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A B S T R A C T   

Strengthening in complex multicomponent systems such as solid solution alloys is controlled primarily by the 
dynamic interactions between dislocation lines and heterogeneously distributed solute species. Modeling of 
extended defect length scales in such multicomponent systems becomes prohibitively expensive, motivating the 
development of reduced order approaches. This work explores the application of the Concurrent Atomistic- 
Continuum (CAC) method to model dislocation mobility in random alloys at extended length scales. By 
employing recently developed average-atom interatomic potentials, the average “bulk” material response in 
coarse-grained regions interacts with true random solute species in the atomistic-scale domain. We demonstrate 
that spurious stresses in domain resolution transition regions are eliminated entirely due to the CAC formulation. 
Simultaneously, the key details of local stress fluctuation due to randomness in the dislocation core region are 
captured, and fluctuating stress smoothly decays to the long-range dislocation stress field response. Dislocation 
mobility calculations, for line lengths over 400 nm, are computed as a function of alloy composition in the model 
FeNiCr system and compared to full molecular dynamics (MD). The results capture the composition-dependent 
trends, while reducing degrees of freedom by nearly 40%. This approach can be readily extended to any system 
described by an EAM potential and facilitates the study of large-scale defect dynamics in complex solute envi
ronments to support computational alloy design.   

1. Introduction 

Predictive atomistic modeling of dislocation-mediated yield and 
post-yield behavior of alloys has progressed significantly in recent years. 
Lately, attention has turned to complex multicomponent alloy systems 
with potentially attractive properties and new modeling challenges. To 
date, numerous advances have been made in modeling and simulation at 
multiple length scales for medium-entropy alloy (MEA) and high- 
entropy alloy (HEA) systems [1–5]. These advances in understanding 
have paved the way for application of hierarchical scale bridging ap
proaches [6] to consider larger domain sizes that sample sufficient 
numbers of local structures to provide understanding of mesoscopic 
behavior. Parameters computed from atomistic simulations can be used 
as inputs to reduced degree-of-freedom (DOF) models such as discrete 
dislocation dynamics [7–9], phase-field dislocation dynamics [10–12], 
or crystal plasticity models [6,13,14]. In providing such inputs, 

however, the relevant aspects of the underlying physics may be lost; key 
details that are particularly relevant to solute strengthening in these 
alloys, such as chemical short range order [2], are often addressed at 
higher length scales using reduced order models that do not follow the 
trajectories of atomic reaction pathways. For example, cross-slip in al
loys is not controlled by either the average or the minimum activation 
energy barriers among a distribution of barriers in a heterogeneous 
system. The rate-limiting mechanism(s) is (are) more nuanced with in
fluences at multiple length and time scales [15]. Similarly, dislocation 
glide in random alloys has been shown to be line-length dependent 
[16,17] due to the multiple length scales of dislocation bowing and 
pinning/depinning at local energy minima in the potential energy sur
face. Analyses of both dislocation mobility and twinning-mediated 
deformation in homogenized “average-atom”(A-atom) simulations 
[2,18,19] further illustrate the strong dependence of dislocation- 
mediated deformation on randomness in alloy DOF, resolved at 
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atomistic fidelity. The accurate homogenization or simplification of 
numerous complex atomic-scale mechanisms into a form conducive to 
multiscale approaches is thus of primary importance [20]. 

Certain concurrent multiscale methods based on domain decompo
sition, on the other hand, circumvent these difficulties by explicitly 
computing discrete atomic values while still extending the length scale 
of a unified simulation system via coupling with continuum represen
tations, for example [21]. Necessarily, the treatment of interface regions 
separating domains at different resolution and scale is of critical 
importance. Typically, coupled atomistic-continuum [22–25] modelling 
employs force or energy-based coupling across atomistic/continuum (A/ 
C) interfaces to smooth the process of coarsening spatial degrees of 
freedom; the continuum domain embeds average properties that may be 
informed or calibrated separately by prescribed atomistic calculations. 
The atomistic domain of the model is able to capture the nanoscale 
rearrangement during deformation. In recent applications to random 
alloys, however, such domain decomposition methods introduce 
spurious forces of non-negligible magnitude [26]. This exemplifies the 
unphysical interface modeling for the abrupt transition from true 
random solutes to a homogeneous material structure description in the 
continuum region. To address this, Nag et al. employed the A-atom 
embedded atom method (EAM) potential formulation [19,26] to define 
a “pad” region between the A/C representations. This effectively creates 
a buffer region in which the heterogeneous fluctuations of stress decay 
towards a homogeneous bulk value, smoothing the transition. However, 
discontinuities in stress were not eliminated, and such applications are 
limited by the complexity of model calibration and excessive spurious 
stresses due to the force or energy coupling methods. 

The A-atom approach has also been applied to explicitly isolate the 
effect of lattice distortion and chemical short-range order in MEA [2] 
and to study dislocation mobility in austenitic stainless steels [18] and 
other HEAs [27]; this has been done by making one-to-one comparisons 
between single-component A-atom and true random equivalent models 
in atomic resolution—an “all or nothing” approach. However, the mix
ing of A-atom and true multicomponent solutes as explored using 
coupled A/C models is certainly appealing as a concurrent multiscale 
domain decomposition framework. Here we propose to extend the 
Concurrent Atomistic-Continuum (CAC) [28–31] coarse-graining 
approach to simulations of random alloys. CAC is a coarse-grained 
atomistic method. It presents a two-level atom and lattice description 
for a crystal as an extension of the Irving Kirkwood [32] procedure. This 
unified and consistent integral form finite element framework requires 
only a suitable interatomic potential to describe both atomic and coarse- 
grained resolutions, eliminating the need for ad-hoc force or energy 
coupling across length scale interfaces—indeed no scale interfaces exist 
in the domain decomposition sense. In addition, CAC utilizes a discon
tinuous finite element mesh that allows for long range dislocation stress 
fields to be preserved and transmitted [33] through coarse-grained (CG) 
regions, and for dislocations to propagate therein, while simultaneously 
reducing the system DOF. This approach has been extensively explored 
in recent applications, demonstrating its robustness in reproducing MD 
results for dislocation evolution and elucidating scale-dependent phe
nomena in mechanisms such as sequential dislocation slip transfer 
across interfaces [34]. Additionally, phonon transport behavior across 
the atomistic-continuum interface is reliably reproduced for multiple 
interfaces [35], lending confidence to treatment of highly non- 
equilibrium problems. Moreover, atomic mesh resolution can be 
employed in regions of interest using the same framework to fully 
resolve nanoscale defects and interactions, thereby avoiding a jump of 
the underlying field equations across fully resolved atomistics and 
coarse-grained interfaces. The net Burgers vector of each dislocation is 
preserved, along with the edge and screw character of partial disloca
tions [36]. 

CAC has been previously shown to preserve long-range interactions 
and short-range reaction characteristics, though its application has been 
limited to pure metals or pure metal bilayer interfaces [37]. The A-atom 

approach has been validated in full MD for concurrent representation of 
discrete and A-atom solute types. The next consequential step is to 
implement the A-atom approach within CAC to enable large spatial scale 
simulations of random alloys, with a fully resolved atomistic domain 
only near reactions of interest. Recent advances in the CAC imple
mentation have allowed for the evaluation of multicomponent EAM 
alloy potentials [29]. We leverage these improvements to study the in
fluence of individual solutes on dislocation behavior in the FeNiCr 
ternary alloy, which is of practical relevance to austenitic stainless 
steels. By employing a similar A-atom approach as that of Nag et al. [26] 
in coarse-grained regions, we can effectively simulate dynamics in this 
multicomponent system without loss of detail regarding key defect- 
structure interactions. In the following, the A-atom approach is 
employed to examine static and dynamic defect behavior in heteroge
neous solute fields and compared to full MD. 

2. Methods 

2.1. Interatomic potentials 

The model system in this work is austenitic stainless steels, with 
nominally FeNiCr components. We employ fixed-composition EAM po
tentials for the ternary alloy system based on a recent FeNiCr alloy po
tential for stainless steels [38]. This potential is fit to both DFT and 
experimental data to accurately reproduce composition trends for un
stable/stable stacking fault energies, elastic constants, relevant energies, 
and solute misfit swelling volumes. The resultant A-atom potentials are 
multicomponent potentials; pair interactions between true random and 
A-atoms are also defined. Generalized stacking fault energy curves and 
elastic constants have previously been derived in Chu et al. [18]. The 
most obvious application of this approach involves defining models at 
full atomic resolution that contain true random solutes in domains in 
which critical dislocation reactions occur, while employing A-atom in 
bulk regions away from these domains. This promotes faster conver
gence due to the smooth potential energy surface and reduces the 
number of degrees of freedom in the A-atom domains. This interpreta
tion dovetails nicely with the coarse-graining approach of CAC, wherein 
continuum volumes and quantities embrace the A-atom average 
response and atomic DOF can resolve individual atom types in reaction 
pathway domains where the true random solute description is critical, 
such as the dislocation core along the dislocation line profile. 

2.2. System definitions 

2.2.1. Bulk A/C interfacial stress 
In the CAC approach, no overlapping coupling region is required as 

in coupled A/C simulations, since the same governing equations apply 
everywhere, and no ad hoc bridging is required between atomistic and 
continuum domains. Thus, it is important to highlight that the label “A/ 
C” is a bit of a misnomer for CAC, since it is a variable resolution integral 
form finite element approach; however, we abide by the A/C termi
nology here to distinguish the fully resolved atomistic region from the 
CG domains to facilitate comparison with the literature. This simulation 
domain is set up to reproduce the dimensions employed by Nag et al. 
[26], as shown in Fig. 1. There are 51 lattice units in the stacking di
rection. Accordingly, the final cell dimensions in the x, y and z di

mensions are 14.5 nm × 14.0 nm × 27.5 nm, oriented along 
[
112

]
, 

[1 1 0] and 
[
111

]
, respectively. We employ an element size in the initial 

bulk interface calculations that corresponds to 1728 atoms per element 
(APE). This size is selected to optimize the degree of coarse graining at 
the target system dimensions for subsequent mobility calculations. The 
element orientation is shown as inset in Fig. 1. Two variants of the model 
definition in Fig. 1 are evaluated, one in which (a) multiple planes of A- 
atoms are introduced in transition from the true random atomistic 
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region as a “pad” region, and the other for which (b) the atomistic region 
is true random up to the A/C interface, with no pad region. All in
teractions in the CG regions are defined as A-atom type. Periodic 
boundaries are employed in the x and y directions, while the z dimen
sion is subject to fixed free surface boundary conditions. This is similar 
to the standard configuration employed to calculate generalized stack
ing fault energies [39]. As noted in Xu et al. [33], there are still atoms 
present within the CG domain that correspond to “fill atoms” between 
elements adjacent to overall computation cell surfaces to facilitate pe
riodic boundary conditions; these are regions in which the element faces 
do not coincide with the simulation cell vector—these are also set to A- 
atom type and are illustrated in Fig. 1. System energy is minimized via 
full molecular statics conjugate gradient iterations with simultaneous 
pressure relaxation at 0 K until the difference in total energy difference 
between subsequent iterations is less than 10− 18 eV. 

2.2.2. Large scale periodic dislocation configuration 
The configuration of a periodic array of dislocations [40] is created 

by the following procedure: two halves of a crystal are stacked along the 
glide plane normal with the top half containing an extra plane of atoms. 

Atom positions in the top and bottom halves are proportionally dis
placed by þ/- b/2 such that the final dimensions of both crystal halves 
are equivalent in the glide direction (y), where b is the Burgers vector of 

the edge dislocation. There are 8 atomic 
[
111

]
planes above and below 

the centroid of the edge dislocation, while the remaining domain is CG. 
The final dimensions of the simulation cell are 400 nm × 20 nm × 20 nm 
oriented along the x, y, and z axis respectively as indicated in Fig. 3 with 

orthogonal orientation x =
[
112

]
, y = [110], z =

[
111

]
. The final model 

contains 8,347,226 total DOF and is decomposed into 8,346,902 atoms 
+ 324 elements (8 node elements, with 35,937 APE) while the equiva
lent full MD model contains 13,258,080 atoms. This equates to a DOF 
reduction of 37% for the CAC model. Throughout this work, DOF refers 
to the total number of atoms and nodes in the system. 

The model is initially relaxed via molecular statics minimization 
using conjugate gradient descent and box dilation in the periodic di
mensions (x and y) at 0 K to obtain a realistic dislocation configuration 
at 0 target pressure. A-atom representation is employed in this relaxa
tion step to yield a smoother potential energy surface, reducing the risk 
of kinetic trapping and allowing the minimization to converge more 
rapidly. Following the initial full A-atom relaxation step, three separate 

Fig. 1. Representative CAC model for evaluating bulk stress fluctuation. 
Approximate A/C interface (red dotted line) and A-atom interface (yellow dot- 
dash line) are positions illustrated. Also inset is the relative finite element 
orientation and schematic of fill atoms at periodic boundaries. Solute types are 
colored according to the legend. 

Fig. 2. Edge dislocation domain decomposition model.  

Fig. 3. Mobility model domain decomposition and ensemble definitions. Solid 
blue region denotes free surface boundary conditions. 
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domain decomposition approaches are assessed to compare quantitative 
accuracy of the edge dislocation stress field using molecular statics in the 
mixed-resolution, mixed-representation approach (Fig. 2). We employ a 
CAC model with no A-atom padding region (Fig. 2a), an equivalent full 
resolution true random and A-atom decomposed model (Fig. 2b), and a 
full atomistic true random alloy model (Fig. 2c). Configuration 2a is 
executed using CAC, while 2b and 2c are executed using LAMMPS [41]. 
The resultant model maintains periodicity along both the dislocation 
line (x) and glide direction (y), with a free surface perpendicular the z- 
axis. This is also referred to as a free-standing film geometry [16]. 

The domain decomposition described in Fig. 2a is used for dynamic 
CAC dislocation mobility calculations. It is worth reiterating here that a 
mixed A-atom (CG region)/true random (atoms) representation is 
employed and fully described by the mixed A-atom EAM potential—the 
A-atom “type” can be interpreted simply as another solute atom type. 
We employ the same boundary conditions as in previous full atomistic 
mobility studies on this system [16,18]. Periodic boundaries are applied 
in the dislocation glide and line directions, while free-surface bound
aries are enforced in the z. Atom and nodal trajectories in the top and 
bottom boundary layers are solved according to NVE (constant volume 
and energy) ensemble, initially set to 0 K. In the interior region, a target 
temperature is assigned and the canonical sampling thermostat devel
oped by Bussi et al. [42] is employed in CAC to implement the NVT 
(constant volume and temperature) ensemble. Per-atom forces vectors 
are applied to atoms in the top and bottom boundary layers as indicated 
in Fig. 3 to achieve the target shear stress. 

The dislocation mobilities are computed at T = 100 K for several 
applied stress levels τzy = 50, 100, 150 MPa and Ni compositions xNi =

0.05, 0.12, 0.25 for the Fe70NixCr30-x ternary alloy composition. At xNi =

0.12, the primary constituent components of 316L alloys are closely 
matched. The computations are repeated for three random alloy ini
tializations at τzy = 50, 75, 100, 120, 150 MPa. All simulations run for 
approximately 700 ps after results for the initial 6 ps are discarded. 
When the full dislocation line sweeps through one full periodic glide 
distance in the y, the top and bottom halves of the crystal are relatively 
displaced by one Burgers vector. Thus, we can assess dislocation 
displacement as the average per-atom displacement Δy between the top 
and bottom halves of the crystal in the direction of the Burgers vector b 
as [16], i.e., 

d =
Δy
b

⋅Ly (1)  

here the dislocation line is aligned along the x-axis, and the periodic 
glide direction with length Ly is in the y direction, as denoted in Fig. 3. 

3. Results 

3.1. Misfit stress fluctuations across the A/C interface 

The heterogeneity in local stress fields due to swelling volume 
variation for solute atoms in a random alloy and their interaction with 
line defects is regarded as the primary source of solute strengthening 
[2,43,44] during glide. In addition, the influence of longer range 
(beyond nearest neighbor) interactions has been shown to affect pre
dictions of more complex deformation phenomena such as cross-slip 
[15]. We illustrate the advantages that CAC offers compared to the 
coupled A/C approach in this regard by making direct comparison with 
the results of Nag et al. [26]. Using the configuration defined in Section 
2.2.1 to isolate this variation in a defect-free system, fluctuation and 
subsequent dissipation of stress heterogeneities across the A/C (fully 
atomistic and A-Atom domains) interface are computed. Spatial binning 
is applied to atomic planes in the [1 1 1] stacking (z) direction, and we 
compute the mean and standard deviation of the per-atom virial stress; 
the standard deviation is plotted for all normal stress components in 
Fig. 4. The standard deviation of these stress components within the 

fully atomistic true random region has a magnitude of approximately 1 
MPa and can be primarily attributed to the site-to-site solute misfit 
volume associated with true random alloy species. This fluctuation de
cays rapidly into the A-atom region and dissipates to 0 within ~ 2–3 
planes in the true random/A-atom interface. Note that in Fig. 4a, the A/ 
C interface coincides with the random/A-atom interface, as described in 
Section 2.2.1. There is no distinct spike in stress that would point to 
discontinuity in the energetics because there is no ad-hoc coupling 
procedure—the true random Fe, Ni, and Cr atoms interact with A-atoms 
and nodes directly via the interatomic potential. For reference, the 
spurious stresses across the interface for a coupled A/C method was 
derived to be over 5 MPa for multiple alloys studied by Nag et al., 
spiking to nearly 40 MPa in a similar FeNiCr system to the one studied 
here [26]. Furthermore, it is observed that the magnitude of the stress 
fluctuation across the random/A-atom padding region interface 
(Fig. 4b) is equivalent to the fluctuation across the A/C interface rep
resentation, suggesting that there is no need for a pad region in CAC 
simulations using the A-atom potential; thus, a fully true random rep
resentation in the atomistic regions is used in subsequent simulations. 
This points to a significant advantage of the CAC method. 

3.2. Dislocation stress-field fluctuation in random alloy 

In addition to the local fluctuations of individual atom insertions, it is 
vitally important to capture the longer-range stress field of the dislo
cation itself. Following the configurations in Section (2.2.2), the edge 
dislocation stress is evaluated for a varying number of fully resolved 
atomic planes above and below the dislocation glide plane. The resulting 
stress profile across the core of a partial dislocation is plotted. The per- 
atom virial stresses are spatially binned along the dislocation line di
rection (x), with a bin size of 5 Å × 5 Å in the y and z directions. For all 
atomistic layer thicknesses, it can be observed that the stress field 
fluctuates in the true random solute regions, then decays smoothly into 
the finite element region (Fig. 5a). Slight difference in the peak stresses 
can be attributed to fluctuations in the partial dislocation core centroid 
position along the length of the wavy dislocation line (due to different 
random alloy instantiation) and subsequent variation in bin averages. 
The magnitude of stress is relatively insensitive to the number of atomic 
planes present; thus, the smallest of the systems is used (3.8 nm width 
atomistic layer thickness) to facilitate direct comparison with LAMMPS 
in Fig. 5b and for subsequent finite temperature mobility calculations. 
The local stress fluctuations present in the dislocation core profile are 
evident through the entire system for the fully random model, whereas 
the bulk stress smoothly decays to a plateau value representing the 
average response in the A-atom regions for both mixed resolution CAC 
and fully atomistic LAMMPS models (Fig. 5b). This further validates the 
findings in Section 3.1 that the CAC results are not affected by the 
absence of the padding region, and simulations executed with true 
random solute representation throughout the atomistic domain are 
equally accurate. There is agreement between CAC results and the 

Fig. 4. Standard deviation of normal stress components for the defect-free (a) 
unpadded and (b) padded bulk random alloy models (2.2.1) executed using 
CAC. Positions of the true random/A-atom and atomistic/continuum interface 
as they correspond to Fig. 1 are in. 
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equivalent full atomic resolution LAMMPS model for both the mixed 
true random/A-atom representation and the fully random system 
(Fig. 5b); thus, the application of the A-atom approach within CAC can 
be applied robustly to simultaneously capture both the short-range 
fluctuations and long-range defect stress fields associated with disloca
tions in random alloys. 

3.3. Dislocation mobility 

In a single component system, dislocation glide initiates once the 
Peierls stress, the intrinsic lattice resistance, is overcome. In a solid so
lution, local barriers to dislocation motion vary spatially as a function of 
solute distribution [45]. This results in dislocation line bowing as it 
glides due to pinning/depinning at heterogeneous local obstacles. These 
interactions with solute misfit elastic fields form the basis of many solid 
solution strengthening theories [1,43,44]. As emphasized previously, 

this randomness and additional source of glide resistance is vitally 
important to capture if an accurate mobility function is to be deter
mined, especially for dynamic finite temperature behavior. The 
displacement vs. time for all target compositions and stresses are plotted 
in Fig. 6a, showing the run-to-run variation due to randomization of 
initial solute positions. The equivalent full atomistic, true random 
LAMMPS simulations with identical boundary conditions and thermo
statting parameters are also executed at xNi = 0.12 (Fig. 7). Velocities at 
xNi = 0.05, 0.12 in the ternary Fe70NixCr30-x alloy are comparable, while 
a more significant decrease is observed at xNi = 0.25. This feature is 
consistent with previous simulations of screw dislocations [18]—at low 
temperatures (100 K) the composition dependence is no longer linear. 
We also notice that velocities at the lowest applied stresses (50 MPa) are 
negligible, indicating the presence of a minimum threshold stress 
required to initiate dislocation motion—another feature of glide in solid 
solutions that is appropriately captured by the mixed-resolution CAC 

Fig. 5. σyy per-atom virial stress profile of single Shockley partial dislocation core region with a) varying thickness of fully resolved atomistic planes computed using 
CAC (vertical lines denote the boundary between atomistic and continuum regions) and b) comparison with LAMMPS domain decompositions as described in 
the text. 

Fig. 6. (a) CAC computed dislocation displacement vs. time curves at all simulation conditions. (b) Representative segment of characteristic rough dislocation line 
configuration, with atoms colored by structure type (Green = FCC, Red = HCP, Blue = undetermined) as calculated by OVITO [48]. 
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simulation. This threshold “friction” stress is absent from previous A- 
atom simulations executed at the target alloy composition [18]. There is 
evidence of a low and intermediate velocity solute and phonon drag 
regime [46,47] for all compositions investigated here [47]. Simulta
neously, the characteristic bowing associated with heterogeneously 
pinning solute fields in the glide plane of the dislocation are captured by 
the CAC/A-atom approach, evidenced by the slight run-to-run variation, 
and more qualitatively, the dislocation line roughness consistent with 
random solute fluctuation visualized in OVITO [48] (Fig. 6b). The 
mobility results herein are not meant to be an extensive study of dislo
cation mobility functions, but rather they illustrate that multiscale CAC 
dynamic simulations at finite temperature can indeed capture compo
sition dependent effects and resolve the essential variation due to 
presence of random solute species distribution consistent with full MD 
results. 

4. Discussion 

4.1. Fitting to solute drag model 

The applications of the CAC/A-atom approach to studies on dislo
cation behavior are laid out in the previous sections. Emphasis is placed 
primarily on the advantages of CAC as a concurrent multiscale modeling 
approach as applied to multicomponent systems; namely, there are no 
spurious forces in the transition between atomistic/CG resolutions even 
in the presence of random solute distributions in the interface region. 
Beyond the spatial resolution, domains are further decomposed into true 
random and A-atom regions. This can be interpreted as a two-level 
description in terms of both the length scale and influence of the dis
tribution of chemical species. As such, CAC captures the nuanced details 
of large length scale dislocation glide due to the use of full atomic res
olution. To illustrate this, we examine the nonlinearity of the mobility 
curve evident at low stresses and temperatures, indicative of the 
“phonon + solute” [16] drag observed in MD solid solution dislocation 
mobility calculations. For comparison, the drag force function recently 
derived by Sills et al. [16] is employed as 

Fph = Bv = CTnv (2)  

Fsol = bτ = bτy0min
{

1,
(

kBT
ΔEb

arsinh
[

eΔEb/kBT
(

v
2wωH

)])}

(3)  

τdrag =
Fsol + Fph

b
(4)  

where the fitting parameters are B = CTn, τy0,ΔEb,wωH. Here, v is the 
computed dislocation velocity, b is the Burgers vector length, and kB is 
Boltzmann’s constant. w is a characteristic dislocation unit glide 

distance and ωH is the attempt frequency. Their product is combined 
into a single fitting parameter. The drag forces due to solute and phonon 
drag are denoted Fsol and Fph, respectively. Our approach to fitting this 
function differs slightly than in Sills et al. [16] due to the additional 
composition parameter. Because we are comparing data at a single 
temperature, the “friction stress” τy0, or stress required to initiate 
dislocation motion at 0 K, cannot be extrapolated. Instead, we use it as a 
free fitting parameter and the phonon drag coefficient CTn is collapsed 
into a single parameter as simply B. ΔEb is a stress-dependent energy 
barrier associated with solute drag, assumed to be rate insensitive. We 
employ the fitting procedures implemented in SciPy [49] “optimize” 
package to minimize the sum of the squared residuals. Fig. 7 illustrates 
the resulting fit to the computed mobility data for both CAC and 
LAMMPS, illustrating the inflection point between the nonlinear solute 
drag and linear phonon drag regimes. The fitting method returned 
reasonable values for this cross-over point, the friction stress 
τy0(Table 1), based on existing MD studies [16] and critical resolved 
shear stress estimates from experiments [50,51]; however, all other 
fitting parameters (B, ΔEb, wωH) differ by approximately one order of 
magnitude from those in previous fits to this model [16]. The fitting 
parameters are provided in Table 1 below. Note that we do not modify 
the functional form to address solute concentration here, as CAC com
putations were performed for a limited number of compositions. The 
threshold stress determined by fitting at xNi = 0.12 for CAC and 
LAMMPS differ by ~ 18 MPa. CAC captures phonon interactions with 
wavelength greater than the element size [52–54], however short 
wavelength phonon interactions with the dislocation core cannot be 
captured in the coarse-grained domain. Neglecting short wavelength 
damping and dissipative phonon interactions with the dislocation core 
could reasonably lead to higher observed velocity. Moreover, the effect 
of thermostatting coarse-grained DOF has not been explicitly evaluated 
here. Thus, discrepancies in the computed mobility curve between 
LAMMPS and CAC may be due to the relatively large element sizes 
employed in these simulations, though this effect is mediated by the use 
of the fully resolved atomistic layers in the critical dislocation core re
gion [35]. These simulations are executed with temperature control via 
the canonical sampling thermostat with velocity rescaling [42], and a 
more extensive study of temperature-dependent mobility is necessary to 
fully evaluate phonon damping effects. Lastly, Sills et al. [16] noted that 
they were unable to apply such a fit below 200 K to their temperature- 
dependent dataset due to the high threshold stress, though the range of 
threshold stress extracted directly from their MD dataset do match the 
range of our fitted results. 

4.2. Temperature 

The temperature definition in CAC is derived through a kinetic en
ergy density decomposition into velocity field kα1 and local velocity 
fluctuation kα2 terms [28]. For an 8-node element as employed in CAC 
with size nl = Ve/V, where V and Ve are respectively the unit cell and 
element volumes, the kinetic energy is given as: 

Fig. 7. Full CAC mobility results and full MD LAMMPS comparison at xNi =

0.12. Lines denote a “phonon + solute” fit to the computed mobility functions. 

Table 1 
Fitting parameters for modified solute + phonon fit.  

Parameter τy0  ΔEb  B  wωH  

Units MPa  eV  MPa⋅ps  Å/ps  

xNi = 0.05   72.73  0.0411  0.827  27.5 
xNi = 0.12   74.59  0.0530  0.871  31.3 
xNi = 0.12(LAMMPS)   92.81  0.0332  1.53  26.3 
xNi = 0.25   111.3  0.0610  1.26  20.2  

K. Chu et al.                                                                                                                                                                                                                                     



Computational Materials Science 201 (2022) 110873

7

∫∫∫

Ve

kα1dV +

∫∫∫

Ve

kα2dV = nl ×
3
2
kBT (5) 

This equivalency makes the assumption that the system is at high- 
temperature thermal equilibrium, allowing for the assumption that 
every particle DOF possesses energy kBT/2.The velocity field in the 
element is determined from displacements Uξα(t) as: 

v̂(x, t) = Sξ(x)U̇ξα(t) (6)  

where Sξ(x) is the FE shape function and Uξα(t) can be interpreted as the 
velocity of the α-th atom embedded within the ξ-th node of the element 
in question—the nodal velocities, giving for the “average density” kα1 
term: 
∫∫∫

Ve

kα1(x, t)dV =

∫∫∫

Ve

1
2
ρα

[

Sξ(x)U̇ξα

]2

dV = 8
(

3
2

kBT
)

(7)  

here, ρα is the contribution of the α-th atom to the mass density. The 
shape functions implemented in CAC are such that phonons with 
wavelength smaller than the element size are truncated, and the 
decomposition of kinetic energy density depends on the element size nl, 
i.e., 
∫∫∫

Ve

kα2(x, t)dV =

∫∫∫

Ve

1
2
mα (̃vkα)

2δV (x − rk)dV = (nl − 8)

(
3
2
kBT

)

(8) 

Representing the contribution of individual particle fluctuations ṽkα 

to the kα2 kinetic energy density term. 
In practice, temperature can be initialized in a straightforward 

manner by assigning velocities based on a Boltzmann distribution about 
the target average kinetic energy, in a manner similar to full atomistic 
simulations. While this results in a lower initial temperature in the CG 
regions due the absence of the local fluctuation term, the implemented 
thermostat effectively reaches the target kinetic energy through velocity 
rescaling in both the atomistic and CG regions after ~ 6–8 ps, depending 
on the timestep size. Therefore, pending a more rigorous velocity 
initialization implementation, this equilibration stage is crucially 
necessary in any finite temperature simulations with CAC. This is not a 
significant disadvantage, practically speaking, as finite temperature MD 
simulations typically involve a similar relaxation stage after initial ve
locity assignments. Furthermore, the fully resolved atomistic domain of 
interest containing the dislocation line is initialized correctly to the 
target temperature and dislocation reactions and fluctuations associated 
with mobility in this region are accurately described. The strength of the 
finite temperature CAC approach is that the kinetic energy and tem
perature evolve solely as defined by the interatomic potential (and 
thermostat) and T is not a separate state variable as in other multiscale 
methods [55]. Fig. 8 illustrates the initial temperature difference at 
different resolutions and subsequent evolution based on thermostat 
rescaling [42]. 

5. Conclusion 

The application of the CAC method to the coarse-grained simulation 
of a range of multicomponent austenitic FeNiCr alloy systems has been 
demonstrated. By applying the average-atom representation of bulk 
alloy behavior with the CAC method, longer-range dislocation stress 
fields and dynamic response to applied stress can be effectively modeled 
while preserving the fully resolved atomistic details of dislocation core 
and line heterogeneity due to true solute representation in regions of 
interest. The strengths of CAC in this problem domain can be summa
rized as follows:  

• No force or energy-coupling is required in the transition between 
length-scale regions; interactions are solely defined by an 

appropriate A-atom EAM interatomic potential, thereby eliminating 
spurious stresses due to true solute/A-atom discontinuity between 
fully resolved atomistic and coarse-grained domains common in 
many domain decomposition methods.  

• Short-range fluctuations in stress and energy due to heterogeneous 
solute strain distributions are preserved. Simultaneously, long-range 
dislocation stress fields decay smoothly into the bulk region. 

• The CAC/A-atom approach can effectively simulate the finite tem
perature dynamics of dislocation motion with greatly reduced 
number of DOF and captures composition-dependent effects such as 
variation of local solute energy barriers and associated dislocation 
line roughness when utilizing the appropriate spatial resolutions.  

• Composition-dependent dislocation mobilities computed using this 
approach at 100 K are validated in the ternary FeNiCr system by 
comparing directly to equivalent full atomistic studies on edge dis
locations through a “solute + phonon” fit. 

These findings demonstrate that CAC with an A-atom EAM potential 
is an effective coarse-grained atomistic approach for the simulation of 
defect behavior in medium and potentially high entropy alloy systems. 
The ability to capture heterogenous solute-dependent effects makes this 
an attractive approach to apply in systems containing such fluctuations 
as local SRO. Further validation of temperature definition and thermo
stat implementation are necessary to extend applicability of this 
approach to relevant problems like high temperature annealing as 
simulated by hybrid Monte-Carlo/MD techniques. Future efforts on the 
development and implementation of wedge-shaped finite elements into 
CAC aim to eliminate the need for fill atoms along periodic boundaries, 
dramatically improving the already significant DOF reductions afforded 
by CAC. 
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