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ABSTRACT: This paper introduces voxelized atomic structure (VASt) potentials
as a machine learning (ML) framework for developing interatomic potentials. The
VASt framework utilizes a voxelized representation of the atomic structure directly
as the input to a convolutional neural network (CNN). This allows for high-fidelity
representations of highly complex and diverse spatial arrangements of the atomic
environments of interest. The CNN implicitly establishes the low-dimensional
features needed to correlate each atomic neighborhood to its net atomic force. The
selection of the salient features of the atomic structure (i.e., feature engineering) in
the VASt framework is implicit, comprehensive, automated, scalable, and highly
efficient. The calibrated convolutional layers learn the complex spatial relationships and multibody interactions that govern the
physics of atomic systems with remarkable fidelity. We show that VASt potentials predict highly accurate forces on two phases of
silicon carbide and the thermal conductivity of silicon over a range of isotropic strain.

Atomic simulations are fundamental to understanding the
physics of material and chemical systems. First-principles

methods such as density functional theory (DFT)1,2 are highly
accurate but impractical for physics involving more than a few
hundred atoms and time scales ≳ 100 ps. Empirical
interatomic potentials3−12 are much faster than first-principles
methods and can scale to much larger atomic systems, but they
are less accurate, difficult to develop, and lack transferability.
Machine learning (ML) approaches offer new opportunities for
the development of low-computational cost surrogate models
trained to the expensive DFT computations. Notable successes
have been reported in compound discovery (i.e., identification
of specific compound chemistries that optimize a certain
combination of desired properties)13−21 and in the formulation
of ML-based potentials.22−45

The value of an ML potential lies in how efficiently and
accurately it learns the complex physics underlying the atomic
interactions. The scope and efficacy of this learning is largely
controlled by the input features selected for representing the
atomic structure in the ML model (commonly referred to as
feature engineering). For the development of ML-based
potentials, feature engineering approaches have generally
involved the identification of a small set of salient features
guided by the known physics of atomic interactions. These
approaches have led to the formulation and exploration of
suitably defined kernel expansions22−24 and/or projec-
tions.25−28 Although these approaches have shown promise,
the selection of such functions is largely ad hoc, and the
resulting feature space is often an incomplete, oversimplified,
and not easily interpretable representation of the atomic

structure. Furthermore, it is often impossible to systematically
determine which combination of features offers the most
important value for building high-fidelity ML models. In an
effort to overcome these limitations, several approaches have
been developed in which the feature engineering is performed
implicitly through the training of neural networks (NNs)
directly to the atomic positions and chemical elements
involved.29−35 For example, in message passing neural
networks (MPNNs)31−35 each atom is initially embedded
with a feature vector based on its chemical species. The feature
vectors are then passed through a series of atom and
interaction layers, which operate on individual atoms and
pairs of atoms, respectively. These layers are convolutional in
the sense that the same operation is applied to each atom or
pair of atoms in a layer and the interaction layers capture
translationally invariant features based on the interatomic
distances between pairs of atoms. However, these approaches
still do not capture directly the true atomic structure, which is
a three-dimensional (3D) space, as the input to the NN.
Instead, the atomic structure is indirectly input into the NN
using a list of relative atom center positions and element types.
In this article, we present an ML framework for developing

interatomic potentials that utilizes directly the true atomic
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structure. In this framework, the physical volume around the
atom of interest is mapped to a voxelized 3D domain. This
voxelized atomic structure (VASt) representation is equivalent
to capturing the atomic neighborhood as a digital 3D image,
which is ideal as an input to convolutional neural networks
(CNNs) for implicit feature engineering. CNNs have had great
success in image analysis due to their ability to capture
translationally invariant spatial features and naturally account
for multiple local states per voxel (i.e., grayscale or red, green,
blue (RGB)) via input channels.46−50 In the context of VASt
potentials, the calibrated convolutional layers of the CNN
serve as a complex, nonlinear mapping from the voxelized
representation of the atomic neighborhood to a low-dimen-
sional feature space that is finally used to predict the target
(i.e., output) net atomic force. Additionally, the CNN input
channels naturally allow for the representation of multielement
systems. Because the feature engineering (selection of the
salient low-dimensional features) is comprehensive, automated,
scalable, and highly efficient in CNNs, VASt potentials are able
to learn implicitly the complex spatial relationships and
multibody interactions that govern the physics of atomic
systems.
The VASt framework is tested with two case studies. First,

we develop a VASt potential capable of predicting highly
accurate interatomic forces on atomic environments of two
phases of silicon carbide (SiC), namely, 3C-SiC and 6H-SiC,
generated from ab initio molecular dynamics (AIMD)51

simulations at 300 K. This study demonstrates that VASt
potentials can successfully capture the diverse space of atomic
environments spanned by multicomponent, multiphase sys-
tems and therefore are viable for general molecular dynamics
(MD) applications. Second, we develop a VASt potential
capable of accurately reproducing the thermal conductivity of
crystalline silicon subjected to isotropic strain ranging from
−0.035 to 0.035. Isotropic strain effects on the thermal
conductivity of silicon have previously been studied using DFT
with the Boltzmann transport equation (BTE)52 and using
equilibrium MD.53 However, both methods face practical
challenges. With the BTE, calculating the thermal conductivity
for a single value of strain can require hundreds of DFT
calculations on large supercells.54,55 Repeating this process for
each value of strain can be computationally infeasible. With
MD, the accuracy of thermal conductivity calculations is
dependent on the choice of empirical potential. In unstrained
silicon, for example, the thermal conductivities at 300 K
computed using the Stillinger-Weber11 and Tersoff12 potentials
are ∼700 and ∼350 W/m K,56 respectively, which both deviate
substantially from the experimental value of ∼150 W/m K.57

Further, empirical potentials may fail in extreme conditions
such as high strain. The Tersoff potential, for example, predicts
that the thermal conductivity of silicon monotonically
decreases from compression to tension,53 whereas the BTE
predicts that it remains relatively constant under compression
and then decreases from equilibrium to tension.52

We use our VASt potential to compute thermal conductivity
with the BTE in a highly accurate and computationally efficient
manner by predicting the interatomic forces required for
computing the second-order harmonic and third-order
anharmonic interatomic force constants (IFCs). Previous ML
approaches have proven to be capable of accurately
reproducing second-order IFCs and phonon dispersion
curves.25,38−40,43−45 Very few studies, however, have success-
fully reproduced thermal conductivity,39,40 which requires

third-order anharmonic IFCs that can be very sensitive to noise
and therefore require very accurate forces. Korotaev et al.39

computed the thermal conductivity of unstrained CoSb3
skutterudite with both the BTE and MD using a moment
tensor potential.27 Babaei et al.40 computed the thermal
conductivity of unstrained silicon with the BTE using a
Gaussian approximation potential.25 Both studies demonstrate
that these approaches can accurately predict the interatomic
forces resulting from the small perturbations of atomic
structure used to compute IFCs. However, by computing the
thermal conductivity over a range of isotropic strain, we
demonstrate that VASt potentials are not only sensitive to
small perturbations of atomic structure, but are also consistent
and can maintain this sensitivity over a large range of isotropic
strain.
The positions of atom centers in the neighborhood of an

atom of interest can be represented by a summation of delta
functions as

r rZ( , ) ( )Z

Z
∑φ δ τ= −

τ ∈ (1)

where 3⊂ denotes the set of atom center coordinates
relative to the atom of interest (including the atom of interest),
and Z denotes the element type. There are two issues with
directly adopting eq 1 as a representation of the atomic
neighborhood. From an ML perspective, the use of delta
functions can cause small perturbations of the atomic positions
to result in large changes in model predictions. From a physics
perspective, the delta functions are a nonphysical representa-
tion of real atoms because they do not account for the physical
volume occupied by the atoms. A physics-based representation
of a single atom can be obtained using the raised cosine
distribution
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where Ra
Z is the atomic radius of element Z. We choose the

raised cosine distribution to represent atomic volume because
it satisfies two important criteria: (1) it smoothly approaches
zero at a finite distance, in this case Ra

Z, and (2) it does not
introduce any nonphysical parameters. The atomic neighbor-
hood can then be represented by the convolution of φ(r,Z)
and ν(r,Z) as
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where H is the Heaviside step function.
To use eq 3 to describe an atomic neighborhood, one needs

to choose the reference axis using the protocols based on
nearest neighbors, as described in Supporting Information
Section S1. The use of these protocols imparts translational,
rotational, and permutational invariance to the description of
the atomic neighborhood.
To reflect the lower importance of features far away from the

atom of interest, the atomic neighborhood defined above is
damped with the normalized raised cosine distribution fd(r) =
0.5[1 + cos(π|r|/Rc)], where Rc is the cutoff distance beyond
which atoms are considered non-interacting. We again choose
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the raised cosine distribution because it smoothly approaches
zero at the cutoff distance. This allows for a smooth transition
of atoms entering and leaving the boundary of the atomic
neighborhood. The damped atomic neighborhood is now
expressed as

r r rZ Z f( , ) ( , ) ( )dη γ= (4)

A graphical representation of the atomic neighborhood
constructed via eqs 1−4 is shown in Figure 1. The VASt

representation of the atomic neighborhood is the discretized
form of eq 4 and invokes only two nonphysical parameters: the
voxel size and the cutoff distance. Further, in the limit as voxel
size approaches zero, one recovers the complete continuous
representation of the true atomic neighborhood. It is
emphasized that eq 4 can resolve infinitesimal perturbations
of the atomic structure. In other words, even an infinitesimal

change in any of the atom center positions will change η(r,Z)
because of the use of eq 3. It is important to retain this feature
in the VASt representation of the atomic neighborhood. This is
accomplished by first suitably partitioning each atom to its
nearest voxels (based on the atom center coordinates and the
coordinates of the nearest voxel centers), producing a digital
representation of φ(r,Z). This digital signal is then convolved
(using a fast Fourier transform algorithm) with a suitable
digital representation (i.e., uniform sampling) of ν(r,Z) to
produce a digital representation of γ(r,Z). Finally, a pointwise
multiplication of the digital representations of γ(r,Z) and fd(r)
produces the desired digital representation of the atomic
neighborhood, η(r,Z). All of the operations described above
are computationally very efficient and scale almost linearly with
the number of voxels. The images shown in Figure 1 are the
digital representations of the various quantities described
above.
For the first case study, we develop a single VASt potential

capable of predicting highly accurate interatomic forces for
both 3C-SiC and 6H-SiC. The framework for developing a
VASt potential is shown in Figure 2. First, a set of reference
atomic configurations and corresponding ground-truth intera-
tomic forces are generated for training the ML model. Here,
reference atomic configurations were generated using AIMD
simulations at 300 K, and ground-truth interatomic forces were
computed with DFT using the Vienna Ab initio Simulation
Package (VASP).58 A total of 2000 snapshots of the 216-atom
3 × 3 × 3 3C-SiC supercell and 2225 snapshots of the 192-
atom 4 × 4 × 1 6H-SiC supercell were used. We chose to use
large supercells because the resulting atomic environments are
more disordered than those of small supercells and therefore
produce more diverse training and testing data sets. More
snapshots of the smaller 6H-SiC supercell are used in order to
include an approximately equal number of atomic neighbor-
hoods from each phase. Next, the atomic neighborhoods are
mapped to the 3D voxelized domain using the protocols
described earlier. Here, Rc was selected as 8.0 Å, and the 3D
atomic neighborhood was discretized into 97 × 97 × 97 voxels,
with a voxel size of ∼0.165 Å. Finally, the CNN is trained using
the reference atomic neighborhoods as the input and their
corresponding atomic force vectors as the target. Details of the
CNN architecture and training protocols are provided in
Supporting Information Section S2 and Figure S1. The
accuracy of the VASt potential is evaluated by predicting

Figure 1. Graphical representation of a two-dimensional atomic
neighborhood constructed via eqs 1−4. (top) The atom center
coordinates in the neighborhood of the atom of interest (including
the atom of interest), φ(r,Z), are convolved with the raised cosine
distribution representation of an atom, ν(r,Z), to produce the
undamped atomic neighborhood, γ(r,Z). (bottom) The undamped
atomic neighborhood, γ(r,Z), is multiplied by the damping function,
fd(r), to produce the damped atomic neighborhood, η(r,Z).

Figure 2. Framework for developing a VASt potential. (left) Reference atomic configurations and corresponding ground-truth interatomic forces
are generated for training. (center) The reference atomic neighborhoods are mapped to their VASt representations. A 3D cross-section of a single
channel of a VASt atomic neighborhood is shown. (right) The CNN-based interatomic potential is trained. Shown, a VASt atomic neighborhood
with Z channels (one for each chemical element) (blue) is input to the CNN (green), which predicts the corresponding interatomic force vector,
FVASt (red).
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interatomic forces on a new set of atomic neighborhoods (i.e.,
not part of the training data set) generated using separate
AIMD simulations at 300 K (separate from those used to
generate the training data set). Random initial velocities are
used in each AIMD simulation to guarantee that the atomic
neighborhoods in the training and testing data sets are sampled
from separate and unique trajectories. A total of 500 snapshots
of both the 216-atom 3C-SiC and 192-atom 6H-SiC supercells
are used. Although here we use the same size supercells for the
training and testing data sets, the VASt framework has
transferability to atomic systems that are larger than those
used for training because of the damping function. In Figure 3,
the absolute errors of the VASt force predictions for the new
atomic neighborhoods are plotted relative to their DFT
computed force magnitudes. The mean absolute errors of the
3C-SiC and 6H-SiC predictions are 0.022 and 0.025 eV/Å,
respectively, and the average percent errors (with respect to
the DFT-computed force magnitudes) are 2.33% and 2.74%,
respectively.
Next, we develop a VASt potential that can rapidly and

accurately compute the thermal conductivity of silicon for any
isotropic strain in the range from −0.035 to 0.035. The
training data set for the VASt potential consists of 6000
configurations of the 216-atom 3 × 3 × 3 supercell. Details of

the data generation procedure can be found in Supporting
Information Section S3. The atomic neighborhoods are
mapped to a 3D domain with a larger Rc of 12 Å in order to
capture the long-range phonon interactions. The 3D domain is
again discretized into 97 × 97 × 97 voxels, resulting in a voxel
size of ∼0.25 Å.
The thermal conductivity results are shown in Figure 4.

First, a set of reference thermal conductivities, kref, are
computed at 0.005 intervals of isotropic strain ranging from
−0.035 to 0.035. The kref values are computed using IFCs
obtained from interatomic forces calculated with DFT for a
finite displacement distance of 0.01 Å. The kref are in good
agreement with those computed by Parrish et al.52 using DFT
and the BTE; the average and maximum percent differences
are ∼3.9% and ∼8.4%, respectively, for isotropic strain ranging
from −0.03 to 0.03 (the full range computed by Parrish et
al.52).
Next, we compute the thermal conductivities using our VASt

potential (kVASt). The VASt potential is used to predict the
interatomic forces required for computing the second- and
third-order IFCs via the finite displacement method.59 The
typical 0.01 Å finite displacement distance is used for the
second-order IFCs, but a larger 0.15 Å finite displacement
distance is used for the third-order IFCs. We found that this

Figure 3. Absolute errors of the VASt force predictions for new (i.e., not used in training) atomic neighborhoods of (left) 3C-SiC and (right) 6H-
SiC, relative to their DFT-computed force magnitudes. The color shows the frequency of the samples relative to their absolute errors and DFT-
computed force magnitudes. Each phase is normalized individually.

Figure 4. Thermal conductivity of silicon as a function of isotropic strain. The kVASt is computed with the BTE using IFCs obtained from our VASt
potential, while kref and k0.15 Å are computed with the BTE using IFCs obtained from DFT. The third-order IFC finite displacement distances used
for kVASt, kref, and k0.15 Å are 0.15, 0.01, and 0.15 Å, respectively. The second-order IFC finite displacement distance for kVASt, kref, and k0.15 Å is 0.01
Å. For comparison, the thermal conductivities computed using DFT with the BTE in ref 52 and using MD in ref 53 are also shown along with the
experimental thermal conductivity of unstrained silicon.57
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significantly reduced the sensitivity of the third-order IFCs to
noise without introducing significant error. For isotropic strain
ranging from −0.035 to 0.035, the average and maximum
percent errors between the kref and the thermal conductivities
computed using IFCs obtained from DFT with a 0.15 Å third-
order IFC finite displacement distance (k0.15 Å) are ∼7.6% and
∼10.5%, respectively.
The kVASt are observed to be in excellent agreement with the

k0.15 Å. For isotropic strain ranging from −0.035 to 0.035, the
average and maximum percent errors are ∼5.0% and ∼10.9%,
respectively. Furthermore, the thermal conductivities predicted
by our VASt potential accurately capture the trend of relatively
constant thermal conductivity from compression to equili-
brium and decreasing thermal conductivity from equilibrium to
tension (see Figure 4). The predictions from the VASt
potential are also a substantial improvement over those from
MD with the Tersoff empirical potential.53 Relative to the kref,
the thermal conductivities estimated from MD for isotropic
strain ranging from −0.03 to 0.03 have an average and
maximum error of ∼48.1% and ∼60.7%, respectively, and
falsely show thermal conductivity monotonically decreasing
from compression to tension. Furthermore, the percent error
between the VASt-predicted thermal conductivity for un-
strained silicon (147.9 W/m K) and the experimental thermal
conductivity (∼150 W/m K)57 is only ∼1.4%, whereas the
percent error between the MD predicted thermal conductivity
(∼215 W/m K)53 and experimental thermal conductivity is
∼43.5%. Given the highly sensitive nature of the third-order
IFCs, the success with which our VASt potential reproduces
thermal conductivity over a continuous range of isotropic
strain is truly remarkable. In particular, we note that the 0.01 Å
second-order and 0.15 Å third-order finite displacement
distances are both smaller than the ∼0.25 Å voxel size of the
3D voxelized domain. This proves that VASt potentials are able
to capture perturbations of atomic structure much smaller than
the voxel size. To further emphasize this point, we also use this
VASt potential to reproduce the unstrained silicon phonon
dispersion curve (which depends only on the second-order
IFCs) and observe that it is in excellent agreement with the
phonon dispersion curve computed using IFCs obtained from
DFT (see Figure S2).
In conclusion, we have introduced VASt potentials, a deep

learning framework for developing ML-based interatomic
potentials. By directly capturing the true atomic structure on
a voxelized 3D domain, VASt potentials are able to leverage
the comprehensive, automated, scalable, and highly efficient
feature engineering capabilities of CNNs to implicitly learn the
complex spatial relationships and multibody interactions that
govern the physics of atomic systems. We first demonstrate
that VASt potentials accurately capture a diverse set of atomic
configurations by producing a single VASt potential capable of
predicting highly accurate interatomic forces on two phases of
a multicomponent system. We then demonstrate that, in
addition to capturing a diverse set of atomic configurations,
VASt potentials are simultaneously sensitive to small
perturbations of atomic structure (much less than the voxel
size) by developing a VASt potential capable of accurately
reproducing the thermal conductivity of silicon subjected to
isotropic strain ranging from −0.035 to 0.035. We show that
the thermal conductivities computed within this range are
substantially more accurate than those computed using MD
with the Tersoff potential.

■ COMPUTATIONAL METHODS
Density functional theory calculations are performed using
VASP.58 A plane-wave basis set and the projector augmented-
wave method60,61 are used with the Perdew−Burke−Ernzerhof
generalized gradient approximation exchange-correlation func-
tional.62 For all calculations, the convergence criteria for the
energy and force is 10−8 eV and 10−6 eV/Å, respectively.
The plane-wave basis cutoff energy for all SiC calculations is

520 eV. The 3C-SiC and 6H-SiC unit cell structures are
optimized using 27 × 27 × 27 and 27 × 27 × 3 Γ-centered
grids of k-points, respectively. Atomic configurations of the 3 ×
3 × 3 3C-SiC and 4 × 4 × 1 6H-SiC supercells are obtained
using AIMD. The AIMD simulations are performed using the
NVT thermostat at 300 K with a time step of 1 fs. The
snapshots for the training and validation data sets are selected
every 4 fs (i.e., four time steps) to allow for higher variance in
the atomic configurations. The atomic forces are computed
using a 3 × 3 × 3 Γ-centered grid of k-points for both phases.
The plane-wave basis cutoff energy for all silicon calculations

is 320 eV. The unstrained cubic diamond silicon unit cell is
optimized using a 27 × 27 × 27 Γ-centered grid of k-points.
The unstrained lattice constant obtained using DFT is 5.47 Å.
Isotropic strain is applied by changing the lattice constant
according to a = a0(1+ε), where a0 is the unstrained lattice
constant. The DFT-computed IFCs and the training data are
both calculated using the 3 × 3 × 3 silicon supercell with a 3 ×
3 × 3 Γ-centered grid of k-points. The thermal conductivity is
computed using Fermi’s golden rule63 with the iterative
solution to the BTE.64−66 A 15 × 15 × 15 mesh is used for
sampling the Brillouin zone. The second-order harmonic and
third-order anharmonic IFCs are computed for the 3 × 3 × 3
silicon supercell using the finite displacement method.59 A
fourth-nearest-neighbor cutoff is used for the third-order IFCs.
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