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Abstract
Comprehensive sampling of the carbonate system in estuaries and coastal waters can be difficult
and expensive because of the complex and heterogeneous nature of near-shore environments. We
show that sample collection by community science programs is a viable strategy for expanding
estuarine carbonate system monitoring and prioritizing regions for more targeted assessment.
‘Shell Day’ was a single-day regional water monitoring event coordinating coastal carbonate
chemistry observations by 59 community science programs and seven research institutions in the
northeastern United States, in which 410 total alkalinity (TA) samples from 86 stations were
collected. Field replicates collected at both low and high tides had a mean standard deviation
between replicates of 3.6± 0.3 µmol kg−1 (σmean ± SE, n= 145) or 0.20± 0.02%. This level of
precision demonstrates that with adequate protocols for sample collection, handling, storage, and
analysis, community science programs are able to collect TA samples leading to high-quality
analyses and data. Despite correlations between salinity, temperature, and TA observed at multiple
spatial scales, empirical predictions of TA had relatively high root mean square error
>48 µmol kg−1. Additionally, ten stations displayed tidal variability in TA that was not
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likely driven by low TA freshwater inputs. As such, TA cannot be predicted accurately from
salinity using a single relationship across the northeastern US region, though predictions
may be viable at more localized scales where consistent freshwater and seawater
endmembers can be defined. There was a high degree of geographic heterogeneity in both
mean and tidal variability in TA, and this single-day snapshot sampling identified three
patterns driving variation in TA, with certain locations exhibiting increased risk of
acidification. The success of Shell Day implies that similar community science based events
could be conducted in other regions to not only expand understanding of the coastal
carbonate system, but also provide a way to inventory monitoring assets, build partnerships
with stakeholders, and expand education and outreach to a broader constituency.

1. Introduction

Ocean and coastal acidification (OCA) has emerged
during the last decade as a topic of serious con-
cern, because of its impacts on marine organisms
and coastal economies [1, 2]. There is a strong sci-
entific consensus about the drivers and projections
of ocean acidification in the open ocean, but the
dynamics of acidification in coastal ecosystems are
less clear. In addition to absorption of carbon dioxide,
the coastal carbonate system is driven by a number
of factors including freshwater discharge, stratifica-
tion, water residence time, eutrophication, biogeo-
chemical processes, and upwelling [3–11]. Natural
biogeochemical cycling, which can be strengthened
by eutrophication, combined with site-specific differ-
ences in tidal flushing and water residence time, leads
to large spatio-temporal variations in seawater car-
bonate system parameters [11–17].

Many drivers of OCA are strongly localized and
are likely determined by characteristics specific to
both watersheds and estuaries, rendering regional
generalizations of OCA conditions difficult. As a
result, the OCA research community has identified
the need for additional monitoring to better under-
stand the drivers of the coastal carbonate system
and quantify localized risk of future OCA [18–21].
Monitoring conditions across multiple spatial and
temporal scales is important for developing mod-
els that inform management and for identifying
and prioritizing opportunities for mitigation and
adaptation (e.g. [22–24]; see also state OCA Action
Plans).

OCA risk assessments for coastal regions involve
comprehensive analyses of current and potential
future biogeochemical conditions and prediction of
the ecological consequences of OCA, combined with
knowledge of societal impacts within specific estuar-
ies (e.g. [2, 25, 26]). Marine calcifiers are particularly
at risk from OCA, and mollusks at most life stages
are sensitive to reduced carbonate mineral satura-
tion state (Ω) and pH (e.g. [27, 28]). Previous studies
have consistently shown negative effects of OCA on
critical shellfish life history stages, including fertiliz-
ation, shell formation, and larval development (e.g.
[18], and references therein, [29–31]). Reduced shell

strength and growth, increased mortality, and altered
behavior have been shown for juveniles and adults
of some species, although responses in laboratory
experiments have been variable, and both species and
sub-population specific [18, 32–38]. Because of the
strong potential sensitivity of mollusks to OCA and
limited mobility within a coastal estuary, areas with
significant wild shellfish populations and aquacul-
ture operations are candidate locations for enhanced
monitoring and determination of localized drivers of
the carbonate system.

Total alkalinity (TA), a measure of the ability of
a solution to resist a change in pH, is one of four
parameters that describes the seawater carbonate sys-
tem. Sample collection is straightforward due to the
lack of sensitivity of TA to gas exchange, and sample
storage over short periods of time does not require
inhibition of biological activity with poisoning agents
such as mercuric chloride [39, 40]. In the absence
of biological processes, TA is also conservative with
salinity, and relationships between salinity and TA
have been used in the monitoring of coastal acidi-
fication [41]. TA can be a useful indicator of mar-
ine ecosystems’ vulnerability to acidification pres-
sure from various CO2 sources; however, TA is not
typically monitored by community science organiz-
ations because of financial and analytical barriers.
The widespread adoption of community science for
water quality monitoring has overcome these hurdles
for other parameters, e.g. temperature, salinity, dis-
solved oxygen, and nutrients [42–45]. In addition,
community science has proven to be important for
public outreach, engagement, education, and adop-
tion of practices that expand and promote envir-
onmental stewardship. Many monitoring organiza-
tions have also been vocal advocates of the develop-
ment and implementation of management solutions
to improve coastal water quality such as garnering
support for nutrient pollution regulation, upgrades
to wastewater treatment facilities, and expansion of
sewer networks. Expanding site-specific monitoring
programs to include observations of coastal carbon-
ate chemistry may be a capacity-building step toward
public education and the implementation of local
management actions to reduce the drivers of acidific-
ation [22, 24, 46, 47].
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We carried out ‘Shell Day’ on 22 August 2019,
as a synoptic water monitoring event coordinating
coastal TA observations among community science
programs and research institutions from Long Island
Sound (LIS) to Downeast Maine. To our knowledge,
this study represents the first large-scale set of syn-
chronous measurements of salinity and TA along the
northeastern United States coast. The sampling was
motivated by two years of outreach and capacity-
building activities by the Northeast Coastal Acidific-
ation Network aimed at training community-based
water monitoring programs in methods to measure
carbonate chemistry parameters [40, 47], an effort to
be detailed in a companion manuscript, Gassett et al
[48]. Shell Day had three major goals: (a) to evalu-
ate the efficacy of community science for TA monit-
oring; (b) to assess geographic heterogeneity in mean
and tidal variability in TA; and (c) to determine if a
regional relationship between salinity, temperature,
andTA could be used to estimate TA. Thismanuscript
describes the successes, shortcomings, and uncertain-
ties in achieving these goals.

2. Methods

2.1. Site selection and sampling design
Minimum requirements for participation in Shell
Day were the capacity to measure water temperature
and salinity; some organizations used thermometers
and refractometers, and others used multiparameter
datasondes or handheld units. Fifty-nine water mon-
itoring organizations participated, collecting samples
from 86 stations. Sampling stations were chosen by
individual monitoring organizations, with sugges-
ted criteria for choosing locations including: stations
with long sampling records, proximity to wild shell-
fish populations, shellfish aquaculture operations or
hatcheries, stations with relatively easy access to facil-
itate repetitive sampling, and/or stations with large
variability in salinity.

An Environmental Protection Agency (EPA)
approved quality assurance project plan was
developed along with a datasheet, sampling protocol,
training video, and a webinar tutorial to instruct
community scientists on a standardized sampling
protocol (all available at necan.org/shellday). Sur-
face water samples were collected in pre-cleaned and
labeled borosilicate glass or HDPE bottles provided
to participating organizations. Samples were collec-
ted at low, mid, and high tides at each station to
assess the tidal variation of TA. Samples were collec-
ted directly from the water body or using common
sampling devices such as buckets, VanDorn samplers,
or Niskin bottles. Temperature, salinity, and other
water characteristics were measured either directly
in the water body at the targeted depth of sample
collection (handheld units and multiparameter data-
sondes) or from the water collected in a container

(refractometers). To assess the consistency of the
sampling protocol, sample handling, and sample
storage, field duplicates were collected at both low
and high tides. Water samples were placed on ice
and stored in the dark upon collection and either
returned to the lab on the day of collection or stored
overnight on ice until samples could be returned to
the nearest laboratory. Upon delivery to a laborat-
ory, water samples were either analyzed immediately
or fixed by laboratory staff with saturated mercuric
chloride to inhibit biological activity and analyzed
over several weeks. Participants were also asked to
provide metadata such as location (upper/mid/lower
estuary), proximity to wild shellfish populations or
aquaculture operations (yes/no/unknown), and other
information such as salinity instrument type and date
of last calibration. In order to ensure safety of volun-
teers collecting water samples, participants were noti-
fied during the pre-sampling training webinar about
inclement weather plans, and no volunteers handled
hazardous laboratory materials.

Spatial data layers from the Northeast Ocean
Data Portal (NODP) on commercial aquaculture
operations [49] and shellfish habitat suitability
[50] were used to corroborate participant responses
and identify other sampling stations located within
1 km of wild shellfish populations and aquaculture
operations.

2.2. Sample processing
Seven laboratories analyzed samples for TA via auto-
mated open-cell Gran titration (Method 1: [51])
or modified single-point titration (Method 2: [52])
(table 1). Each laboratory used certified reference
material (CRM) from Dr A G Dickson’s laboratory at
the Scripps Institute of Oceanography to standardize
measurements. Although an inter-laboratory com-
parison would increase the confidence in and com-
parability of our results, such comparison was bey-
ond the scope of this study. TA data were quality
controlled by each laboratory based on instrument
performance, laboratory replicates, and analyses of
CRM. Data were excluded from analyses if the stand-
ard deviation between field duplicates was greater
than 1% of the mean. Reported salinity was conver-
ted from practical salinity to absolute salinity using
the Gibbs Seawater Matlab toolbox [53]. A subset of
11 samples had salinities verified on a benchtop salin-
ometer (Guildline Portasal).

2.3. Data analysis
Empirical relationships between physical variables
(temperature, salinity, latitude) and TA were eval-
uated for both the entire dataset and groupings of
stations by subregion (figure 1) using simple lin-
ear regression (salinity only) and multiple linear
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Table 1. List of laboratory facilities and instruments. Samples were analyzed for TA via automated open-cell gran titration (1) or
modified single-point titration (2).

Partnering laboratory Titrator brand Method

Bowdoin College Metrohm 905 Titrando 1
EPA Atlantic Coastal Environmental Sciences Division Apollo SciTech Model AS-ALK2 1
Northeastern University Marine Science Center VINDTA 3C (Marine Analytics and Data) 1
Massachusetts Institute of Technology Custom built by Andrew Dickson Laboratory UCSD 1
Woods Hole Oceanographic Institution Metrohm 808 Titrando 1
University of Connecticut Contros HydroFIA 2
University of New Hampshire Contros HydroFIA 2

Figure 1. Sampling locations. Sampling stations are colored by geographic groupings corresponding to regions in tables 2 and 3,
and figure 3. Groupings are the northern Gulf of Maine (GOM, blue), central Gulf of Maine/Cape Cod Bay (orange, CCB),
Buzzards Bay/Vineyard Sound (BB/VS, yellow), Narragansett Bay (NB, purple), and Long Island Sound (LIS, green).
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Table 2. Number of sampling stations, mean total alkalinity (TA), and salinity by subregion. Values in parentheses are standard
deviation. The number of observations may differ between TA and salinity due to quality control measures for each parameter.

Region
Number
of stations TA (µmol kg−1)

Number of
observations Salinity

Number of
observations

GOM 22 1899.9 (335.8) 60 26.1 (7.1) 60
CCB 33 1813.0 (457.7) 95 25.1 (8.5) 99
BB/VS 16 1824.8 (253.8) 48 27.0 (5.5) 43
NB 6 1968.3 (37.1) 15 31.9 (1.7) 14
LIS 9 1881.3 (378.7) 9 20.4 (9.8) 23

Table 3. Summary fit statistics including number of samples (N), r2, p, and root mean square error (RMSE) for multiple linear regression
analysis predicting total alkalinity from temperature and salinity for all data combined (All Data) and individual subregions of the
northern Gulf of Maine (GOM), Cape Cod Bay/Central Gulf of Maine (CCB), Buzzards Bay/Vineyard Sound (BB/VS), Narragansett Bay
(NB) and Long Island Sound (LIS). Fits for all data also include latitude as a predictor variable. Full fit statistics can be found in table S1.

Region N r2 p RMSE (µmol kg−1)

All Data 191 0.894 < 0.0001 121.1
GOM 45 0.773 < 0.0001 177.1
CCB 84 0.944 < 0.0001 110.9
BB/VS 34 0.814 < 0.0001 70.3
NB 14 0.176 0.566 33.5
LIS 14 0.674 0.0085 48.7

regression (MLR) using equations with similar form
as Juranek et al [54] and Alin et al [3]:

TANortheast =A1 +A2 (S− Sr)+A3 (T−Tr)

+A4 (Lat)+A5 (S− Sr)(T−Tr)

+A6 (S− Sr)× Lat+A7 (T−Tr)× Lat.
(1)

TAi =A1,i +A2,i (Si − Sr,i)+A3,i (Ti −Tr,i)

+A4,i (Si − Sr,i)(Ti −Tr,i) (2)

where TA is total alkalinity, S is salinity, T is temper-
ature, Lat is latitude, the r-subscript indicates a ref-
erence temperature and salinity, defined as the mean
temperature or salinity for the dataset analyzed and
the subscript i indicates subregions. Subregion delin-
eation was informed by Gledhill et al [18], with sta-
tion groupings including LIS, Narragansett Bay (NB),
Buzzards Bay/Vineyard Sound (BB/VS), Cape Cod
Bay/Central Gulf of Maine (CCB), and northern Gulf
of Maine (GOM) (see figure 1). Latitude was only
included as a predictor variable when evaluating the
entire dataset (equation (1)).

3. Results

A total of 410 samples were collected. Field duplic-
ates were collected at low and high tides at most
stations, leading to 264 unique samples. Eight sets of
field duplicates with a%-standard-deviation from the
mean of more than 1% were excluded from this ana-
lysis. There was good agreement between the remain-
ing pairs with a mean standard deviation between

duplicates of 3.6± 0.3 µmol kg−1 (±SE, n= 145) or
0.20± 0.02%. The TA of 122 of 145 sets of duplicates
(84.1%) differed by less than 10 µmol kg−1. Laborat-
ory verification of a subset of salinity measurements
(n = 11) showed average differences between field
and lab salinity (±SD) of 1.9 ± 2.1, and salinometer
measurementswere used in place of field observations
where available. Additionally, ten field salinity val-
ues were higher than typically observed in the coastal
New England region (>34) and were excluded from
the interpretation.

There was a high degree of geographic variation
in TA (table 2), and also in station mean and distri-
bution over a tidal cycle (figure 2). Simple regression
analysis indicated a correlation between salinity and
TA across the entire dataset (r2 = 0.668, p < 0.0001,
not shown) that was improved (r2 = 0.820,
p < 0.0001, table S1 and figure S1 (which are available
online at stacks.iop.org/ERL/16/024009/mmedia))
by excluding data from stations where high tidal vari-
ability in either salinity or TA was not accompanied
by variability in the other parameter (figure 3, open
circles, see paragraph below). The best correlations,
with both the highest r2 and lowest rootmean squared
error (RMSE), were achieved by incorporating tem-
perature (for all data combined and by subregion)
and latitude (for all data combined) as predictor vari-
ables via MLR (tables 3 and S2, figure 3 filled circles
only). Despite a relatively high r2 for fits combining
all data, RMSE was large (121.1 µmol kg−1). Ana-
lyzing the data in groupings by subregion improved
the prediction for some regions and worsened the
prediction for others (figure 3, tables 3, S1 and S2).

Station-level standard deviation was used to
assess tidal variations in TA and salinity (figure 4).
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Figure 2. Left panels show subsets of locations of sampling stations moving from north to south down the Northeast US coast:
northeastern Maine (top), southwestern Maine, New Hampshire, northern Massachusetts (2nd), Cape Cod, Martha’s Vineyard,
and Nantucket, Massachusetts (3rd), Rhode Island, Connecticut, and New York (bottom). Right panels show distribution of
station alkalinity measurements. Boxplots are generated using all data from each station, representing up to six samples collected.
Station numbers for each boxplot correspond to numbers in the map panels on the left. Red lines indicate the station median, the
box the interquartile range, and whiskers correspond to±2.7σ.

Three patterns of variation were identified: stations
with (a) low or proportional variation in both TA and
salinity; (b) low variation in salinity but high vari-
ation in TA (σTA >200µmol kg−1,σsal <2.5); (c) high
variation in salinity but low variation inTA (σsal >2.5,
σTA < 100 µmol kg−1). The majority of sampling sta-
tions fell into the first (n = 71) category, four into
the second category, and six into the third category.
Five stations did not have enough samples to evaluate
variability over a tidal cycle.

Participants identified 47 sampling locations that
they believed were in close proximity to shellfish
aquaculture or wild shellfish populations. Spatial data
layers from the NODP identified 18 and 58 stations
within 1 km of shellfish aquaculture operations or
suitable shellfish habitat, respectively. Some stations
overlapped these three data sources, and combin-
ing data sources yielded 72 stations monitored on
Shell Day that were likely near shellfish populations.
Five stations in close proximity to shellfish had mean
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Figure 3. Salinity-total alkalinity (TA) relationships. Each station is represented by at most three points, showing the TA and
salinity values for low, mid, and high tide, as available. Open circles are from the ten stations where tidal variability in salinity and
TA was unexpected. Data points are colored by regional grouping shown in figure 1. Lines are calculated from regression analyses
using the mean temperature for each region. Dashed lines for LIS and NB are included for completeness, but the slopes with
respect to salinity were not statistically significant (p > 0.05, table S1).

Figure 4. Standard deviation in total alkalinity vs standard deviation in salinity over a tidal cycle from each sampling station.
Open circles are stations with low or proportional variation in salinity and alkalinity (group 1), closed triangles have large
variation in alkalinity but small variation in salinity (group 2), and closed circles have large variation in salinity but small
variation in alkalinity (group 3).
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TA that was lower than the 20th percentile in the
dataset (TA < 1750.7 µmol kg−1), six stations had
tidal variability in TA greater than the 80th percentile
(σTA > 120.4 µmol kg−1), and six stations had both
low mean and high tidal variability.

4. Discussion

4.1. Efficacy of sampling design
To the authors’ best knowledge, Shell Day was the
most geographically extensive, single-day effort to
sample and analyze carbonate system parameters of
seawater in coastal New England (figure 1, table 2),
and the first to evaluate a community science strategy
for discrete carbonate system monitoring. Individual
sampling programs have carried out more compre-
hensivemonitoring of single embayments and estuar-
ies (e.g. [11, 17, 55, 56]), but the single-day sampling
over a tidal cycle provides a unique snapshot of vari-
ability in TA and salinity across both time and space
(figure 2). Long termandhigh-precision observations
may be required to discern location-specific drivers
of OCA, but synoptic approaches such as Shell Day
can help prioritize locations for more targeted assess-
ments (see section 4.4).

The good agreement between field replicates
indicates that the community-based sample collec-
tion and handling protocols generally yielded high-
quality TA measurements (figure S1). The success of
Shell Day suggests that community science organiz-
ations with capacity for additional water sample col-
lection could collaborate with laboratories to add TA
to sampling programs to improve understanding of
OCA, while increased community science particip-
ation can serve to facilitate long-term observations.
Such combined science and outreach efforts may
also help communities and managers better under-
stand the complex dynamics of OCA and increase
public engagement in addressing this environmental
challenge.

4.2. Empirical relationships between salinity,
temperature and total alkalinity
The entire salinity-TA data set displays high vari-
ability (figure 3) and suggests that dilution with
low TA freshwater exerts a strong control on coastal
TA across the Northeast (figure 3, filled symbols).
However, ten Shell Day sampling stations exhibited
strong deviations from this overall trend (figure 3,
open symbols), illustrating the potential importance
of other localized processes. For instance, several
stations exhibited TA of ca. 2000 µmol kg−1 and
reported salinity that approached zero, implying dif-
ferences in freshwater endmembers at the watershed
scale (see section 4.3). Additionally, the geographic
subsets of the data identified in figure 1 show distinct
salinity-TA relationships, with differences in both
the salinity-TA slope and the zero-salinity intercept.
Many environmental and water quality factors may

vary at the subregion and watershed scale, such as
underlying gradients in both coastal and freshwater
endmembers spanning this large region (e.g. figure
S4, [18]) that could contribute to these differences in
salinity-TA regressions (figure 3).

One project goal was to determine if a region-
wide empirical relationship could be used to accur-
ately estimate TA from salinity and temperature, two
parameters typically monitored by community sci-
ence programs. Although strong regional relation-
ships between salinity, temperature, and TA have
been observed in other studies (e.g. [3, 54, 57–59]),
the Shell Day data suggest there is not likely to be
a single Northeast-wide relationship that can accur-
ately predict TA in coastal waters. For the entire
region, the best empirical relationship still had a high
RMSE (121.1 µmol kg−1), which contrasts with the
tight salinity-TA relationships observed in the more
open ocean environments of the Northwest Atlantic
continental shelf [16, 60]. Even by subregion, RMSE
was still high (>48 µmol kg−1) in all statistically
significant empirical fits (table 3). This error is 10–
50 times greater than the laboratory measurement
uncertainty, which is typically on the order of 1–
4 µmol kg−1.

Ultimately, the goal of empirical fits to predict
TA should be to achieve a low RMSE so as to limit
additional uncertainty in carbonate system calcu-
lations. For example, Alin et al [3] and Juranek
et al [54] predicted TA with an overall RMSE of
6.4 and 4.8 µmol kg−1, in the Southern Califor-
nia Coastal Current and Northeast Pacific regions,
respectively. In the nearshore and estuarine environ-
ments of Washington state, Fassbender et al [59] pre-
dictedTA from salinity with an error of 17µmol kg−1,
which they estimated was appropriate for ‘weather’
quality calculations of Ω and pH, but not ‘climate’
quality calculations [61], where a prediction error on
TA needed to be <10 µmol kg−1. A similar error
propagation analysis to determine maximum error
acceptable for TA predictions is unfortunately not
possible with this dataset owing to the lack of addi-
tional carbonate system measurements. Thus, given
this high uncertainty, salinity and temperature alone,
at least as measured in the Shell Day dataset, are
not sufficient to estimate TA across the entire North-
east United States region. However, empirical rela-
tionships to predict TA may be possible using more
localized datasets. This is supported by the reduced
error when predicting TA from salinity and temper-
ature for some of the subregions, reinforcing the need
to understand drivers of the carbonate system at the
watershed scale (tables 2 and S1).

Several factors could drive the high predictive
error when estimating TA from proxies in the coastal
environment of the Northeast. Processes that influ-
ence TA such as sulfate reduction, denitrification,
calcification, or calcium carbonate dissolution could
be responsible for some of the variation in the
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salinity-TA relationship, but we lacked the data to
evaluate the contribution of these processes. Chal-
lenges with the collection of high-quality salinity
data may also have led to increased variability in the
salinity-TA relationship. For instance, imprecise cal-
ibration of handheld salinity meters or lower preci-
sion and accuracy of refractometers (used at 23 of
the sampling locations) may have contributed to this
poor correlation. Furthermore, if the water column
was stratified at the time of sample collection, small
differences between the depth of the salinitymeasure-
ment and the depth that the water was sampled for TA
analysis could lead to decoupling of salinity from TA.
Empirical fits between temperature, salinity, and TA
using only laboratory salinometer measurements on
thewater collected for TA analysis in theGOMregion,
rather than field observations, showed much smal-
ler RMSE (30.1 vs 177.1 µmol kg−1, respectively) and
higher r2 values (0.993 vs 0.772, respectively) (tables
S1 and 3) than the overall GOM region, although
this dataset was also much smaller. The reduced error
implies that more accurate measurements of salinity
may improve the predictive capacity of a subregional
empirical relationship, although more data would be
needed to fully evaluate this hypothesis.

4.3. Carbonate system variability
Station-level standard deviation values for salinity
and TA provide insight into factors that influence
tidal variability in TA during the time of sampling
(figure 4). For instance, stations that displayed little
or proportional variability in both TA and salinity
(Group 1, figure 4) likely illustrate conservative mix-
ing with low-TA freshwater as the dominant driver of
TA variability over a tidal cycle. Most of the observa-
tions fall into this category, which reflects the strong
impact of freshwater inputs on TA concentration (see
also section 4.2). Stations with low variability in both
TA and salinity may reflect either coastal or river-
ine endmembers, but given the limited nature of this
dataset (three samples per station) and relatively high
uncertainty in reported salinity (1.9 ± 2.1), it is not
possible to distinguish natural variability in salin-
ity from measurement uncertainty for observations
where σsalinity was less than approximately 2 units.

Stations with large changes in TA but low salin-
ity variation (Group 2, figure 4) could be influenced
by alkalinity production from sediments [62–65]. For
example, at a single sampling station, Wang et al
[64] observed a nearly 200 µmol kg−1 increase in
TA from high to low tide during summer, which was
attributed to anoxic or suboxic processes occurring in
marsh sediments such as sulfate reduction or denitri-
fication that led to significant alkalinity export dur-
ing ebb tide. Production of dissolved organic carbon
can also lead to increased contributions of organic
alkalinity that could cause tidal variations in TA
without changes in freshwater inputs [66]. Organic
acids have been estimated to modify coastal TA by

up to 100 µmol kg−1 [64, 66, 67], potentially repres-
enting 20%–50% of the signal observed at these four
sampling stations.

The six stations with large variation in salinity
but little change in TA over a tidal cycle (Group
3) may reflect high alkalinity freshwater contribu-
tions. Compilations of river alkalinity measurements
collected over the past several decades indicate that
most observations of freshwater TA in the New Eng-
land region are relatively low (200–1000 µmol kg−1,
[17, 56, 68], figure S4) in comparison to expected sea-
water values (>2000 µmol kg−1), but a number of
rivers that discharge into coastal Maine, New Hamp-
shire, northern Massachusetts, and LIS have much
higher TA (>1000 µmol kg−1, [55, 68], figure S4).
However, more data along with repeat sampling over
multiple tidal cycles would be needed to better under-
stand these anomalous relationships between TA
and salinity.

4.4. Using distributed monitoring for targeted
assessments
Assessment of the vulnerability of communities, eco-
nomies, and ecosystems to OCA requires detailed
syntheses of social and biogeochemical conditions
(e.g. [26, 69]). No single sampling program could
provide those syntheses, but efforts like Shell Day
may help identify locations for in-depth evaluation
of vulnerability to OCA. Although explicit biological
thresholds for mean or variability in TA for shellfish
are not known, extreme values within the distribution
of the Shell Day dataset may be used to suggest loca-
tions for further study. For example, stations in close
proximity to shellfish that also had lowmeanTA, high
tidal variability in TA, or both, are likely to experience
higher levels of coastal acidification stress, or be at risk
for future acidification due to low buffering capacity
(figure 5, [18]). In addition, DIC tends to be higher
than TA in rivers and groundwater in New England
[17, 56, 70] and carbonate system buffering dimin-
ishes as DIC increases relative to TA [64, 71–73].
Thus, regions of lowTA, especially if caused bymixing
with high DIC, low TA freshwater, are likely to have
a higher sensitivity to future increases in CO2 from
either atmospheric or local biological sources. Highly
variable environments have also been proposed as
locations that promote adaptation and/or evolution
of resilience to acidification stress ([74] and refer-
ences therein), and the distributed, single-day monit-
oring approachmay identify potentially resilient pop-
ulations of shellfish.

4.5. Recommendations for community-based
sampling andmeasurements of seawater
parameters
These results suggest two important practical
considerations for future studies. First, the
development of empirical relationships between
salinity and TA relies on high-quality measurements
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Figure 5. Station mean and standard deviation in total alkalinity. Open circles are locations identified as near shellfish
aquaculture, wild populations, or suitable shellfish habitat. Closed circles indicate stations not adjacent to aquaculture or wild
shellfish habitats. Vertical and horizontal lines indicate the extreme low and high values (20th and 80th percentiles for mean and
standard deviation, respectively) in the distribution of the Shell Day data.

of both salinity and TA, but during Shell Day, salin-
ity was measured less accurately than anticipated.
Refractometer-based salinity measurements often
differed from laboratory measurements by several
units, and even sensor-based salinity measurements
sometimes yielded implausible values. These prob-
lems emphasize the importance of careful, well-
documented calibration and verification procedures.
In addition, in a strongly stratified water column,
salinity measured in the water column using hand-
held instruments may differ from the actual salinity
of the discrete water sample collected for TA analysis.
At a minimum, salinity and TA should be measured
at precisely the same water depth or, ideally, salin-
ity should be measured on a subsample of the water
sample used for TA measurements.

More broadly, Shell Day responds to the call to
expand coastal monitoring, build partnerships that
utilize existing monitoring efforts to observe coastal
carbonate chemistry, and increase education and out-
reach on behalf of OCA as an indicator of climate
change and water quality [46]. A natural expansion
of this approach would be the addition of a second
carbonate system parameter. The cost and calibra-
tion of equipment poses challenges for in situ meas-
urements of pH and pCO2, while bottle sampling for
dissolved inorganic carbon, pH, or pCO2 has signi-
ficant challenges related to the collection, handling,
and preservation of samples that are sensitive to gas
exchange. Adjustments would need to be made to
the sampling protocol, such as providing sampling

devices designed to minimize gas exchange, using
gas-impermeable borosilicate glass bottles, and more
rapid preservation of samples immediately after col-
lection. These approaches may not be appropriate for
community science because sample preservation typ-
ically involves using a concentrated solution of mer-
curic chloride, a hazardous substance.

Community science driven seawater monitoring
can serve many purposes. This project was designed
to pilot a community science based approach to
characterizing single-day variations in TA across a
large geographic range. A targeted sampling design
prioritizing specific ecosystems, communities of
interest, and/or drivers of coastal carbonate chem-
istry could be developed in collaboration with aca-
demic researchers to address specific questions or
enhance evaluation of regional differences in vul-
nerability to acidification. For example, the EPA’s
National Coastal Condition Assessment added TA to
its suite of standard measured parameters beginning
in 2020. Future efforts could also target sites with
shellfish aquaculture or large populations of wild
shellfish, or be timed to address specific processes,
such as the spring freshet, peak respiration, major
storm events, or seasonal patterns of eutrophication.

5. Conclusions

The success of the Shell Day sampling effort illustrates
the potential of community science to contribute to
carbonate system monitoring. These results reveal
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ways to improve sampling methodology and show
the value of TA as a potential tool for OCA stud-
ies. This project highlighted opportunities for labor-
atories and research facilities to collaborate with
coastal monitoring programs and community sci-
ence organizations, developed resources that could
be used to support future events at other loca-
tions (e.g. Quality Assurance Project Plan, data
sheets, sampling protocols, educational documents
and videos), and identified areas of expansion
such as procedures to collect samples for other
carbonate system parameters. Community science
efforts can provide a way for state and local gov-
ernments to inventory monitoring assets, establish
collaborations among laboratories to build capa-
city for seawater monitoring, and engage constitu-
encies in education and outreach programs that
increase public understanding of ocean and coastal
acidification.
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