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A search for new phenomena is presented in final states with two leptons and one or no b-tagged jets.
The event selection requires the two leptons to have opposite charge, the same flavor (electrons or muons),
and a large invariant mass. The analysis is based on the full run-2 proton-proton collision dataset recorded
at a center-of-mass energy of

ffiffiffi
s

p ¼ 13 TeV by the ATLAS experiment at the LHC, corresponding to an
integrated luminosity of 139 fb−1. No significant deviation from the expected background is observed in
the data. Inspired by the B-meson decay anomalies, a four-fermion contact interaction between two quarks
(b, s) and two leptons (ee or μμ) is used as a benchmark signal model, which is characterized by the energy
scale and coupling, Λ and g�, respectively. Contact interactions with Λ=g� lower than 2.0 (2.4) TeV are
excluded for electrons (muons) at the 95% confidence level, still far below the value that is favored by the
B-meson decay anomalies. Model-independent limits are set as a function of the minimum dilepton
invariant mass, which allow the results to be reinterpreted in various signal scenarios.
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Lepton flavor universality (LFU) is one of the funda-
mental predictions of the standard model (SM). LFU was
tested extensively at LEP and SLD [1] and found to be
compatible with the SM prediction. Recent measurements
hint at a possible violation of LFU in rare B-meson decays
[2–13] into a K meson and a pair of muons or electrons.
Possible extensions to the SM suggest that the decay
mechanism implies that physics beyond the SM (BSM)
is present between the initial (b quark) and final states
(s quark and two charged electrons or muons). The BSM
interaction can be modeled using an effective field theory
(EFT) with a four-point contact interaction between the
fermions involved (bsll, l ¼ e, μ), where the scale and
coupling of the underlying physics are denoted by Λ and
g�, respectively [14]. It can be searched for in final states
with two opposite-charge and same-flavor leptons pro-
duced in association with exactly one b quark or without
any b quarks. To explain the asymmetries measured in the
B-meson decays, the bsll interaction would have to be
different between electrons and muons. The phenomeno-
logical framework for this analysis was suggested in
Ref. [16]. The B-meson decay anomalies could correspond
to a bsll operator with Λ=g� ≈ 30 TeV [17,18], which
is beyond the discovery reach of the present search.

However, this unique signature may provide enhanced
sensitivity to other signal scenarios as well [15,19].
Figure 1 shows Feynman diagrams for B-meson decays,
via the SM and via a bsll contact interaction, and for the
production process via a bsll contact interaction in
proton-proton (pp) collisions [20].
In this Letter, a search for new phenomena is presented,

using pp collisions at the Large Hadron Collider (LHC)
with a center-of-mass energy of

ffiffiffi
s

p ¼ 13 TeV. Data
recorded by the ATLAS detector [21] during 2015–2018
are used, corresponding to an integrated luminosity of
139 fb−1. Final states with two oppositely charged elec-
trons or muons are considered separately and further
categorized into events with either no b-tagged jets or
exactly one b-tagged jet. The bsll EFT [16] is considered
as a benchmark model, and model-independent results are
also presented.
ATLAS is a multipurpose particle detector with a

forward-backward symmetric cylindrical geometry and a
near 4π coverage in a solid angle [22]. It consists of
an inner tracking detector surrounded by a thin super-
conducting solenoid providing a 2 T axial magnetic field,
electromagnetic and hadronic calorimeters, and a muon
spectrometer. The inner tracking detector (ID) covers the
pseudorapidity range jηj < 2.5. It consists of silicon pixel,
silicon microstrip, and transition radiation tracking detectors
and a new innermost B layer, added to the pixel detector
before run 2 [23,24]. Lead and liquid-argon (LAr) sampling
calorimeters provide electromagnetic (EM) energy measure-
ments with high granularity. A steel and scintillator-tile
hadronic calorimeter covers the central pseudorapidity range
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(jηj < 1.7). The end cap and forward regions are instru-
mented with LAr calorimeters for EM and hadronic energy
measurements up to jηj ¼ 4.9. The muon spectrometer (MS)
surrounds the calorimeters and is based on three large air-
core toroidal superconducting magnets with eight coils each.
The field integral of the toroids ranges between 2.0 and
6.0 Tm across most of the detector. The muon spectrometer
includes a system of precision tracking chambers and fast
detectors for triggering.
Monte Carlo (MC) simulations are used to model the

expected SM background and the benchmark signals. All
background and signal MC samples were generated using
the five-flavor scheme. The POWHEG-BOX [v1] MC gen-
erator [25–28] was used to simulate at next-to-leading order
(NLO) in QCD the inclusive hard-scattering Z=γ� → lþl−

sample, denoted as Z=γ� þ jets, using the CT10 parton
distribution function (PDF) set [29]. It was interfaced to
PYTHIA [8.186] to model the parton shower, hadronization,
and underlying event, using the AZNLO tune [30] and the
CTEQ6L1 PDF set [31]. The Z=γ� þ jets samples were
normalized to next-to-next-to-leading order (NNLO) in
QCD and corrected for remaining NLO electroweak effects
following the procedure described in Ref. [32]. The effect
of QED final-state radiation (FSR) was simulated with
PHOTOS++ 3.52 [33,34]. The use of POWHEG-BOX was
validated by a generator-level comparison with a sample
produced by SHERPA [2.2.1] [35] using NLO matrix
elements for up to two partons and leading-order (LO)
matrix elements for up to four partons calculated with the
Comix [36] and Open Loops 1 [37–39] libraries. Samples
of diboson (W-boson) events, denoted by VV (W þ jets),
were simulated with SHERPA [2.2.2 (2.2.1)] [35] using the
NNPDF3.0nnlo PDF set, with matrix elements at NLO in QCD
with up to one (two) additional partons and up to three
(four) additional parton emissions at LO [36–39].
For both VV and W þ jets, the matrix elements were
matched with the SHERPA parton shower [40] using the
MEPS@NLO prescription [41–44] and the parameter tune
developed by the SHERPA authors. The W þ jets samples
were normalized to a NNLO prediction [45]. The produc-
tion of tt̄ and single-top-quark Wt events was modeled
using the POWHEG-BOX [v2] generator at NLO with the

NNPDF3.0nlo PDF set and the hdamp parameter set to 1.5mtop.
Events were passed to PYTHIA [8.230] [46] to model the
parton shower, hadronization, and underlying event, using
the A14 parameter tune [47] and the NNPDF2.3lo PDF set.
For Wt events, the diagram removal scheme [48] was used
to eliminate interference with tt̄ production. The production
of tt̄V events was modeled using the MadGraph5_aMC@NLO

v2.3.3 [49] generator at NLO with the NNPDF3.0nlo PDF set.
The events were interfaced to PYTHIA [8.210] using the A14
tune and the NNPDF2.3lo PDF set. The EVTGEN 1.2.0 (1.6.0)
program [50] was used to decay bottom and charm hadrons
for the tt̄V and Z=γ� þ jets (tt̄) processes. The bsll EFT
signal was generated at LO, using a model provided by
the authors of Ref. [16] (see also [51]), with up to two
partons in the final state MadGraph5_aMC@NLO by with the
NNPDF2.3lo PDF set and the A14 tune of PYTHIA [8]
parameters. The CKKW-L merging algorithm [52] was
used with a kt-Durham parameter of 400 GeV. The cross
section for the simulated signal with Λ=g� ¼ 1 TeV is
0.113 pb, for both electrons and muons. The ATLAS
detector response was simulated with GEANT4 [53,54],
except for signal samples, where a fast simulation [55]
was used for the calorimeter response and GEANT4 for all
other detector systems. The effect of multiple interactions
in the same and neighboring bunch crossings (pileup) was
modeled by overlaying simulated inelastic pp events
generated by PYTHIA [8.186] [56] with the A3 tune [57]
and the NNPDF2.3lo PDF set [58]. The MC distributions were
reweighted to the distribution of the average number of
interactions per bunch crossing in data.
Only events taken during stable beam conditions, and for

which all relevant components of the detector were opera-
tional, are considered. Single-lepton triggers were used
[59,60], with pT threshold of 60 GeV or 140 GeV for
electrons, depending on the identification requirement, and
50 GeV for muons. Events must have a vertex with at least
two tracks with a minimum pT of 500 MeV, where the
highest Σtracksp2

T vertex is chosen as the primary one [61].
Electrons are reconstructed from energy clusters in the

EM calorimeter with ID tracks matched to them and are
required to fulfill the “tight likelihood’ identification
criteria as well as calorimeter- and track-based isolation

FIG. 1. Representative Feynman diagrams for the decay of a Bþ meson to a Kþ meson in association with two leptons (a) in the SM
and (b) in the EFTapproach and for production of two leptons via a bsll contact interaction in pp collisions (c) without and (d) with a b
jet in the final state.
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criteria [62]. Electrons must have a minimum transverse
energy of 30 GeV and must be within the region
jηclusterj < 2.47, excluding the transition region between
the barrel and the end cap, 1.37 < jηclusterj < 1.52. Muons
are reconstructed from combined MS and ID tracks with a
minimum pT of 30 GeV, must fulfill the “high-pT”
identification criteria [63], which aim to optimize the
momentum resolution for tracks with high transverse
momentum, and must be within the region jηj < 2.5. For
muons, track-based isolation criteria are required based on
the scalar sum of the transverse momenta of the ID tracks
associated with the primary vertex, excluding the muon
track itself. Muon (electron) candidates are required to
originate from the primary vertex by requiring the signifi-
cance of the track’s transverse impact parameter calculated
relative to the beam line d0=σðd0Þ to be smaller than 3.0
(5.0). Furthermore, the longitudinal impact parameter z0,
defined as the difference between the z coordinate of the
point of closest approach to the beam line and the
longitudinal position of the primary vertex, is required to
satisfy jz0 sinðσÞj < 0.5 mm. Anti-kt jets [64] are recon-
structed from energy deposits in topological clusters of
calorimeter cells [65], using the particle-flow algorithm
[66] and a radius parameter of 0.4. The jet energy is
calibrated at particle level [67]. Jets are required to be
within jηj < 2.5 and to have a minimum pT of 30 GeV. A
jet vertex tagger [68] is used to suppress pileup contribu-
tions for jets with jηj < 2.4 and pT < 60 GeV. Jets are
identified as containing b hadrons using the DL1 algorithm
[69,70], with a b-tagging efficiency of ∼77% for b jets and
a rejection factor of ∼6 for c jets and ∼110 for other light
jets, based on simulated tt̄ events. Finally, a sequential
overlap-removal procedure is used as follows: in the first
step, electrons that share a track with a muon are removed
from the event; in the second step, any jet that has a ΔR to
an electron that is smaller than 0.2 is removed from the
event; and in the third step, electrons are removed
from an event if they are geometrically closer than ΔR ¼
0.4 to any remaining jet. Jets within ΔR < 0.04þ
10 GeV=pTðμÞ to a muon are removed from the event if
they have, at most, two associated tracks with
pTðtrackÞ > 0.5 GeV, otherwise the muon is removed.

Events are selected by requiring two same-flavor electrons
or muons with opposite electric charge, where at least one of
the leptons is required to geometrically match the object that
fired the trigger. To ensure high trigger efficiency, the pT
threshold for the leading lepton is raised to 65 GeV. Two
categories are defined depending on the presence of a
b-tagged jet, targeting two different production mechanisms.
The b-veto category, denoted by eþe−=μþμ− þ 0b, discards
any event with a b-tagged jet, while the b-tag category,
denoted by eþe−=μþμ− þ 1b, requires exactly one b-tagged
jet in each event. No further requirement on the number of
jets is made. Regions in each category are defined based on
the dilepton invariant mass mll and are selected to allow

high statistics to constrain the dominant backgrounds in
dedicated control regions (CRs), validate the background
estimation in dedicated validation regions (VRs), and keep a
broad set of signal regions (SRs). SRs are defined with lower
bounds onmll,mmin

ll , ranging from 400 to 3200 (2000) GeV
for the b-veto (b-tag) category with a step size of 100 GeV,
where each SR is defined by requiringmll > mmin

ll . CRs are
defined in order to normalize the contribution of the two
dominant background processes originating from tt̄,Wt and
tt̄V, together denoted by “top,” and Z=γ� þ jets processes.
The Z=γ� þ jets CRs (Z-CRs) are defined by requiring
events to be within 130 < mll < 250 GeV, while the
intermediate mass range, 250 < mll < 400 GeV, serves
as a VR to test the background modeling. For each Z-CR
and VR, the same b-veto and b-tag categories as in the SRs
are applied. Finally, a top-CR is constructed by requiring
exactly two b-tagged jets and the dilepton invariant mass to
satisfy mll > 130 GeV.
A fit-based extrapolation procedure is used to estimate

the tails of the topmll distributions, which suffer from low
statistics in the MC simulation, using functions developed
in other ATLAS searches [71],

fbkg1ðmllÞ ¼ e−amb
llm

c logðmllÞ
ll and

fbkg2ðmllÞ ¼
a

ðmll þ bÞc ;

where a, b, and c are free parameters. Several fits are
performed by using both functions, while varying the start
and end point of the fit range and using a χ2 test to estimate
the level of agreement between the fits and the MC
prediction. The fit with the lowest χ2 provides the nominal
choice of the function parameter values, while all other fits
with χ2 probability smaller than a fixed χ2 value are used
for the uncertainty estimation. This fixed χ2 value is chosen
such that, near the transition point between the simulation
and the extrapolation, the resulting uncertainty on the
extrapolation is similar to the overall uncertainty, which
is accounting for the experimental and modeling systematic
uncertainty, and the statistical uncertainty of the simulated
top background samples. Furthermore, checks are per-
formed in order to make sure that the fitted function
reproduces the MC event yields at lower values of mll
and that the cumulative distribution of the extrapolation is
consistent with the integrated event yields in the MC
samples. Finally, since the extrapolation is done for the
combined top sample, which includes all top-related
processes, it was checked that those processes have a
similar mll shape within uncertainties. For the top back-
ground extrapolation, the transition points between simu-
lation and extrapolation in the mll distributions are (1000,
1200, 1200 or 1300) GeV for the (0,1,2)-b-tagged jets
selections, respectively, in the electron or muon channel.
Above the transition point, only the extrapolation uncer-
tainty is assigned to the top background sample. This
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TABLE I. Summary of the relative systematic uncertainties for signal regions with mmin
ll ¼ 2000ð1500Þ GeV

before the fit is performed for the 0b (1b) categories. The background uncertainties are presented relative to the total
SM prediction.

eþe− þ 0bð1bÞ (%) μþμ− þ 0bð1bÞ (%)

Source Signal 0bð1bÞ Background 0bð1bÞ Signal 0bð1bÞ Background 0bð1bÞ
Luminosity 1.7 (1.7) 1.6 (1.5) 1.7 (1.7) 1.7 (1.7)
Pileup < 0.5 (< 0.5Þ < 0.5 (0.7) < 0.5 (< 0.5Þ < 0.5 (< 0.5Þ
Leptons 8.7 (8.6) 8.6 (6.3) 8.5 (6.5) 9.1 (4.2)
Jets < 0.5 (1.8) < 0.5 (3.4) < 0.5 (1.6) < 0.5 (1.9)
b tagging < 0.5 (1.4) < 0.5 (2.0) < 0.5 (1.4) < 0.5 (2.2)

Top bkg. extrapolation � � � 3.5 (32.0) � � � < 0.5 (36.0)
Multijet extrapolation � � � 7.5 (15.0) � � � � � �
Top bkg. modeling � � � < 0.5 (< 0.5Þ � � � < 0.5 (< 0.5Þ
Z=γ� þ jets bkg. modeling � � � 9.4 (4.3) � � � 10.0 (5.5)

MC statistics 0.6 (0.8) 1.9 (3.5) 0.7 (1.0) 1.7 (2.4)

Total 8.9 (9.1) 15.0 (37.0) 8.7 (7.1) 14.0 (37.0)

(a) (b)

(c) (d)

FIG. 2. Data overlaid on SM background postfit mll distributions in the SRs of the (a) electron b-veto, (b) electron b-tag, (c) muon
b-veto, and (d) muon b-tag categories. “Others” refers to diboson and W þ jets events. MC statistical uncertainties and systematic
uncertainties are considered (hatched band). The prefit signal distribution is presented as well for a hypothesis of Λ=g� ¼ 1 TeV. The
bottom panels show the ratio of the data to the background prediction, while the arrows correspond to bins where the ratio is beyond the
limits of the figure. The last bin is an overflow bin, which contains the yields in the bins beyond it. The dashed and dotted lines mark
the transition point where the extrapolation is used in the analysis for the top and multijet backgrounds, respectively.
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uncertainty is the dominant one in the b-tag categories. It is
46% (53%) and 223% (236%) relative to the nominal fitted
extrapolation in the eþe− þ 1b (μþμ− þ 1b) category with
mmin

ll ¼ 1200 and 2000 GeV, respectively.
The background contribution of events with reconstructed

objects that have been misidentified as leptons, referred to as
“multijet,” is estimated using a data-driven approach in the
electron channel. In the muon channel, this contribution is
found to be negligible. The matrix method is used, similar to
the procedure described in Ref. [32]. The probabilities that a
jet and a real electron satisfy the electron identification
criteria are evaluated, for both the nominal and the “loose
likelihood” identification criteria, while for the former no
isolation criteria are applied. Then these probabilities are
used in order to estimate the multijet contribution in the
selected region. The multijet background estimation suffers
from low statistics at high mll, and an extrapolation
procedure similar to that of the top processes is used, with
transition points at (800, 600, 600) GeV for the (0,1,2)-b-
tagged jets selections, respectively.
Experimental systematic uncertainties, related to the

modeling of the detector response in the simulation, are
considered. The uncertainty in the combined 2015–2018
integrated luminosity is 1.7% [72]. Uncertainties in elec-
tron and muon trigger, reconstruction, and identification
efficiencies, and energy and momentum calibration and

resolution, are derived from data using Z → ll and
J=ψ → ll decays [62,73]. Uncertainties in the jet energy
scale and resolution are evaluated from MC simulations
and from data using multijet, Z þ jets, and γ þ jets events
[67]. Uncertainties in the b-tagging efficiency are derived
from data [74] for b jets, c jets, and other light jets. MC
simulations are used to extrapolate the efficiencies to
regions beyond the kinematic reach of each calibration.
In order to assess the systematic uncertainty due to pileup,
the reweighting to match simulation to data is varied within
its uncertainty. Finally, uncertainties related to the top
and multijet background extrapolation are evaluated as
described earlier in the text.
Theoretical systematic uncertainties, related to the mod-

eling of the background processes in the MC simulation, are
considered as well. The Z=γ� þ jets PDF variation uncer-
tainty is estimated using the 90% confidence level (C.L.)
CT14nnlo PDF error set, following Refs. [32,75–77]. The
uncertainty due to αs is assessed by using the CT14nnlo PDF
set where the value of αsðmZÞ ¼ 0.118 is shifted by 0.003,
while QCD scale uncertainties are obtained by varying
the renormalization and factorization scales simultaneously
by a factor of 2 up and down. The uncertainty due to the
choice of PDF set is estimated by using the NNPDF3.0 PDF set
instead of the nominal choice of CT14nnlo [77]. Corrections
due to photon-induced processes are estimated using the

(a) (b)

(c) (d)

FIG. 3. Data overlaid on SM background postfit yields in the regions of the (a) electron b-veto, (b) electron b-tag, (c) muon b-veto, and
(d) muon b-tag categories. “Others” refers to diboson andW þ jets events. MC statistical uncertainties and systematic uncertainties are
considered (hatched band). The left part of each figure presents the yields in the CRs and the VR of each category, while the right part
presents the yields in the SRs of each category. The bottom panels show the ratio of the data to the background prediction, while the
arrows correspond to bins where the ratio is beyond the limits of the figure. The range of the y axis is different between the left and right
parts of the bottom panels, and the latter is presented at logarithmic scale. For the SRs, as the distribution is cumulative, each bin is
contained in and therefore correlated with the lower mass bins.
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MRST2004qed PDF set [78]. The uncertainty due to NLO
electroweak corrections for the Z=γ� þ jets sample are
evaluated as in Ref. [75]. For tt̄ and single-top-quark
production, an uncertainty in the cross section originating
from scale, PDFþ αs, and top-quark-mass uncertainties is
applied. The nominal sample is compared with a sample
generated with MadGraph5_aMC@NLO to estimate the matrix-
element uncertainty. To evaluate the parton-shower uncer-
tainty, a sample simulated with POWHEG-BOX interfaced to
HERWIG 7 [79] is used. To simulate higher parton radiation,
the factorization and renormalization scales are varied by a
factor of 0.5 in the matrix element using the “up” variation
from the A14 parameter tune in the parton shower. For lower
parton radiation, the renormalization and factorization scales
are varied by a factor of 2.0 using the “down” variation in the
parton shower. The impact of FSR is evaluated by changing
the renormalization scale for QCD emission by factors of 0.5
or 2.0. For tt̄ and single-top-quark events, the PDF uncer-
tainty is derived using 30 eigenvector variations as specified

in Ref. [77], to estimate distribution shape uncertainties. For
tt̄ production, the impact of factorization and renormaliza-
tion scale uncertainties on the shapes of distributions is
derived by varying those scales by a factor of 0.5 or 2.0. The
nominal Wt sample is compared with a sample generated
using the diagram subtraction scheme [48,80]. Finally, the
statistical uncertainties of the simulated event samples are
also taken into account.
Table I presents the systematic uncertainties for one

signal region from each channel. Systematic uncertainties
that are lower than 0.5% in a given region are not
considered.
The signal and background yields are estimated using

simultaneous maximum-likelihood fits of the signal-plus-
background and background-only hypothesis. Systematic
and MC statistical uncertainties are included as nuisance
parameters (NPs) and are constrained in the fit. Dedicated
fit parameters are used as additional NPs to adjust the top
and Z=γ� þ jets background normalizations. A likelihood

(a) (b)

(c) (d)

FIG. 4. Model-independent observed (solid line) and expected (dashed line) upper limit on the visible cross section (σvis ¼ σϵA) for
the (a) electron b-veto, (b) electron b-tag, (c) muon b-veto, and (d) muon b-tag categories. The uncertainty bands around the expected
limit represent the 68% and 95% confidence intervals. The theory lines (dotted lines) correspond to particular Λ=g� values of the signal
model, and the red marker presents the strongest expected lower limit on Λ=g�.
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ratio test statistic is used to assess the compatibility of
the data with the background-only hypothesis to derive
limits on the BSM signals, following the procedure in
Ref. [81]. Exclusion limits are set using the CLs method
[82], which is performed separately for each of the b-tag
and b-veto categories in the electron and muon channels
and by considering a single-bin SR and the relevant CRs
per category.
The data agree well with the SM prediction in all of the

VRs after the fit. The postfit mll distributions in the SRs
are presented in Fig. 2 for the background-only hypothesis,
while the fit is done only at the CRs (CR-only fit) and then
used to estimate the background yields. The cumulative
mll distribution for the signal regions after the CR-only
fit to the data are shown in Fig. 3 together with the yields in
the different CRs and VRs. The largest deviation from the
SM prediction is observed in the eþe− þ 1b category,
where a selection of mmin

ee ¼ 1700 GeV yields a local
significance of 2.6σ. The global significance is estimated
by generating pseudo-experiments using all of the electron
b-tag SRs and found to be 1.5σ. Other notable local
deviations are in the eþe− þ 1b category with mmin

ee ¼
1500; 1600; 2000ð1900Þ GeV, which yields 2.1σð2.0σÞ,
and in the eþe− þ 0b category with mmin

ee ¼ 2200 GeV,
which yields 2.1σ. In the μþμ− þ 0b category, a deficit of
events is observed with up to 1.9σ, with a selection of
mmin

μμ ¼ 1600, 2800 GeV. In Fig. 4, model-independent
upper limits on the signal cross section times selection
efficiency times detector acceptance (σvis ¼ σϵA) are
presented for each signal region selection. For the bsll
benchmark model, the strongest expected limits are found
with a selection ofmmin

ll ¼ 1900ð1500Þ GeV in the eþe− þ
0bð1bÞ category, which corresponds to expected and
observed lower limits on Λ=g� of up to 2.2 (2.2) and
2.0 (1.8) TeV, respectively, and with a selection of mmin

ll ¼
1800ð1600Þ GeV in the μþμ− þ 0bð1bÞ category, which
corresponds to expected and observed lower limits on Λ=g�
of up to 2.1 (2.1) and 2.4 (2.0) TeV, respectively. The
excluded values of Λ=g� are far below the value favored by
the anomalies, which is ≈30 TeV.
In summary, a search for new phenomena was conducted

in final states with two electrons or muons in association
with one or no b-tagged jets. The analysis was conducted
using 139 fb−1 of pp collision data at

ffiffiffi
s

p ¼ 13 TeV
recorded by the ATLAS detector at the Large Hadron
Collider. No significant excess of events above the
expected SM background is observed. Model-independent
upper limits at 95% C.L. were set on the signal cross
section in each of the signal regions. A first search for a
bsll contact interaction is presented, and values of Λ=g�
smaller than 2.0 (2.4) TeVare excluded using the observed
limits for electrons (muons) at 95% C.L., which is still far
below the value that has been predicted in order to explain
the B-meson decay anomalies.
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Casablanca, Morocco
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36LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
37Nevis Laboratory, Columbia University, Irvington, New York, USA

38Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
39aDipartimento di Fisica, Università della Calabria, Rende, Italy
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69aINFN Sezione di Pisa, Pisa, Italy
69bDipartimento di Fisica E.Fermi, Università di Pisa, Pisa, Italy
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