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Strengthening in complex multicomponent systems such as solid solution alloys is controlled primarily by the
dynamic interactions between dislocation lines and heterogeneously distributed solute species. Modeling of
extended defect length scales in such multicomponent systems becomes prohibitively expensive, motivating the
development of reduced order approaches. This work explores the application of the Concurrent Atomistic-
Continuum (CAC) method to model dislocation mobility in random alloys at extended length scales. By
employing recently developed average-atom interatomic potentials, the average “bulk” material response in
coarse-grained regions interacts with true random solute species in the atomistic-scale domain. We demonstrate
that spurious stresses in domain resolution transition regions are eliminated entirely due to the CAC formulation.
Simultaneously, the key details of local stress fluctuation due to randomness in the dislocation core region are
captured, and fluctuating stress smoothly decays to the long-range dislocation stress field response. Dislocation
mobility calculations, for line lengths over 400 nm, are computed as a function of alloy composition in the model
FeNiCr system and compared to full molecular dynamics (MD). The results capture the composition-dependent
trends, while reducing degrees of freedom by nearly 40%. This approach can be readily extended to any system
described by an EAM potential and facilitates the study of large-scale defect dynamics in complex solute envi-

ronments to support computational alloy design.

1. Introduction

Predictive atomistic modeling of dislocation-mediated yield and
post-yield behavior of alloys has progressed significantly in recent years.
Lately, attention has turned to complex multicomponent alloy systems
with potentially attractive properties and new modeling challenges. To
date, numerous advances have been made in modeling and simulation at
multiple length scales for medium-entropy alloy (MEA) and high-
entropy alloy (HEA) systems [1-5]. These advances in understanding
have paved the way for application of hierarchical scale bridging ap-
proaches [6] to consider larger domain sizes that sample sufficient
numbers of local structures to provide understanding of mesoscopic
behavior. Parameters computed from atomistic simulations can be used
as inputs to reduced degree-of-freedom (DOF) models such as discrete
dislocation dynamics [7-9], phase-field dislocation dynamics [10-12],
or crystal plasticity models [6,13,14]. In providing such inputs,
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however, the relevant aspects of the underlying physics may be lost; key
details that are particularly relevant to solute strengthening in these
alloys, such as chemical short range order [2], are often addressed at
higher length scales using reduced order models that do not follow the
trajectories of atomic reaction pathways. For example, cross-slip in al-
loys is not controlled by either the average or the minimum activation
energy barriers among a distribution of barriers in a heterogeneous
system. The rate-limiting mechanism(s) is (are) more nuanced with in-
fluences at multiple length and time scales [15]. Similarly, dislocation
glide in random alloys has been shown to be line-length dependent
[16,17] due to the multiple length scales of dislocation bowing and
pinning/depinning at local energy minima in the potential energy sur-
face. Analyses of both dislocation mobility and twinning-mediated
deformation in homogenized “average-atom”(A-atom) simulations
[2,18,19] further illustrate the strong dependence of dislocation-
mediated deformation on randomness in alloy DOF, resolved at
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atomistic fidelity. The accurate homogenization or simplification of
numerous complex atomic-scale mechanisms into a form conducive to
multiscale approaches is thus of primary importance [20].

Certain concurrent multiscale methods based on domain decompo-
sition, on the other hand, circumvent these difficulties by explicitly
computing discrete atomic values while still extending the length scale
of a unified simulation system via coupling with continuum represen-
tations, for example [21]. Necessarily, the treatment of interface regions
separating domains at different resolution and scale is of critical
importance. Typically, coupled atomistic-continuum [22-25] modelling
employs force or energy-based coupling across atomistic/continuum (A/
C) interfaces to smooth the process of coarsening spatial degrees of
freedom; the continuum domain embeds average properties that may be
informed or calibrated separately by prescribed atomistic calculations.
The atomistic domain of the model is able to capture the nanoscale
rearrangement during deformation. In recent applications to random
alloys, however, such domain decomposition methods introduce
spurious forces of non-negligible magnitude [26]. This exemplifies the
unphysical interface modeling for the abrupt transition from true
random solutes to a homogeneous material structure description in the
continuum region. To address this, Nag et al. employed the A-atom
embedded atom method (EAM) potential formulation [19,26] to define
a “pad” region between the A/C representations. This effectively creates
a buffer region in which the heterogeneous fluctuations of stress decay
towards a homogeneous bulk value, smoothing the transition. However,
discontinuities in stress were not eliminated, and such applications are
limited by the complexity of model calibration and excessive spurious
stresses due to the force or energy coupling methods.

The A-atom approach has also been applied to explicitly isolate the
effect of lattice distortion and chemical short-range order in MEA [2]
and to study dislocation mobility in austenitic stainless steels [18] and
other HEAs [27]; this has been done by making one-to-one comparisons
between single-component A-atom and true random equivalent models
in atomic resolution—an “all or nothing” approach. However, the mix-
ing of A-atom and true multicomponent solutes as explored using
coupled A/C models is certainly appealing as a concurrent multiscale
domain decomposition framework. Here we propose to extend the
Concurrent Atomistic-Continuum (CAC) [28-31] coarse-graining
approach to simulations of random alloys. CAC is a coarse-grained
atomistic method. It presents a two-level atom and lattice description
for a crystal as an extension of the Irving Kirkwood [32] procedure. This
unified and consistent integral form finite element framework requires
only a suitable interatomic potential to describe both atomic and coarse-
grained resolutions, eliminating the need for ad-hoc force or energy
coupling across length scale interfaces—indeed no scale interfaces exist
in the domain decomposition sense. In addition, CAC utilizes a discon-
tinuous finite element mesh that allows for long range dislocation stress
fields to be preserved and transmitted [33] through coarse-grained (CG)
regions, and for dislocations to propagate therein, while simultaneously
reducing the system DOF. This approach has been extensively explored
in recent applications, demonstrating its robustness in reproducing MD
results for dislocation evolution and elucidating scale-dependent phe-
nomena in mechanisms such as sequential dislocation slip transfer
across interfaces [34]. Additionally, phonon transport behavior across
the atomistic-continuum interface is reliably reproduced for multiple
interfaces [35], lending confidence to treatment of highly non-
equilibrium problems. Moreover, atomic mesh resolution can be
employed in regions of interest using the same framework to fully
resolve nanoscale defects and interactions, thereby avoiding a jump of
the underlying field equations across fully resolved atomistics and
coarse-grained interfaces. The net Burgers vector of each dislocation is
preserved, along with the edge and screw character of partial disloca-
tions [36].

CAC has been previously shown to preserve long-range interactions
and short-range reaction characteristics, though its application has been
limited to pure metals or pure metal bilayer interfaces [37]. The A-atom
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approach has been validated in full MD for concurrent representation of
discrete and A-atom solute types. The next consequential step is to
implement the A-atom approach within CAC to enable large spatial scale
simulations of random alloys, with a fully resolved atomistic domain
only near reactions of interest. Recent advances in the CAC imple-
mentation have allowed for the evaluation of multicomponent EAM
alloy potentials [29]. We leverage these improvements to study the in-
fluence of individual solutes on dislocation behavior in the FeNiCr
ternary alloy, which is of practical relevance to austenitic stainless
steels. By employing a similar A-atom approach as that of Nag et al. [26]
in coarse-grained regions, we can effectively simulate dynamics in this
multicomponent system without loss of detail regarding key defect-
structure interactions. In the following, the A-atom approach is
employed to examine static and dynamic defect behavior in heteroge-
neous solute fields and compared to full MD.

2. Methods
2.1. Interatomic potentials

The model system in this work is austenitic stainless steels, with
nominally FeNiCr components. We employ fixed-composition EAM po-
tentials for the ternary alloy system based on a recent FeNiCr alloy po-
tential for stainless steels [38]. This potential is fit to both DFT and
experimental data to accurately reproduce composition trends for un-
stable/stable stacking fault energies, elastic constants, relevant energies,
and solute misfit swelling volumes. The resultant A-atom potentials are
multicomponent potentials; pair interactions between true random and
A-atoms are also defined. Generalized stacking fault energy curves and
elastic constants have previously been derived in Chu et al. [18]. The
most obvious application of this approach involves defining models at
full atomic resolution that contain true random solutes in domains in
which critical dislocation reactions occur, while employing A-atom in
bulk regions away from these domains. This promotes faster conver-
gence due to the smooth potential energy surface and reduces the
number of degrees of freedom in the A-atom domains. This interpreta-
tion dovetails nicely with the coarse-graining approach of CAC, wherein
continuum volumes and quantities embrace the A-atom average
response and atomic DOF can resolve individual atom types in reaction
pathway domains where the true random solute description is critical,
such as the dislocation core along the dislocation line profile.

2.2. System definitions

2.2.1. Bulk A/C interfacial stress

In the CAC approach, no overlapping coupling region is required as
in coupled A/C simulations, since the same governing equations apply
everywhere, and no ad hoc bridging is required between atomistic and
continuum domains. Thus, it is important to highlight that the label “A/
C” is a bit of a misnomer for CAC, since it is a variable resolution integral
form finite element approach; however, we abide by the A/C termi-
nology here to distinguish the fully resolved atomistic region from the
CG domains to facilitate comparison with the literature. This simulation
domain is set up to reproduce the dimensions employed by Nag et al.
[26], as shown in Fig. 1. There are 51 lattice units in the stacking di-
rection. Accordingly, the final cell dimensions in the x, y and z di-

mensions are 14.5 nm x 14.0 nm x 27.5 nm, oriented along [le],

[110]and [TlT] , respectively. We employ an element size in the initial

bulk interface calculations that corresponds to 1728 atoms per element
(APE). This size is selected to optimize the degree of coarse graining at
the target system dimensions for subsequent mobility calculations. The
element orientation is shown as inset in Fig. 1. Two variants of the model
definition in Fig. 1 are evaluated, one in which (a) multiple planes of A-
atoms are introduced in transition from the true random atomistic
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A/C interface

A-Atom/Random interface b \ ¥

Fig. 1. Representative CAC model for evaluating bulk stress fluctuation.
Approximate A/C interface (red dotted line) and A-atom interface (yellow dot-
dash line) are positions illustrated. Also inset is the relative finite element
orientation and schematic of fill atoms at periodic boundaries. Solute types are
colored according to the legend.

region as a “pad” region, and the other for which (b) the atomistic region
is true random up to the A/C interface, with no pad region. All in-
teractions in the CG regions are defined as A-atom type. Periodic
boundaries are employed in the x and y directions, while the z dimen-
sion is subject to fixed free surface boundary conditions. This is similar
to the standard configuration employed to calculate generalized stack-
ing fault energies [39]. As noted in Xu et al. [33], there are still atoms
present within the CG domain that correspond to “fill atoms” between
elements adjacent to overall computation cell surfaces to facilitate pe-
riodic boundary conditions; these are regions in which the element faces
do not coincide with the simulation cell vector—these are also set to A-
atom type and are illustrated in Fig. 1. System energy is minimized via
full molecular statics conjugate gradient iterations with simultaneous
pressure relaxation at O K until the difference in total energy difference
between subsequent iterations is less than 1018 ev.

2.2.2. Large scale periodic dislocation configuration

The configuration of a periodic array of dislocations [40] is created
by the following procedure: two halves of a crystal are stacked along the
glide plane normal with the top half containing an extra plane of atoms.

e B ————E

[T12]x y[110] FH A-atom, coarse-grained

DA-atom, atomistic
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Atom positions in the top and bottom halves are proportionally dis-
placed by +/- b/2 such that the final dimensions of both crystal halves
are equivalent in the glide direction (y), where b is the Burgers vector of

the edge dislocation. There are 8 atomic [TlT] planes above and below

the centroid of the edge dislocation, while the remaining domain is CG.
The final dimensions of the simulation cell are 400 nm x 20 nm x 20 nm
oriented along the X, y, and z axis respectively as indicated in Fig. 3 with

orthogonal orientation x = Fl 2] ,y=[110],z= [TlT] . The final model

contains 8,347,226 total DOF and is decomposed into 8,346,902 atoms
+ 324 elements (8 node elements, with 35,937 APE) while the equiva-
lent full MD model contains 13,258,080 atoms. This equates to a DOF
reduction of 37% for the CAC model. Throughout this work, DOF refers
to the total number of atoms and nodes in the system.

The model is initially relaxed via molecular statics minimization
using conjugate gradient descent and box dilation in the periodic di-
mensions (x and y) at 0 K to obtain a realistic dislocation configuration
at 0 target pressure. A-atom representation is employed in this relaxa-
tion step to yield a smoother potential energy surface, reducing the risk
of kinetic trapping and allowing the minimization to converge more
rapidly. Following the initial full A-atom relaxation step, three separate

T, e—
NVE

_ Zy
X y[110]

True random, atomisticfff] A-atom, coarse-grained

Fig. 3. Mobility model domain decomposition and ensemble definitions. Solid
blue region denotes free surface boundary conditions.

True random, atomistic

Fig. 2. Edge dislocation domain decomposition model.
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domain decomposition approaches are assessed to compare quantitative
accuracy of the edge dislocation stress field using molecular statics in the
mixed-resolution, mixed-representation approach (Fig. 2). We employ a
CAC model with no A-atom padding region (Fig. 2a), an equivalent full
resolution true random and A-atom decomposed model (Fig. 2b), and a
full atomistic true random alloy model (Fig. 2c). Configuration 2a is
executed using CAC, while 2b and 2c are executed using LAMMPS [41].
The resultant model maintains periodicity along both the dislocation
line (x) and glide direction (y), with a free surface perpendicular the z-
axis. This is also referred to as a free-standing film geometry [16].

The domain decomposition described in Fig. 2a is used for dynamic
CAC dislocation mobility calculations. It is worth reiterating here that a
mixed A-atom (CG region)/true random (atoms) representation is
employed and fully described by the mixed A-atom EAM potential—the
A-atom “type” can be interpreted simply as another solute atom type.
We employ the same boundary conditions as in previous full atomistic
mobility studies on this system [16,18]. Periodic boundaries are applied
in the dislocation glide and line directions, while free-surface bound-
aries are enforced in the z. Atom and nodal trajectories in the top and
bottom boundary layers are solved according to NVE (constant volume
and energy) ensemble, initially set to O K. In the interior region, a target
temperature is assigned and the canonical sampling thermostat devel-
oped by Bussi et al. [42] is employed in CAC to implement the NVT
(constant volume and temperature) ensemble. Per-atom forces vectors
are applied to atoms in the top and bottom boundary layers as indicated
in Fig. 3 to achieve the target shear stress.

The dislocation mobilities are computed at T = 100 K for several
applied stress levels 1,y = 50, 100, 150 MPa and Ni compositions xy; =
0.05, 0.12, 0.25 for the Fe;oNiyCrso.x ternary alloy composition. At xy; =
0.12, the primary constituent components of 316L alloys are closely
matched. The computations are repeated for three random alloy ini-
tializations at 7,y = 50, 75, 100, 120, 150 MPa. All simulations run for
approximately 700 ps after results for the initial 6 ps are discarded.
When the full dislocation line sweeps through one full periodic glide
distance in the y, the top and bottom halves of the crystal are relatively
displaced by one Burgers vector. Thus, we can assess dislocation
displacement as the average per-atom displacement Ay between the top
and bottom halves of the crystal in the direction of the Burgers vector b
as [16], i.e.,

Ay
d=" "L, €))

here the dislocation line is aligned along the x-axis, and the periodic
glide direction with length L, is in the y direction, as denoted in Fig. 3.

3. Results
3.1. Misfit stress fluctuations across the A/C interface

The heterogeneity in local stress fields due to swelling volume
variation for solute atoms in a random alloy and their interaction with
line defects is regarded as the primary source of solute strengthening
[2,43,44] during glide. In addition, the influence of longer range
(beyond nearest neighbor) interactions has been shown to affect pre-
dictions of more complex deformation phenomena such as cross-slip
[15]. We illustrate the advantages that CAC offers compared to the
coupled A/C approach in this regard by making direct comparison with
the results of Nag et al. [26]. Using the configuration defined in Section
2.2.1 to isolate this variation in a defect-free system, fluctuation and
subsequent dissipation of stress heterogeneities across the A/C (fully
atomistic and A-Atom domains) interface are computed. Spatial binning
is applied to atomic planes in the [1 1 1] stacking (z) direction, and we
compute the mean and standard deviation of the per-atom virial stress;
the standard deviation is plotted for all normal stress components in
Fig. 4. The standard deviation of these stress components within the
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Fig. 4. Standard deviation of normal stress components for the defect-free (a)
unpadded and (b) padded bulk random alloy models (2.2.1) executed using
CAC. Positions of the true random/A-atom and atomistic/continuum interface
as they correspond to Fig. 1 are in.

fully atomistic true random region has a magnitude of approximately 1
MPa and can be primarily attributed to the site-to-site solute misfit
volume associated with true random alloy species. This fluctuation de-
cays rapidly into the A-atom region and dissipates to 0 within ~ 2-3
planes in the true random/A-atom interface. Note that in Fig. 4a, the A/
C interface coincides with the random/A-atom interface, as described in
Section 2.2.1. There is no distinct spike in stress that would point to
discontinuity in the energetics because there is no ad-hoc coupling
procedure—the true random Fe, Ni, and Cr atoms interact with A-atoms
and nodes directly via the interatomic potential. For reference, the
spurious stresses across the interface for a coupled A/C method was
derived to be over 5 MPa for multiple alloys studied by Nag et al.,
spiking to nearly 40 MPa in a similar FeNiCr system to the one studied
here [26]. Furthermore, it is observed that the magnitude of the stress
fluctuation across the random/A-atom padding region interface
(Fig. 4b) is equivalent to the fluctuation across the A/C interface rep-
resentation, suggesting that there is no need for a pad region in CAC
simulations using the A-atom potential; thus, a fully true random rep-
resentation in the atomistic regions is used in subsequent simulations.
This points to a significant advantage of the CAC method.

3.2. Dislocation stress-field fluctuation in random alloy

In addition to the local fluctuations of individual atom insertions, it is
vitally important to capture the longer-range stress field of the dislo-
cation itself. Following the configurations in Section (2.2.2), the edge
dislocation stress is evaluated for a varying number of fully resolved
atomic planes above and below the dislocation glide plane. The resulting
stress profile across the core of a partial dislocation is plotted. The per-
atom virial stresses are spatially binned along the dislocation line di-
rection (x), with a bin size of 5 A x 5A in the y and z directions. For all
atomistic layer thicknesses, it can be observed that the stress field
fluctuates in the true random solute regions, then decays smoothly into
the finite element region (Fig. 5a). Slight difference in the peak stresses
can be attributed to fluctuations in the partial dislocation core centroid
position along the length of the wavy dislocation line (due to different
random alloy instantiation) and subsequent variation in bin averages.
The magnitude of stress is relatively insensitive to the number of atomic
planes present; thus, the smallest of the systems is used (3.8 nm width
atomistic layer thickness) to facilitate direct comparison with LAMMPS
in Fig. 5b and for subsequent finite temperature mobility calculations.
The local stress fluctuations present in the dislocation core profile are
evident through the entire system for the fully random model, whereas
the bulk stress smoothly decays to a plateau value representing the
average response in the A-atom regions for both mixed resolution CAC
and fully atomistic LAMMPS models (Fig. 5b). This further validates the
findings in Section 3.1 that the CAC results are not affected by the
absence of the padding region, and simulations executed with true
random solute representation throughout the atomistic domain are
equally accurate. There is agreement between CAC results and the
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Fig. 5. 0y, per-atom virial stress profile of single Shockley partial dislocation core region with a) varying thickness of fully resolved atomistic planes computed using
CAC (vertical lines denote the boundary between atomistic and continuum regions) and b) comparison with LAMMPS domain decompositions as described in

the text.

equivalent full atomic resolution LAMMPS model for both the mixed
true random/A-atom representation and the fully random system
(Fig. 5b); thus, the application of the A-atom approach within CAC can
be applied robustly to simultaneously capture both the short-range
fluctuations and long-range defect stress fields associated with disloca-

tions in random alloys.

3.3. Dislocation mobility

In a single component system, dislocation glide initiates once the
Peierls stress, the intrinsic lattice resistance, is overcome. In a solid so-
lution, local barriers to dislocation motion vary spatially as a function of
solute distribution [45]. This results in dislocation line bowing as it
glides due to pinning/depinning at heterogeneous local obstacles. These
interactions with solute misfit elastic fields form the basis of many solid
solution strengthening theories [1,43,44]. As emphasized previously,

this randomness and additional source of glide resistance is vitally
important to capture if an accurate mobility function is to be deter-
mined, especially for dynamic finite temperature behavior. The
displacement vs. time for all target compositions and stresses are plotted
in Fig. 6a, showing the run-to-run variation due to randomization of
initial solute positions. The equivalent full atomistic, true random
LAMMPS simulations with identical boundary conditions and thermo-
statting parameters are also executed at xy; = 0.12 (Fig. 7). Velocities at
xNi = 0.05, 0.12 in the ternary Fe;oNixCr3ox alloy are comparable, while
a more significant decrease is observed at xy; = 0.25. This feature is
consistent with previous simulations of screw dislocations [18]—at low
temperatures (100 K) the composition dependence is no longer linear.
We also notice that velocities at the lowest applied stresses (50 MPa) are
negligible, indicating the presence of a minimum threshold stress
required to initiate dislocation motion—another feature of glide in solid
solutions that is appropriately captured by the mixed-resolution CAC

) xNi = 0.05 xNi = 0.12 xNi = 0.25
2500 1 sl | G|

%‘2000- ‘ , 1 1 .- Stress [MPa]
£ T SR el Ll e 50
= 10001 st 1 | erpstt 100
& Sazed Sooat St 120
® s00{ it : 1 e 1 et . 150

04 pipdzaeecseisnnsnanneenn | IR I

0 200 400 600 0 200 400 600 0 200 400 600

time [ps] time [ps] time [ps]

X

Z

Fig. 6. (a) CAC computed dislocation displacement vs. time curves at all simulation conditions. (b) Representative segment of characteristic rough dislocation line
configuration, with atoms colored by structure type (Green = FCC, Red = HCP, Blue = undetermined) as calculated by OVITO [48].
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Simulation data
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Xy = 0.12
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Xpni = 0.12 (LAMMPS)
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60 80 100 120 120 160
Stress [MPa]

Fig. 7. Full CAC mobility results and full MD LAMMPS comparison at Xy; =
0.12. Lines denote a “phonon + solute” fit to the computed mobility functions.

simulation. This threshold “friction” stress is absent from previous A-
atom simulations executed at the target alloy composition [18]. There is
evidence of a low and intermediate velocity solute and phonon drag
regime [46,47] for all compositions investigated here [47]. Simulta-
neously, the characteristic bowing associated with heterogeneously
pinning solute fields in the glide plane of the dislocation are captured by
the CAC/A-atom approach, evidenced by the slight run-to-run variation,
and more qualitatively, the dislocation line roughness consistent with
random solute fluctuation visualized in OVITO [48] (Fig. 6b). The
mobility results herein are not meant to be an extensive study of dislo-
cation mobility functions, but rather they illustrate that multiscale CAC
dynamic simulations at finite temperature can indeed capture compo-
sition dependent effects and resolve the essential variation due to
presence of random solute species distribution consistent with full MD
results.

4. Discussion
4.1. Fitting to solute drag model

The applications of the CAC/A-atom approach to studies on dislo-
cation behavior are laid out in the previous sections. Emphasis is placed
primarily on the advantages of CAC as a concurrent multiscale modeling
approach as applied to multicomponent systems; namely, there are no
spurious forces in the transition between atomistic/CG resolutions even
in the presence of random solute distributions in the interface region.
Beyond the spatial resolution, domains are further decomposed into true
random and A-atom regions. This can be interpreted as a two-level
description in terms of both the length scale and influence of the dis-
tribution of chemical species. As such, CAC captures the nuanced details
of large length scale dislocation glide due to the use of full atomic res-
olution. To illustrate this, we examine the nonlinearity of the mobility
curve evident at low stresses and temperatures, indicative of the
“phonon + solute” [16] drag observed in MD solid solution dislocation
mobility calculations. For comparison, the drag force function recently
derived by Sills et al. [16] is employed as

Fy,, =Bv=CT"v (2
kgT .
F, =br = br}.omin{ 1, (ALEb arsinh {eAE"/A“T (ﬁ) } ) } 3)
FSO F d
Tdrag = % (4)

where the fitting parameters are B = CT", 7,9, AE,, woy. Here, v is the
computed dislocation velocity, b is the Burgers vector length, and kg is
Boltzmann’s constant. w is a characteristic dislocation unit glide
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distance and wy is the attempt frequency. Their product is combined
into a single fitting parameter. The drag forces due to solute and phonon
drag are denoted Fy; and Fy, respectively. Our approach to fitting this
function differs slightly than in Sills et al. [16] due to the additional
composition parameter. Because we are comparing data at a single
temperature, the “friction stress” 7,9, or stress required to initiate
dislocation motion at 0 K, cannot be extrapolated. Instead, we use it as a
free fitting parameter and the phonon drag coefficient CT" is collapsed
into a single parameter as simply B. AE, is a stress-dependent energy
barrier associated with solute drag, assumed to be rate insensitive. We
employ the fitting procedures implemented in SciPy [49] “optimize”
package to minimize the sum of the squared residuals. Fig. 7 illustrates
the resulting fit to the computed mobility data for both CAC and
LAMMPS, illustrating the inflection point between the nonlinear solute
drag and linear phonon drag regimes. The fitting method returned
reasonable values for this cross-over point, the friction stress
7y0(Table 1), based on existing MD studies [16] and critical resolved
shear stress estimates from experiments [50,51]; however, all other
fitting parameters (B, AE,, woy) differ by approximately one order of
magnitude from those in previous fits to this model [16]. The fitting
parameters are provided in Table 1 below. Note that we do not modify
the functional form to address solute concentration here, as CAC com-
putations were performed for a limited number of compositions. The
threshold stress determined by fitting at xy; = 0.12 for CAC and
LAMMPS differ by ~ 18 MPa. CAC captures phonon interactions with
wavelength greater than the element size [52-54], however short
wavelength phonon interactions with the dislocation core cannot be
captured in the coarse-grained domain. Neglecting short wavelength
damping and dissipative phonon interactions with the dislocation core
could reasonably lead to higher observed velocity. Moreover, the effect
of thermostatting coarse-grained DOF has not been explicitly evaluated
here. Thus, discrepancies in the computed mobility curve between
LAMMPS and CAC may be due to the relatively large element sizes
employed in these simulations, though this effect is mediated by the use
of the fully resolved atomistic layers in the critical dislocation core re-
gion [35]. These simulations are executed with temperature control via
the canonical sampling thermostat with velocity rescaling [42], and a
more extensive study of temperature-dependent mobility is necessary to
fully evaluate phonon damping effects. Lastly, Sills et al. [16] noted that
they were unable to apply such a fit below 200 K to their temperature-
dependent dataset due to the high threshold stress, though the range of
threshold stress extracted directly from their MD dataset do match the
range of our fitted results.

4.2. Temperature

The temperature definition in CAC is derived through a kinetic en-
ergy density decomposition into velocity field k,; and local velocity
fluctuation ko terms [28]. For an 8-node element as employed in CAC
with size n; = V,/V, where V and V, are respectively the unit cell and
element volumes, the kinetic energy is given as:

Table 1

Fitting parameters for modified solute + phonon fit.
Parameter Ty0 AE}, B woy
Units MPa eV MPa-ps A/ps
xni = 0.05 72.73 0.0411 0.827 27.5
xni = 0.12 74.59 0.0530 0.871 31.3
xni = 0.12(LAMMPS) 92.81 0.0332 1.53 26.3
xni = 0.25 111.3 0.0610 1.26 20.2
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This equivalency makes the assumption that the system is at high-
temperature thermal equilibrium, allowing for the assumption that
every particle DOF possesses energy kzT/2.The velocity field in the
element is determined from displacements Uy,(t) as:

D(x,1) = Se(x) Usa(t) 6)

where S:(x) is the FE shape function and U, (t) can be interpreted as the
velocity of the a-th atom embedded within the &-th node of the element
in question—the nodal velocities, giving for the “average density” k,
term:

/// ko1 (x,1)dV = // /%pa {sg(x) Uﬁa} 2dv =38 @kBT) @)

here, p, is the contribution of the a-th atom to the mass density. The
shape functions implemented in CAC are such that phonons with
wavelength smaller than the element size are truncated, and the
decomposition of kinetic energy density depends on the element size n,,

1.e.
///kaz (x,0)dV = ///%ma(vm)zsv(x —r)dv = (n, — 8) @ﬂ) ®)

Representing the contribution of individual particle fluctuations Vi,
to the k,, kinetic energy density term.

In practice, temperature can be initialized in a straightforward
manner by assigning velocities based on a Boltzmann distribution about
the target average kinetic energy, in a manner similar to full atomistic
simulations. While this results in a lower initial temperature in the CG
regions due the absence of the local fluctuation term, the implemented
thermostat effectively reaches the target kinetic energy through velocity
rescaling in both the atomistic and CG regions after ~ 6-8 ps, depending
on the timestep size. Therefore, pending a more rigorous velocity
initialization implementation, this equilibration stage is crucially
necessary in any finite temperature simulations with CAC. This is not a
significant disadvantage, practically speaking, as finite temperature MD
simulations typically involve a similar relaxation stage after initial ve-
locity assignments. Furthermore, the fully resolved atomistic domain of
interest containing the dislocation line is initialized correctly to the
target temperature and dislocation reactions and fluctuations associated
with mobility in this region are accurately described. The strength of the
finite temperature CAC approach is that the kinetic energy and tem-
perature evolve solely as defined by the interatomic potential (and
thermostat) and T is not a separate state variable as in other multiscale
methods [55]. Fig. 8 illustrates the initial temperature difference at
different resolutions and subsequent evolution based on thermostat
rescaling [42].

5. Conclusion

The application of the CAC method to the coarse-grained simulation
of a range of multicomponent austenitic FeNiCr alloy systems has been
demonstrated. By applying the average-atom representation of bulk
alloy behavior with the CAC method, longer-range dislocation stress
fields and dynamic response to applied stress can be effectively modeled
while preserving the fully resolved atomistic details of dislocation core
and line heterogeneity due to true solute representation in regions of
interest. The strengths of CAC in this problem domain can be summa-
rized as follows:

e No force or energy-coupling is required in the transition between
length-scale regions; interactions are solely defined by an
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Fig. 8. Temperature control and evolution in atomistic and CG domains via
temperature rescaling to target T (100 K) during equilibration step.

appropriate A-atom EAM interatomic potential, thereby eliminating
spurious stresses due to true solute/A-atom discontinuity between
fully resolved atomistic and coarse-grained domains common in
many domain decomposition methods.

Short-range fluctuations in stress and energy due to heterogeneous
solute strain distributions are preserved. Simultaneously, long-range
dislocation stress fields decay smoothly into the bulk region.

The CAC/A-atom approach can effectively simulate the finite tem-
perature dynamics of dislocation motion with greatly reduced
number of DOF and captures composition-dependent effects such as
variation of local solute energy barriers and associated dislocation
line roughness when utilizing the appropriate spatial resolutions.
Composition-dependent dislocation mobilities computed using this
approach at 100 K are validated in the ternary FeNiCr system by
comparing directly to equivalent full atomistic studies on edge dis-
locations through a “solute + phonon” fit.

These findings demonstrate that CAC with an A-atom EAM potential
is an effective coarse-grained atomistic approach for the simulation of
defect behavior in medium and potentially high entropy alloy systems.
The ability to capture heterogenous solute-dependent effects makes this
an attractive approach to apply in systems containing such fluctuations
as local SRO. Further validation of temperature definition and thermo-
stat implementation are necessary to extend applicability of this
approach to relevant problems like high temperature annealing as
simulated by hybrid Monte-Carlo/MD techniques. Future efforts on the
development and implementation of wedge-shaped finite elements into
CAC aim to eliminate the need for fill atoms along periodic boundaries,
dramatically improving the already significant DOF reductions afforded
by CAC.
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