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A search for charginos and neutralinos at the Large Hadron Collider using fully hadronic final states and
missing transverse momentum is reported. Pair-produced charginos or neutralinos are explored, each
decaying into a high-pT Standard Model weak boson. Fully hadronic final states are studied to exploit the
advantage of the large branching ratio, and the efficient rejection of backgrounds by identifying the high-pT

bosons using large-radius jets and jet substructure information. An integrated luminosity of 139 fb−1 of
proton-proton collision data collected by the ATLAS detector at a center-of-mass energy of 13 TeV is used.
No significant excess is found beyond the Standard Model expectation. Exclusion limits at the
95% confidence level are set on wino or higgsino production with various assumptions about the decay
branching ratios and the type of lightest supersymmetric particle. A wino (higgsino) mass up to 1060
(900) GeV is excluded when the lightest supersymmetry particle mass is below 400 (240) GeVand the mass
splitting is larger than 400 (450) GeV. The sensitivity to high-mass winos and higgsinos is significantly
extended relative to previous LHC searches using other final states.

DOI: 10.1103/PhysRevD.104.112010

I. INTRODUCTION

Supersymmetry (SUSY) [1–6] is a theoretical framework
that extends the Standard Model (SM) by introducing new
particles (“superpartners”) that have the same quantum
numbers as the SM particles except for their spins. In the
Minimal Supersymmetric Standard Model (MSSM) [7,8],
the bino (B̃),wino (W̃) and higgsino (H̃) are the superpartners
of the Uð1ÞY and SU(2) gauge fields and the Higgs field,
respectively. These are collectively referred to as “electro-
weakinos” and form the chargino ðχ̃�1 ; χ̃�2 Þ and neutralino
ðχ̃01; χ̃02; χ̃03; χ̃04Þ mass eigenstates through mixing, with the
subscripts indicating increasingmass. The lightest neutralino
(χ̃01) is often considered to be the lightest SUSY particle
(LSP), since it is then a viable candidate for weakly
interactingmassive particle darkmatter [9,10] whenR-parity
conservation is assumed [11]. Depending on the signal
model, the superpartner of the graviton (gravitino, G̃) and
the axion (axino, ã) are alternatively considered to be theLSP
and dark matter candidate in this search.
Electroweakinoswithmasses of the order of 0.1–1TeVare

motivated by various phenomenological arguments: (1) the

mass of the neutralino LSP dark matter candidate is con-
strained to be less than a few TeV by the observed relic
density [12,13]; (2) the higgsino mass is also motivated to be
of the same order as the Z boson mass by naturalness
arguments [14–17]; (3) the MSSM parameter space explain-
ing the discrepancy between the measured muon anomalous
magnetic moment [18] and its SM predictions [19] tends to
include electroweakinoswithmasses from200GeV to 1TeV
[20–22].
This search targets the pair production of electroweakinos

(χ̃heavy), where each of them decays into a lighter one (χ̃light)
and anon-shellW,Z orSMHiggs boson (h).Amass splitting
Δmðχ̃heavy; χ̃lightÞ greater than 400 GeV is considered in the
search. The χ̃heavy can be either wino- or higgsinolike, and
χ̃light can be a bino-, wino-, higgsinolike chargino/neutralino,
gravitino, or axino as discussed more in Sec. II. Cases where
both χ̃heavy and χ̃light are wino- or higgsinolike are not
considered as they lead to very small Δmðχ̃heavy; χ̃lightÞ.
The χ̃light is either the LSP or an electroweakino nearly
degenerate with it, leading to missing transverse momentum
(pmiss

T , with magnitude Emiss
T ) in the decay signature.1
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1In the regime of large mass splitting, the effect of chargino/
neutralino mixing is highly suppressed so that the gauge
eigenstates (e.g., bino) and the mass eigenstates (e.g., binolike
χ̃01) can be regarded as almost identical. Therefore, this paper does
not make the distinction and “electroweakinos” are defined to
represent both unless explicitly stated otherwise.
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The analysis focuses on the hadronic decay modes of the
W, Z, and h bosons, namely W → qq̄, Z → qq̄=bb̄ and
h → bb̄, where q (q̄) represents light-flavor (anti)quarks u,
d, s, c (ū; d̄; s̄; c̄).2 Two fully hadronic final states are
considered: the qqqq final state which involves two W=Z
bosons decaying into two light-flavor (anti)quarks, and the
bbqq final state where aW=Z boson decays into two light-
flavor (anti)quarks and a Z=h boson decays into bb̄, as
illustrated by the diagrams in Fig. 1. While the ATLAS and
CMS experiments have typically searched for pair pro-
duction of electroweakinos using leptonic decay modes
[23–36], the fully hadronic final states are used here to take
advantage of the larger W, Z, and h hadronic branching
ratios, and thereby provide sensitivity to the production of
heavier electroweakinos, despite their smaller production
cross sections. Final states with four b quarks are not
considered in this search;3 however, they are targeted by
dedicated searches [37,38] complementing the sensitivity.
The multijet background is highly suppressed by requir-

ing large Emiss
T , and the dominant backgrounds in the

analysis are Zð→ ννÞ þ jets, Wð→ lνÞ þ jets, and diboson
production. These can be effectively suppressed when
targeting large mass splittings between the produced
electroweakinos and the LSP by selecting high-pT kin-
ematics and explicitly reconstructing the two boosted SM
bosons. The “boson tagging” technique developed by the
ATLAS and CMS experiments [39–42] is employed, where
a single large-radius jet is used to capture the two
collimated energetic jets from each boosted SM boson
decay. Analysis of the jet substructure helps to identify the
hadronic decays of W, Z, and h. The introduction of this
technique significantly improves upon the previous fully
hadronic final-state analysis in ATLAS targeting the bbqq

final state [27], and establishes the sensitivity of the qqqq
final state for the first time at the Large Hadron Collider
(LHC), achieving unprecedented search sensitivity to
electroweakinos as heavy as 1 TeV.
This search uses proton-proton collision data collected

by the ATLAS detector in the years 2015–2018 at a center-
of-mass energy of

ffiffiffi
s

p ¼ 13 TeV, corresponding to an
integrated luminosity of 139 fb−1. The results are inter-
preted in terms of various models with different electro-
weakino types for (χ̃heavy, χ̃light) and their branching ratio
assumptions. While each model predicts different electro-
weakino branching ratios into W, Z, or h, the search
combines the dedicated event selections for each decay
to achieve only a small model dependency.

II. TARGET PHYSICS SCENARIOS AND THE
SIGNAL MODELS

Three physics scenarios are considered in the analysis:
(i) a baseline MSSM scenario where bino, wino and

higgsino are considered as χ̃heavy or χ̃light;
(ii) a scenario with a gravitino LSP and light higgsinos

inspired by the general gauge mediation (GGM)
[43–47] models and naturalness;

(iii) a scenario with an axino LSP assuming the SM
extension with a QCD axion and light higgsinos
driven by naturalness.

The signal models considered in the analysis, derived from
each physics scenario, are described in the following
subsections. Each model is labeled as ðA;BÞ, where A
and B represent the dominant component of χ̃heavy and
χ̃light, respectively. All the SUSY particles other than χ̃heavy
and χ̃light are assumed to be decoupled in mass [48,49]. The
production modes, final states, and the branching ratio
assumptions for χ̃heavy are summarized in Table I.
The winolike states form a doublet consisting of one

chargino and one neutralino, while the higgsinolike triplet
includes an additional neutralino. The mass degeneracy
within these wino/higgsino multiplets is dictated by the
extent of mixing with the other electroweakino states,
which is characterized by Δmðχ̃heavy; χ̃lightÞ. With
Δmðχ̃heavy; χ̃lightÞ > 400 GeV, the mass splittings within

FIG. 1. Diagrams for the targeted signatures and final states.

2In this paper the symbols q (b) represent both (bottom) quarks
and (bottom) antiquarks unless explicitly stated otherwise, since
they are not distinguished in the search. In addition, charm quarks
and antiquarks are treated as light-flavor quarks and antiquarks in
the analysis.

3The contributions from signals with two h bosons are
included in the signal models although not targeted. Likewise,
all the decays of W, Z, and h are taken into account for the
signals.
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the wino/higgsino multiplets are typically small
(<10 GeV), such that the decay products are almost never
reconstructed in this analysis. Therefore, these multiplets
are treated as approximately degenerate; the masses of the
winolike chargino and winolike neutralino are treated as
identical; and the masses of the higgsinolike chargino and
the heavier higgsinolike neutralino are set 1 GeV heavier
than the lighter higgsinolike neutralino.4 Particles originat-
ing from decays within the wino doublet or higgsino triplet
are ignored so that only the decays of the form χ̃heavy →
χ̃light þW=Z=h are taken into account in the signature.

A. Bino/wino/higgsino LSP models: ðW̃; B̃Þ, ðW̃; H̃Þ,
ðH̃; B̃Þ, ðH̃; W̃Þ

Two of B̃, W̃, and H̃ are assumed to be light enough to be
produced at the LHC while the others are decoupled. Four
mass hierarchies are experimentally explorable under this
regime: ðW̃; B̃Þ; ðW̃; H̃Þ; ðH̃; B̃Þ; ðH̃; W̃Þ. A bino is not
considered as χ̃heavy here because the production cross
section is negligible when sfermions and the non-SMHiggs
bosons are decoupled.

The ðW̃; H̃Þ, ðH̃; B̃Þ, and ðH̃; W̃Þ hierarchies are typically
predicted by the MSSM parameter space that explains the
muon g − 2 anomaly with loop contributions including a
wino and/or higgsino.5 The ðH̃; B̃Þ hierarchy is additionally
motivated when the mass of a binolike LSP is half of the Z
or h boson mass, where the LSP dark matter can annihilate
via the Z=h resonance (“Z=h-funnel” dark matter). This is a
special case of well-tempered neutralino dark matter where
a large higgsino-bino mass splitting is favored in order to
realize the observed relic density [50–58].
A signal model is defined for each of the four hierarchies

with a set of assumptions described below. The mass
spectra, corresponding mass eigenstates, and the decays
considered are illustrated for each model in Fig. 2. A W
boson is generated when a chargino decays into a neu-
tralino or vice versa; a Z or h boson is emitted when a
chargino decays into a chargino, or a neutralino decays into
a neutralino.
The production modes considered in each model are

shown in Table I. Processes involving chargino-chargino or
chargino-neutralino pair production are taken into account
in the wino production models: ðW̃; B̃Þ and ðW̃; H̃Þ; and

TABLE I. Summary of the production modes, final states, and signal regions (SRs) used for the hypothesis tests, and the branching
ratio assumptions for the signal models targeted in the search. The notation and definition of the SRs are described in Sec. VI B. The
ðW̃; B̃Þ and ðH̃; G̃Þ models are used to optimize the selection, and the rest are considered in the interpretation. The ðW̃; B̃Þ simplified
models (ðW̃; B̃Þ-SIM) discussed in Sec. IV B 2 are also interpreted in order to allow comparisons with the ATLAS electroweakino search
results [23–25,29,68].

Model Production Final states SRs simultaneously fitted Branching ratio

(W̃, B̃) χ̃�1 χ̃
∓
1 , χ̃

�
1 χ̃

0
2

WW;WZ;Wh 4Q-VV, 2B2Q-WZ, 2B2Q-Wh Bðχ̃�1 → Wχ̃01Þ ¼ 1

Bðχ̃02 → Zχ̃01Þ scanned
(H̃, B̃) χ̃�1 χ̃

∓
1 , χ̃

�
1 χ̃

0
2,

χ̃�1 χ̃
0
3, χ̃

0
2χ̃

0
3

WW;WZ;Wh,
ZZ; Zh; hh

4Q-VV, 2B2Q-VZ, 2B2Q-Vh Bðχ̃�1 → Wχ̃01Þ ¼ 1

Bðχ̃02 → Zχ̃01Þ scanned
Bðχ̃03 → Zχ̃01Þ ¼ 1 − Bðχ̃02 → Zχ̃01Þ

(W̃, H̃) χ̃�2 χ̃
∓
2 , χ̃

�
2 χ̃

0
3

WW;WZ;Wh, 4Q-VV, 2B2Q-VZ, 2B2Q-Vh Determined from ðM2; μ; tan βÞ
ZZ; Zh; hh

(H̃, W̃) χ̃�2 χ̃
∓
2 , χ̃

�
2 χ̃

0
2, WW;WZ;Wh, 4Q-VV, 2B2Q-VZ, 2B2Q-Vh Determined from ðM2; μ; tan βÞ

χ̃�2 χ̃
0
3, χ̃

0
2χ̃

0
3

ZZ; Zh; hh

(H̃, G̃) χ̃�1 χ̃
∓
1 , χ̃

�
1 χ̃

0
1, ZZ; Zh; hh 4Q-ZZ, 2B2Q-ZZ, 2B2Q-Zh Bðχ̃01 → ZG̃Þ scanned

χ̃�1 χ̃
0
2, χ̃

0
1χ̃

0
2

(H̃, ã) χ̃�1 χ̃
∓
1 , χ̃

�
1 χ̃

0
1, ZZ; Zh; hh 4Q-ZZ, 2B2Q-ZZ, 2B2Q-Zh Bðχ̃01 → ZãÞ scanned

χ̃�1 χ̃
0
2, χ̃

0
1χ̃

0
2

ðW̃; B̃Þ simplified models: ðW̃; B̃Þ-SIM
C1C1-WW χ̃�1 χ̃

∓
1

WW 4Q-WW Bðχ̃�1 → Wχ̃01Þ ¼ 1

C1N2-WZ χ̃�1 χ̃
0
2

WZ 4Q-WZ, 2B2Q-WZ Bðχ̃�1 → Wχ̃01Þ ¼ Bðχ̃02 → Zχ̃01Þ ¼ 1

C1N2-Wh χ̃�1 χ̃
0
2

Wh 2B2Q-Wh Bðχ̃�1 → Wχ̃01Þ ¼ Bðχ̃02 → hχ̃01Þ ¼ 1

4A mass splitting of 1 GeV is used to avoid potential technical
issues when setting it exactly to zero. This choice is arbitrary and
has no impact on the analysis.

5In this case, smuons and muon sneutralinos need to be only
mildly decoupled in mass.
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neutralino-neutralino production is additionally included
for the higgsino production models: ðH̃; B̃Þ and ðH̃; W̃Þ. It
should be noted that neutral wino pairs can only be
produced via a t-channel exchange of squarks, which is
prohibited when squarks are assumed to be decoupled.
The branching ratios of χ̃heavy are treated as follows. In

the ðW̃; B̃Þ and ðH̃; B̃Þ models, the produced chargino (χ̃�1 )
decays with 100% probability into the bino LSP (χ̃01) and a
W boson. Meanwhile, the produced neutralino(s) can decay
either into Z or into h.6 Given the complicated model
dependency, the branching ratio of the second lightest
neutralino (χ̃02) is treated as a free parameter,7 and Bðχ̃02 →
Zχ̃01Þð¼ 1 − Bðχ̃02 → hχ̃01ÞÞ is scanned over 0, 25, 50, 75,
and 100% in both models. For the ðH̃; B̃Þ model, the
branching ratios of the heavy neutral higgsino (χ̃03) are fixed
relative to those of the light neutral higgsino (χ̃02) via

(i) Bðχ̃02 → Zχ̃01Þ þ Bðχ̃03 → Zχ̃01Þ ¼ 1,
(ii) Bðχ̃02 → hχ̃01Þ þ Bðχ̃03 → hχ̃01Þ ¼ 1.

These provide a good approximation when Δmðχ̃heavy;
χ̃lightÞ is significantly larger than mh [59].

In ðW̃; H̃Þ and ðH̃; W̃Þ models, however, the branching
ratios of the produced chargino and neutralino(s) are
largely dictated by the three MSSM parameters: the wino
mass parameterM2, the higgsino mass parameter μ, and the
ratio of vacuum expectation values of the two Higgs fields,
tan β. For a given set of ðM2; μ; tan βÞ the branching ratios
are coherently derived using SOFTSUSY 4.1.7 [60,61], with
all the SUSY mass parameters except for M2 and μ being
set as decoupled. The signal models are tested using various
combinations of ðM2; μ; tan βÞ where M2 ∈ ½0; 1.2� TeV,
μ ∈ ½−1.2; 1.2� TeV, and tan β ¼ 2, 5, 10, 30 are
considered.

The vast majority of the previous electroweakino
searches at the LHC have targeted the simplified ðW̃; B̃Þ
model, where only a specific production channel and decay
mode are considered (detailed in Sec. IV B 2). For χ̃�1 χ̃

∓
1

production with decays into WW, mðχ̃�1 Þ < 400 GeV is
excluded for mðχ̃01Þ < 200 GeV [23,31]. For χ̃�1 χ̃

0
2 produc-

tion, mðχ̃�1 =χ̃02Þ < 640 GeV is excluded for mðχ̃01Þ <
300 GeV when the χ̃02 is assumed to decay into Z and
χ̃01 with 100% probability [24–26,32,33]. Alternatively,
mðχ̃�1 =χ̃02Þ < 740 GeV is excluded for mðχ̃01Þ < 250 GeV
[27–29,34–36] when the χ̃02 decays solely into h and χ̃01.

B. GGM/naturalness-driven
gravitino LSP model: ðH̃;G̃Þ

GGM, a class of SUSY-breaking scenarios characterized
by a messenger sector to which only SM gauge bosons can
couple, typically predicts a nearly massless gravitino (G̃) as
the LSP. Motivated also by the naturalness argument, the
production of a relatively light higgsino triplet (χ̃�1 , χ̃

0
2, χ̃

0
1)

decaying into a gravitino LSP has been explored at ATLAS
[30,37] and CMS [33], as illustrated in Fig. 3(a). All of the
four production modes are considered together: χ̃�1 χ̃

∓
1 ,

χ̃�1 χ̃
0
1, χ̃

�
1 χ̃

0
2, χ̃

0
1χ̃

0
2. A moderately small higgsino-gravitino

coupling is considered in this analysis, where the produced
heavy higgsinos (χ̃�1 =χ̃

0
2) always decay into a gravitino via

FIG. 2. The electroweakino mass spectra and corresponding mass eigenstates in each model in the bino/wino/higgsino LSP scenario.
The solid (dashed) arrows represent the decay modes emitting aW (Z or h) boson. AW boson is generated when a chargino decays into
a neutralino or vice versa; a Z or h boson is emitted when a chargino decays into a chargino or a neutralino decays into a neutralino.

FIG. 3. Diagrams of signals considered in the (a) ðH̃; G̃Þ model
and (b) ðH̃; ãÞ model. In the ðH̃; G̃Þ and ðH̃; ãÞ models, the
higgsino triplets (χ̃�1 ; χ̃

0
2; χ̃

0
1) are collectively represented by H̃.

6Produced heavier higgsinos are assumed to decay 100%
directly into bino rather than the lighter higgsino, which is
reasonable given the much smaller higgsino mass splitting
compared with the higgsino-bino mass splitting.

7Particularly for ðW̃; B̃Þ, the branching ratio strongly depends
on the higgsino mass as the decay has to rely on the small
higgsino component, even though it is assumed to be decoupled.
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the lightest neutral higgsino (χ̃01), while the χ̃01 still has a
short enough lifetime to be regarded as decaying promptly.
In this model, the χ̃01 decays into a gravitino and either a Z
or h boson, where the branching ratio Bðχ̃01 → ZG̃Þð¼1 −
Bðχ̃01 → hG̃ÞÞ is treated as a free parameter and scanned in
the limit setting. The previous searches have excluded
masses of χ̃01 lighter than 650–880 GeV depending on the
branching ratio [30,33,37].

C. Naturalness-driven axino LSP model: ðH̃; ãÞ
While the QCD Lagrangian generally allows for CP

violation, the absence of such observation suggests a highly
unnatural tuning of the parameters in the theory, referred to
as the “strong CP problem.” The Peccei-Quinn mechanism
aims to solve this problem by introducing an additional
chiral U(1) symmetry [62]. Through its spontaneous
symmetry breaking, the CP-violating term vanishes
dynamically, leaving a Nambu-Goldstone boson known
as the axion [63,64]. In the SUSY extension, the axino is
introduced as the superpartner of the axion. A model
including a light higgsino triplet (χ̃�1 , χ̃02, χ̃01) decaying
into an axino LSP [65] is proposed in the spirit of pursuing
naturalness as well as axion/axino dark matter [66,67]
under R-parity conservation.
A diagram of the model is shown in Fig. 3(b). Higgsinos

are produced by each of the four modes: χ̃�1 χ̃
∓
1 , χ̃

�
1 χ̃

0
1, χ̃

�
1 χ̃

0
2,

χ̃01χ̃
0
2. The produced heavier higgsinos (χ̃

�
1 =χ̃

0
2) are assumed

to always decay into the axino via the lightest natural
higgsino (χ̃01). This is typically valid when the wino and
bino are reasonably decoupled so as to maintain approxi-
mate mass degeneracy of the higgsino triplet, and when the
conventionally motivated range of the axion coupling
constant is assumed [65]. A prompt χ̃01 decay into an axino
and a Z or h boson is considered in the search. The value of
the branching ratio Bðχ̃01 → ZãÞð¼ 1 − Bðχ̃01 → hãÞÞ is
scanned over 25, 50, 75, and 100% in the interpretation.
The model is similar to ðH̃; G̃Þ, except that the LSP can be
massive.

III. ATLAS DETECTOR

The ATLAS experiment [69,70] is a multipurpose
detector with a forward-backward symmetric cylindrical
geometry and nearly 4π coverage in solid angle.8 It consists
of an inner tracking detector surrounded by a thin

superconducting solenoid providing a 2-T axial magnetic
field, electromagnetic and hadron calorimeters, and a muon
spectrometer.
The inner detector (ID) consists of pixel and microstrip

silicon detectors covering the pseudorapidity range jηj <
2.5 and a transition radiation tracker covering jηj < 2.0.
Outside the ID, a lead/liquid-argon (LAr) electromagnetic
calorimeter (ECAL) and a steel/scintillator-tile hadronic
calorimeter cover the jηj < 3.2 and jηj < 1.7 ranges,
respectively. In the forward regions, a copper/LAr end-
cap calorimeter extends the coverage of hadronic measure-
ments to 1.7 < jηj < 3.2, while copper/LAr and tungsten/
LAr forward calorimeters are employed for electromag-
netic and hadronic measurements in the 3.1 < jηj < 4.9
region. The muon spectrometer (MS) surrounds the calo-
rimeters and comprises three layers of trigger and high-
precision tracking chambers spanning jηj < 2.4 and
jηj < 2.7, respectively. A magnetic field is provided by a
system of three superconducting air-core toroidal magnets
with eight coils each. The field integral of the toroids ranges
between 2.0 and 6.0 Tm across most of the detector.
Events of interest are selected and collected by the

ATLAS trigger system [71], consisting of a hardware-based
first-level trigger (L1) and a software-based high-level
trigger (HLT). The L1 trigger is designed to accept events
from the 40-MHz bunch crossings at a rate below 100 kHz,
and the HLT reduces this to about 1 kHz, the rate at which
events are recorded to disk. An extensive software suite
[72] is used for real and simulated data reconstruction and
analysis, for operation and in the trigger and data acquis-
ition systems of the experiment.

IV. DATA AND MONTE CARLO SIMULATION

A. Data sample

The data events used in the analysis are from proton-
proton collisions at

ffiffiffi
s

p ¼ 13 TeV, recorded during stable
beam conditions at the LHC during 2015–2018. The
collected dataset corresponds to an integrated luminosity
of 139 fb−1 after applying the data quality criteria [73].
The primary dataset was collected by triggers targeting
large missing transverse momentum [74]. Events were
accepted when the Emiss

T calculated at trigger level was
greater than 70–110 GeV, with the threshold rising with
the increased instantaneous luminosity during the data-
taking period. The efficiency reaches approximately
100% for events reconstructed offline with Emiss

T >
200 GeV, which is generally required in the search.
Auxiliary data samples used to validate the background
estimation were selected using triggers requiring at least
one isolated electron, muon or photon [75,76]. The
thresholds were pT ¼ 24ð26Þ GeV for electrons, pT ¼
20ð26Þ GeV for muons, and pT ¼ 120ð140Þ GeV for
photons in data taken in 2015 (2016–2018).

8ATLASuses a right-handed coordinate systemwith its origin at
the nominal interaction point (IP) in the center of the detector and
the z axis along the beam pipe. The x axis points from the IP to the
center of the LHC ring, and the y axis points upwards. Cylindrical
coordinates ðr;ϕÞ are used in the transverse plane, ϕ being the
azimuthal angle around the z axis. The pseudorapidity is defined in
terms of the polar angle θ as η ¼ − ln tanðθ=2Þ. Angular distance
is measured in units of ΔR≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔηÞ2 þ ðΔϕÞ2
p

.
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B. Monte Carlo simulation

Monte Carlo (MC) simulations are used to estimate the
SM backgrounds and the signals contributing to the
analysis regions. All of the generated events were propa-
gated through the ATLAS detector simulation [77] based
on GEANT4 [78]. Multiple proton-proton collisions in the
same and neighboring bunch crossings (pileup) were
modeled by overlaying the hard-scatter events with mini-
mum-bias events simulated by PYTHIA 8.186 [79] with a set
of tuned parameters called the A3 tune [80] and
NNPDF2.3LO parton distribution function (PDF) set [81].
The simulated events are processed with the same trigger

and reconstruction algorithms as the data. The lepton and
photon trigger efficiencies in the simulation are corrected to
match those in data using scale factors that depend on the
pT and η of the leptons and photons, as derived from
control samples [75,76].

1. Standard Model backgrounds

Events with a leptonically decaying W or Z boson
associated with hadron jets were simulated using the
SHERPA 2.2.1 [82] generator. The matrix elements were
calculated for up to two partons at next-to-leading-order
(NLO) accuracy and up to four jets at leading-order (LO)
accuracy using the Comix [83] and OpenLoops [84,85]
generators. The NLO matrix elements for a given jet
multiplicity were matched to the parton shower using a
color-exact variant of the MC@NLO algorithm [86].
Different jetmultiplicitieswere thenmerged into an inclusive
sample using an improved Catani-Krauss-Kuhn-Webber
(CKKW) matching procedure [87,88] which is extended
to NLO accuracy using the MEPS@NLO prescription [89].
The NNPDF3.0NNLO PDF sets [90] were used. Prompt single-
photon production, denoted by γ þ jets, was simulated using
the same configuration except that the generator version is
SHERPA 2.2.2. The photons must be isolated according to a
smooth-cone isolation criterion [91].
Samples of tt̄ and single-top-quark (tþ X) events were

generated with POWHEGBOX v2 [92–95] at NLO with the
NNPDF3.0NLO PDF sets. The top-quark mass was set to
172.5 GeV. For the tt̄ generation, the hdamp parameter,
which controls the pT of the first additional emission
beyond the Born configuration in POWHEG, was set to 1.5
times the top-quark mass. This is to regulate the high-pT
emission recoiling against the tt̄ system so as to reproduce
the data [96]. The parton shower, fragmentation, and
underlying event were simulated using PYTHIA 8.230 with
the NNPDF2.3LO PDF set and the A14 tune [97]. The decays
of bottom and charm hadrons were performed by EvtGen 1.6.0

[98]. The diagram removal scheme [99] was employed to
account for the interference between tt̄ and single-top Wt
production.
Events containing tt̄ with additional heavy particles,

such as tt̄þW=Z=h, tt̄þWW, tt̄t and tt̄tt̄, are collectively
referred to as tt̄þ X in this paper. The tt̄þW=Z events

were modeled by MadGraph5_aMC@NLO2.3.3 [100] at NLO
accuracy with the NNPDF3.0NLO PDF [90] set, while tt̄þ h
events were modeled by POWHEGBOX 2.2. Both were
interfaced with PYTHIA 8.230 for parton showering. The tt̄þ
h events were generated using the same setup as for tt̄
described above, with the h mass set to 125 GeV. The
tt̄þWW, tt̄t, and tt̄tt̄ events were generated with
MadGraph5_aMC@NLO2.2.2, interfaced to PYTHIA 8.210 using
the A14 tune and the NNPDF2.3LO PDF set. The decays of
bottom and charm hadrons were simulated using EvtGen 1.2.0.
Diboson production, including WW, WZ and ZZ, is

collectively denoted here by VV. Events with semileptonic
VV decays (lνqq, llqq and ννqq) were simulated with
SHERPA 2.2.1 using matrix elements with up to one addi-
tional parton at NLO accuracy in QCD and up to three
additional parton emissions at LO accuracy. Events with
fully leptonic VV decays were simulated with SHERPA 2.2.1

(ZZ → νννν) or SHERPA 2.2.2 (llll, lllν, llνν and
lννν), where all the processes at orders of ðα4EW; α0s Þ and
ðα6EW; α0s Þ are taken into account, including the off-shell
contributions and those mediated by Higgs bosons. The
NNPDF3.0NNLO PDF set is used.
The production of Wh and Zh (collectively denoted by

Vh) was modeled by POWHEGBOX 2.2 interfaced with
PYTHIA 8.186. The h mass was set to 125 GeV. The
NNPDF3 PDF set and the AZNLO tune were used.
Triboson production, includingWWW,WWZ,WZZ and

ZZZ, are collectively denoted by VVV. The Vð→
ll=lν=ννÞVð→ qqÞVð→ qqÞ processes were generated
using MadGraph5_aMC@NLO2.6.6 at LO, interfaced to PYTHIA

8.243 formodeling of parton showers and hadronization using
the A14 tune. The NNPDF3.0LO PDF set was used.
Theoretical cross sections are used to normalize the

generated background samples. The tt̄ sample is normal-
ized to the cross section predicted at NNLO in QCD,
including the resummation of next-to-next-to-leading-
logarithmic (NNLL) soft-gluon terms calculated using
Top++ 2.0 [101–107]. The cross sections of single-
top-quark t- and s-channel production are calculated using
the HATHOR 2.1 program [108,109], while the Wt-channel
calculation followed the prescriptions fromRefs. [110,111].
The VV and tt̄þW=Z samples are normalized to the cross
sections calculated at NLO [112–114]. The cross sections
for theV þ jets and γ þ jets samples are calculated atNNLO
[115]. The remaining samples, including the production of
Vh, Vγ, VVV, tt̄þWW, tWZ, tt̄þ h, tt̄t, and tt̄tt̄, are
normalized to the cross sections calculated at LO by the
generators.

2. Signals

The ðW̃; B̃Þ, ðH̃; B̃Þ, ðW̃; H̃Þ, ðH̃; W̃Þ, and ðH̃; ãÞ models
discussed in Sec. II were simulated by combining the
“simplified model” signals in which a fixed production
mode and decay chain are considered. Six sets of simplified
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model samples, derived as variants of the ðW̃; B̃Þ and
ðH̃; B̃Þ models, were generated to cover the different final
states:

(i) wino pair production, with each decaying into a bino
LSP (referred to as ðW̃; B̃Þ simplified models, or
ðW̃; B̃Þ-SIM):

C1C1-WW∶ χ̃�1 χ̃
�
1 → WWχ̃01χ̃

0
1ðBðχ̃�1 → Wχ̃01Þ ¼ 100%Þ

C1N2-WZ∶ χ̃�1 χ̃
0
2 → WZχ̃01χ̃

0
1ðBðχ̃�1 → Wχ̃01Þ ¼ Bðχ̃02 → Zχ̃01Þ ¼ 100%Þ

C1N2-Wh∶ χ̃�1 χ̃
0
2 → Whχ̃01χ̃

0
1ðBðχ̃�1 → Wχ̃01Þ ¼ Bðχ̃02 → hχ̃01Þ ¼ 100%Þ;

(ii) neutral higgsino pair production, with each decaying into a bino LSP (denoted by ðH̃; B̃Þ-SIM):

N2N3-ZZ∶ χ̃02χ̃
0
3 → ZZχ̃01χ̃

0
1ðBðχ̃02 → Zχ̃01Þ ¼ Bðχ̃03 → Zχ̃01Þ ¼ 100%Þ

N2N3-Zh∶ χ̃02χ̃
0
3 → Zhχ̃01χ̃

0
1ðBðχ̃02 → Zχ̃01Þ ¼ Bðχ̃03 → hχ̃01Þ ¼ 100%Þ

N2N3-hh∶ χ̃02χ̃
0
3 → hhχ̃01χ̃

0
1ðBðχ̃02 → hχ̃01Þ ¼ Bðχ̃03 → hχ̃01Þ ¼ 100%Þ:

The symbols C1, N2 and N3 in the model names represent
χ̃�1 , χ̃

0
2 and χ̃03, respectively. These samples are used to

model event kinematics for each final state; the ðW̃; B̃Þ-SIM
samples are used for events containing WW;WZ or Wh,
while ðH̃; B̃Þ-SIM samples are employed to model events
with ZZ; Zh or hh. The events are reweighted to account for
the production cross section and the χ̃heavy branching ratios
considered in the model. The underlying assumption for the
method is that the event kinematics depend only on
mðχ̃lightÞ and mðχ̃heavyÞ, and not on the production mode,
type of LSP, or other MSSM variables such as tan β. This is
validated in the phase space considered in the analysis by
using generator-level samples.
The ðW̃; B̃Þ-SIM models are also considered in the limit

interpretation in order to allow comparisons with previous
ATLAS searches, as these models were the most commonly
studied [23,25–29,31–36]. For the ðH̃; G̃Þ model, a dedi-
cated sample was generated with all of the production
modes (χ̃�1 χ̃

∓
1 , χ̃

�
1 χ̃

0
1, χ̃

�
1 χ̃

0
2, χ̃

0
1χ̃

0
2) included.

The ðW̃; B̃Þ-SIM and ðH̃; G̃Þ signal samples were
simulated using LO matrix elements with up to two extra
partons in MadGraph5_aMC@NLO2.6.2. The events were sub-
sequently interfaced to PYTHIA 8.230 [116] together with
the A14 tune and NNPDF2.3LO PDF set for simulation of
parton showering and hadronization. For ðH̃; B̃Þ-SIM,
MadGraph5_aMC@NLO2.6.7 and PYTHIA 8.244 were used. The
mass of the SM Higgs boson was set to 125 GeV.
Decays of the produced electroweakinos are simulated

using PYTHIA. As the performance of the boosted W=Z
boson tagging is known to be sensitive to the boson
polarization [39], W=Z bosons from the electroweakino
decays were carefully modeled either by using MadSpin
2.7.3 [117,118] or by reweighting the helicity angle
distribution such that the overall cross section remains

unchanged. The W=Z bosons are typically longitudinally
polarized when Δmðχ̃heavy; χ̃lightÞ > 400 GeV is consid-
ered. The decays of bottom and charm hadrons were
performed by EvtGen 1.2.0.
The signal cross sections are computed at NLO in the

strong coupling constant, adding the resummation of soft-
gluon emission at next-to-leading-logarithm (NLL) accu-
racy [119–124]. The PDF4LHC15_MC PDF set is used
following the recommendations in Ref. [125]. Assuming
a mass of 800 GeV, the calculated cross section for
winolike (higgsinolike) chargino pair production is 2.21
(0.63) fb, and 4.76 (1.12) fb for winolike (higgsinolike)
chargino-neutralino production. For neutral higgsino pair
production, the corresponding cross section is 0.59 fb.

V. EVENT RECONSTRUCTION

The primary reconstructed objects used in the analysis are
large-radius (large-R) jets, denoted by J. These are recon-
structed from locally calibrated topo-clusters [126] using the
anti-kt algorithm [127] implemented in the FastJet package
[128]with a radius parameterR ¼ 1.0.A trimming algorithm
[129] is applied to mitigate the effects of pileup and soft
radiation. The constituents of each jet are reclusteredwith the
kt algorithm [130] into R ¼ 0.2 subjets, and the subjets are
removed ifpsubjet

T =pT;J < 0.05, wherepsubjet
T andpT;J are the

transverse momenta of the subjet and the large-R jet,
respectively. The jet mass, mJ, is calculated according to
the combined mass prescription [131] in order to achieve the
best mass resolution, which is given by the weighted sum of
masses computed using only the calorimeter information and
with tracking information included. The pT and mass scales
are calibrated using simulation, followed by an in situ
calibration [132] to correct for residual differences between
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data andMC simulation. Large-R jets used in the analysis are
selectedwithpT > 200 GeV, jηj < 2.0, andmJ > 40 GeV.
Track jets are used to identify large-R-jet subjets that

contain b hadrons. They are reconstructed from ID tracks
by using the anti-kt algorithm with a sliding radius
parameter R ¼ 30 GeV=pT truncated at 0.02 and 0.4
[133]. The MV2c10 b-tagging algorithm [134] is applied
to track jets satisfying pT > 20 GeV and jηj < 2.5. This
algorithm is a multivariate discriminator that utilizes track
impact parameters, the presence of secondary vertices, and
the trajectories of b- and c hadrons inside the jet. Aworking
point is chosen such that b jets from simulated tt̄ events are
identified with 85% efficiency, with rejection factors of 3
against c jets and 33 against jets originating from other
light-flavor quarks or gluons [134]. Efficiency correction
factors are applied to simulated samples to account for the
efficiency difference observed between MC and data events
in dedicated measurement regions in which tt̄ samples
[134,135] are used for b jets and mistagged c jets, and
Z þ jets samples are used for the light-flavor mistagged
jets [136].
The b-jet multiplicity of each large-R jet is defined by the

number of b-tagged track jets it contains. A b-tagged track
jet is contained in a large-R jet if the two jet axes have an
angular separation ΔR < 1.0.
Two types of boosted boson tagging are employed for

the preselected large-R jets to identify the SM boson
decays: WqqðZqqÞ-tagging targeting WðZÞ → qq, and
ZbbðhbbÞ-tagging targeting ZðhÞ → bb. The WqqðZqqÞ
tagging utilizes cuts on mJ, the energy correlation function
D2, and the track multiplicity ntrack [39,137]. In order to
maintain orthogonality with the ZbbðhbbÞ tagging, the b-jet
multiplicity of the large-R jet is required to be less than two.
The D2 variable is defined as a ratio of three-point to two-
point energy correlation functions [138,139] based on the
energies and pairwise angular separations of particles
within a jet, and ntrack is the number of tracks matched
to the large-R jet by ghost association [140] before
trimming is applied. While the upper bound on ntrack is
fixed, the cut values applied to mJ and D2 are shifted
smoothly as a function of pT to maximize the rejection
for typical single-parton initiated jets, maintaining a constant
efficiency for signal jets that contain the decay products of
WðZÞ → qq. The selections are optimized separately for
targetingW and Z, and Vqq tagging is defined by a selection
satisfying either the Wqq- or Zqq tagging. The cut values
applied tomJ andD2 are the same as for the “50% efficiency
W=Z tagger” in Ref. [137]; however, a loosened ntrack cut,
from ≤ 26 to ≤ 32ð34Þ for theWqqðZqqÞ tagging, is applied
to achieve the optimum sensitivity for the analysis and better
modeling in MC simulation. The efficiency correction
factors are rederived according to this refinement, using a
methodology similar to that described in Ref. [137]. A
correction factor of 0.85–1.05 is typically obtained. The
performance of the Wqq-and Zqq tagging is summarized in

Figs. 4(a) and 4(b). For a sample of preselected large-R jets
(pT > 200 GeV; jηj < 2.0; mJ > 40 GeV), the tagging effi-
ciency is about 50% for the signal jets originating from
electroweakino decays,9 while the background rejection is
typically about 10 (40) at pT ¼ 200ð1000Þ GeV per jet in
Zð→ ννÞ þ jets events.
The ZbbðhbbÞ tagging is applied to large-R jets containing

exactly two b jets (denoted by Jbb) by applying a jet mass
window cut that selects the peak consistent with ZðhÞ
bosons. The jet mass is corrected by adding the momentum
of the highest-pT muon identified inside the large-R
jet in order to improve the resolution of the mass peak.
The ZbbðhbbÞ tagging requires the jet mass to satisfy
70ð100Þ GeV < mJ < 100ð135Þ GeV. The performance
of the Zbb-and hbb tagging is summarized in Figs. 4(c)
and 4(d).
The analysis also uses reconstructed electrons and

muons (collectively referred to as “leptons”), as well as
photons and small-radius (small-R) jets, for kinematic
selection, validation of the background estimation, and
the Emiss

T computation. Electron candidates are recon-
structed from energy clusters that are consistent with
electromagnetic showers in the ECAL and are matched
to tracks in the ID, which are calibrated in situ using Z →
ee samples [141]. Muon candidates in the detector are
typically reconstructed by matching tracks in the MS to
tracks in the ID, and they are calibrated in situ using Z →
μμ and J=ψ → μμ samples [142]. Small-R jet candidates
are reconstructed from particle-flow objects [143] cali-
brated at the electromagnetic scale using the anti-kt
algorithm with a radius parameter of R ¼ 0.4. After
subtracting the expected energy contribution from pileup
using the jet area technique [144], the jet energy scale and
resolution are corrected to particle level using MC simu-
lation as well as by in situ calibration using Z þ jets,
γ þ jets, and multijet events [145]. Photon candidates are
reconstructed either as electromagnetic clusters with no
matching ID track or as eþe− pairs from photon con-
versions in the ID material [141].

Reconstructed electrons,muons, small-R jets, andphotons
are subject to two sets of identification criteria: the looser
“baseline” criteria and the tighter “signal” criteria. The
baseline objects are used for the Emiss

T computation, event
cleaning, and the overlap removal procedure that resolves
ambiguities between reconstructed objects as described
below. Baseline electrons are required to have pT >
4.5 GeV and jηj < 2.47, and meet the Loose criteria of
the likelihood-based identification [141]. Baselinemuons are
required to have pT > 3 GeV and jηj < 2.7, and to meet the
Medium identification criteria defined in Ref. [142]. To
suppress the contributions from pileup, baseline leptons

9The corresponding efficiency for the nominal working point
(50% efficiency W=Z tagger in Ref. [137]) is 35–40% for this
particular set of preselected jets.
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are also required to have a trajectory consistent with the
primary vertex, i.e., jz0 sin θj < 0.5 mm.10 Baseline small-R
jets must have pT > 30 GeV and jηj < 4.5. Baseline pho-
tons must meet the Tight identification criteria [141] in
addition to satisfying pT > 50 GeV and jηj < 2.4.
To prevent the reconstruction of a single particle as

multiple objects, an overlap removal procedure is applied to
the baseline leptons, photons, and jets in the following
order. Any electron sharing an ID track with a muon or

other electrons is removed, such that only the highest-pT
electron is kept when multiple electrons share the same ID
track. Photons around the remaining electrons andmuons are
removed if the photon-lepton separation is ΔR < 0.4. Next,
small-R jets are removed if they are ΔR < 0.2 from a
remaining electron or photon, or areΔR < 0.4 from a muon
and the jet has fewer than three associated tracks with
pT > 500 MeV. Leptons (photons) are removed if they
are separated from a remaining small-R jet by ΔR <
minð0.4; 0.04þ 10 GeV=pT;lÞ (ΔR < 0.4). Finally, large-
R jets are removed if they are separated by ΔR < 1.0 from
any remaining electrons.
Themissing transversemomentum,withmagnitudeEmiss

T ,
is calculated as the negative vectorial sum of the transverse
momenta of all baseline leptons, photons and small-R jets
calibrated to their respective energy scales, and an additional
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FIG. 4. (a), (c) The boson-tagging efficiency for jets arising from W=Z=h bosons decaying into qq̄ or bb̄ (signal jets) and (b), (d) the
rejection factor (inverse of the efficiency) for jets that have other origins (background jets) are shown. The signal jet efficiency of
Wqq=Zqq tagging (Zbb=hbb tagging) is evaluated using a sample of preselected large-R jets (pT > 200 GeV; jηj < 2.0; mJ > 40 GeV) in
the simulated ðW̃; B̃Þ-SIM signal events with Δmðχ̃heavy; χ̃lightÞ ≥ 400 GeV. The jets are matched with generator-level W=Z (Z=h)
bosons withinΔR < 1.0 which decay into qq̄ (bb̄). The background jet rejection factor is calculated using preselected large-R jets in the
sample of simulated Zð→ ννÞ þ jets events, dominated by initial-state radiation jets. As in the Zbb=hbb tagging, the rejection factor is
shown as a function of the number of b- or c quarks contained in the large-R jet within ΔR < 1.0. The efficiency correction factors are
applied to the signal efficiency and background rejection for theWqq=Zqq tagging. The uncertainty is represented by the hashed bands,
which includes the MC statistical uncertainty and the systematic uncertainties discussed in Sec. VIII A.

10The transverse impact parameter, d0, is defined as the
distance of closest approach in the transverse plane between a
track and the beam line. The longitudinal impact parameter, z0,
corresponds to the z-coordinate distance between the point along
the track at which the transverse impact parameter is defined and
the primary vertex.
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“soft term” constructed from tracks originating from the
primary vertex but not associated with any of the baseline
objects [146].
Signal objects are defined by applying additional stringent

criteria in event selections to ensure a high selection purity.
Signal leptons and photons are used only for validating the
background estimation. Signal electrons and muons must
satisfy pT > 10 GeV. Additionally, the Tight identification
criteria are imposed for signal electrons. To reduce the
contribution from nonprompt decays of heavy-flavor
hadrons, the significance of the transverse impact parameter
is required to satisfy jd0=σðd0Þj < 5ð3Þ for signal electrons
(muons). An isolation selection is imposed to further sup-
press the residual misidentified leptons originating from jets.
The Tight (HighPtCaloOnly) working point defined in
Ref. [141] is used for signal electrons with pT <
200 GeV (pT > 200 GeV), and the Tight working point
defined in Ref. [142] is applied for signal muons. Signal
small-R jets are selected within jηj < 2.8, and those with
pT < 120 GeV and jηj < 2.5 must satisfy the Tight quality
criteria of the track-based jet vertex tagger [144,147] in order
to suppress jets originating from pileup. Signal photons are
defined as baseline photons with pT > 200 GeV.

VI. EVENT SELECTION

A. Common preselection

As described below, a common preselection is used
when defining the signal regions (SRs), as well as the
control regions (CRs) and validation regions (VRs) used for
background estimation.
After the trigger requirement discussed in Sec. IVA,

both the data and MC events are required to have at least
one reconstructed vertex that is associated with two or more
tracks with pT > 500 MeV. The primary vertex of each
event is selected as the vertex with the largest

P
p2
T of

associated tracks [148].
A set of event cleaning criteria are applied to ensure the

quality of the measurements as well as to veto noncollision
backgrounds. Events with baseline muons consistent with
cosmic muons (jz0j > 1 mm or jd0j > 0.2 mm) are
removed. To avoid pathological Emiss

T reconstruction,
events are also vetoed if any baseline jet points to a module
of the tile hadronic calorimeter that was not operational
during the data taking, or if any baseline muon suffers from
a poor momentum measurement [σðq=pÞ=ðq=pÞ > 0.4
where q=p is the measured charge divided by momentum
and σðq=pÞ is its uncertainty]. Track jets can overlap due to
their pT-dependent variable radius. To avoid the ambiguous
cases of concentric jets, events with a track jet overlapping
with another track jet are removed. An overlap is defined
by ΔR < Rmin where ΔR is the angular distance between
a given pair of track jets and Rmin is the smaller of their radii.
Beam-induced background is one of the major noncolli-

sion backgrounds. Particles (typically muons) generated by

interactions between the beam and the upstream collimators
may directly hit the detector material. Particular care is
needed for this background since it can cause high-energy
jetlike signatures and, correspondingly, large spurious Emiss

T
[149]. Events with baseline jets failing the Loose cleaning
[150] are removed. Further cleaning is applied to events with
no baseline leptons and photons by requiring consistency
between the Emiss

T and the alternative Emiss
T;track, which is

computed using only the good-quality ID tracks associated
with the primary vertex. While those events satisfy Emiss

T >
200 GeV due to the trigger requirements,Emiss

T;track > 75 GeV
and ΔϕðEmiss

T ; Emiss
T;trackÞ < 2.0 are required in the cleaning

procedure.
Finally, events are required to contain at least two large-

R jets. Events with three or more large-R jets are not vetoed
in the analysis, in order to be as inclusive as possible in
model coverage; however, the applied event selection is
always based on the two highest-pT large-R jets.

B. Signal region selection

After the preselection, events with no baseline leptons
are selected. Two orthogonal signal region categories, 4Q
and 2B2Q, based on the absence or presence of a large-R jet
containing exactly two b-tagged track jets (Jbb) are defined
in order to target the qqqq and bbqq final states,
respectively.
Boson tagging is required for the two leading large-R

jets. The two leading large-R jets must pass the Vqq tagging
(nðVqqÞ ¼ 2) in SR-4Q. On the other hand, SR-2B2Q
requires Jbb to satisfy the Zbb- or hbb tagging, while the
other jet (denoted by Jqq) must satisfy the Vqq-tagging
criteria. Multiple SRs are defined in each SR category to
target the different final states of the signal processes.

TABLE II. Definition of each SR in the 4Q and 2B2Q
categories, where nðWqqÞ, nðZqqÞ, nðVqqÞ, nðZbbÞ, and nðhbbÞ
are, respectively, the number of large-R jets passing the Wqq-,
Zqq-, Vqq-, Zbb-, and hbb tagging of the two leading large-R jets.
SR-4Q-WZ requires nðWqqÞ; nðZqqÞ ≥ 1 instead of nðWqqÞ ¼
nðZqqÞ ¼ 1 because the selections in Wqq-and Zqq tagging are
not exclusive. The overlap and the segmentation between the SRs
are illustrated in Fig. 5.

nðWqqÞ nðZqqÞ nðVqqÞ nðZbbÞ nðhbbÞ
4Q-WW ¼ 2 � � � ¼ 2 ¼ 0 ¼ 0
4Q-WZ ≥ 1 ≥ 1 ¼ 2 ¼ 0 ¼ 0
4Q-ZZ � � � ¼ 2 ¼ 2 ¼ 0 ¼ 0
4Q-VV � � � � � � ¼ 2 ¼ 0 ¼ 0
2B2Q-WZ ¼ 1 � � � ¼ 1 ¼ 1 ¼ 0
2B2Q-ZZ � � � ¼ 1 ¼ 1 ¼ 1 ¼ 0
2B2Q-Wh ¼ 1 � � � ¼ 1 ¼ 0 ¼ 1
2B2Q-Zh � � � ¼ 1 ¼ 1 ¼ 0 ¼ 1
2B2Q-VZ � � � � � � ¼ 1 ¼ 1 ¼ 0
2B2Q-Vh � � � � � � ¼ 1 ¼ 0 ¼ 1
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The WW(ZZ) region in SR-4Q requires both leading large-
R jets to pass theWqqðZqqÞ tagging, while the WZ region is
defined to contain events with at least one Wqq-tagged jet
and at least one Zqq-tagged jet. The inclusive bin VV, the
logical union of WW, WZ, and ZZ, is designed to cover the
signals that can have various χ̃heavy branching ratios intoW
relative to Z. Similarly, the 2B2Q category accommodates
the WZ/ZZ/Wh/Zh region, which varies byWqq-versus Zqq

tagging or Zbb-versus hbb tagging. The VZ (Vh) region
serves as the inclusive SR defined by the logical union of
WZ and ZZ (Wh and Zh). The SR segmentation is
summarized in Table II and illustrated schematically in
Fig. 5. In total, four and six SRs are defined in SR-4Q and
SR-2B2Q, respectively. SR-4QXX, SR-2B2QXZ, and SR-
2B2QXh (where X = W/Z/V) are mutually orthogonal, and
are statistically combined according to the models consid-
ered in Table I.
Finally, a series of background rejection cuts are applied to

further suppress the main SM backgrounds at this stage:
Zð→ννÞ þ jets, Wð→lνÞ þ jets, and tt̄. To reject back-
grounds including top quarks, the b jets that do not originate
from boosted boson candidates are vetoed. This is done by
requiringnunmatched

b-jet ¼ 0, wherenunmatchedb-jet denotes the number
ofb-tagged track jets that are notmatchedwith any of the two
leading large-R jets by the ΔR < 1.0 criterion. For the 4Q
category, the total number of b-tagged track jets in the event
(nb-jet) must be less than two in order to further suppress the tt̄
background. The effectivemass variable,meff , defined as the
scalar sum of thepT of the two leading large-R jets andEmiss

T ,
is used to select events with hard kinematics together with
Emiss
T . Selections of Emiss

T > 300ð200Þ GeV and meff >
1300ð1000Þ GeV are applied in the 4Q (2B2Q) regions.
Event shape information is also useful in distinguishing the
signals from the backgrounds. Signal events have a relatively
spherical shape, where the jets tend to be isolated fromEmiss

T ,
indicating that the heavy electroweakinos are produced

nearly at rest. Background events, meanwhile, have a higher
chance of containing a jet aligned with aW=Z boson, due to
boosted top decays in tt̄ events or the emission of collinear
radiation in Z þ jets and W þ jets events. The minimum
azimuthal angle separation between Emiss

T and any signal
small-R jetsmust satisfyminΔϕðEmiss

T ; jÞ > 1.0 for both SR
categories. The use of small-R jets ismotivated by the need to
effectively identify low-pT jets and it also provides better
resolution in terms of jet alignment with Emiss

T . In 2B2Q, the
stransverse mass variable mT2 [151,152] is also used,
constructed by assigning each of the two leading large-R
jets to the visible particle legs. A selection of mT2 >
250 GeV is found to effectively suppress the SM back-
grounds, particularly tt̄ which exhibits a kinematic cutoff at
mT2 ∼ 200 GeV, driven by the top-quark mass constraint.11

The cut values of the kinematic selection are equivalent
within the SR-4Q and SR-2B2Q categories. The selection
criteria that define the SR-4Q,SR-2B2Q-Wh, andSR-2B2Q-
Vh regions are obtained by optimizing the sensitivity to the
ðW̃; B̃Þ model with ðmðχ̃�1 Þ; mðχ̃01ÞÞ ≈ ð800; 100Þ GeV,
while those for SR-2B2Q-WZ, SR-2B2Q-ZZ, and SR-
2B2Q-VZ are determined by optimizing the sensitivity to
the ðH̃; G̃Þ model with mχ̃0

1
≈ 800 GeV. The discovery

significance is used as the metric of sensitivity. The obtained
cuts are also found to be nearly optimal for the other signal
models.
The acceptance times efficiency for signal events

ranges from 1 to 4% depending on Δmðχ̃heavy; χ̃lightÞ and
the SR. For example, it is about 1–2% (1.5%) in SR-4Q-VV
(SR-2B2Q-Vh) for the C1N2-WZ (C1N2-Wh) signals
with Δmðχ̃heavy; χ̃lightÞ ¼ 600 GeV, and 3–4% (2–3%) with
Δmðχ̃heavy; χ̃lightÞ ¼ 1 TeV.

FIG. 5. The SR segmentation illustrated as a function of the masses of the two leading large-R jets. (a) In SR-4Q, both jets are required
to pass theWqq-or Zqq tagging. (b) In SR-2B2Q, one of the two jets is required to contain exactly two b-tagged track jets (Jbb) while the
other (Jqq) has at most one. The mass of Jbb is required to be consistent with a Z boson (70–100 GeV) or an h boson (100–135 GeV),
while Jqq is required to pass theWqq-or Zqq tagging. The mass window cuts of theWqq=Zqq tagging shown in the plot only indicate the
typical values, while variable cut values along pT are applied in the analysis. The inclusive SRs, defined by the logical union of a few
mutually overlapping SRs, are indicated by the gray dashed lines.

11The hypothetical missing-particle mass is set to 100 GeVand
this offset is subtracted from the calculated mT2, although the
dependency on the choice of missing-particle mass is very small.
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VII. BACKGROUND ESTIMATION

The main SM background process in the SRs is Zð→
ννÞ þ jets (∼50%), followed by Wð→ lνÞ þ jets (15–
20%), and VV (10–20%). The rest consists of VVV events
in SR-4Q (5–10%), or tt̄, single-top and tt̄þ X events in
SR-2B2Q (10–20%).
The estimation strategy varies between the “reducible”

and “irreducible” backgrounds. The irreducible back-
grounds in this search are due to SM events including at
least two hadronic W=Z=h decays and large Emiss

T from
high-pT neutrinos. These consist of VVV and tt̄þ X, and
are estimated using MC simulation. The contributions from
fully hadronic VV and tt̄ are negligible due to the stringent
Emiss
T requirement.
The reducible backgrounds are all that remain, including

the dominant Zð→ ννÞ þ jets production. These back-
grounds are characterized by the presence of at least one
large-R jet that originates from a process other than a
W=Z → qq decay and is referred to as a “fake boson jet.”
The fake boson jets are typically caused by two collimated
high-pT initial-state radiation (ISR) jets that are clustered
together as a single large-R jet. A partly data-driven method
is used to estimate the reducible backgrounds; a control
region (CR0L)12 is defined in the phase space adjacent to a
SR, where the MC sample is normalized to the CR data.

The SR expectation is obtained using the normalized MC
sample, assuming the modeling of the SR/CR0L yield ratio
(“0L transfer factor”) is reliable. This assumption is tested
in a number of VRs in data. A CR0L is defined for each 4Q
and 2B2Q category by reversing the Vqq-tagging require-
ment on one of the two leading large-R jets in the SR, and is
denoted by CR0L-4Q and CR0L-2B2Q, respectively. The
multijet and noncollision background contributions are
found to be negligible using the data-driven methods or
from the estimation in a similar phase space carried out in
Ref. [153].
The following subsections discuss the methodology

and results of the irreducible and reducible background
estimations.

A. Irreducible background estimation

The VVV (tt̄þ X) events account for at most 10% of the
total background in SR-4Q (SR-2B2Q), and are negligible
in SR-2B2Q (SR-4Q). Given their minor contribution,
these backgrounds are estimated directly from the MC
predictions and assigned conservative uncertainties.
The dominant tt̄þ X component in SR-2B2Q is

tt̄ð→bqqbqqÞ þ Zð→ννÞ. To validate the MC modeling,
a dedicated validation region VRTTX is defined in a three-
lepton region populated by tt̄ð→blνbqqÞ þ Zð→llÞ. The
selections are summarized in Table III. Exactly three
baseline and signal leptons are required, with the leading

TABLE III. Summary of selections for the SRs, CRs, and VRs. nðVqqÞ (nð!VqqÞ) represents the number of large-R
jets passing (failing) the Vqq tagging of the two highest-pT large-R jets. The same selection is applied to the SR (VR)
and CR in the same category except for the Vqq tagging and some kinematic selections that are explicitly indicated in
parentheses. The trigger selection and event cleaning described in Sec. V are also applied. VRTTX is a validation
region used to validate the tt̄þ X modeling as described in Sec. VII A. pTðWÞ is the vector sum of the pT of the
lepton and Emiss

T in the 1L regions. In the 1L (1Y) regions, Emiss
T is replaced by pTðWÞ (pTðγÞ) when calculating the

kinematic variables meff , minΔϕðEmiss
T ; jÞ and mT2. Details are given in Sec. VII B.

SR(CR0L) VR(CR)1L VR(CR)1Y

4Q 2B2Q 4Q 2B2Q 4Q 2B2Q VRTTX

nLarge-R jets ≥2 ≥2 ≥2 ¼1

nlepton ¼0 ¼1 ¼0 ¼3

pTðl1Þ [GeV] � � � >30 � � � >30
nphoton � � � � � � ¼1 � � �
nðVqqÞ ¼2ð¼1Þ ¼1ð¼0Þ ¼2ð¼1Þ ¼1ð¼0Þ ¼2ð¼1Þ ¼1ð¼0Þ � � �
nð!VqqÞ ¼0ð¼1Þ ¼0ð¼1Þ ¼0ð¼1Þ ¼0ð¼1Þ ¼0ð¼1Þ ¼0ð¼1Þ � � �
nðJbbÞ ¼0 ¼1 ¼0 ¼1 ¼0 ¼1 ¼1
mðJbbÞ [GeV] � � � ∈½70; 135ð150Þ� � � � ∈½70; 150� � � � ∈½70; 150� � � �
nunmatched
b-jet ¼0 ¼0 ¼0 � � �

nb-jet ≤1 � � � ¼0 � � � ≤1 � � � � � �
Emiss
T >300 >200 >50 <200 � � �

pTðWÞ � � � >200 � � � � � �
pTðγÞ � � � � � � >200 � � �
meff >1300 >1000ð>900Þ >1000 >900 >1000 >900 � � �
minΔϕðEmiss

T ; jÞ >1.0 >1.0 >1.0 � � �
mT2 � � � >250 � � � >250 � � � >250 � � �

12“0L” stands for regions with no baseline leptons.
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lepton of pT > 30 GeV firing the single-lepton trigger. At
least one large-R jet is required in the event, and it must
contain exactly two b-tagged track jets. No further kin-
ematic cuts are applied, in order to maintain a sufficient
data sample size in the region. The tt̄þ X purity in this
region is about 70%. Sixty-eight data events are observed in
VRTTX, while 46.5 events are predicted by MC simulation
(31.5 from tt̄þ X, 12.1 from VV, and 2.9 from the others).
A 70% uncertainty is therefore assigned to the tt̄þ X
normalization to fully cover the observed discrepancy; this
has only a small impact on the total background estimation,
given the minor contribution in the SRs.
The VVV contribution to SR-4Q is mainly from

VVð→qqqqÞ þ Zð→ννÞ processes. The VVV process has
only recently been observed at the LHC [154,155]. As the
data sample size in that phase-space region is insufficient and
loosening the selection leads to poor VVV purity, no control
or validation regions were designed and this background is
estimated directly from the MC prediction. A 50% uncer-
tainty is assigned for the normalization based on the
precision of the WWZ production cross-section measure-
ment performed by the CMS experiment [155].

B. Reducible background estimation

The CR0L-4Q is defined by the same selection as SR-4Q-
VVexcept that one of the two leading large-R jets must fail
the Vqq-tagging, and the CR0L-2B2Q is constructed as the
logical union of SR-2B2Q-VZ and SR-2B2Q-Vh with the
Jqq failing the Vqq tagging. For the reducible backgrounds,
the extrapolation from a CR0L to the SR is mainly charac-
terized by the Vqq-tagging response for a fake boson jet. In
order tomaintain a sufficient data sample size and to suppress
signal contamination, the meff selection and the Jbb mass
window cut for CR0L-2B2Q are loosened relative to the SR,
from meff > 1000 GeV to meff > 900 GeV and from 70 <
mðJbbÞ < 135 GeV to 70 < mðJbbÞ < 150 GeV. The sig-
nal contamination in CR0L-4Q and CR0L-2B2Q is evalu-
ated using the ðW̃; B̃Þ-SIM and ðH̃; G̃Þ samples. While a

contribution of up to 15% (24%) of the expected back-
grounds in CR0L-4Q (CR0L-2B2Q) can be caused by the
nonexcluded signals, the introduced bias in the estimate is
still smaller than the total uncertainty in theSRsandVRs, and
therefore has only a small impact on the final sensitivity. The
selections are summarized in Table III, and the relation with
the SR is illustrated in Fig. 6.
One advantage of this CR0L definition is that all physics

processes contributing to the background (Z þ jets,
W þ jets, tt̄, etc.) have comparable 0L transfer factors.
This is because the fake boson jets have similar origins and
kinematics, and therefore the same boson tagging effi-
ciency, confirmed by the simulation. Consequently, they
can be treated as a single combined component with a
common normalization factor assigned to correct their
normalizations at once. The normalization is performed
in 4Q and 2B2Q separately with an independent nor-
malization factor, based on the “background-only fits”
described in Sec. IX A.
Good MC modeling of the 0L transfer factor is essential

for the estimation. Data events with exactly one lepton or
one photon are utilized for the validation. This is motivated
by the fact that in these regions the main backgrounds,
Zð→ννÞ þ jets in SR/CR0L, Wð→lνÞ þ jets in the one-
lepton region and γ þ jets in the one-photon region, have
similar ISR jet kinematics and, relative to the minor
backgrounds, contribute similarly to the respective regions
when a compatible kinematic phase space is chosen. The
one-lepton (one-photon) regions corresponding to CR0L
and the SR are constructed, denoted by CR1L(1Y) and
VR1L(1Y), respectively. The level of data-vs-MC agree-
ment in the ratio VR1L(1Y)/CR1L(1Y) [“1L(1Y) transfer
factor”] is validated as a proxy for the MC modeling of the
0L transfer factor.
The selections applied for VR(CR)1L and VR(CR)1Yare

listed in Table III. The VR(CR)1L is defined by requiring
exactly one baseline lepton and a signal lepton with pT >
30 GeV that fires the single-lepton trigger. In addition,
Emiss
T > 50 GeV is required to suppress contributions from

FIG. 6. Schematics illustrating the relation between the SRs, VRs, and CRs in the (a) 4Q and (b) 2B2Q categories. ACR is constructed
by inverting the Vqq-tagging requirement for one of the two leading large-R jets in the corresponding SR (VR). In 2B2Q, the Jbb mass
window cut in the CRs and VRs is loosened. See Table III for details.
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QCD multijet events with poorly measured Emiss
T . The VR

(CR)1Y requires exactly one baseline and signal photon to
fire the single-photon trigger, and vetoes events with at least
one baseline lepton. For both VR(CR)1L and VR(CR)1Y, at
least two large-R jets are required, and the events are
separated into the 4Q and 2B2Q categories, based on the
absence or presence of Jbb, respectively A b-jet veto strategy
similar to that for the SRs and the CR0L bins is applied:
nunmatched
b-jet ¼ 0 in all the regions, nb-jet ≤ 1 in the 4Q regions.

A stricter veto of nb-jet ¼ 0 is applied in CR(VR)1L-4Q to
suppress the large single-top contribution relative to the other
4Q regions.
The kinematic selection in the 1L (1Y) regions is applied

with Emiss
T replaced by pTðWÞ (pTðγÞ) in the variables. This

is to ensure that compatible phase spaces are probed for
Zð→ ννÞ þ jets in SR/CR0L, Wð→ lνÞ þ jets in VR1L/
CR1L, and γ þ jets in VR1Y/CR1Y, since Emiss

T in
Zð→ ννÞ þ jets events typically represents the pT of the
Z boson. The pTðWÞ variable is defined as the vector sum
of the pT of the lepton and Emiss

T in the 1L regions. The
Emiss
T , pTðWÞ, and pTðγÞ are collectively denoted by pTðVÞ.

The minΔϕðEmiss
T ; jÞ variable, as well as those analogously

derived from pTðWÞ and pTðγÞ, are collectively denoted by
minΔϕðV; jÞ. The cuts in pTðVÞ and meff are moderately
loosened relative to the SRs to ensure a data sample size
sufficient for the validation. For 2B2Q regions, the Jbb mass
window cut for the Zbb=hbb tagging is loosened to 70 <
mJ < 150 GeV to match CR0L-2B2Q, further increasing
the data sample size. The contributions from events con-
taining fake leptons and fake photons are estimated by data-
driven methods [156,157] and are found to be negligible.
The same estimation procedure used to estimate the

backgrounds in the SRs is employed to predict the back-
grounds in the VRs. A background-only fit, described in
Sec. IX A, is performed, where the sum of the reducible
backgrounds in MC samples is normalized to the data in
each CR1L (CR1Y). The modeling of the transfer factor is
examined using the level of agreement between the data
and the postfit background expectation in the correspond-
ing VR1L (VR1Y). Four sets of fits are performed in the
1L-4Q, 1L-2B2Q, 1Y-4Q, and 1Y-2B2Q categories sepa-
rately. Including all the systematic uncertainties discussed
in Sec. VIII, the observed data event yields and the postfit
background expectations in the VRs are summarized in
Table IV, and compared graphically in Fig. 7. The dis-
tributions of meff in VR1L(1Y)-4Q and mT2 in VR1L(1Y)-
2B2Q are shown in Fig. 8. The data agree reasonably well
with the estimated backgrounds across the VRs. The largest
disagreement is found in VR1L-4Q, corresponding to a
statistical significance of 1.8σ.

VIII. SYSTEMATIC UNCERTAINTIES

Uncertainties in the expected signal and background
yields account for the statistical uncertainties of the MC
samples, the experimental systematic uncertainties associ-
ated with the detector measurements and reconstruction,
and the theoretical systematic uncertainties in the MC
simulation modeling. For the signals and irreducible back-
grounds, the uncertainties are assigned directly to the event
yields. For the reducible backgrounds, however, they are
assigned to the SR(VR)/CR ratio (“transfer factor,” TF) as a
consequence of the normalization performed in the CRs.
The reducible backgrounds are also subject to uncertainties
due to the limited data sample size in the CRs. Each
systematic uncertainty is treated as fully correlated across
the analysis regions but not across physics processes,
unless explicitly stated otherwise. A summary of the
background prediction uncertainties is shown in Fig. 9.
The postfit values are quoted after a background-only fit
described in Sec. IX. The MC statistical uncertainties give
the largest contribution to the systematic uncertainty,
mainly from the limited size of the Zð→ ννÞ þ jets back-
ground sample used for the extrapolation. However, this is
not a limiting factor for the analysis sensitivity since the
total uncertainty in the SRs is dominated by the statistical
uncertainty due to the low number of data events in the SRs.

TABLE IV. Number of observed data events and the postfit SM
background prediction in the VR1L (1Y) bins and the correspond-
ing CR1L (1Y) bins. Negligibly small contributions are indicated
by“dots.”WithineachCRthereduciblebackgroundshave thesame
relative uncertainty in their expected yield because a common
normalization factor is assigned to all of them in the fit.

Region CR1L-4Q VR1L-4Q CR1L-2B2Q VR1L-2B2Q

Observed 439 13 96 5
Post-fit 439� 21 22.0� 3.4 96� 10 7.8� 1.5
W þ jets 325� 16 13.4� 2.2 48� 5 3.4� 0.7
Z þ jets 4.45� 0.21 0.198� 0.035 0.58� 0.06 0.044� 0.012
γ þ jets <1 … 0.57� 0.06 0.22� 0.10
VV 65.4� 3.1 4.1� 0.8 6.9� 0.7 0.55� 0.15
Vγ <1 … < 0.1 …
VVV 1.3� 0.6 0.52� 0.28 0.14� 0.08 0.09� 0.05
tt̄ 30.4� 1.5 2.7� 0.4 24.0� 2.5 1.8� 0.4
tþ X 11.0� 0.5 0.91� 0.21 13.2� 1.4 1.27� 0.34
tt̄þ X 1.5� 1.2 0.16� 0.12 1.5� 1.1 0.4� 0.4
Vh < 0.1 < 0.001 0.69� 0.07 0.046� 0.009

Region CR1Y-4Q VR1Y-4Q CR1Y-2B2Q VR1Y-2B2Q

Observed 1001 38 127 14
Postfit 1001� 32 43� 8 127� 11 8.6� 2.0
W þ jets 2.59� 0.08 < 0.1 < 0.1 …
Z þ jets <1 … < 0.01 …
γ þ jets 856� 28 37� 7 107� 11 6.4� 1.6
VV <1 … … …
Vγ 131� 4 5.0� 0.9 12.6� 1.3 1.13� 0.27
VVV < 0.1 < 0.01 … …
tt̄ 1.28� 0.04 … 0.57� 0.06 0.28� 0.18
tþ X <1 … < 0.1 …
tt̄þ X 9� 6 0.6� 0.5 7� 5 0.8� 0.6
Vh < 0.001 … < 0.01 …
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Details of the experimental and theoretical systematic
uncertainties are described in the following subsections.

A. Experimental uncertainties

The first class of experimental uncertainties is related to
the reconstruction and identification efficiencies for large-R

jets, small-R jets, leptons and photons considered in the
analysis. These are assigned as uncertainties in the effi-
ciency correction factors applied to the MC samples, which
correct for discrepancies between the efficiency predicted
by MC simulation and the efficiency in data, as measured
using dedicated control samples.
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FIG. 9. The total postfit uncertainty and the breakdown in each of the SRs and VRs. “MC statistical” and “CR statistical” present the
statistical uncertainty due to the limited sample size either inMCsimulation [mainly due to theZð→ ννÞ þ jets sample size] or in theCRdata,
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TABLE V. Number of observed data events and the SM backgrounds in the SRs and the CR0L bins. The SM backgrounds are
predicted by the background-only fits. Negligible contributions are indicated by “dots.”Within each CR the reducible backgrounds have
the same relative uncertainty in their expected yield because a common normalization factor is assigned to all of them in the fit.

Region CR0L-4Q CR0L-2B2Q SR-4Q-WW SR-4Q-WZ SR-4Q-ZZ SR-4Q-VV

Observed 129 83 2 3 1 3
Postfit 129� 11 83� 9 1.9� 0.4 3.4� 0.7 1.9� 0.5 3.9� 0.8
W þ jets 24.2� 2.2 16.6� 2.0 0.37� 0.08 0.60� 0.13 0.26� 0.07 0.69� 0.15
Z þ jets 78� 7 44� 5 1.0� 0.21 1.8� 0.4 1.26� 0.32 2.1� 0.4
VV 21.5� 1.9 7.1� 0.9 0.35� 0.11 0.73� 0.24 0.26� 0.09 0.79� 0.25
VVV 0.9� 0.4 0.10� 0.05 0.17� 0.09 0.19� 0.10 0.11� 0.07 0.23� 0.12
tt̄ 1.38� 0.12 7.8� 0.9 0.039� 0.009 0.060� 0.018 0.025� 0.010 0.063� 0.018
tþ X 1.32� 0.12 2.87� 0.34 0.015� 0.006 0.039� 0.016 0.012� 0.005 0.039� 0.016
tt̄þ X 1.3� 0.9 3.7� 2.6 … … … …
Other < 0.1 0.95� 0.11 < 0.001 < 0.001 < 0.001 < 0.001

Region SR-2B2Q-WZ SR-2B2Q-Wh SR-2B2Q-ZZ SR-2B2Q-Zh SR-2B2Q-VZ SR-2B2Q-Vh

Observed 2 0 2 1 2 1
Postfit 1.6� 0.4 1.9� 0.7 1.7� 0.5 1.6� 0.5 2.2� 0.6 2.5� 0.8
W þ jets 0.11� 0.06 0.24� 0.09 0.23� 0.08 0.26� 0.10 0.26� 0.09 0.26� 0.09
Z þ jets 0.84� 0.27 1.3� 0.5 0.78� 0.23 0.66� 0.24 1.15� 0.33 1.4� 0.5
VV 0.33� 0.11 0.09� 0.03 0.32� 0.10 0.085� 0.032 0.37� 0.11 0.085� 0.030
VVV 0.047� 0.027 < 0.01 0.051� 0.032 0.011� 0.007 0.06� 0.04 0.011� 0.007
tt̄ 0.016� 0.006 0.13� 0.04 0.064� 0.019 0.40� 0.16 0.072� 0.021 0.46� 0.18
tþ X 0.11� 0.05 0.07� 0.04 0.11� 0.05 0.041� 0.022 0.11� 0.05 0.10� 0.05
tt̄þ X 0.10� 0.08 0.07þ0.10

−0.07 0.14� 0.12 0.08þ0.09
−0.08 0.18� 0.14 0.10þ0.11

−0.10
Other < 0.01 0.03� 0.01 < 0.01 0.024� 0.008 < 0.01 0.037� 0.011
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The uncertainty in WqqðZqqÞ tagging contributes the
most to this class of efficiency uncertainties. It originates
from the MC modeling uncertainty in the jet substructure
variable distributions (mJ, D2, and ntrack), as well as the
precision of the efficiency determination in data. The MC
modeling uncertainty is evaluated by comparing samples
from different MC generator configurations [137]. The
Wqq-tagging efficiency in data is measured using tt̄ for
signal jets (large-R jets that contain the W → qq decays)
and QCD multijet=γ þ jets for background jets, following
the prescription described in Ref. [137]. The total uncer-
tainty of the Wqq-tagging efficiency correction factor
ranges from 12 to 23% for signal jets, and from 7 to
15% for background jets, depending on the pT. The same
efficiency correction factors are applied to the Zqq-tagging
selection, with a simulation-based additional uncertainty of
4–5% to account for differences between W and Z bosons.
The uncertainty in the ZbbðhbbÞ tagging is obtained from

the b-tagging efficiency uncertainty and the Jbb mass
distribution’s shape uncertainty. For the b-tagging uncer-
tainty, 1–10%, 15–50%, and 50–100% uncertainties are
assigned to the MC correction factor for b jets, c-jet
mistagging, and light-flavor jet mistagging, respectively,
driven by theoretical uncertainties in the MC-simulated
efficiency and the precision of the efficiency measurement
in data. The Jbb mass scale uncertainty is estimated using
the Rtrk method [132], and a relative scale uncertainty of
2–8% is assigned depending on pT;J and mJ. A 20%
relative uncertainty is assigned for the Jbb mass resolution
based on the variation in the simulation [159].
Other efficiency uncertainties related to triggering,

identification, reconstruction, and isolation requirements
of electrons [75,141], muons [142] and photons [75], and
the jet vertex tagger selection for small-R jets, are found to
be negligible.
The second class of experimental uncertainties is related to

the energy (or momentum) determination for the recon-
structed objects, namely large-R jets [132], small-R jets
[145], electrons [141], muons [160] and photons [141].
These typically come from the precision of simulation-based
and in situ calibrations of the energy (or momentum) scale
and resolution. These per-object uncertainties are propagated
through the Emiss

T calculation, with additional uncertainties
accounting for the scale and resolution of the soft term [146].
Additionally, an uncertainty in the integrated luminosity

used to normalize the MC samples is considered. A 1.7%
uncertainty is quoted for the combined 2015–2018 inte-
grated luminosity obtained primarily using the LUCID-2
detector [161]. Finally, a pileup modeling uncertainty is
assigned to account for the discrepancy between the
predicted and measured inelastic cross sections [162].

B. Theoretical uncertainties

Theoretical uncertainties in the main reducible back-
grounds (W=Z þ jets, γ þ jets, and VV production) are

estimated with varied generator parameters. Uncertainties
due to the choice of QCD renormalization and factorization
scales are evaluated by varying them up and down by a
factor of 2 relative to their nominal values [163]. For
W=Z þ jets, the uncertainties related to the choice of
CKKW merging scale are also considered. These are
assessed by shifting the merging scale to 15 or 30 GeV
from the default scale of 20 GeV. For the tt̄ background, the
nominal POWHEG+PYTHIA 8 sample is compared with two
alternative samples: one from MadGraph5_aMC@NLO to
estimate the hard-scatter modeling uncertainty, and the
other from POWHEGBOX interfaced to HERWIG 7.0.4 [164]
and H7UE set of tuned parameters [164] to assess the
uncertainty due to the choice of parton shower scheme and
hadronization model. Variations in the tt̄ initial- and final-
state radiation modeling, and renormalization and factori-
zation scales, are also considered following the prescription
described in Ref. [165]. Uncertainties related to the choice
of NNPDF3.0NNLO PDF sets are assigned to theW=Z þ jets,
γ þ jets, VV, tt̄ and single-top backgrounds. These are
derived by taking the envelope of the eigenvector variations
from 100 propagated uncertainties.
For the reducible background estimation, an additional

uncertainty is assigned for the modeling of the relative
background composition. This is because different physics
processes (Z þ jets, W þ jets, tt̄, etc.) are considered as a

TABLE VI. Left to right: 95% C.L. upper limits on the visible
cross section (hϵσi95obs). S95obs (S95exp) shows the 95% C.L. upper limit
on the number of signal events, given the observed number
(expected number and �1σ excursions) of background events.
The last two columns indicate the CLb value and the discovery p
value [pðs ¼ 0Þ] with the corresponding Gaussian significance
(Z). CLb provides a measure of compatibility of the observed data
with the 95% C.L. signal strength hypothesis relative to fluctua-
tions of the background, and pðs ¼ 0Þ measures compatibility of
the observed data with the background-only (zero signal strength)
hypothesis relative to fluctuations of the background. Larger
values indicate greater relative compatibility. pðs ¼ 0Þ is not
calculated in signal regions with a deficit with respect to the
nominal background prediction.

Signal region hϵσi95obs [fb] S95obs S95expð�1σÞ CLb pðs ¼ 0Þ (Z)
SR-4Q-WW 0.032 4.5 4.2þ1.8

−1.0 0.55 0.44 (0.15)
SR-4Q-WZ 0.036 5.0 5.1þ2.1

−1.3 0.46 …
SR-4Q-ZZ 0.025 3.6 4.1þ1.8

−1.0 0.30 …
SR-4Q-VV 0.034 4.7 5.3þ2.3

−1.5 0.38 …
SR-2B2Q-WZ 0.033 4.7 4.0þ1.7

−0.7 0.66 0.33 (0.44)
SR-2B2Q-Wh 0.022 3.1 3.9þ1.3

−0.7 0.28 …
SR-2B2Q-ZZ 0.033 4.5 4.1þ1.7

−0.9 0.63 0.37 (0.32)
SR-2B2Q-Zh 0.026 3.6 3.9þ1.4

−0.7 0.38 …
SR-2B2Q-VZ 0.032 4.4 4.4þ1.8

−1.0 0.50 …
SR-2B2Q-Vh 0.026 3.6 4.4þ1.7

−1.0 0.24 …
Disc-SR-2B2Q 0.034 4.8 5.6þ2.4

−1.6 0.30 …
Disc-SR-Incl 0.042 5.9 7.2þ2.2

−2.0 0.27 …
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single component in the fits, and therefore its composition
is predicted solely by the simulation. While the estimation
is insensitive to the composition at first order since the TFs
of those physics processes are similar, the residual TF
difference can cause a bias in the estimation when the
composition is significantly mismodeled by the simulation.
The impact of the potential composition mismodeling is
evaluated by the variation in the combined TF when
shifting the normalization of each physics process up
and down by a factor of 2. An uncertainty of about
2–8% is assigned in the 4Q category, while 7–10% is
assigned for those in the 2B2Q category.
For the irreducible backgrounds, cross-section uncer-

tainties are assigned to account for their normalization. A
50% uncertainty is quoted for VVV production based on
the cross-section measurement by the CMS experiment
[155], while a 70% normalization uncertainty is assigned to

tt̄þ X based on the data/MC discrepancy observed in
VRTTX, as discussed in Sec. VII A.
The uncertainty in the signal yields consists of the cross-

section uncertainty and the shape uncertainties. The cross-
section uncertainty ranges from 6 to 20% for the production
of electroweakinos with masses between 400 GeV and
1 TeV, driven mainly by the PDF uncertainty [125]. The
shape uncertainties comprise uncertainties in the choice of
renormalization/factorization scales and parton shower
modeling, affecting the signal acceptance by 5–10%.

IX. RESULTS

A. Statistical analysis

Final background estimates are obtained by performing a
profile log-likelihood fit [166] simultaneously in all CRs and
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FIG. 12. Exclusion limits for the ðW̃; B̃Þ and ðH̃; B̃Þ models shown as a function of the wino/higgsino chargino mass mðχ̃�1 Þ and the
bino LSP mass mðχ̃01Þ. The (a) expected and (b) observed limits for various Bðχ̃02 → Zχ̃01Þ hypotheses are overlaid. The outer and inner
bundles correspond to the limits for the ðW̃; B̃Þ and ðH̃; B̃Þ models, respectively. The limits set on the ðH̃; B̃Þ models are highly
consistent and thus the contour lines are highly overlapped. Expected (dashed) and observed (solid red) 95% C.L. exclusion limits are
shown for the (c) ðW̃; B̃Þ and (d) ðH̃; B̃Þ models with a representative branching ratio Bðχ̃02 → Zχ̃01Þ ¼ 50%.
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FIG. 14. 95% C.L. exclusion limits for the ðW̃; H̃Þ and ðH̃; W̃Þmodels. The limits are projected onto a two-dimensional plane either as
a function of the wino/higgsino mass parameters ðM2; μÞ (top figures), or of the physical electroweakino masses ðmðχ̃�2 Þ; mðχ̃01ÞÞ
representing ðmðχ̃heavyÞ; mðχ̃lightÞÞ (bottom figures). For the limits shown on the ðM2; μÞ plane, the excluded regions are indicated by the
area inside the contours. The round excluded area in the top part corresponds to the excluded parameter space in the ðW̃; H̃Þ model
(M2 > jμj), while the two small areas at the bottom are that in the ðH̃; W̃Þ model (M2 < jμj).
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SRs relevant to a given interpretation. The HistFitter [167]
framework is employed. Systematic uncertainties are treated
as Gaussian-distributed nuisance parameters in the like-
lihood, while the statistical uncertainties of the MC samples
are treated as Poisson-distributed nuisance parameters.
Three types of fit configurations are used to derive the

results.
(i) A “background-only fit” is performed considering

only the CRs and assuming no contribution from
signals. The normalization of the total reducible
background is allowed to float and is constrained by
the fit using the data in the CRs. The normalization
factors and nuisance parameters are adjusted by
maximizing the likelihood. Three independent sets
of fits are performed in the 0L, 1L, and 1Y
categories, respectively. The 4Q and 2B2Q regions
in each category are fitted simultaneously, but with
independent normalization factors assigned in 4Q

and 2B2Q. The normalization factors obtained from
the fits range from 0.7 to 1.3.

(ii) A “discovery fit” performs the hypothesis test for a
generic beyond-the-SM (BSM) signal, setting upper
limits on the number of events and visible cross
section for the signal. The fit uses only a single SR
and the associated CR0L bin(s), constraining the
backgrounds following the same method as in the
background-only fit. Any contribution from signals
is allowed only in the SR, and the signal-strength
parameter is defined to be strictly positive.

(iii) An “exclusion fit” is performed to set the exclusion
limit for a given signal model. The SRs and the
corresponding CR0L bins are fit simultaneously to
determine the reducible background normalization
factors and constrain the systematic uncertainties.
The signal contamination in CR0L is also taken into
account according to the model predictions.
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FIG. 15. Exclusion limits for ðW̃; B̃Þ-SIM as a function of the produced wino massmðχ̃�1 =χ̃02Þ and the bino LSP massmðχ̃01Þ. Expected
(dashed) and observed (solid) 95% C.L. exclusion limits on ðW̃; B̃Þ simplified models are shown for (a) C1C1-WW, (b) C1N2-WZ, and
(c) C1N2-Wh. The limits from the previous ATLAS searches on C1C1-WW [23], C1N2-WZ [24], and C1N2-Wh [29] are shown by the
shaded areas.
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For each discovery or exclusion fit, the compatibility of the
observed data with the background-only or signal-plus-
background hypotheses is quantified by calculating a one-
sided p0 value with the profile likelihood ratio used as a test
statistic [166]. The upper limits and exclusion are derived
using the CLs prescription [168] where the 95% confidence
level (C.L.) exclusion is defined by CLs < 0.05.

B. Signal region yields

The observed data yields in each SR and CR0L together
with their SM background expectations are summarized in
Table V and shown in Fig. 10. No significant excess is
found in any of the SRs. The distributions ofmeff in SR-4Q-
VVand mT2 in SR-2B2Q-VZ and SR-2B2Q-Vh are shown
in Fig. 11 with some representative signal samples overlaid
to illustrate the sensitivity.

C. Model-independent upper limits

A discovery fit is performed for each SR to derive the
expected and observed 95% C.L. upper limits on the
number of BSM signal events (S95exp and S95obs) as well as
the one-sided p value (p0) of the background-only hypoth-
esis. Pseudoexperiments with toy MC are used for the
calculation. An upper limit on the cross section, hϵσi95obs
where ϵ represents the efficiency times acceptance of the
SR for the given signal, is obtained by dividing S95obs by the
integrated luminosity. The upper limits and the p0 value
associated with each SR are summarized in Table VI. Two
additional “discovery SRs” are defined in order to set
model-independent upper limits in the inclusive phase
space. First, Disc-SR-2B2Q is defined as the logical union
of SR-2B2Q-VZ and SR-2B2Q-Vh, and then the inclusive
discovery signal region Disc-SR-Incl is defined as the
logical union of SR-4Q-VV and Disc-SR-2B2Q. When
evaluating Disc-SR-Incl, both CR0L-4Q and CR0L-2B2Q
are included in the simultaneous fit and each has its own
floating normalization factor for the reducible
backgrounds.

D. Model-dependent exclusion limits

The results are also interpreted in the context of the
specific signal models discussed in Sec. II. An exclusion fit
is performed for each point in the model space, and a CLs
value is assigned based on the hypothesis test. The
expected and observed 95% C.L. exclusion regions corre-
spond to values of CLs < 0.05. Given the large number of
models tested, an asymptotic approximation [166] is
employed in the CLs calculation instead of the full
calculation using pseudoexperiments. The validity is
checked and the CLs values of the two methods typically
agree within 5%, and maximally within 10%.
The SRs participating in the simultaneous fit vary with

the signal model being tested, as summarized in Table I.
CR0L-4Q (CR0L-2B2Q) is included in the fit when at least

one SR-4Q (SR-2B2Q) bin is used in deriving the limit,
while both of the CR0L bins are included when the SR bins
from both SR-4Q and SR-2B2Q participate in the fit.

1. Exclusion limits on ðW̃; B̃Þ, ðH̃; B̃Þ, ðW̃; H̃Þ,
and ðH̃; W̃Þ models

The exclusion limits on the ðW̃; B̃Þ and ðH̃; B̃Þmodels are
summarized in Fig. 12. As discussed in Sec. II A, different
Bðχ̃02 → Zχ̃01Þ hypotheses are examined, and these are shown
to result in very similar limits in Figs. 12(a) and 12(b).
The expected and observed limits for a representative

slice Bðχ̃02 → Zχ̃01Þ ¼ 50% are shown in Figs. 12(c) and
12(d), for ðW̃; B̃Þ and ðH̃; B̃Þ models respectively.
The ðH̃; B̃Þ limits are also interpreted for the Z=h-funnel

dark matter model described in Sec. II A. The exclusion
limits are shown in Fig. 13, overlaid with theoretical
predictions of higgsinomasses (χ̃02) reproducing the observed
dark matter relic density (Ωh2 ¼ 0.12) [55]. While the relic
density depends drastically on tan β, the exclusion limits
obtained by the search are assumed to be constant along tan β
since they donot changewhenvaryingBðχ̃02 → Zχ̃01Þ, and are
interpreted from the exclusion limits for the Bðχ̃02 → Zχ̃01Þ ¼
50% hypothesis in Fig. 12(d). For the h-funnel case, where
mðχ̃01Þ ¼ mh=2, the excluded regions are tan β > 8.5 for μ >
0 and 5.5 < tan β < 7 for μ < 0.
The exclusion limits set on the ðW̃; H̃Þ and ðH̃; W̃Þ

models are evaluated in a three-dimensional model space
defined by ðM2; μ; tan βÞ. For each model point, the mass
spectra and the branching ratios are determined using the
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FIG. 16. Expected (dashed) and observed (solid red) 95% C.L.
exclusion limits derived for the ðH̃; G̃Þmodel, as a function of the
lightest higgsino mass mðχ̃01Þ and the branching ratio
Bðχ̃01 → ZG̃Þ ð¼ 1 − Bðχ̃01 → hG̃ÞÞ. The excluded region is in-
dicated by the area inside the contour. The exclusion limits from
the previous ATLAS search using four-lepton final states [30]
(cyan, denoted by “4L”), or final states with three or more b jets
[37] (violet, denoted by “multi-b”) are shown by the
shaded areas.
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prescription described in Sec. II A. Figure 14(a) shows the
expected limit and observed limit as a function of ðM2; μÞ
with a fixed tan β ¼ 10. Figure 14(b) shows that varying
tan β or the sign of μ (signðμÞ) has very little effect on the
sensitivity. The limits are also interpreted as a function of
the physical electroweakino masses so that they can be
directly compared with the other models. For a given set of
ðtan β; signðμÞÞ, a pair of ðM2; jμjÞ can be projected one to
one to ðmðχ̃�2 Þ; mðχ̃01ÞÞ when all the other MSSM param-
eters are fixed. Figure 14(c) and Figure 14(d) show the
limits for the ðW̃; H̃Þ model (M2 > jμj) and ðH̃; W̃Þ model
(M2 < jμj), respectively, assuming tan β ¼ 10 and μ > 0.

The mass exclusion limits are shown to be highly stable
with respect to the internal variations within each model.
The limits for ðW̃; B̃Þ and ðW̃; H̃Þ (or for ðH̃; B̃Þ and
ðH̃; W̃Þ) are also very similar, despite the branching ratios
of χ̃heavy being substantially different between the models.
This model dependency is small mostly due to the
statistical combination of SR-4Q and SR-2B2Q, and the
inclusive SR bins (SR-4Q-VV, SR-2B2Q-VZ, and SR-
2B2Q-Vh), which are designed to be agnostic with regard
to the difference between W and Z bosons.
To summarize, a wino mass between 400 and 1060 GeV

is excluded for the wino production models for
mðχ̃01Þ < 400 GeV; and a higgsino mass between 450
and 900 GeV is excluded for the higgsino production
models for mðχ̃01Þ < 240 GeV.

2. Exclusion limits on ðW̃; B̃Þ simplified model:
ðW̃; B̃Þ-SIM

The exclusion limits for the ðW̃; B̃Þ simplified models
(C1C1-WW, C1N2-WZ, and C1N2-Wh) are also derived,
in order to directly compare the search sensitivity with the

previous ATLAS analyses. Figure 15 shows the obtained
exclusion as a function of the produced wino mass
mðχ̃�1 =χ̃02Þ and the bino LSP mass mðχ̃01Þ. For C1C1-
WW, mðχ̃�1 Þ between 630 and 760 GeV is excluded for
mðχ̃01Þ < 80 GeV. For C1N2-WZ (C1N2-Wh), mðχ̃�1 =χ̃02Þ
between 440 and 960 GeV (400 and 1060 GeV) is
excluded for mðχ̃01Þ < 300 GeVð420 GeVÞ.13
The sensitivity to high-mass winos is significantly

improved relative to ATLAS searches using the other final
states and the same dataset. For example, the expected
limits on C1N2-WZ (C1N2-Wh) are typically extended by
about 300 (140) GeV in mðχ̃�1 =χ̃02Þ, corresponding to
exclusion of signals with a 7.5 (2.4) times smaller pro-
duction cross section than in the search using final states
with three leptons [24] (one lepton and two b jets [29]).
This result also sets the most stringent limit on the model to
date from the LHC experiments.

3. Exclusion limits on ðH̃;G̃Þ model

The exclusion for the ðH̃; G̃Þ model is presented in
Fig. 16, as the function of the mass of the lightest higgsino,
mðχ̃01Þ, and the branching ratio Bðχ̃01 → ZG̃Þ. For
Bðχ̃01 → ZG̃Þ ¼ 100%ð50%Þ, mðχ̃01Þ between 450 (500)
and 940 (850) GeV is excluded, while the exclusion reaches
Bðχ̃01 → ZG̃Þ ∼ 20% for mðχ̃01Þ ∼ 600 GeV. This comple-
ments the sensitivity achieved by previous ATLAS searches
using four-lepton final states to target signals with decays
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FIG. 17. 95% C.L. exclusion limits for the ðH̃; ãÞ model as a function of axino mass mðãÞ and lightest higgsino mass mðχ̃01Þ. (a)
Expected (dashed line) and observed (solid red line) limits calculated for Bðχ̃01 → ZãÞ ¼ 100%. (b) Expected (dashed lines) and
observed (solid lines) limits with various Bðχ̃01 → ZãÞ ð¼ 1 − Bðχ̃01 → hãÞÞ hypotheses. No expected limit is derived for the case with
Bðχ̃01 → ZãÞ ¼ 25% as no mass point on the plane can be excluded.

13The obtained limits are generally weaker than those set on
the ðW̃; B̃Þ model shown in Sec. IX D 1. This is because only one
production mode is considered in these simplified models, while
multiple production modes are included in the signals in the
ðW̃; B̃Þ model.
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into ZZ [30] and final states with three or more b jets to
target signals with decays into hh [37].

4. Exclusion limits on ðH̃; ãÞ model

Lastly, Fig. 17 shows the exclusion limits on the ðH̃; ãÞ
model as the function of the mass of the axino, mðãÞ, and
the lightest higgsino,mðχ̃01Þ. Similarly to the ðH̃; G̃Þmodel,
different branching ratio hypotheses of Bðχ̃01 → ZãÞð¼1 −
Bðχ̃01 → hãÞÞ are tested. For Bðχ̃01 → ZãÞ ¼ 100%, a higg-
sino mass between 450 and 940 GeV is excluded when the
axino mass is less than 300 GeV. The sensitivity decreases
with decreasing Bðχ̃01 → ZãÞ. For Bðχ̃01 → ZãÞ ¼ 50%, the
observed limit excludes higgsino masses of 500–850 GeV
when the axino mass is less than 210 GeV.

X. CONCLUSION

A search for electroweakino pair production using final
states consisting of Emiss

T and two boosted hadronically
decaying heavy SM bosons (W, Z, or h) is reported.
Signatures with large mass splitting between the produced
electroweakino and the lightest SUSY particle are targeted.
The use of fully hadronic final states takes advantage of

the large SM boson branching ratios, while the back-
grounds are efficiently suppressed by reconstructing theW,
Z, and h bosons using boosted boson-tagging techniques.
Using 139 fb−1 of proton-proton collision data at

ffiffiffi
s

p ¼
13 TeV recorded by the ATLAS detector at the LHC, this
strategy provides unprecedented sensitivity to the produc-
tion of heavy electroweakinos.
No excess over the SM background prediction is

observed, and 95% C.L. exclusion limits are set for signal
models in various R-parity conserving scenarios. For wino
pair production with direct decays into a bino or higgsino
LSP, wino masses between 400 and 1060 GeVare excluded
when the LSP mass is below 400 GeV and the mass
splitting is larger than 400 GeV. For higgsino pair pro-
duction with direct decays into a bino or wino LSP,
higgsino masses between 450 and 900 GeV are excluded
when the LSP mass is below 240 GeV and the mass
splitting is larger than 450 GeV. The limits are also
examined for various wino (higgsino) branching ratio
assumptions, by directly scanning over relevant branching
ratios (for the bino LSP models) or over the MSSM
parameters that dictate them (M2, μ, and tan β for the
wino/higgsino LSP models). The results are shown to be
highly consistent for the variations.
The results are also interpreted in the context of

simplified models of wino production with decays into a
bino LSP, which are more conventionally explored in
electroweakino searches at the LHC. For chargino pair
production, with each decaying into aW boson and an LSP,
a chargino mass between 630 and 760 GeV is excluded for
a LSP mass below 80 GeV. For chargino-neutralino pair
production involving decays into WZ (Wh) and two LSPs,

a wino mass between 440 (400) and 960 (1060) GeV is
excluded for a LSP mass below 300 (420) GeV. These
extend significantly beyond the exclusion limits set by the
previous searches at the LHC using different final states.
Finally, exclusion limits are set on higgsino production

with decays into a massless gravitino LSP or a massless/
massive axino LSP, motivated by the GGM or new physics
models involving the axion, respectively. A higgsino mass
between 450 (500) and 940 (850) GeV is excluded for the
gravitino LSP model with Bðχ̃01 → ZG̃Þ ¼ 100%ð50%Þ,
and a mass between 450 (500) and 940 (850) GeV is
excluded for the axino LSP model with Bðχ̃01 → ZG̃Þ ¼
100%ð50%Þ when the axino LSP mass is below
300 (210) GeV.
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56LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France

57Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
58aDepartment of Modern Physics and State Key Laboratory of Particle Detection and Electronics,

University of Science and Technology of China, Hefei, China
58bInstitute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle

Irradiation (MOE), Shandong University, Qingdao, China
58cSchool of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle

Astrophysics and Cosmology (MOE), SKLPPC, Shanghai, China
58dTsung-Dao Lee Institute, Shanghai, China

59aKirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
59bPhysikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

60aDepartment of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
60bDepartment of Physics, University of Hong Kong, Hong Kong, China

60cDepartment of Physics and Institute for Advanced Study, Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong, China

61Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
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