout, while execution rate
is randomized at each timestep to mimic the effect of variable system
delay on the real robot.

Stair Run
[0.24,0.30] m

Stair Rise
[0.10,0.21] m

Stair Count

Ground Slope
[-1.71,1.71] deg

Landing Width
[0.50, 2.00] m

Fig. 2: In order to ensure robustness over a variety of possible stair-
like terrain, we randomize a number of parameters when generating
stairs at the start of each episode in simulation. These parameters
include the number of stairs, the height of each stair, the length of
each stair, the length of the landing atop the stairs, and the slope of
the ground immediately before and after the stairs.

such that the number of parameters is approximately equal to
that of the LSTM network.

For sim-to-real training of the policy, we use Proximal
Policy Optimization (PPO) [20], a model-free deep RL algo-
rithm. Specifically, we use a KL-threshold-termination variant,
wherein each time the policy is updated, the KL divergence
between the updated policy and the former policy is calculated
and the update is aborted if the divergence is too large. During
training, we make use of a mirror loss term [21] in order
to ensure that the control policy does not learn asymmetric
gaits. For recurrent policies, we sample batches of episodes
from a replay buffer as in [19], while for feedforward policies
we sample batches of timesteps. Each episode is limited to
be 300 timesteps, which corresponds to about 7.5 seconds of
simulation time.

III. TERRAIN RANDOMIZATION

Previous work on applying RL to Cassie has either trained
on flat ground [12] [19] or on randomized slight inclines [13].
Other work in applying deep RL has investigated employing
a curriculum of rough terrains which become increasingly
difficult as training progresses [1]. For the purpose of simplic-
ity, we find that training on interactions with a randomized
staircase without a curriculum is sufficient to learn robust
behavior.



To this end, we train on a plane whose incline is randomized
at the beginning of each rollout in the pitch and roll axes. This
incline is between -0.03 radians and 0.03 radians. As part of
the dynamics randomization, ground friction is randomized,
increasing the potential difficulty of the environment. The
starting position of the stairs are randomized at the beginning
of each rollout, such that the episode can start with the policy
already on top of the stairs, or with the stairs up to 10 meters
in front of the policy. This is done in order to ensure that
the policy is able to see lots of experience on flat or inclined
ground, as well as on stairs.

The dimensions of the stairs are randomized within typical
city code dimensions, with a per-step rise of between 10cm
and 21cm, and a run of 24cm to 30cm. The number of stairs
is also randomized, such that each set of stairs has between 1
and 8 individual steps. A small amount of noise (£ lcm) is
added to the rise and run of each step such that the stairs are
never entirely uniform, to prevent the policy from deducing
the precise dimensions of the stairs via proprioception and
subsequently overfitting to perfectly uniform stairs.

IV. RESULTS

We trained four groups of policies, each containing five
policies initialized with different random seeds. First, we
trained a group of simple LSTM policies with stair terrain
randomization; these are referred to in this section as Stair
LSTM. To investigate the importance of memory, we trained
a group of feedforward policies also with stair terrain random-
ization; we denote these Stair FF. We also trained a group of
policies without stair terrain randomization, and denote these
Flat Ground LSTM, to investigate the importance of the
terrain randomization introduced in this work. The final group
was trained with a simple additional binary input informing
the policy whether or not stairs were present within one meter
of the policy, referred to here as Proximity LSTM, in order to
investigate the benefit of leaking information about the world
to the policies.

Each policy was trained until 300 million timesteps were
sampled from the virtual environment, simulated with MuJoCo
[22]. Our selection of hyperparameters for the PPO algorithm
includes a replay buffer size of 50,000 timesteps, a batch size
of 64 trajectories for recurrent policies, and a batch size of
1024 timesteps for feedforward policies. Each replay buffer is
sampled for up to five epochs, with optimization terminating
early if the KL divergence reached the maximum allowed
threshold of 0.02. We clear our replay buffer at the start of
each iteration. We use the Adam [23] optimizer with a learning
rate of 0.0005 for both the actor and critic, which are learned
separately and do not share parameters.

A. Simulation

1) Probability of Successfully Ascending and Descending
Stairs: To understand the importance of memory and terrain
randomization, we evaluate three groups of policies on the
task of successfully climbing and descending a set of stairs

Fig. 3: The learned policies exhibit a high degree of blind robustness
to a variety of stair-like terrain, and can reliably ascend and descend
stairs of typical dimensions found in human environments.

in simulation. We compare the performance of Stair FF, Stair
LSTM, and Flat Ground LSTM policies on this task.

Specifically, we run 150 trials testing how often a policy is
successfully able to climb a set of stairs with five steps, each
with a tread of 17cm and a depth of 30cm (a typical real-
world and relatively mild stair geometry). This should give
us an estimate of how reliably each group of control policies
can climb a flight of stairs that it approaches blindly. Success
is defined as reaching the top of the flight of stairs without
falling. We also apply this procedure for descending stairs,
running 150 trials on stairs with the same dimensions, and
record the rate at which each group of policies can reach the
bottom without falling.

The results of these tests for three different training condi-
tions is shown in figure 4. We note that the Stair LSTM policy
has the highest overall probability of success. Nevertheless,
the probability of success is dependent, in large part, on
approach speed. The policies experience higher rates of failure
at low speeds, where they may lack the momentum to propel
themselves past poorly chosen foot placements. They also
experience higher rates of failure at high speeds, possibly due
to the more dynamic nature of high-speed gaits.

The Flat Ground LSTM policies, having never seen stair-
like terrain during training, are unable to compensate and ex-
periences a high rate of failure for both ascent and descent. The
Stair FF policies, despite encountering stairs during training,
are unable to learn an effective strategy for handling stairs,
implying that memory may be an important mechanism for
robustness to stair-like terrain.
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Fig. 4: We evaluate the probability of successfully climbing and
descending stairs without falling as a function of commanded speed
between 0.25 m/s and 1.5 m/s over 150 trials. For Stair LSTM
policies, there seems to be an optimal approach speed for climbing
stairs and a separate optimal descent speed. Stair FF policies do not
attain high performance, implying that memory could be an important
component of the learned behavior. Flat Ground LSTM policies,
having never encountered stairs in training, are virtually unable to
climb stairs while finding some success in descending stairs without
falling over.

2) Energy Efficiency Comparison: To understand the con-
sequences of training with terrain randomization, we also
compare the cost of transport between Flat Ground LSTM
policies, Stair LSTM policies, and Proximity LSTM policies.
The cost of transport (CoT) is a common measure of efficiency
of legged robots, humans and animals. It is the energy used
per distance, normalized by weight to be unitless. It is defined

as
E
CoT = —, 3)
Mgd
where Ey, is the energy used by the motors, M is the total
mass of the robot, g is the gravitational acceleration and d is
the distance traveled. The energy used by Cassie is calculated

using positive actuator work and resistive losses via

max

Ene [ 0)+ 2 _72)g 4
m= (Zi:max(ri-a)i, HWT") t. 4)

Here 7; is the torque applied to motor i and @ is its rotational
velocity. We use two parameters to define the resistive losses
in terms of torque, P"** is the maximum input power and
""" is the maximum speed of motor i. The results of testing
steady state CoT at 1 m/s on flat ground can be seen in Table
III. These calculations of CoT do not include the overhead
power draw from computation and control electronics so they
should not be used to compare between robots, only between

control policies.

Policy Group Mean CoT  Std. CoT
Proximity LSTM (stairs) ~ 0.47 0.0086
Stair LSTM 0.46 0.0323
Proximity LSTM (flat) 0.39 0.0257
Flat Ground LSTM 0.38 0.0205

TABLE III: Locomotion efficiency as measured by cost of transport
(CoT) for walking at 1 m/s over flat ground in simulation between
three groups of policies over all five random seeds. We note that
policies not trained on stair terrain randomization tend to learn
more energy efficient gaits, though some energy efficiency can be
recovered by providing the stair-trained policies with a binary stair
presence/absence input.

We find that Flat Ground LSTM policies learn the most
energy efficient gaits for walking on flat ground. Stair LSTM
policies learn less efficient flat-ground gaits in order to be
robust to stairs; however, the stair proximity input to the
Proximity LSTM can help to recover some of this lost energy
efficiency by allowing the learned controller to switch between
a stair-ready gait and a more energy efficient, flat-ground gait.

B. Behavior Analysis

To understand the strategy adopted by the policy, we can
benefit from taking the perspective of experimental biology.We
specifically look at the behavior as the robot contacts the first
step up or down after walking along flat ground. First we will
analyze the swing leg motion to understand how the robot
places its foot on step ups and step downs. Once the swing
foot contacts a step up or down, the force applied by the foot
on the ground during stance phase can be modulated to better
prepare the robot for future steps. We analyze how the ground
reaction force and total impulse varies in the case of step ups
and step downs.

1) Swing Foot Motion: To understand the change the stair
terrain makes in the foot swing path we compare the result of
a Flat Ground LSTM policy and a Stair LSTM policy when
they encounter a drop step. The foot swing path during a drop
step lets us see where the policy would place the foot if it
had encountered a step up or a step down. Fig. 5a shows the
foot swing path of these two policies relative to the ground.
We can see that the Stair LSTM policy takes a much higher
step compared to the Flat Ground LSTM policy which gives
it additional clearance so it can step up onto a large step. A
second interesting observation is the steeper path of the swing
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Fig. 5: A comparison of the swing foot motion of the Stair LSTM
policy and the Flat Ground LSTM policy while locomoting at 1.0
m/s. There is a significant change in the leg swing policy as a result
of training on randomized stairs. The most significant changes are
higher foot clearance, a steeper foot descent and a faster leg angle
retraction rate.

foot for the Stair LSTM policy. The swing foot only moves
forward 14 cm while it is in the height range where it may
encounter the front face of a step up. We hypothesize this
is a strategy that prevents the foot from stubbing the toe too
hard on the front face of a stair and causing the robot to trip
forward.

A second viewpoint to understand leg swing motion is to
look at the leg swing retraction. In humans and in bipedal
birds it is observed that the swing leg is swung backwards,
relative to the body, towards the ground near the end of stance
[24, 25]. This has the benefits of reducing the velocity of the
foot relative to the ground and thus reducing the impact [26]
as well as improving ground height disturbance rejection by
automatically varying the leg touchdown angle [27].

Our training procedure does not explicitly incentivize the
policy to exhibit these leg swing retraction behaviors, but we
do see them emerge as shown in Fig. 5b. This figure shows the
angle of the swing foot relative to the body between the peak
of leg swing and contact with the maximum step down. The

Stair LSTM policy has a faster leg retraction rate compared to
the Flat Ground LSTM policy. With only this data we cannot
say if this retraction profile is optimal or even if it is the cause
of the improved performance on stairs. However, the fact that
there is a significant change in the leg retraction profile as a
result of training on stairs is an interesting observation.

2) Ground Reaction Forces: Once the robot’s foot has
touched down its control authority is limited due to the
underactuated nature of bipedal locomotion. However, the
robot still has a significant amount of control through the
ground reaction force. To understand how the Stair LSTM
policy reacts to a 10 cm step up or down we plot the horizontal
and vertical ground reaction forces in the sagittal plane in Fig.
6. At the beginning of stance there is a large spike in force that
dwarfs the normal forces during stance. The force value during
this spike is largely defined by the tuning of the simulation
contact model so it is not of primary interest to understanding
the behavior of the policy. The first interesting thing we see
in subplot A is that the maximum nominal leg force is held
relatively constant which is a predicted result of a well adjusted
leg swing policy [28]. Second we see that the magnitude of
the second hump in the double humped ground reaction forces
is increased in the step down and decreased in the step up.
In the horizontal forces (subplot B) we see an oscillating
signal where the oscillations match the frequency of policy
evaluation. We hypothesize that this is the policy working to
control the attitude of the pelvis. Prioritizing body attitude
over forward velocity would be similar to the explicit priorities
during single stance in Virtual Model Control [29]. The lower
two subplots (C and D) show the cumulative impulse in the
vertical and forward directions throughout the stance phase.
We can see that the step up applies a larger vertical impulse
and the step down a smaller vertical impulse. This agrees with
the intuition that the robot should apply a smaller vertical
impulse to lower itself down a step compared to lifting itself
up a step. The horizontal impulse tells us if the robot speeds
up or slows down in the forward direction during the stance
phase. We see that the step down results in a significantly
larger forward impulse and the step up reduces the vertical
impulse very slightly. This aligns with the predicted behavior
from a well tuned swing leg retraction policy.

C. Hardware

The recurrent policies transferred to hardware without any
notable difficulties. We were able to take the robot for a
walk around a large university campus using a randomly
selected Stair LSTM policy and attempt to climb the staircases
we came across. We observed robust and error-correcting
behavior, as well as successful and repeatable stair ascents and
descents. In addition, we noted robustness to uneven terrain,
logs, and curbs, none of which were modeled in training. The
policy was similarly robust to inclines and deformable terrain,
demonstrated by a walk through a wet grass field and up a
small hill. These experiments can be seen in our submission
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video 3, and a still image of one such experiment can be seen
in Fig. 3.

In addition to testing one-off terrains all over the university
campus, we ran ten trials ascending stairs, and ten trials
descending stairs on an outdoor real-world staircase. We
recorded an 80% success rate in ascending stairs using the
selected Stair LSTM policy, and a 100% success rate in
descending stairs. A full video of this trial can be seen in
our attachment to this submission. We note that the learned
behavior is robust to missteps, and can quickly recover from
mistakes, though the policy is not completely infallible and
will fall if it makes a particularly egregious error. This ex-
periment can be seen in our supplemental video *. The blind,
proprioceptive learned strategy appears to rely on a solid stair
face; evaluating policies on slatted stairs in simulation resulted
in a much higher failure rate, pointing to the limits of such an
approach. Even when explicitly included in training, slatted
stairs tended to trip up policies on ascent. By contrast, stairs
with randomly inclined steps (e.g., ones where each step had a
unique pitch and roll orientation) did not seem to be difficult
for ascent or descent. Likewise, approaching and ascending
stairs at an angle did not seem to be an issue for policies.

V. CONCLUSION

In this work, we have motivated the desirability of a highly
robust but blind walking controller, and demonstrated that such
a blind bipedal walking controller is capable of climbing a
wide variety of real-world stairs. In addition, we note that

3[Web link to submission video: youtu.be/MPhEmC6b6XU]
4[Web link to supplemental video: youtu.be/nuhHiKEtaZQ]

producing such a controller requires very little modification to
an existing training pipeline [13], and in particular no stair-
specific reward terms; simply adding stairs to the environment
with no further information is sufficient for learning stair-
capable control policies. An important requirement of this
learned ability appears to be a memory mechanism of some
kind, probably due to the partially observable nature of the
task of walking through unknown terrain while blind. In
future work, it will be interesting to investigate how vision
can be most effectively used to improve the efficiency and/or
performance of a blind bipedal robot. Further, this work has
demonstrated surprising capabilities for blind locomotion and
leaves open the question of where the limits lie.
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APPENDIX
Reward Function

To briefly review the approach taken in [13], we wish to
take advantage of the complementary nature of foot forces
and foot velocities during locomotion to construct a reward
function which will punish one and allow the other, and vice
versa, at key intervals during the gait. We use a probabilistic
framework to represent uncertainty around the timings of these
intervals. More specifically, we make use of a binary-valued
random indicator function I;(¢) for each quantity g; which


https://youtu.be/MPhEmC6b6XU
https://youtu.be/nuhHiKEtaZQ

we wish to penalize at some time during the gait cycle. This
indicator function is likely to be 1 during the interval in which
it is active, and likely to be O during intervals in which it
is not active. The distribution of this binary-valued random
function is defined via the Von Mises distribution; for a more
comprehensive description, see [19]. In addition, rather than
use the actual random variable in the reward we instead opt
to use its expectation for more stable learning; see Fig. 7 for
a plot of this expectation.
Our full reward function is as follows;

R(s,0) =1-E[p(s,¢)] (5)

Which is to say, our reward is the difference of a bias and the
expectation of a probabilistic penalty term p (s, ¢) as described
in [13]. See Table IV for detailed information on the exact
quantities and weightings used.

Weight | Cost Component

0.140 1 *]E[Ilcﬂ forcc(¢)] 'exp(f'OIHFIH)
0.140 | 1 —E[lign force(¢)] - exp(—-01||F[|)
0.140 | 1 —E[lefi vetocity (9)] - exp(—|[vi])
0.140 | 1 —E[Ligh velocity (9)] - exp(—||v/[|)
0.140 1 —exp(—&)

0.140 | 1 —exp(—|tgesired — Factual|)

0.078 1— exp(flydesired 7yactua1|)

0.028 | 1—exp(=5-|la;—a,—1])

0.028 1 —exp(—0.05-||7||)

0.028 - exp(_o'l(‘lpelViSmlH + HPEIViSaccH))

TABLE IV: The cost terms which are summed together to compose
the expected penalty, E[p(s,¢)]. Terms involving an expectation of
a variable 7;(¢) vary over the course of the gait cycle, with the goal
of penalizing foot forces and foot velocities at key intervals to teach
the policy to lift and place the feet periodically in order to walk.
Other terms exist for the sake of commanding the policy to move
forward, backwards, or sideways, or turn the robot to face a desired
heading. Finally, the remaining terms exist to reduce behaviors which
are shaky and thus unlikely to work well on hardware.

We define F; and F, as the vectors of translational forces
applied to the left and right foot, and v; and v, similarly as the
vectors of left and right foot velocities. To maintain a steady
orientation, an orientation error €, is used, which is equal to,

€ =3(1— 7" qpoay)* + 10 (1- g +(1- @TQr)Z) (6)

where g; and g, are the quaternion orientations of the left and
right foot, gpoqy is the quaternion orientation of the pelvis, and
7 is a desired orientation (for our purposes, fixed to be always
be facing straight ahead).

The quantities Xdesired and Ydesired cOrrespond to a com-
manded translational speed, while X,ca and Yucwa are the
actual translational speed of the robot. The term pelvis,
represents the angular velocity while pelvis,, represents
translational acceleration; these terms are used in the cost
component to reduce the shakiness of locomotion behavior.
The terms a; and a;—; refer to the current timestep’s action
and the previous timestep’s action, and their use in the cost
component is to encourage smooth behaviors. The term 7 is

the vector of net torques applied to the joints, and its use in
the cost component is intended to encourage energy efficient
gaits.

E [lleﬂ force (d’ )]

1
m —Elhight force (¢)]
0
¢
1 ]E[]Ieﬂ velocity (¢ )]
— IE[Irighl velocily(¢)]
0
¢

Fig. 7: By alternatingly punishing foot forces during a ‘stance’ phase
to teach the policy to lift the foot, and punishing foot velocities during
a ‘swing’ phase to teach the policy to place the foot on the ground,
we can construct a foundation on which to learn simple walking
behavior. Following in the path of previous work, we define these
cyclic coefficents as random indicator functions of the phase, and
take their expectation.
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