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ABSTRACT

This paper presents a novel zero-shot learning approach towards per-
sonalized speech enhancement through the use of a sparsely active
ensemble model. Optimizing speech denoising systems towards a
particular test-time speaker can improve performance and reduce
run-time complexity. However, test-time model adaptation may be
challenging if collecting data from the test-time speaker is not possi-
ble. To this end, we propose using an ensemble model wherein each
specialist module denoises noisy utterances from a distinct partition
of training set speakers. The gating module inexpensively estimates
test-time speaker characteristics in the form of an embedding vector
and selects the most appropriate specialist module for denoising the
test signal. Grouping the training set speakers into non-overlapping
semantically similar groups is non-trivial and ill-defined. To do
this, we first train a Siamese network using noisy speech pairs to
maximize or minimize the similarity of its output vectors depending
on whether the utterances derive from the same speaker or not. Next,
we perform k-means clustering on the latent space formed by the
averaged embedding vectors per training set speaker. In this way,
we designate speaker groups and train specialist modules optimized
around partitions of the complete training set. Our experiments show
that ensemble models made up of low-capacity specialists can out-
perform high-capacity generalist models with greater efficiency and
improved adaptation towards unseen test-time speakers.

Index Terms— Speech enhancement, deep learning, adaptive
mixture of local experts, model compression by selection

1. INTRODUCTION

Speech enhancement (SE) is a long-standing research area within
signal processing [1] which has experienced significant progress
in the past decade due to the pervasiveness of machine learning
models and deep neural networks (DNNs) [2, 3, 4]. This paper
addresses the task of removing non-stationary background noise
from a monophonic recording of a single speaker. The majority
of research in this area proposes solutions to generalized speech
enhancement—in other words, the denoising models make no as-
sumptions about the test-time speaker or noisy environment. Many
DNN-based general-purpose SE models require millions of learn-
able parameters to address the diversity in speakers and noise types.
However, given the ubiquity of resource-constrained devices (i.e.,
smartphones or smart speakers), we focus our interest on develop-
ing SE models which minimize run-time computational complexity
without sacrificing denoising quality.

∗This material is based upon work supported by the National Science
Foundation under Grant No. 2046963.

As it was previously shown that models addressing a disjoint
sub-problem outperform models trained towards universal speech
enhancement [5], classifying a noisy test signal as belonging to
a specific sub-problem may improve the performance of a modu-
lar SE system. One type of divide-and-conquer algorithm design
paradigm was introduced to neural networks, referred to as the “mix-
ture of local experts” (MLoE) architecture [6]. MLoE, or ensemble
models, consist of independent expert modules (i.e., specialist net-
works), each trained to address a subset of all the training cases.
Consequently, an auxiliary classifier module (i.e., gating network) is
trained to estimate a weighting over all the local experts based on
their relevance towards a particular input.

Recent research has explored different ways of applying the
MLoE paradigm towards speech enhancement. One paper poses
local experts associated with varying choices of hyperparameter
(e.g., with different contextual window lengths) [7]. Another study
composes an MLoE model using recurrent cells, which can model
the temporal structure inherent to speech [8]. In these works, the
local experts are not trained to address specific sub-problems. How-
ever, a more recent MLoE-based SE system showed substantial
improvements using two predefined partitioning schemes: based
on the quality of input signal, i.e., in terms of signal-to-noise ratio
(SNR), and the gender of the speakers [9]. Furthermore, by introduc-
ing “sparseness” to the gating network’s weights, this recent paper
performs test-time inference using only the most suitable special-
ist. Compared to generalist models, which require a large model
capacity to achieve a certain level of speech denoising, an ensemble
model can yield the same enhancement quality even if the composing
specialists use much fewer parameters. Therefore, we claim that a
sparse ensemble of specialists is a form of model compression [9].
One article proposed a similar partitioning strategy based on the
speech quality, but by employing a speech quality estimator in place
of the traditional gating module [10]. This work also suggested using
learned SNR-based partitions as opposed to predefined partitions.
Most recently, Chazan et al. introduced an MLoE model for SE by
defining sub-problem based on clustering of clean speech [11].

In this paper, we investigate using MLoE as a means for per-
sonalizing an SE model. To achieve this, we propose learning the
optimal speaker grouping from the noisy utterances, in contrast to the
previously mentioned works. Once speaker groups are defined, the
gating module must estimate characteristics of the test-time speaker
from the noisy input, identify the most similar speaker group defined
within the training set, then forward the input signal to the appropri-
ate specialist network. This schema requires no training data from
the test-time speakers, yet it more optimally denoises the test-time
noisy utterances by using the most suitable specialist. This idea of
“zero-shot” speech enhancement through model selection has seen
some preliminary assessment. However, the prior research applied
limited model selection based on speaker-agnostic aspects of the
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Figure 1: The proposed sparse ensemble of specialists model.

signals, such as quality of the test-time signal, e.g., its signal-to-
noise (SNR) level, [10, 9], types of the noise sources [12], or speaker
gender [9].

Another important aspect of our work confronts an open-ended
question: how do we cluster English speakers into appropriate
groups? A relevant task is learning speaker-characteristic embed-
dings for speaker verification (SV) systems. Well-established em-
beddings include the Gaussian mixture model-based i-vectors [13]
or x-vectors computed using a time-delay neural network [14]. Prior
works have also used sequence summarizing networks [15] either
through contrastive loss [16] or by estimating subsequent frames
for a single input signal [17]. Although these learn valid speaker-
identifying features, we propose a custom embedding-learning model
which can effectively function as the gating network as in [11].
Additionally, we want our custom embedding to be robust to ad-
ditive noise; previously proposed noise-robust embedding vectors
[18, 19, 20] were not designed around MoLE. To do this, we develop
a Siamese network [21], intended for speaker verification (SV), to
learn discriminative speaker embeddings. We then repurpose the
SV module as a classifier. Through fine-tuning, the ensemble model
morphs the learned embedding space from SV-applicable into some-
thing more suitable for the SE task. Lastly, because this work utilizes
soft gating at training-time and hard gating at test-time [9], our zero-
shot sparse ensemble model for personalized SE minimizes test-time
computational complexity.

2. PROPOSED METHODS

2.1. Ensemble Models

Given a large dataset of many different speakers’ various utterances
S, we postulate that there exists an optimal clustering based around
speaker identifying characteristics. Denoting K to be the number
of clusters, one can create K separate SE models trained only to
denoise utterances from each disjoint group of similar speakers. As
previously shown [9, 10], a sparsely active ensemble model is capa-
ble of performing zero-shot adaptation because the gating module
classifies the test-time noisy utterances into one-of-K groups.

We illustrate the architecture of a sparsely active ensemble model
in Figure 1. An ensemble model is composed of one gating module
and K specialist modules. The gating module processes a noisy
speech input frame x, estimating a speaker-embedding first, and
then classifying it as belonging to one-of-K groups. The cluster
probabilities vector p is used in two ways—during training, all of
the specialist modules outputs their own ideal ratio mask (IRM)
[22] estimates, m(1),m(2), . . . ,m(K), which are then combined
in a weighted sum using p, i.e., m̂ =

∑K
k=1 pkm

(k). But during
testing, only the output from the k∗-th specialist, corresponding to

the largest probability, i.e., k∗ = argmaxk pk, is chosen. This
argmax operation selects a single specialist to use during evaluation,
making the ensemble sparsely active.

In the context of personalized speech enhancement, increasing
hyper-parameter K can theoretically increase the level of specializa-
tion of each specialist as well as the ensemble network’s capacity for
personalization. However, there is a trade-off with having too many
models; a large K can make the gating module’s classification task
too challenging, and may lead to the specialist modules becoming
overfit on subsets that are too small. In this paper, we investigate
three choices of K: 2, 5, and 10. Determining the optimal number of
clusters is an extended research topic within unsupervised learning.

2.2. Discriminative Speaker-Specific Embeddings

The clustering of speakers is a significant matter when we build a
successful sparse ensemble model for SE. Although in theory all the
specialists and the gating module can be trained from scratch, train-
ing many modules simultaneously is prone to result in suboptimal
performance. Hence, we first pre-train all the modules individually
and then fine-tune them. The pre-training step, therefore, requires
the sub-grouping of speakers.

To this end, we train a neural encoder that learns an embedding
function f which can characterize a noisy speech utterance with
a low-rank embedding vector. In order to train f , we formulate a
speaker verification (SV) upstream task. First, we sample utterances
from a large training dataset containing many speakers, s ∈ S,
and noise signals from a similarly large dataset of diverse noises,
n ∈ N. Input mixtures x are made by artificially mixing clean
speech utterances s with training noise signals n; the amplitude of
n is scaled to simulate various signal-to-noise ratios (SNRs).

We can then generate pairs of noisy speech utterances, xi and xj .
Once f predicts the embeddings, i.e., zi = f(xi) and zj = f(xj),
their inner product serves as a measure of similarity. A sigmoid
function follows to interpret it as a probability ŷ. Our target is a
binary value y, either 1 or 0 depending on whether the utterances
derive from the same speaker or not. The embedding function f is
trained to minimize the binary cross entropy loss between ŷ and y.

This contrastive learning approach derives discriminative em-
beddings using Siamese networks [21] where the same embedding
function f is applied to both input signals xi and xj . The rationale
behind this embedding model is that the discriminative nature of
these embeddings can help the clustering process prepare a semanti-
cally more meaningful partitioning of speakers.

2.3. Offline Speaker Clustering

Likewise, the gating module’s classification task and pre-training
of individual specialists rely on a reasonable clustering of speakers.
Determining how the K groups are formulated, and which of the
training set speakers belongs to each group, requires an offline clus-
tering step. First, we transform every utterance from the training
corpus into the learned latent space, i.e., z ← f(s). Embedding
vectors from the same speaker are averaged element-wise, which
serves as the speaker-characteristic mean vector. Finally, we apply
k-means clustering to these mean vectors to learn K speaker groups.

Figure 2 shows the clustering results with varying K. Each of
the 211 points represents one of the Librispeech training set speakers,
with marker style indicating speaker gender. For plotting, the 32-
dimensional embeddings z are reduced to 2 dimensions using t-SNE
(with perplexity = 40) [23]. These subplots show that the SV model
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(a) Speaker means obtained from SV
with K = 2 clustering.
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(b) Speaker means obtained from SV
with K = 10 clustering.
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(c) Speaker means derived uniquely by
a fine-tuned K = 2 ensemble.
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(d) Speaker means derived uniquely by
a fine-tuned K = 10 ensemble.

Figure 2: Subplots comparing various choices of K for using k-means clustering on the speaker embeddings. The speaker verification (SV)
pre-training task creates a latent space of speaker embeddings Z, from which we can partition various groups, i.e. 2 in (a) and 10 in (b). After
fine-tuning an ensemble model, the gating network’s embedding function f adjusts its parameters towards the speech enhancement (SE)
objective. The latent space is modified uniquely based on the ensemble’s configuration. In (a) and (b), the class labels derive from k-means
clustering, but in (c) and (d) the class labels are estimated by the gating network’s classifier function g.

succeeds in learning a speaker embedding which can be clustered
into loosely meaningful groups, e.g., when K = 2 the clusters
implicitly form along the speaker gender division. These speaker
groups are used to pre-train our gating modules and local experts.

2.4. Gating Module Pre-Training

The gating module must be able to classify the embedding vectors as
belonging to one of the K speaker clusters. This neural network is a
dense layer followed by the softmax activation, which we denote by a
parametric function p = g(z;Wg), whereWg is its parameters. The
classifier function g takes embeddings of noisy utterances z as inputs,
and outputs a vector of cluster probabilities p̂. As each utterance
belongs to a single cluster and the speaker IDs of the training set
speakers are known, we can encode the k-means clustering labels
into one-hot vector targets p. These vectors are K-dimensional.

Note the discrepancy between the clustering done on embed-
dings of the clean speech utterances and the actual use-case of the
model that takes noisy utterances. While the clustering results on
clean data might be more reliable, eventually it is always possible
that a noisy test utterance can be misclassified into a wrong speaker
group, and then consequently assigned to a sub-optimal specialist.
Moreover, since the embeddings are optimized for the SV tasks, clus-
tering on this representation may not be optimal for our SE problem.
We revisit this issue in Sec. 2.6 and propose a fine-tuning solution.

2.5. Specialist Pre-Training

The K specialist modules are trained to denoise speech as follows:
the large dataset of training noises N is retained, but the large speech
corpus S is partitioned into K groups, {S(1), . . . , S(K)}, based on
the clustering results in Sec. 2.3. The k-th specialist module learns
a mapping function h by updating its parametersWh such that the
distance E between the denoised estimate signal ŝ and the target
clean speech signal s is minimized. We use the negative scale-
invariant signal-to-distortion ratio (SI-SDR) [24] as the loss function.

2.6. Ensemble Fine-Tuning

The ensemble model can now be used naı̈vely by assembling the pre-
trained specialist modules and a pre-trained gating module. However,

the gating module may not classify all input signals with perfect ac-
curacy. Therefore, fine-tuning (FT) can adjust the ensemble model’s
denoising performance for misclassified inputs. This potential co-
adaptation between gating and specialist modules can be found by
adjusting the parameters of all the underlying functions (i.e., em-
bedding function f , classifier function g, and denoising functions h
within each specialist). In the fine-tuning phase, the ensemble model
estimates the final ratio mask m̂ by performing a normalized sum
over the individual masks m(k) using the softmax vector, p̂, i.e.,
m̂ =

∑K
k=1 p̂km

(k). This ensures that the ratio mask calculation
is differentiable and can be seen as a “soft” gating mechanism.

During testing, the weighted sum is replaced by a hard-decision,
i.e. m̂ = m(k∗) where k∗ = argmaxk pk. This switch in gating
mechanism between training- and evaluation-time is the essence of
the ensemble scheme’s efficiency: only one out of all the specialists
is active during inference, making the total used network parameters
a fraction of the total learned. In order to reduce the discrepancy
between the hard and soft gating mechanisms (i.e, to make the gating
network more sparse during training), we modify the base of the
softmax function to use e10 as opposed to simply e [9].

Figure 2c and 2d show the fine-tuned speaker embedding vec-
tors. Note that the comparison between the clustering on the SV
embedding vectors and on their fine-tuned version is not to argue that
fine-tuning can improve the clustering results. Instead, fine-tuning
with the speech enhancement objective could in fact deteriorate the
discriminative qualities of the learned embedding vectors.

3. EXPERIMENT SETUP

Mixtures are generated by combining randomly offset 5 sec segments
of utterances and noises. With every mixture, the noise signal is
randomly scaled such that the mixture SNR lies uniformly between
−5 to 10 dB. Utterances derive from the LibriSpeech corpus [25]
train-clean-100 folder, with 211 speakers designated in the training
set, 20 in the validation set, and 20 in the test set. Noises are
selected from the MUSAN corpus [26], with 628 noises from the
free-sound folder used during training and validation, and 54 noises
from the sound-bible folder used during test. Both LibriSpeech and
MUSAN corpora are resampled to 8 kHz. When training the speaker
verification model, batches are made up of pairs of mixtures, with
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Figure 3: Comparison of speech enhancement performance between
a baseline general-purpose model against different configurations of
speaker-informed sparse ensemble models.

an equal chance of being from the same speaker or not. All mixture
signals are processed in the time-frequency domain through STFT
using a frame size of 1024 samples with 75% overlap. Throughout
our experiment, every model performs speech denoising by taking a
series of magnitude spectra as input and estimating IRM vectors m.
Masking is done element-wise onto the complex-valued spectrum
which possesses the noisy phase of the mixture signal.

Both the gating and specialist modules are composed of gated
recurrent units (GRU) cells [27]. The embedding function f is built
with 2 hidden layers and 32 hidden units, with the output from last
frame becoming a fixed-length utterance-characteristic embedding
z. The denoising functions h are also built with 2 hidden layers but
with a varied number of hidden units. The baseline general-purpose
SE model is constructed in exactly the same manner as a specialist
network, but is trained on the entire speech corpus S instead of a
personalized subset S(k). Throughout the experiment, we opt for a
batch size of 128, training all models using the Adam optimizer with
learning rates of 10−3 for training and 10−4 for fine-tuning.

4. RESULTS

Figure 3 summarizes the findings of our experiments. The x-axis
shows the varying hidden sizes for the GRU layers. Since the number
in parenthesis reports each expert’s size, the total size of the ensemble
model is computed by multiplying K to it, e.g., when K = 5 and
the hidden size is 256, the total number of parameters equals 5.6M.
However, because our ensemble models are sparsely active—that is,
one specialist is active at a time—the number of parameters effective
at run-time is only 1/K of the total, the amount listed on the x-axis.
Longitudinally, the baseline models share the same number of hidden

units with the specialist module, meaning the baseline is always K
times smaller than the ensemble model in comparison. However
their effective number of parameters is nearly equivalent. We note
that ensemble models are not fine-tuned for hidden sizes ≥ 512 due
to GPU memory constraints. Larger baseline models are trained and
evaluated for comparison with the smaller ensemble models.

Firstly, we see that across all configurations, our ensemble mod-
els consistently yields a higher denoising performance when com-
pared to a baseline generalist model whose size is similar to one of
the specialists. The naı̈ve ensemble models already show significant
improvement (ranging from 0.62 to 1.65 dB), but different choices
of K do not make a big difference. We also observe that fine-tuning
the ensemble models lift the performance even further (from 1.24 to
as much as 2.04 dB. Furthermore, fine-tuning introduces a larger gap
in improvement when K is larger; intuitively, the more challenging
classification task stands to benefit most from fine-tuning.

The proposed method also performs model compression without
sacrificing the denoising performance. Overall, the smaller model
architecture receives more performance improvement, such as the
2.0 dB improvement in the case of 64 hidden units. The model com-
pression benefits are made clear by comparing data points laterally.
For example, as circled in Figure 3, a generalist model requires at
least 512 hidden units in order to match the performance of a fine-
tuned ensemble model with 10 specialists each made up of GRUs
with only 64 hidden units. Including the cost of the gating module
and all the other specialists that are not chosen, this is still a 48%
reduction in terms of spatial complexity. Moreover, if we only count
the gating module and one chosen specialist, it is a 94% reduction in
effective parameters and test-time arithmetic complexity.

Lastly, as hypothesized, we see that increasing the number of
clusters results can result in a more personalized speech enhancement
so long as the ensemble model is fine-tuned. The average SI-SDR
improvement achieved with the ensemble models increases along
with K from 2 to 5 to 10 through fine-tuning.

5. CONCLUSION

We investigated model adaptation through selection (the “mixture
of local experts” paradigm) as a means for personalized speech
enhancement. Our method is zero-shot as the system never re-
quires clean speech during the test-time adaptation; instead, the
gating module analyzes the noisy test signal to determine the most
appropriate specialist, or local expert, for denoising. We obtain
a speaker-informed gating module by pre-training it with a con-
trastive speaker verification task. The training cases are transformed
to a learned latent space where they are clustered using k-means
clustering. By identifying more clusters and training more low-
cost specialists, our ensemble models are able to adapt better to
unseen test environments. Our findings reinforce the idea that
sparse ensemble models can outperform general-purpose speech
denoising models of a similar architecture, additionally reducing
run-time computational complexity. Source code and sound exam-
ples can be found at: https://saige.sice.indiana.edu/
research-projects/sparse-mle/
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