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Convolutional Neural Networks
for the Localization of Plastic
Velocity Gradient Tensor in
Polycrystalline Microstructures
Recent work has demonstrated the potential of convolutional neural networks (CNNs) in
producing low-computational cost surrogate models for the localization of mechanical
fields in two-phase microstructures. The extension of the same CNNs to polycrystalline
microstructures is hindered by the lack of an efficient formalism for the representation of
the crystal lattice orientation in the input channels of the CNNs. In this paper, we demon-
strate the benefits of using generalized spherical harmonics (GSH) for addressing this chal-
lenge. A CNN model was successfully trained to predict the local plastic velocity gradient
fields in polycrystalline microstructures subjected to a macroscopically imposed loading
condition. Specifically, it is demonstrated that the proposed approach improves significantly
the accuracy of the CNN models when compared with the direct use of Bunge–Euler angles
to represent the crystal orientations in the input channels. Since the proposed approach
implicitly satisfies the expected crystal symmetries in the specification of the input micro-
structure to the CNN, it opens new research directions for the adoption of CNNs in address-
ing a broad range of polycrystalline microstructure design and optimization problems.
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Introduction
Metals exhibit rich and complex granular microstructures, where

the mechanical response of each grain is most naturally described in
a crystal reference frame aligned with the motif describing the
atomic configuration in the material. Such polycrystalline micro-
structures naturally produce heterogeneous mechanical (e.g.,
stress, strain) fields at the mesoscale when subjected to any macro-
scale loading, including those usually prescribed as uniform
boundary conditions in multiscale simulations of the material
response [1–4]. Efforts aimed at the design and development of
advanced metals require low computational cost tools capable of
accurately predicting the mesoscale mechanical fields controlling
the performance characteristics of interest [5–8]. For example, the
mesoscale stress and strain fields are known to influence strongly
the fatigue and/or damage resilience of the metal [9,10]. One
often needs to rapidly evaluate a large set of potentially viable
microstructures before arriving at specific ones that exhibit
optimal effective material properties or performance characteristics.
In the context of polycrystalline microstructures, the design space of
microstructures would include a very wide range of distributions of
the crystal orientations (i.e., textures) as well as the size and shape
distributions of the crystalline regions (i.e., grains). Therefore, there
is a critical need for low-computational cost simulation tools
capable of predicting accurately the mesoscale mechanical fields
in polycrystalline microstructures of metals when subjected to mac-
roscale loading conditions; such tools are essential for addressing
microstructure design and optimization problems with typically
available computational resources.

In established composite theories, the prediction of the mesoscale
fields subjected to imposed macroscale loading conditions is gener-
ally referred to as the localization problem [11–14]. In essence, this
is the inverse of the homogenization problem [8,11,15] which aims
to compute the effective properties associated with a heterogeneous
microstructure, which are typically needed for the design of engi-
neered components. The solution to the localization problem
needs to satisfy the governing equilibrium equations, the material
constitutive laws at the mesoscale, and the imposed boundary con-
ditions. These are essential in addressing material responses in
fatigue and other failures [8,16,17]. In spite of the major strides
made in the efforts aimed at developing analytical solutions to the
localization problem [18–20], they are currently available only for
a limited class of highly simplified or idealized material problems.
For most practical problems of interest, the most versatile approach
available for addressing the localization problems is to leverage
numerical approaches based on the finite element (FE) method
[21–24]. Although the FE-based strategies are known to produce
highly accurate and reliable solutions to the localization problem,
they often demand major computational resources. This is espe-
cially true when incorporating sophisticated physics related to the
plastic response of the individual grains in the polycrystalline
microstructure of the metals. As such, the FE-based approaches to
the localization problems are not ideally suited for addressing
microstructure design problems, where one expects to evaluate an
exceedingly large number of potential microstructures in order to
identify the optimized solution. The materials design challenges
described above are further exacerbated by the recent advances in
multiscale materials modeling approaches [25–27], which have
now made it possible to consider the rich and more complex
details of the material structure at multiple length scales in evaluat-
ing the material’s response. However, in order to transform these
advances into materials with improved properties, one needs
novel, practically viable, computational strategies for exploring
large materials design spaces spanning the acceptable ranges of sui-
tably defined measures of the multiscale material internal structure.
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It is vital that these new computational approaches provide solu-
tions within the constraints of the computational resources typically
available to the materials design and manufacturing industry.
The advent of artificial intelligence/machine learning approaches

has opened new research avenues for addressing the gap identified
above. Specifically, it has raised the prospect of establishing suffi-
ciently accurate low-computational cost surrogate models trained
to the results obtained from the computationally expensive
FE-based models in a one-time training exercise using a collection
of digitally created microstructures and subsequently using the sur-
rogate models for predicting the mesoscale mechanical fields in new
microstructures. Implementation of such a strategy requires suitable
customization of the tools developed originally for other applica-
tions in computer science (e.g., image recognition [28,29]), which
are quite unrelated to the concepts and paradigms employed in
the mechanics of materials field. In other words, it should be possi-
ble to leverage some of the emergent concepts and tools from the
field of machine learning to distill transferable knowledge from
FE simulations conducted on a set of training microstructures and
subsequently use the captured knowledge to predict the response
of new (test) microstructures. Although the training phase would
incur a one-time substantial computational cost, all subsequent pre-
dictions for new microstructures can be obtained with minimal com-
putational cost. A specific example of the implementation of this
paradigm can be seen in the recently formulated materials knowl-
edge systems (MKS) framework. The initial efforts in the develop-
ment of the MKS framework adopted the parametric model forms
suggested by the statistical continuum theories of Kröner [19,20]
and employed linear regression techniques to train the surrogate
models [30–35]. This simple strategy was found to produce very
accurate localization surrogate models for material systems with
low to moderate contrast in the local properties of the constituents.
As an example, in a two-phase microstructure with isotropic constit-
uents, the ratio of the yield strengths of the constituent phases would
reflect the contrast in the composite material system. Prior work in
the MKS framework [11,33,35] has demonstrated that simple linear
expansions can be used effectively to obtain highly accurate local-
ization surrogate models for low-contrast composites. High-contrast
composite material systems exhibit significantly higher levels of
heterogeneity in the mesoscale mechanical fields (e.g., stress,
strain) and demand more sophisticated approaches [8,34,36].
Modern machine learning tools have opened new avenues for

building highly accurate localization surrogate models for high-
contrast composite material systems. In recent work [37,38], it
was especially noted that convolutional neural networks (CNNs)
offer a powerful tool set to address this challenge because the use
of convolutions in the linear transformations employed in the
CNN is indeed very similar to the convolution operators found in
the analytical solutions derived for the localization problems. Fur-
thermore, the localization solutions provided by CNNs implicitly
exhibit translational invariance, which is a key property expected
in all localization solutions based on the governing physics for
this class of problems. CNNs employ layers of convolutional
filters along with nonlinear activations to efficiently and accurately
capture the complex neighborhood interactions that occur naturally
at the mesoscale, when the heterogeneous material microstructure is
subjected to a prescribed macroscale loading condition. The convo-
lution filter weights in the CNN are inferred by training it to ground-
truth data, which can be obtained in a one-time effort by executing
suitable FE simulations on an ensemble of digitally created micro-
structures [39]. CNNs have already been successfully employed in
obtaining highly accurate localization solutions for elastic deforma-
tions in high-contrast two-phase composites [38].
As the logical next step in the further development of CNN-based

localization surrogate models, there is a critical need to explore their
viability for more complex microstructures and more sophisticated
governing physics. Specifically, we explore in this paper the viabi-
lity of CNN-based localization models for plastic deformations in
polycrystalline metal samples subjected to a prescribed macro-
scale imposed loading condition. The governing physics for

these problems is specified by the crystal plasticity theories
[1–4,21,40,41] which are significantly more complex than the
elastic deformations studied in the prior applications of CNNs to
localization problems. Another major challenge comes from the
need to describe the local material state in each voxel of the poly-
crystalline microstructure, which is most commonly expressed as
a set of rotation angles known as the Bunge–Euler angles, g=
(φ1, Φ, φ2) [42]. This set of angles represents the local crystal
lattice orientation in each voxel of the representative polycrystalline
sample volume with respect to the sample reference frame. Mathe-
matically, g is an element of SO(3) space, and its representation in
the input channels to the CNN poses significant challenges. Because
of the inherent crystal symmetries, any specified crystal orientation
is expected to have multiple equivalent representations. For
example, each orientation of a cubic crystal would have 24 equiva-
lent descriptors in SO(3). Furthermore, orientation spaces defined
using representations based on Bunge–Euler angles exhibit multiple
degeneracies; as a result, the Euclidean distances in such spaces do
not reflect accurately the similarity or closeness of any two ori-
entations selected in SO(3). Established crystal plasticity theories
[1–4,21,40,41] used in the physics-based approaches are formulated
to implicitly and accurately reflect the necessary attributes of the
representation of the orientations by formulating and employing
appropriate coordinate transformation matrices and the expression
of physical laws in ways that automatically reflect the expected
crystal symmetries. Consequently, it is necessary to develop suita-
ble approaches for incorporating these considerations in the formu-
lation of CNNs for the localization surrogate models applicable to
polycrystalline representative volume elements (RVEs). Of
course, one may allow the CNNs to learn the equivalencies, period-
icity, and the distortions inherent to the SO(3) space by themselves.
However, such an approach is likely to be highly inefficient and
demand a significantly higher training cost. Current applications
of deep learning-based surrogate models for polycrystalline materi-
als simply treat the differently oriented grains as different phases of
a multiphase composite [43–45] and do not address the challenges
identified above.
This work addresses the central challenge described above

by transforming the crystal lattice orientation in each voxel of
the three-dimensional (3D) polycrystalline microstructure into the
Fourier coefficients of a suitably defined orientation distribution
function. This is accomplished using the generalized spherical har-
monics (GSH) [42] as the Fourier basis. GSH automatically reflect
the desired crystal symmetries and provide a much more meaningful
similarity measures for the elements of the SO(3) space. GSH have
indeed been successfully employed in related problems
[30,31,34,46], where they have been shown to produce tremendous
economy in representing the salient features of the local material
state. In this work, we explore the potential benefits of using the
same GSH representations of the polycrystalline microstructure for
developing CNN surrogate models. More specifically, it will be
shown that the novel GSH-CNNs can be trained to produce highly
accurate localization surrogate models for predicting the compo-
nents of the local plastic velocity gradient tensor in the individual
voxels of 3D polycrystalline RVEs. It is also demonstrated that the
accuracy of the GSH-CNN significantly outperforms a CNN
trained on the input microstructures described directly using the
Bunge–Euler angles, while also significantly outperforming the first-
order MKS surrogate model that serves as the current standard [34].

Background
Microstructure Quantification. In order to quantify the inter-

nal structure of polycrystalline materials, we first discretize the
spatial domain of the RVE with a uniform grid of spatial cells
(i.e., voxels), enumerated by s∈ S (typically used as a vector
index for three-dimensional RVEs [11]). We then discretize the
potential material local states that can occupy the spatial voxel s
in a similar manner with h∈H. As a result, we can define a discre-
tized microstructure function, denoted conveniently by the array
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mh
s , whose components express the volume fraction of the material

local state h present in voxel s [8,11]. This simple notion of mh
s is

directly applicable for multiphase microstructures with two or
more thermodynamically distinct phases (enumerated by index h).
However, in this work, we focus on single phase, polycrystalline,
3D RVEs. Consequently, the physical descriptors that define the
material local state in each voxel need to include information
about the crystal lattice orientation (i.e., g) which can take values
from a continuous domain (i.e., SO(3)) [47]. Therefore, it
becomes necessary to modify the representation of the microstruc-
ture function from mh

s to ms(g) [11]. As a result, the microstructure
function ms(g) prescribes the probability density associated with
finding the orientation g in the spatial voxel s [48]. In other
words, ms(g) is essentially the spatially resolved orientation distri-
bution function for voxel s. This function needs to be converted
into a set of discrete features. In the present work, this is accom-
plished using the well-established GSH basis.

Generalized Spherical Harmonics. GSH are known to provide
a complete Fourier basis for representations of functions defined over
the orientation space. They are expressed mathematically as [42]

Tμn
l (g) = Tμn

l (φ1, Φ, φ2) = eiμφ1Pμn
l (Φ)eiμφ2 (1)

wherePμn
l (Φ) are the associated Legendre polynomials [8,11,31,42].

Furthermore, the GSH basis can be customized to reflect any
combinations of crystal and sample symmetries by identifying sui-
table linear combinations of the unsymmetrized basis [42]. In
this work, we will focus on crystalline materials that exhibit cubic-
triclinic symmetry (i.e., the crystals exhibit cubic symmetry

and the sample exhibits no additional symmetry). Let ˙̇T
μn

l (g)
denote the set of GSH basis functions that account for the
desired symmetry (i.e., cubic-triclinic). This set of symmetrized
GSH basis functions is expressed as

˙̇T
μn

l (g) =
∑μ=+l
μ=−l

˙̇A
μn

l Tμn
l (g) (2)

where ˙̇A
μn

l are solved to impart the desired crystal and sample
symmetries to the new basis. Using the set of symmetrized GSH

basis, ˙̇T
μn

l (g), we can establish a suitable Fourier representation
for the microstructure function as

ms(g) =
∑
μ,n,l

Kμn
ls
˙̇T
μn

l (g) (3)

where Kμn
ls denotes the GSH coefficients. Since ms(g) is a real-

valued function, it can be shown that half of Kμn
ls are complex con-

jugates of the other half [42]. Furthermore, for the specific case
where only one crystal orientation g0 is present at voxel s (i.e.,
ms(g)= δs(g− g0)), the GSH coefficients are simply obtained as

Kμn
ls =

1
(2l + 1)

˙̇T
μn

l

∗
(g0) (4)

where ˙̇T
μn

l

∗
(g) is the complex conjugate of ˙̇T

μn

l (g). As a result of
these observations, it is possible to map the Kμn

ls into a set of real-
valued coefficients, denoted here as Fμn

ls . In order to obtain a set of
real-valued coefficients from Kμn

ls , we take advantage of the fact
that the GSH coefficients corresponding to μ< 0 are the complex
conjugates of the GSH coefficients corresponding to μ> 0. Fur-
thermore, the GSH coefficients corresponding to μ= 0 are all
real. Therefore, saving the real and the imaginary parts of the
GSH coefficients corresponding to μ< 0 as two separate real-
valued variables in addition to the real-valued GSH coefficients
for μ= 0 provides a set of real-valued coefficients that can be
uniquely mapped back to the original complex-valued GSH coef-
ficients. The set of real-valued coefficients obtained in this manner

are denoted here as FL
s . In this simplified notation [31,34], L enu-

merates all the distinct combinations of μ, n, and l.
The GSH coefficients obtained from Eq. (2) produce an infinite

set of local features in each voxel. In the present application, our
interest lies in utilizing these features to represent the single
crystal orientations present in each voxel. It is well known that
only three independent parameters (e.g., Bunge–Euler angles) are
needed to fully describe a single crystal orientation. Therefore,
the GSH coefficients obtained from Eq. (2) for single crystal orien-
tation distributions in each voxel are indeed related to each other.
However, the inter-relationships between the GSH coefficients
would be highly nonlinear. As a result, these coefficients can
serve as separate input channels to a CNN. In this paper, we will
employ a suitably truncated set of real-valued and transformed
GSH coefficients to represent the information about the single
crystal orientation present within each voxel of the RVE. One of
the main advantages of this representation is that the FL

s coefficients
inherently account for all the symmetries and equivalencies associ-
ated with cubic crystals. Most importantly, the values of FL

s provide
meaningful measures of the closeness of any selected sets of orien-
tations through the use of simple Euclidean distances between their
GSH representations. In fact, GSH-based representations of poly-
crystalline microstructures have been shown to serve as excellent
predictors of their effective properties [32,46,49–51].
The benefits of GSH representations are illustrated through a spe-

cific example in Fig. 1(a), which shows two different orientations
denoted as A and B, respectively, within the fundamental zone of
the orientation space for cubic-triclinic symmetry expressed with
Bunge–Euler angles [8,47]. However, in the Bunge–Euler angle
representations, they appear very far from each other. In reality,
the misorientation between these orientations is only one degree.
The GSH-based representation of the corresponding single crystal
ODFs, shown in Fig. 1(b), shows them to be indeed very close to
each other (with only a small difference in the higher terms of the
expansion, FL

s ).

Material Knowledge System Localization Framework. In
recent years, our research group has established a computational
framework called MKS capable of accurately predicting the local
response of a macroscopically imposed tensor (i.e., localization)
for polycrystalline microstructures [11,31,34]. This framework,
which is based on the statistical continuum theories developed by
Kröner [19,20], computes the local response using a series expan-
sion. Each term of the series is determined by a convolution of a
physics-capturing microstructure-independent kernel (also called
MKS localization kernel) over a suitable higher-order representa-
tion of the microstructure field [8,35]. As a result, the MKS frame-
work enables one to obtain the localized response, Ps, of a
macroscopically imposed quantity, 〈P〉, as follows [34]:

Ps =

(∑S
t

∫
FZ
αt(g)ms+t(g)dg +

∑S
t

∑S′
t′

∫
FZ

∫
FZ

αtt′ (g, g′)ms+t(g)ms+t+t′ (g, g′)dg′dg + · · ·
)
〈P〉

(5)

where ms(g) is the voxel-based microstructure function introduced
earlier, αt(g) denote the first-order localization kernels, and
αtt′(g, g′) are the second-order localization kernels. Equation (5)
was designed to capture systematically the contributions from all
of the local states present in the neighborhood of the spatial
voxel of interest identified by s on the response of interest at
that same voxel. Previous work has also demonstrated that the sys-
tematic introduction of the higher-order terms in the series expan-
sion increases the accuracy of the localization models [36].
However, the incorporation of the higher-order terms is an
arduous and complex task, mainly because the number of fit
parameters grows significantly [36]. Consequently, extension of
the MKS framework to include the higher-order terms becomes
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largely intractable. Recent work has demonstrated the benefits of
establishing accurate surrogate localization models using CNNs
[37], especially for material systems that exhibit a high contrast
in the elastic properties exhibited by the different material local
states present in the microstructure. For the plastic deformation
of polycrystalline materials, the relevant contrast would be deter-
mined by the differences in the plastic properties of the differently
oriented grains present in the polycrystal microstructure. Building
on our prior work [34], we explore here the viability and benefits
of employing CNNs to establishing low-computational cost surro-
gate models for localization of plastic strain rate tensor in poly-
crystalline microstructures.

Convolutional Neural Network Model. CNNs are a type of
deep learning model used to learn the functional linkage between
selected input fields and an output, in a supervised learning
setting. These tools have been formulated and utilized to great
success in the field of computer vision for diverse tasks such as
image classification, object localization, and image segmentation
[28,29,52,53]. Recently, CNN models have also been successfully
applied beyond the domain of digital image processing in fields
such as radio astronomy, medical imaging, bioinformatics, geno-
mics, and materials science [37,38,54–59]. CNNs, akin to other
neural network type models, receive an input (e.g., an image or a
micrograph) and transform it through a series of different layers
to generate a scalar or vector output. CNNs contain at least one
or more convolutional layer, where the input is transformed
through convolutions with a set of learnt filters, followed by appli-
cation of a nonlinear function such as sigmoid or rectified linear unit
(ReLU) [60] on the output. A key characteristic of this layer is that
the filters that are convolved are learnt to identify outputs corre-
sponding to the salient features relevant to the modeling task at
hand. This is accomplished by calibrating the weights in each
filter to the available training data. Additionally, CNN models
may also contain other types of layers designed for dimensionality
reduction (e.g., pooling layer) [28,29], inner products (fully con-
nected layer) [29], and normalization [29]. The number and type
of the constituent layers, as well as the sequence in which they
are applied, are generally referred as the architecture of the CNN
model. In the simplest CNN architecture, also known as a feed-

forward network, the layers are sequentially applied to the input
data. In other words, the output of one layer is used as the input
to the subsequent layer. By modifying the model architecture, one
can refine and optimize the learning capacity of a CNN model for
a selected modeling task. This lends immense versatility to the
CNN modeling framework. As a result, CNN models have wide-
spread adoption and application across a broad spectrum of disci-
plines [61–64].
In typical supervised learning settings, the model fit parameters

are inferred from available training dataset (includes sets of inputs
and their corresponding outputs) by minimizing a suitably defined
loss (error) function. In CNN implementations, the optimal values
of the model fit parameters are determined through an iterative, non-
convex optimization algorithm known as stochastic gradient
descent [65]. The training of the CNN ends once the loss saturates
or it reaches below a pre-established threshold.

Finite Element Models for Generating Training and
Validation Data. The CNN models developed in this work will
be trained with results from crystal plasticity finite element simula-
tions method (CPFEM) performed on a set of synthetically gener-
ated microstructures, which we will refer to as the training set.
Subsequently, the calibrated CNN models will be critically vali-
dated by comparing their predictions for a different set of micro-
structures, which we will refer to as the test set, with the
corresponding predictions from CPFEM simulations. Note that
the test set microstructures are not exposed to the CNNs in their
training phase. It is desirable for both the training and test sets to
encompass a rich and diverse collections of polycrystalline micro-
structures. Following prior work [34], we generated the microstruc-
tures needed for this work using DREAM.3D software [66]. This tool
offers tremendous flexibility in creating a variety of polycrystalline
microstructures by changing the grain size, shape, and orientation
distributions. The microstructures generated are voxelized micro-
structures of size 21 × 21 × 21. Previous work has demonstrated
that this discretization level is sufficient to train accurate localiza-
tion models for polycrystalline RVEs [30,34].

DREAM.3D generates voxelized microstructures by packing the
RVE with ellipsoidal grains, and then expanding the grains to fill
out the RVE. In this study, we generated RVEs with different

Fig. 1 Comparison of Bunge–Euler angles-based representation versus GSH-based repre-
sentation of the crystal orientations in a single voxel. (a) Representation of two similar
crystal orientations within the fundamental zone for cubic crystals in the Bunge–Euler
angle space. (b) TransformedGSH-based representations of the same two crystal orientations
from (a) with a truncation level up to l=4 (i.e., L=10).
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grain sizes and two different grain morphologies. The grain size was
controlled mainly by changing the targeted number of grains per
RVE (i.e., as more grains were packed into an RVE of fixed size,
21 × 21 × 21, the grains became smaller). The grain shapes were
assigned as ratios of the axes lengths of the ellipsoids. These
ratios were defined as 1:1:1 for the equi-axed grain and 1:1:K
(where K > 1) for the elongated grains. For the elongated grains,
the long direction was varied among the three reference directions
of the RVE cube. Table 1 summarizes the different parameters
used for generating a total of 21,700 RVEs for the training set
and a total of 6000 RVEs for the test set. It is noted here that tar-
geted grain sizes and the assigned orientations to the grains in the
test set are intentionally kept distinct from those used in the training
set. The orientations of the grains in the training RVEs were
selected randomly from a set of 20,000 orientations distributed uni-
formly in the cubic fundamental zone (see Fig. 1(a)), while the ori-
entations for the testing set were selected similarly from another set
of 3500 orientations distributed in the same cubic fundamental
zone. In other words, all of the voxels associated with a grain
within an RVE are assigned an orientation randomly selected
from a set of 20,000 orientations (for the RVEs of the training
set) or from a different set of 3500 orientations (for the RVEs of
the test set). As a result, the generated RVEs span a wide variety
of textures (i.e., orientation distribution functions) as well as inten-
sities because the RVEs with less grains will show stronger textures
than the RVEs with a higher number of grains. Therefore, the
dataset generated for this work is quite diverse in terms of grain
morphology as well as texture. It is important to note that the train-
ing set is purposely generated to span larger domains; the test set
therefore represents an interpolation of the training set. Figures
2(a) and 2(b) show examples of RVEs from the training set and
the test set, respectively.
The kinematic variable of interest to the present work is the velo-

city gradient tensor, usually denoted by L in the literature. In elasto-
plastic deformations, L can be decomposed into elastic (L*) and
plastic (Lp) components. Since the focus here is centered on the
localization of the plastic deformation experienced by polycrystal-
line RVEs, Lp is the main quantity of interest. In crystal plasticity
models, Lp is expressed as a sum of shearing rates on available
slips systems [22]. The symmetric part of Lp is denoted by Dp

and is commonly referred as the plastic stretching tensor. Dp cap-
tures the information on the plastic strain rate. The anti-symmetric
part of Lp is denoted byWp and is commonly referred as the plastic

spin tensor. The microscale distribution of Lp (i.e., variation
between individual voxels of the polycrystalline RVE) was com-
puted using previously established CPFEM simulations using the
commercial FE software ABAQUS [67]. In these models, the elastic-
viscoplastic crystal plasticity constitutive laws are implemented at
each integration point in the FE mesh with a user material subrou-
tine (UMAT). The specific UMAT used in this study has been
extensively validated for fcc metals in prior work [22,68]. The
reader is referred to Ref. [22] for a detailed description of the
crystal plasticity model used in this work and its implementation
in ABAQUS. Furthermore, the CPFEM simulations performed in
this work have mostly used the same material parameters described
in that earlier work. The main difference is that we simplified the
material description so that we can produce accurate training data
for the localization of the plastic velocity gradient tensor. Specifi-
cally, we employed high values of the elastic stiffness parameters
in order to limit the elastic strains to small numbers (<0.001). We
also avoided strain hardening hardening by setting all slip hardening
rates to zero. The main material parameters used are a slip rate-
sensitivity (usually denoted by m) of 0.01 and a reference slip
rate (usually denoted by ε̇o) of 0.001 s

−1 [22]. For the computations
described here, the local values of Lp in each voxel of the RVE are
not affected by the value of the initial slip resistance (usually
denoted by so), which is assumed to be the same for all slip
systems in all grains in the RVE.
Subsequently, the voxelized polycrystalline RVEs in both the

training and test sets were converted to FE meshes, where each
voxel became an element of the FE mesh. Cubic continuum ele-
ments with eight nodes (C3D8) [67] were used. Each RVE was sub-
jected to periodic boundary conditions corresponding to the
following macroscopic plastic velocity gradient [33]:

〈Lp〉 =
0.4 0 0
0 0.4 0
0 0 −0.8

⎡
⎣

⎤
⎦ × 0.02s−1 (6)

The CPFEM simulations provided the ground-truth data on how
the imposed plastic velocity gradient tensor in Eq. (6) is partitioned
into the individual elements (i.e., voxels) of the RVE. For each
CPFEM simulation, we imposed a strain of 0.02 over a time
period of 1 s. Finally, in order to completely avoid any possible
effects of the drastically reduced elastic strains, the averaged
plastic velocity gradient tensor was computed in each voxel over
the 0.01–0.02 range of the total imposed strain.
The averaging was performed over the integration points of the

element (i.e., voxel) as well as the different time-steps involved in
the specified strain range. Each voxel of the FE simulation provided
one data point for the localization of polycrystal plasticity. In other
words, each FE simulation performed generated a set of 9261 data

Fig. 2 Selected example RVEs used in this work. (a) Example
RVEs from the training set and (b) example RVEs from the test
set.

Table 1 Parameters used for generating the digital
polycrystalline RVEs used in this work

Target number
of grains K

Orientation of the longest
axis of the grains

Number of
RVEs Purpose

22 1 X 4000 Training
100 1 X 4000 Training
162 1 X 500 Training
347 1 X 1200 Training
860 1 X 1000 Training
3500 1 X 500 Training
7280 1 X 1500 Training
22 10 X 1000 Training
22 10 Y 1000 Training
22 10 Z 1000 Training
35 10 X 1333 Training
35 10 Y 1333 Training
35 10 Z 1334 Training
101 10 X 666 Training
101 10 Y 666 Training
101 10 Z 668 Training
45 1 X 3000 Test
127 1 X 1000 Test
570 5 X 1000 Test
1300 3 Y 1000 Test
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points, which were used either in the training set or the test set (cor-
responding towhichRVEswere used in the FE simulation). It should
be noted that in order to generate the training data for the CNN-based
localization surrogate model, the CPFEM simulations performed in
this work only needed small strain levels. Nevertheless, it is impor-
tant to recognize that in order to extend the surrogate model predic-
tions to larger strains, an efficient time-integration procedure would
also be needed. Such a time-integration procedure still needs to be
developed and is beyond the scope of the present work.
The 27,700 FE simulations performed for this study incurred

significant computational cost. Each CPFEM simulation took
approximately 90min on a single 2.4GHz AMD processor node
in the Georgia Tech super computer cluster. The central benefit
of the CNN-based surrogate models developed in this work is
that the training represents a one-time cost. All test evaluations
from the CNN models for new microstructures are very cheap
(∼0.1 s for each new polycrystalline RVE).

Convolutional Neural Networks for the Localization
of Polycrystal Plasticity
The primary goal of this work is to critically evaluate the benefits

of using GSH representations (see Fig. 1(b)) versus the Bunge–Euler
angles representation (see Fig. 1(a)) as the input for a CNN-based
surrogate model. Towards this goal, in one implementation, we
will directly use the Bunge–Euler angles expressed in the fundamen-
tal zone of the orientation space to train a CNN surrogate model for
predicting the local plastic velocity gradient tensor in each voxel of
the polycrystalline RVE. For the second implementation, wewill use
the GSH-based representations of the spatially resolved ODF for
each voxel, truncated to different numbers of terms in the Fourier
series, as different input channels for the CNN surrogate model.
The CNN surrogate models developed in this work are trained to

predict the local (average over a single voxel) values of the plastic
velocity gradient tensor in 3D polycrystalline RVEs. The specific
input into the CNN will be the 3D neighborhood of the voxel of
interest for which the components of the plastic velocity gradient
tensor are being predicted. For this work, the input to the CNN
was defined as a cubical neighborhood comprising 21 × 21 × 21
voxels centered around the voxel of interest. The given polycrystal-
line RVE (also of size 21 × 21 × 21) was extended assuming peri-
odic boundaries, consistent with the boundary conditions imposed

in the CPFEM simulations of the RVEs described earlier in the
“Finite Element Models for Generating Training and Validation
Data Section,” to define the required neighborhoods.
The CNN models developed in this work implicitly featurize the

3D neighborhoods of individual voxels in the polycrystalline struc-
tures using 3D convolutional layers. A 3D convolutional layer com-
prises multiple sets of filters. Each set of filters in each convolution
layer is of size q× p× p× p, where p denotes the number of voxels in
each spatial direction of a 3D filter and q denotes the number of chan-
nels. The number of channels is dictated by the number of 3D inputs
to the specific convolution layer. As a specific example, for the first
convolutional layer, q would correspond to the number of input
channels to the CNN. This means q= 3 for the Bunge–Euler angle
implementation and q=L− 1 for the GSH implementation (this is
because the first GSH coefficient is always equal to one irrespective
of the grain orientation in the voxel). Sequentially stacking 3D con-
volutional layers enables more intricate featurizations by identifying
higher-order spatial correlations within the input images [38]. In
addition, incorporating ReLU (defined as f =max(0, x)) function
between the convolutional layer allows for the identification of non-
linear features. The features identified by the convolutional layers are
then mapped to the targets, i.e., the nine components of the local
plastic velocity gradient tensor. This mapping is accomplished
using fully connected layers. These fully connected layers perform
linear and nonlinear (when coupled with activation functions such
as ReLU) mappings between the features identified at the end of
the convolutional layers and the selected targets.
In this work, we systematically explored multiple CNN architec-

tures with varying learning capacities in order to identify the archi-
tecture that produces the most accurate and robust surrogate
localization model for the task at hand. As an example, Fig. 3 sche-
matically depicts how the CNN transforms the polycrystalline
neighborhood of one voxel within the RVE into its corresponding
nine components of the plastic velocity gradient tensor for one of
the feed-forward CNN architectures used in this work for the
Bunge–Euler angle implementation.
The convolution operations utilized in the CNN architectures

explored in this study were performed without the periodic assump-
tion. Therefore, the spatial domain size of the output of each convo-
lutional layer is smaller compared to the size of the spatial domain
of its input. Since the filters used were of size 5 × 5 × 5, the spatial
domain size shrunk by two voxels near all boundaries. In order
words, the input domain size of 21 × 21 × 21 shrunk to an output

Fig. 3 Data flow (i.e., from inputs to output) through the feed-forward CNN architecture of model A (see Table 2) for the
Bunge–Euler representation of the crystal orientation in each voxel

011004-6 / Vol. 144, JANUARY 2022 Transactions of the ASME



domain size of 17 × 17 × 17 at the end of the first convolutional
layer. This shrinking continued with each convolutional layer and
produced single features (i.e., an output domain of 1 × 1 × 1) after
five convolutional layers. Additionally, it should be noted that the
number of distinct filters applied in each convolution layer is deter-
mined by the product of the number of input channels and the
number of output channels for the layer. As an example, in the
first convolutional layer shown in the CNN architecture depicted
in Fig. 3, the number of distinct filters (each of size 5 × 5 × 5) is
3 × 16= 48, while it is 16 × 16= 256 for the second convolutional
layer. In the CNN architecture shown in Fig. 3, we obtain 64 fea-
tures after applying five 3D convolutional layers (along with the
associated ReLUs). Subsequently, three fully connected layers are
applied on the 64 features to produce the desired nonlinear map-
pings to the nine targets (i.e., the components of the plastic velocity
gradient tensor). Note that a ReLU is not applied in the last layer
because the values obtained in this layer represent the targets.
The use of three fully connected regression layers for such map-
pings is common in the deep learning domain [69]. The decision
to use the type of architecture shown in Fig. 3 is largely motivated
by prior work on MKS localization [31,34].
In this work, we have considered four different variations of the

CNN architecture shown in Fig. 3. The convolution filter size (i.e.,
p = 5) and the last three fully connected layers are kept the same in
all the variations. The learning capacity of the different CNN
models was modulated by varying the numbers of filters in the
five 3D convolutional layers. Table 2 summarizes the details of
the four different CNN models, labeled A through D, explored in
this work. Note that the size of the first layer is different for the dif-
ferent representations of the grain orientations explored in this
work. As already mentioned, q= 3 for the Bunge–Euler representa-
tion. For the truncated GSH representations, the values of q corre-
sponded to truncation levels of l= 4, 6, 8 (see Eq. (1)), which
resulted in values of 9, 22, and 39, respectively.

Loss Function for the Convolutional Neural Network
Model. The parameters in the CNNmodel (i.e., the values of the dif-
ferentweights and biases defining the convolutionfilters) are inferred
during the training process using back-propagation [70] coupled
with a stochastic optimization algorithm known as ADAM [71].
This optimization technique aims to minimize a loss function that

quantifies the deviation of the model predictions from the known
ground-truth values in the training set (obtained from the CPFEM
simulations). The loss employed in this work is defined as

loss% =
1

9 × S × 〈L p〉| |
∑3
u=1

∑3
v=1

∑S
s=1

Lp
uv[s]CPFEM − Lp

uv[s]CNN
∣∣ ∣∣ × 100% (7)

Results and Discussion
The four different architectures presented in Table 2 along with

the two different representations of the crystal lattice orientation

were critically evaluated for their fidelities in predicting the local
values (in each voxel) of the plastic velocity gradient tensor. This
task therefore included a total of four CNN models using the
Bunge–Euler representation and 12 CNN models using the GSH
representations corresponding to the three truncation levels identi-
fied earlier. Each CNN model was trained for 15 epochs (each
epoch here represents one update of the CNN model using the
full training set) at a constant learning rate of 1 × 10 −5 using the
ADAM optimizer [71] using four V100 NVIDIA GPU cores on
Georgia Tech’s super computer cluster. Each epoch took between
20 and 100min for the different models.
The performance of each trained CNN model was assessed by

computing the loss defined in Eq. (7) for the test set. Note that
the evaluation of each test RVE by each CNN model produces
one value of loss. Figure 4 presents the distribution of the loss
values for the test RVEs for the different CNN architectures and
the different representations of the crystal orientations using
violin plots. These plots provide information about the median
(denoted by the white dot within the black box) as well as the inter-
quartile range (which are the upper and lower limits of the black
box). Furthermore, violin plots present information about the prob-
ability distribution of the data in a clear and concise manner since
wider sections of the violin represent a higher probability that
members of the population will take on the given value. In a
similar manner, the thinner sections represent lower probability
values. Figure 4 shows that model D produced the best perfor-
mance. It is also seen that the CNN models using GSH representa-
tions of the crystal orientation consistently performed better than the
CNN model using the Bunge–Euler representation. This observa-
tion clearly supports the central hypothesis of this work that GSH
representations offer an improved representation of the crystal ori-
entations when feeding polycrystalline RVEs as inputs to CNN
models.
Model D with the GSH truncation level of l= 4 was identified as

the best performing model among all the CNN models explored in
this work. The improvement in accuracy obtained by increasing the
GSH truncation level from l= 4 to l= 6 and further to l= 8 is
minimal. This observation implies that the features identified after
the five convolutional layers are not further refined significantly
with the increasing levels of GSH truncation. This is not surprising
given that the GSH coefficients of single crystal orientations are not
independent. In other words, the CNN models explored here are
able to learn all of the salient nonlinear features in the polycrystal-
line neighborhoods needed to predict the local values of the plastic
velocity gradient tensor using only the GSH representations to l= 4.
This CNN model was further trained in additional epochs (beyond
the initial 15 epochs) using the same optimizer and learning rate
until the average loss on the test set exhibited asymptotic conver-
gence. Although the training of the CNN is performed using
solely the training set, after every epoch of training the average
loss on the test was also calculated in order to monitor the perfor-
mance improvements with each training epoch. Utilizing this infor-
mation, the training epochs were stopped when the average loss on
the test set did not decrease by greater than 0.1 over two epochs.
Using this stopping criteria, the training of model D with GSH

Table 2 The four different CNN architectures evaluated in this work

Layers Model A Model B Model C Model D

Input q× 21 × 21 × 21 q× 21 × 21 × 21 q× 21 × 21 × 21 q× 21 × 21 × 21
Conv3D-1 16 × q× 5 × 5 × 5 32 × q× 5× 5 × 5 64 × q× 5 × 5 × 5 128× q× 5 × 5 × 5
Conv3D-2 16 × 16 × 5 × 5 × 5 32 × 32 × 5 × 5 × 5 64 × 64 × 5 × 5 × 5 128 × 128 × 5× 5 × 5
Conv3D-3 32 × 16 × 5 × 5 × 5 64 × 32 × 5 × 5 × 5 128 × 64 × 5 × 5 256 × 128 × 5× 5 × 5
Conv3D-4 32 × 32 × 5 × 5 × 5 64 × 64 × 5 × 5 × 5 128× 128 × 5 × 5 × 5 256 × 256 × 5× 5 × 5
Conv3D-5 64 × 32 × 5 × 5 × 5 128× 64 × 5 × 5 × 5 256× 128 × 5 × 5 × 5 512 × 256 × 5× 5 × 5
FC-1 2048 × 64 2048 × 512 2048 × 256 2048 × 512
FC-2 1024 × 2048 1024 × 2048 1024 × 2048 1024 × 2048
FC-3 9 × 1024 9× 1024 9 × 1024 9 × 1024
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representations to l= 4 was stopped at 30 epochs. This improved
model produced an average loss of 11.25% on the test set. This
loss was quite similar to the loss realized on the training set, indicat-
ing that the calibrated CNN model has not been over-fit to the train-
ing data.
Next, the best CNN model identified above was further evaluated

for its accuracy in predicting each component of the plastic velocity
gradient tensor using the following modified version of the loss
metric:

Erruv% =
1

S × 〈L p〉| |
∑S
s=1

Lp
uv[s]CPFEM − Lp

uv[s]CNN
∣∣ ∣∣ × 100% (8)

The loss metric defined above was used to compare the accuracy
of the CNN model produced here against the previous benchmark,
which was taken to be the first-order MKS localization model estab-
lished in prior work [34]. The benchmark MKS model was also cal-
ibrated on the exact same training set. It is noted that the benchmark
MKS model (i.e., the best MKS-based localization model identified
in prior work [34]) used a GSH truncation to l= 8. Figure 5 presents
the test set loss distributions for each individual component of the
plastic velocity gradient tensor (obtained using Eq. (8)) for the
best CNN model produced in this work as well as the benchmark
MKS model. Clearly, the CNN model outperforms the benchmark
MKS model for all components of the plastic velocity gradient
tensor. More specifically, it is seen that the improvements are the
greatest for the off-diagonal components of the plastic velocity gra-
dient tensor.
In order to further analyze and understand the performance of the

CNN model in the predictions of the plastic velocity gradient tensor
components, we also investigated the individual losses in its sym-
metric and anti-symmetric components. Figures 6(a)–6(c) show

an example comparison of a selected symmetric component of
the plastic velocity gradient tensor (i.e., the (1, 3) component
of the plastic stretching tensor, Dp) predicted by the CNN model,
the benchmark MKS model, and the ground-truth CPFEM simula-
tion for a middle section of a randomly selected test RVE.
Figure 6(d ) shows a comparison of the probability density dis-
tributions of the predicted values for Dp (1, 3) across the entire
selected RVE (i.e., for all voxels in the RVE). On the other hand,
Figs. 7(a)–7(d ) present the same comparisons for an anti-symmetric
component of the plastic velocity gradient tensor (i.e., the (1, 3)
component of the plastic spin tensor, Wp). It is clear from these
plots that the better performance of the CNN model produced in
this work is attributable to its improved predictions of the anti-
symmetric components of the plastic velocity gradient tensor.
More specifically, the CNN model is able to capture better the
extreme values of the plastic spin tensor components (the same
observation is also made, although to a much lesser extent, for
the extreme values of the plastic stretching tensor components). It
should be noted that the plastic stretching tensor fields are con-
trolled directly by the equilibrium-satisfying stress fields, whereas
the plastic spin tensor fields are only indirectly controlled by the
compatibility requirements on the overall displacement fields.
Therefore, the plastic spin tensor fields can be expected to exhibit
much more complex variations within a heterogeneous RVE.
Therefore, it is quite reasonable that one needs a much better set
of nonlinear features in order to predict accurately the components
of the plastic spin tensor compared to the components of the plastic
stretching tensor. The comparisons shown in Figs. 6 and 7 suggest
that the CNNmodel produced in this work is able to accomplish this
task significantly better than the benchmark MKS model.
The performances of model D established using Bunge–Euler

representations are compared with model D established using the
GSH truncation level of l= 4 in Fig. 8 for the individual compo-
nents of the plastic velocity gradient tensor in the test set (using

Fig. 4 Distributions of the loss values obtained for the different representations of the internal structure of the polycrystalline
RVE using violin plots. (a) Model A. (b) Model B. (c) Model C. (d) Model D. The dashed line indicates the average loss on the test
set for the best performing model (i.e., model D) and corresponds to a value of 12.25%.
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Eq. (8)). The model built using the Bunge–Euler representation was
trained for 60 epochs, while the one using the GSH representations
needed only 30 epochs. Clearly, the CNN model using the GSH
representation for the polycrystalline neighborhood consistently
outperforms the CNN model using the Bunge–Euler representation
for all components of the target. The better performance at a smaller

number of epochs clearly establishes that the GSH representations
produce better features for the localization of the plastic velocity
gradient tensor in polycrystalline RVEs.
It is important to recognize the computational savings obtained

using a CNN-based localization surrogate model. Once trained, a
CNN-based model incurs a minimal computational cost to predict

Fig. 5 Loss distributions for each component of the plastic velocity gradient tensor obtained
for the best CNN model produced in this work and for the benchmark MKS model

Fig. 6 Visualization and comparison of the true and predicted Dp
13 values. (a) CPFEM

obtained values of Dp
13 (Dp

13CPFEM). (b) CNN obtained values of Dp
13 (Dp

13CNN). (c) MKS obtained
values of Dp

13 (Dp
13MKS). (d) Probability density distribution of Dp

13 for the different models and
the ground truth.
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the local responses for new/unseen RVEs. As an example, model D
established using the GSH truncation level of l= 4 predicts the local
values of the plastic velocity gradient tensors for a macroscopically
imposed tensor in 0.159 s using four NVIDIA V100 GPU cores.
Therefore, the computational savings obtained are quite significant.
In order to demonstrate that the computational savings obtained are
not caused by the advanced computational resources used by the

model (i.e., the GPU cores), we used the CNN-based model on
the exact same computing resource used to perform the traditional
CPFEM simulation (which corresponds to a single 2.4GHz AMD
processor node) to predict the local values of the plastic velocity
gradient. The CNN computation took 5 s, while the CPFEM compu-
tation took 5400 s. Therefore, on the same computational resource,
the CNN-based localization surrogate model is able to predict the

Fig. 7 Visualization and comparison of the true and predicted Wp
13 values. (a) CPFEM

obtained values of Wp
13 (Wp

13CPFEM). (b) CNN obtained values of Wp
13 (Wp

13CNN). (c) MKS
obtained values of Wp

13 (Wp
13MKS). (d) Probability density distribution of Wp

13 for the dif-
ferent models and the ground truth.

Fig. 8 Comparison of the loss distributions model D obtained with the Bunge–Euler repre-
sentations and the GSH representations to l=4
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local values of the plastic velocity gradient tensor in a polycrystal-
line RVE about 1000 times faster than the corresponding CPFEM
simulation.

Conclusions
Convolutional neural networks offer a powerful emergent toolset

for establishing low-computational cost surrogate models for cap-
turing localization in heterogenous material systems. These tools
will be invaluable for practical materials design efforts. However,
the single crystal orientation in the individual voxels of a polycrys-
talline RVE needs a suitable representation in order to successfully
leverage the CNNs for the localization surrogate models. This paper
suggested and demonstrated that the use of GSH representations of
the crystal orientation serves as a better input to the CNN compared
to the conventionally used Bunge–Euler angle representations. Spe-
cifically, it is shown that the GSH representation of the polycrystal-
line neighborhood outperformed the Bunge–Euler representations
for a range of CNN architectures. It was also shown that the best
CNN model produced in this work significantly outperformed a
benchmark model from prior work. Although the benefits of the
GSH representation have been shown for the localization of the
plastic velocity gradient tensor, it is expected that the results can
be generalized for other types of material responses (e.g., creep,
fatigue). This is mainly because the GSH representations of the
crystal orientation implicitly reflect and account for the crystal
symmetries.
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